Nothing Special   »   [go: up one dir, main page]

JP2004281289A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2004281289A
JP2004281289A JP2003072978A JP2003072978A JP2004281289A JP 2004281289 A JP2004281289 A JP 2004281289A JP 2003072978 A JP2003072978 A JP 2003072978A JP 2003072978 A JP2003072978 A JP 2003072978A JP 2004281289 A JP2004281289 A JP 2004281289A
Authority
JP
Japan
Prior art keywords
storage battery
alkaline storage
positive electrode
negative electrode
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072978A
Other languages
Japanese (ja)
Inventor
Tadayoshi Tanaka
忠佳 田中
Yoshifumi Kiyoku
佳文 曲
Katsuhiko Niiyama
克彦 新山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003072978A priority Critical patent/JP2004281289A/en
Publication of JP2004281289A publication Critical patent/JP2004281289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high output alkaline storage battery capable of high rate charge and discharge and superior in high rate cycle property by suppressing the degradation of discharge capacity when repeating high rate charge and discharge. <P>SOLUTION: The alkaline storage battery having an output density of 500W/kg or more at 25°C comprises a positive electrode 11, a negative electrode 12, a separator 13 laid between the positive and negative electrodes, and an alkaline electrolyte. Tungsten or a tungsten alloy is added to the alkaline electrolyte. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、正極と、負極と、正極と負極との間に介在されるセパレータと、アルカリ電解液とを備え、25℃における出力密度が500W/kg以上になったアルカリ蓄電池において、高率で充放電させた場合におけるサイクル特性を向上させるようにした点に特徴を有するものである。
【0002】
【従来の技術】
従来より、アルカリ蓄電池としては、ニッケル−カドミウム蓄電池やニッケル−水素蓄電池等が使用されている。
【0003】
そして、近年においては、このようなアルカリ蓄電池が電動工具や電気自動車等に使用されるようになり、高率で充放電させることができる高出力のアルカリ蓄電池が必要になった。
【0004】
このため、上記のようなアルカリ蓄電池として、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させて巻き取った電極体の端面において、上記の正極支持体や負極支持体に対して面状になった集電体を取り付け、正極や負極における集電性能を高めるようにしたものが提案されている(例えば、特許文献1及び特許文献2参照)。
【0005】
しかし、このような高出力のアルカリ蓄電池においても、高率での充放電を繰り返して行うと、電極の温度や電流密度に偏りが生じて、電極成分が溶出したり、活物質の利用深度が異なったりし、これにより電極が劣化して放電容量が低下し、サイクル特性が悪くなるという問題があった。
【0006】
【特許文献1】
特開昭56−109456号公報
【特許文献2】
特開2001−351672号公報
【0007】
【発明が解決しようとする課題】
