Nothing Special   »   [go: up one dir, main page]

JP2004279319A - Radiation detector and radiation image pick-up system - Google Patents

Radiation detector and radiation image pick-up system Download PDF

Info

Publication number
JP2004279319A
JP2004279319A JP2003073782A JP2003073782A JP2004279319A JP 2004279319 A JP2004279319 A JP 2004279319A JP 2003073782 A JP2003073782 A JP 2003073782A JP 2003073782 A JP2003073782 A JP 2003073782A JP 2004279319 A JP2004279319 A JP 2004279319A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
semiconductor component
flexible
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073782A
Other languages
Japanese (ja)
Inventor
Eiichi Takami
栄一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003073782A priority Critical patent/JP2004279319A/en
Publication of JP2004279319A publication Critical patent/JP2004279319A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein fellow flexible substrates are overlapped each other to disturb heat radiation in a semiconductor component, when connecting a photoelectric transfer substrate to an electric circuit board by the flexible substrates mounted with a semiconductor chip. <P>SOLUTION: The photoelectric transfer substrate 100 is connected electrically to the signal reading-out circuit boards 102 by the flexible substrates 105 mounted with the semiconductor component 104, and a mounted portion with the semiconductor component 104 of the each flexible substrate 105 is formed into a polygonal shape. The each flexible substrate 105 is arranged to form the mounted portion of a polygonal shape part 106 into a zig-zag shape to prevent the overlapping of the flexible substrates 105, and a heat radiation characteristic of the each semiconductor component is improved thereby. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、放射線検出装置及びそれを用いた放射線撮像システムに関するものである。
【0002】
【従来の技術】
従来、ファクシミリや複写機、スキャナ或いはX線撮像装置等の読み取り装置は、縮小光学系とCCD型センサを組み合わせたシステムである。一方、近年において水素化アモルファスシリコン(以下a−Si)に代表される光電変換半導体材料が開発され、この半導体材料を用いて光電変換素子及び信号処理部等を大面積の基板に形成することで、情報源と等倍の光学系で読み取る密着型センサの開発が進んでいる。
【0003】
特に、a−Siは光電変換材料としてだけでなく、薄膜電界効果型トランジスタ(以下TFT)の半導体材料としても用いることができるので、ガラス基板等の基板上に光電変換半導体層とTFTの半導体層とを同時に形成できる利点を有する。
【0004】
更に、近年において光電変換半導体層とTFTの半導体層とを同時に形成した大面積光電変換基板上に、X線を可視光に波長変換する波長変換体を組み合わせて、画像を撮像する放射線検出装置が開発されている。このように放射線を可視光に変換し、光電変換して電気信号に変換する場合には、光電変換基板からの出力は非常に微細な電荷であり、その微細電荷をいち早く増幅する必要があるため、光電変換基板の周辺の直近傍に増幅率のある低ノイズの増幅器が多数配置されている。
【0005】
【発明が解決しようとする課題】
ところで、光電変換基板から出力された非常に微細な電荷をいち早く増幅し、更に低ノイズの増幅をするには結晶Siの半導体が適している。しかし、結晶Siの半導体でも微細な電荷を低ノイズで増幅するには大電流が必要で結晶Siの半導体チップサイズが大きくなる。
【0006】
光電変換基板からの非常に微細な出力電荷をいち早く増幅するには、光電変換基板と同一基板上の周辺に複数の増幅器を直接配列するチップ・オン・ガラスが知られているが、上述のようにチップサイズの大きい半導体増幅器を光電変換基板上に実装すると基板サイズが大型化する。
【0007】
そこで、チップサイズの大きい半導体部品をフレキシブル基板に実装し、そのフレキシブル基板を光電変換基板の周辺に配置することで光電変換基板サイズの大型化を回避することが可能である。しかしながら、この方法では、フレキシブル基板を高密度で配列すると、図5に示すようにチップサイズの大きい半導体部品201が実装されたフレキシブル基板202同士が重ってしまう場合がある。
【0008】
一方、光電変換基板から出力される微細電荷を低ノイズで増幅するには大電流が必要であり、結晶Siの半導体の発熱を放熱させる必要があるが、図5に示すように複数のフレキシブル基板が重ってしまうと、半導体部品の放熱を阻害する問題があった。
【0009】
本発明は、上記従来の問題点に鑑みなされたもので、その目的は、半導体部品の発熱を容易に放熱することが可能な放射線検出装置及びそれを用いた放射線撮像システムを提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するため、複数の画素を有する光電変換基板と、前記光電変換基板に電気的に接続された電気回路基板と、前記光電変換素子に入射する放射線を可視光に変換する波長変換体とを有する放射線検出装置において、前記光電変換基板と電気回路基板とは半導体部品が実装されたフレキシブル基板によって電気的に接続され、前記フレキシブル基板の半導体部品が実装された実装部分は多角形形状に形成されており、且つ、前記フレキシブル基板は当該半導体部品の実装部分が千鳥状となるように配置されていることを特徴とする。
【0011】
また、本発明は、前記電気回路基板は、前記光電変換基板から読み出した信号を処理する信号処理回路であること、
前記半導体部品は、前記光電変換基板から読み出された信号を増幅する増幅回路を含むこと、
前記半導体部品が搭載された搭載部分は、八角形形状であること、
等を好適に含んでいる。
【0012】
更に、本発明は、上記放射線検出装置と、前記放射線検出装置から出力された信号を処理するイメージプロセッサと、前記イメージプロセッサで処理された画像を表示するディスプレイとを有することを特徴とする。
【0013】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明による放射線検出装置の一実施形態の構成を示す平面図である。図中100は光電変換素子(フォトダイオード)やその信号を読み出す信号転送素子であるTFT(薄膜トランジスタ)等から成る画素が二次元に配列された光電変換基板である。光電変換基板100はガラス基板等の絶縁基板上に薄膜半導体プロセスを用いて光電変換素子やTFT等を含む画素を二次元に形成したものである。
【0014】
光電変換基板100の画素領域は放射線を可視光に変換する図示しない蛍光体(波長変換体)で覆われている。放射線としては、X線の他にα線、β線、γ線等を使用可能である。
【0015】
光電変換基板100の左右両側には、光電変換基板100を駆動するための駆動回路を有する駆動回路基板101が接続されている。また、光電変換基板100の上下両側には、光電変換基板100から信号を読み出して信号処理を行うための信号処理回路を有する信号読み出し回路基板102が接続されている。
【0016