この発明は、上記のように高率で充放電させる高出力のアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、高率での充放電を繰り返して行った場合においても、電極が劣化して放電容量が低下するのを抑制し、高率でのサイクル特性に優れた高出力のアルカリ蓄電池が得られるようにすることを課題とするものである。
【0008】
【課題を解決するための手段】
この発明におけるアルカリ蓄電池においては、上記のような課題を解決するため、正極と、負極と、正極と負極との間に介在されるセパレータと、アルカリ電解液とを備え、25℃における出力密度が500W/kg以上になったアルカリ蓄電池において、上記のアルカリ電解液に、タングステン又はタングステン化合物を添加させるようにしたのである。
【0009】
ここで、上記の25℃における出力密度については、25℃においてアルカリ蓄電池を50%の充電状態にし、このアルカリ蓄電池を5C(Cは時間率)と10Cとの放電電流で放電させて、それぞれの放電開始から10秒後におけるそれぞれの電池電圧V5cとV10cとを測定し、上記の放電電流と電池電圧V5c,V10cとの関係から抵抗Rを求めると共に、V=−RI+Voの関係式を求め、この関係式に基づき、(2/3)Voにおける電圧V2/3と電流I2/3とを求め、この電圧V2/3と電流I2/3との積(V2/3×I2/3)を、上記の25℃における出力密度とした。
【0010】
そして、この発明におけるアルカリ蓄電池のように、アルカリ電解液にタングステン又はタングステン化合物を添加させると、タングステンが正極の表面に析出し、高率での充放電を繰り返して行った場合においても、電極の温度や電流密度に偏りが生じるのが抑制され、サイクル特性に優れた高出力のアルカリ蓄電池が得られるようになると考えられる。
【0011】
また、この発明におけるアルカリ蓄電池において、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させたものが積層された状態になった電極体の端面において、上記の正極支持体や負極支持体に面状になった集電体を取り付けるようにすると、正極支持体や負極支持体の一部にリードを取り付けたものに比べて、正極や負極における集電性能が高められると共に、タングステンが正極の表面に均一に析出するようになり、よりサイクル特性に優れた高出力のアルカリ蓄電池が得られるようになる。
【0012】
ここで、この発明におけるアルカリ蓄電池において、アルカリ電解液に添加させるタングステン酸塩としては、アルカリ蓄電池における特性に悪影響を与えないものを用いることが必要であり、例えば、酸化タングステン、タングステン酸ナトリウム、タングステン酸リチウム、タングステン酸カリウム等を用いることが好ましい。
【0013】
また、アルカリ電解液に添加させるタングステンやタングステン酸塩の量が少ないと、タングステンによる上記のような効果が十分に得られなくなるため、アルカリ電解液100gに対してタングステンやタングステン酸塩を2モル以上添加させることが好ましい。
【0014】
【実施例】
以下、この発明に係るアルカリ蓄電池について実施例を挙げて具体的に説明すると共に、この実施例に係るアルカリ蓄電池においては、高率で充放電を繰り返して行った場合においても放電容量が低下するのが抑制されて、サイクル特性が向上することを、比較例を挙げて明らかにする。なお、この発明におけるアルカリ蓄電池は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0015】
(実施例1)
実施例1においては、負極の活物質として、組成がMmNi3.2Co1.0Al0.2Mn0.6(但し、MmはLa:Ce:Pr:Nd=25:50:6:19の重量比になったミッシュメタルである。)で、平均粒径が約50μmになった水素吸蔵合金粒子を用いた。
【0016】
そして、負極を製造するにあたっては、上記の水素吸蔵合金粒子100重量部に対して、結着剤のポリエチレンオキシドを1.0重量部の割合で加えると共にこれに少量の水を加え、これらを均一に混合させてペーストを調製し、このペーストをニッケルめっきを施したパンチングメタルからなる負極支持体の両面に均一に塗布し、これを乾燥し圧延させて、負極を作製した。
【0017】
また、正極を製造するにあたっては、硝酸コバルトと硝酸亜鉛とを加えた硝酸ニッケル水溶液を、多孔度85%のニッケル焼結基板からなる正極支持体に化学含浸法により含浸させ、コバルトと亜鉛とを含む水酸化ニッケルからなる正極活物質を上記の正極支持体に保持させて、正極を作製した。
【0018】
また、セパレータとしては、ポリプロピレンとポリエチレンとからなる不織布を使用し、またアルカリ電解液としては、30重量%の水酸化カリウム水溶液100gに対して酸化タングステンを2モル溶解させたものを用い、図1に示すような円筒型で容量が約1000mAhになったアルカリ蓄電池を作製した。
【0019】
ここで、上記のアルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極11と負極12との間にセパレータ13を介在させてスパイラル状に巻き取った電極体10の一方の端面において、上記の正極11における正極支持体11aに面状になった正極集電体14を取り付けると共に、上記の電極体10の他方の端面において、上記の負極12における負極支持体12aに面状になった負極集電体15を取り付けるようにする。
【0020】
そして、このように正極集電体14と負極集電体15が取り付けられた電極体10を外装缶20内に収容させて、上記の負極集電体15を外装缶20内部の底面に取り付け、この外装缶20内に上記のアルカリ電解液を注液させると共に、上記の正極集電体14からリード部14aを延出させ、このリード部14aを封口体30の底部31に取り付けて、この封口体30の周縁に絶縁ガスケット32を装着させ、この封口体30を上記の外装缶20の開口部に配置し、外装缶20の開口端縁をかしめて、封口体30を外装缶20に取り付けるようにする。なお、上記の封口体30においては、その底部31と正極外部端子33との間に、スプリング34と弁35とを設け、これにより電池の内圧が異常に上昇した場合に、電池内部のガスを大気に放出させるようにしている。
【0021】
(実施例2)
実施例2においては、アルカリ電解液として、30重量%の水酸化カリウム水溶液100gに対して酸化タングステンを4モル溶解させたものを用い、それ以外は、上記の実施例1の場合と同様にして、実施例2のアルカリ蓄電池を作製した。
【0022】
(実施例3)
実施例3においては、アルカリ電解液として、30重量%の水酸化カリウム水溶液100gに対して酸化タングステンを7モル溶解させたものを用い、それ以外は、上記の実施例1の場合と同様にして、実施例3のアルカリ蓄電池を作製した。
【0023】
(実施例4)
実施例4においては、アルカリ電解液として、30重量%の水酸化カリウム水溶液100gに対してタングステン酸ナトリウムを7モル溶解させたものを用い、それ以外は、上記の実施例1の場合と同様にして、実施例4のアルカリ蓄電池を作製した。
【0024】
(比較例1)
比較例1においては、アルカリ電解液として、30重量%の水酸化カリウム水溶液を用い、それ以外は、上記の実施例1の場合と同様にして、比較例1のアルカリ蓄電池を作製した。
【0025】
そして、上記の実施例1〜4及び比較例1の各アルカリ蓄電池を、それぞれ25℃の温度条件の下で、100mAで16時間充電させた後、100mAで1.0Vまで放電させ、これを1サイクルとして、10サイクルの充放電を繰り返して、上記の各アルカリ蓄電池を活性化させた。
【0026】
また、このように活性化させた各アルカリ蓄電池を、それぞれ45℃の温度条件の下で、充電電流4000mAで800mAh充電させ、これを1分間放置させた後、放電電流4000mAで0.8Vまで放電させ、これを1サイクルとして、1000サイクルの充放電を繰り返し、各アルカリ蓄電池における1000サイクル目の放電容量を測定し、その結果を下記の表1に示した。
【0027】
【表1】

Figure 2004281289
【0028】
この結果から明らかなように、上記のようにタングステン化合物を添加させたアルカリ電解液を用いた実施例1〜4の各アルカリ蓄電池は、タングステン化合物を添加させていないアルカリ電解液を用いた比較例1のアルカリ蓄電池に比べて、高率での充放電を繰り返して行った場合における放電容量の低下が少なくなっていた。
【0029】
【発明の効果】
以上詳述したように、この発明においては、25℃における出力密度が500W/kg以上になった高率での充放電が行われるアルカリ蓄電池において、そのアルカリ電解液にタングステン又はタングステン化合物を添加させたため、タングステンが正極の表面に析出するようになり、高率での充放電を繰り返して行った場合においても放電容量が低下するのが抑制され、高率でのサイクル特性に優れた高出力のアルカリ蓄電池が得られるようになった。
【図面の簡単な説明】
【図1】この発明の各実施例及び比較例において作製したアルカリ蓄電池の概略説明図である。
【符号の説明】
10 電極体
11 正極
11a 正極支持体
12 負極
12a 負極支持体
13 セパレータ
14 正極集電体
15 負極集電体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alkaline storage battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte, and having an output density at 25 ° C. of 500 W / kg or more. It is characterized in that the cycle characteristics when charging and discharging are improved.
[0002]
[Prior art]
Conventionally, nickel-cadmium storage batteries, nickel-hydrogen storage batteries, and the like have been used as alkaline storage batteries.
[0003]
In recent years, such an alkaline storage battery has been used for electric tools, electric vehicles, and the like, and a high-output alkaline storage battery that can be charged and discharged at a high rate has been required.
[0004]
Therefore, as an alkaline storage battery as described above, an electrode wound with a separator interposed between a positive electrode having a positive electrode support holding a positive electrode active material and a negative electrode having a negative electrode support holding a negative electrode active material On the end face of the body, a current collector having a planar shape is attached to the above-described positive electrode support or negative electrode support to enhance the current collection performance of the positive electrode or the negative electrode. Reference 1 and Patent Document 2).
[0005]
However, even in such a high-output alkaline storage battery, when charging and discharging at a high rate are repeatedly performed, the temperature and current density of the electrode are biased, and the electrode components are eluted, and the depth of use of the active material is reduced. There is a problem that the electrodes are deteriorated, the discharge capacity is reduced, and the cycle characteristics are deteriorated.
[0006]
[Patent Document 1]
JP-A-56-109456 [Patent Document 2]
JP 2001-351672 A
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problem in a high-output alkaline storage battery that charges and discharges at a high rate as described above, and in a case where charging and discharging at a high rate are repeatedly performed. It is another object of the present invention to suppress the deterioration of the electrode and the reduction of the discharge capacity, and to obtain a high-output alkaline storage battery having excellent cycle characteristics at a high rate.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the alkaline storage battery according to the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte, and has an output density at 25 ° C. In an alkaline storage battery of 500 W / kg or more, tungsten or a tungsten compound is added to the alkaline electrolyte.
[0009]
Here, with respect to the output density at 25 ° C., the alkaline storage battery is charged to a 50% charged state at 25 ° C., and the alkaline storage battery is discharged at a discharge current of 5C (C is a time rate) and 10C. The respective battery voltages V5c and V10c 10 seconds after the start of discharging were measured, and the resistance R was determined from the relationship between the discharge current and the battery voltages V5c and V10c, and the relational expression of V = −RI + Vo was determined. based on the relational expression, (2/3) obtains the voltage V 2/3 and the current I 2/3 in Vo, product of the voltage V 2/3 and the current I 2/3 (V 2/3 × I 2 / 3 ) was taken as the output density at 25 ° C.
[0010]
Then, when tungsten or a tungsten compound is added to the alkaline electrolyte as in the alkaline storage battery of the present invention, tungsten precipitates on the surface of the positive electrode, and even when charge and discharge are repeatedly performed at a high rate, the electrode is not charged. It is considered that the occurrence of bias in temperature and current density is suppressed, and a high-output alkaline storage battery having excellent cycle characteristics is obtained.
[0011]
In the alkaline storage battery according to the present invention, a state in which a positive electrode in which a positive electrode active material is held in a positive electrode support and a negative electrode in which a negative electrode active material is held in a negative electrode support with a separator interposed therebetween is laminated. At the end face of the electrode body, the current collector in the form of a sheet is attached to the above-mentioned positive electrode support or negative electrode support, so that a lead is attached to a part of the positive electrode support or the negative electrode support. In comparison, the current collecting performance of the positive electrode and the negative electrode is improved, and tungsten is uniformly deposited on the surface of the positive electrode, so that a high-output alkaline storage battery having more excellent cycle characteristics can be obtained.
[0012]
Here, in the alkaline storage battery of the present invention, it is necessary to use, as the tungstate added to the alkaline electrolyte, one that does not adversely affect the characteristics of the alkaline storage battery. For example, tungsten oxide, sodium tungstate, tungsten It is preferable to use lithium oxide, potassium tungstate, or the like.
[0013]
In addition, if the amount of tungsten or tungstate added to the alkaline electrolyte is small, the above-mentioned effects of tungsten cannot be sufficiently obtained, so that 2 mol or more of tungsten or tungstate per 100 g of the alkaline electrolyte is used. It is preferable to add them.
[0014]
【Example】
Hereinafter, the alkaline storage battery according to the present invention will be specifically described with reference to examples, and in the alkaline storage battery according to this example, the discharge capacity will decrease even when charging and discharging are repeatedly performed at a high rate. It is clarified that the cycle characteristics are improved by suppressing the occurrence of the heat resistance with reference to Comparative Examples. The alkaline storage battery according to the present invention is not limited to those shown in the following embodiments, but can be implemented by appropriately changing the scope of the invention without changing its gist.
[0015]
(Example 1)
In Example 1, the composition of the negative electrode active material was MmNi 3.2 Co 1.0 Al 0.2 Mn 0.6 (where Mm is La: Ce: Pr: Nd = 25: 50: 6: 19). The hydrogen storage alloy particles having an average particle size of about 50 μm were used.
[0016]
In producing the negative electrode, polyethylene oxide as a binder was added at a ratio of 1.0 part by weight to 100 parts by weight of the hydrogen storage alloy particles, and a small amount of water was added thereto. To prepare a paste. This paste was uniformly applied to both surfaces of a negative electrode support made of nickel-plated punched metal, and dried and rolled to produce a negative electrode.
[0017]
Further, in manufacturing the positive electrode, an aqueous solution of nickel nitrate to which cobalt nitrate and zinc nitrate are added is impregnated into a positive electrode support composed of a sintered nickel substrate having a porosity of 85% by a chemical impregnation method, and cobalt and zinc are impregnated. The positive electrode active material composed of nickel hydroxide was held on the positive electrode support to prepare a positive electrode.
[0018]
As the separator, a nonwoven fabric made of polypropylene and polyethylene was used, and as the alkaline electrolyte, a solution obtained by dissolving 2 mol of tungsten oxide in 100 g of a 30% by weight aqueous solution of potassium hydroxide was used. The alkaline storage battery having a capacity of about 1000 mAh as shown in FIG.
[0019]
Here, in manufacturing the alkaline storage battery, as shown in FIG. 1, one end face of an electrode body 10 wound in a spiral shape with a separator 13 interposed between the positive electrode 11 and the negative electrode 12. In the above, a planar positive electrode current collector 14 is attached to the positive electrode support 11 a of the positive electrode 11, and the other end face of the electrode body 10 is planarly attached to the negative electrode support 12 a of the negative electrode 12. The negative electrode current collector 15 is attached.
[0020]
Then, the electrode body 10 to which the positive electrode current collector 14 and the negative electrode current collector 15 are attached is accommodated in an outer can 20, and the above-described negative electrode current collector 15 is attached to the bottom inside the outer can 20. The alkaline electrolyte is poured into the outer can 20, and a lead portion 14a is extended from the positive electrode current collector 14, and the lead portion 14a is attached to the bottom 31 of the sealing body 30. An insulating gasket 32 is attached to the periphery of the body 30, and the sealing body 30 is arranged in the opening of the outer can 20, and the opening edge of the outer can 20 is swaged to attach the sealing body 30 to the outer can 20. To In the above-mentioned sealing body 30, a spring 34 and a valve 35 are provided between the bottom 31 and the positive electrode external terminal 33, so that when the internal pressure of the battery rises abnormally, the gas inside the battery is released. Release to the atmosphere.
[0021]
(Example 2)
In Example 2, as the alkaline electrolyte, a solution prepared by dissolving 4 mol of tungsten oxide in 100 g of a 30% by weight aqueous solution of potassium hydroxide was used, and the other conditions were the same as in Example 1 above. Then, an alkaline storage battery of Example 2 was produced.
[0022]
(Example 3)
In Example 3, as the alkaline electrolyte, a solution obtained by dissolving 7 mol of tungsten oxide in 100 g of a 30% by weight aqueous solution of potassium hydroxide was used, and the other conditions were the same as in Example 1 above. Then, an alkaline storage battery of Example 3 was produced.
[0023]
(Example 4)
In Example 4, as the alkaline electrolyte, a solution prepared by dissolving 7 mol of sodium tungstate in 100 g of a 30% by weight aqueous solution of potassium hydroxide was used, and the other conditions were the same as in Example 1 above. Thus, an alkaline storage battery of Example 4 was produced.
[0024]
(Comparative Example 1)
In Comparative Example 1, an alkaline storage battery of Comparative Example 1 was produced in the same manner as in Example 1 except that a 30% by weight aqueous solution of potassium hydroxide was used as the alkaline electrolyte.
[0025]
Then, each of the alkaline storage batteries of Examples 1 to 4 and Comparative Example 1 was charged at 100 mA for 16 hours under a temperature condition of 25 ° C., and then discharged to 1.0 V at 100 mA. As a cycle, 10 cycles of charge / discharge were repeated to activate each of the above alkaline storage batteries.
[0026]
In addition, each of the activated alkaline storage batteries was charged at a charging current of 4000 mA for 800 mAh under a temperature condition of 45 ° C., left for 1 minute, and then discharged to 0.8 V at a discharging current of 4000 mA. This was defined as one cycle, and charge / discharge of 1000 cycles was repeated, and the discharge capacity at the 1000th cycle of each alkaline storage battery was measured. The results are shown in Table 1 below.
[0027]
[Table 1]
Figure 2004281289
[0028]
As is clear from the results, each of the alkaline storage batteries of Examples 1 to 4 using the alkaline electrolyte to which the tungsten compound was added as described above was a comparative example using the alkaline electrolyte to which no tungsten compound was added. As compared with the alkaline storage battery of No. 1, the decrease in the discharge capacity when charging and discharging at a high rate were repeated was reduced.
[0029]
【The invention's effect】
As described in detail above, according to the present invention, in an alkaline storage battery which is charged and discharged at a high rate with an output density at 25 ° C. of 500 W / kg or more, tungsten or a tungsten compound is added to the alkaline electrolyte. Therefore, tungsten is deposited on the surface of the positive electrode, and even when charge / discharge at a high rate is repeatedly performed, a decrease in discharge capacity is suppressed, and a high output with excellent cycle characteristics at a high rate. Alkaline storage batteries can now be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of an alkaline storage battery manufactured in each of Examples and Comparative Examples of the present invention.
[Explanation of symbols]
Reference Signs List 10 electrode body 11 positive electrode 11a positive electrode support 12 negative electrode 12a negative electrode support 13 separator 14 positive electrode current collector 15 negative electrode current collector

Claims (3)

正極と、負極と、正極と負極との間に介在されるセパレータと、アルカリ電解液とを備え、25℃における出力密度が500W/kg以上になったアルカリ蓄電池において、上記のアルカリ電解液に、タングステン又はタングステン化合物を添加させたことを特徴とするアルカリ蓄電池。In an alkaline storage battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte, the output density at 25 ° C. is 500 W / kg or more. An alkaline storage battery characterized by adding tungsten or a tungsten compound. 請求項1に記載したアルカリ蓄電池において、正極支持体に正極活物質が保持された正極と、負極支持体に負極活物質が保持された負極との間にセパレータを介在させたものが積層された状態になった電極体の端面において、上記の正極支持体と負極支持体との少なくとも一方に面状になった集電体が取り付けられてなることを特徴とするアルカリ蓄電池。The alkaline storage battery according to claim 1, wherein a positive electrode in which a positive electrode active material is held in a positive electrode support and a negative electrode in which a negative electrode active material is held in a negative electrode support are provided with a separator interposed therebetween. An alkaline storage battery, wherein a planar current collector is attached to at least one of the positive electrode support and the negative electrode support on an end surface of the electrode body in a state. 請求項2に記載したアルカリ蓄電池において、上記の電極体の片側の端面において、正極支持体に面状になった正極集電体が取り付けられると共に、上記の電極体の反対側の端面において、負極支持体に面状になった負極集電体が取り付けられてなることを特徴とするアルカリ蓄電池。The alkaline storage battery according to claim 2, wherein a planar positive electrode current collector is attached to a positive electrode support at one end face of the electrode body, and a negative electrode is provided at an opposite end face of the electrode body. An alkaline storage battery, wherein a planar negative electrode current collector is attached to a support.
JP2003072978A 2003-03-18 2003-03-18 Alkaline storage battery Pending JP2004281289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072978A JP2004281289A (en) 2003-03-18 2003-03-18 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072978A JP2004281289A (en) 2003-03-18 2003-03-18 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2004281289A true JP2004281289A (en) 2004-10-07

Family

ID=33288981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072978A Pending JP2004281289A (en) 2003-03-18 2003-03-18 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2004281289A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494628A (en) * 2011-09-07 2013-03-20 Solaris Holdings Ltd Dopant for electrolyte
WO2014050075A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Storage cell system
WO2014050074A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Alkaline storage battery and storage battery system using same
WO2014068867A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Storage battery module and storage battery system
WO2014068868A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Nickel metal hydride storage battery and storage battery system
JP2014186880A (en) * 2013-03-25 2014-10-02 Sanyo Electric Co Ltd Nickel-cadmium storage battery
WO2015015825A1 (en) * 2013-07-31 2015-02-05 プライムアースEvエナジー 株式会社 Nickel-metal hydride storage battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959522A (en) * 2011-09-07 2014-07-30 索拉里斯控股有限公司 Method of increasing secondary power source capacity
US9799923B2 (en) 2011-09-07 2017-10-24 Solaris Holdings Limited Method of increasing secondary power source capacity
GB2494628A (en) * 2011-09-07 2013-03-20 Solaris Holdings Ltd Dopant for electrolyte
GB2494628B (en) * 2011-09-07 2014-08-06 Solaris Holdings Ltd Method of secondary power source capacity increasing
CN104584314A (en) * 2012-09-25 2015-04-29 三洋电机株式会社 Alkaline storage battery and storage battery system using same
WO2014050074A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Alkaline storage battery and storage battery system using same
JPWO2014050074A1 (en) * 2012-09-25 2016-08-22 三洋電機株式会社 Alkaline storage battery and storage battery system using the same.
JPWO2014050075A1 (en) * 2012-09-25 2016-08-22 三洋電機株式会社 Storage battery system.
WO2014050075A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Storage cell system
WO2014068868A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Nickel metal hydride storage battery and storage battery system
WO2014068867A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Storage battery module and storage battery system
JPWO2014068868A1 (en) * 2012-10-30 2016-09-08 三洋電機株式会社 Nickel metal hydride storage battery and storage battery system
JPWO2014068867A1 (en) * 2012-10-30 2016-09-08 三洋電機株式会社 Storage battery module and storage battery system
JP2014186880A (en) * 2013-03-25 2014-10-02 Sanyo Electric Co Ltd Nickel-cadmium storage battery
WO2015015825A1 (en) * 2013-07-31 2015-02-05 プライムアースEvエナジー 株式会社 Nickel-metal hydride storage battery

Similar Documents

Publication Publication Date Title
JP2009181710A (en) Alkaline storage battery
JP2004281289A (en) Alkaline storage battery
JP3744716B2 (en) Sealed alkaline storage battery
JP2004220994A (en) Alkaline storage battery
JP5213312B2 (en) Alkaline storage battery
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
WO2014050075A1 (en) Storage cell system
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP2797554B2 (en) Nickel cadmium storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP4573609B2 (en) Alkaline storage battery
JP2005135730A (en) Alkaline storage battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP2004311144A (en) Alkaline storage battery equipped with non-sintering type nickel positive electrode
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JP2004327146A (en) Alkaline storage battery
JP2005116381A (en) Alkaline storage battery
JP2002260643A (en) Hydrogen storage alloy electrode and manufacturing method therefor, and alkaline storage battery
JP2007265631A (en) Alkaline battery and manufacturing method of cathode used for it
JP2004288436A (en) Alkaline accumulator
JP2001006679A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2004253196A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111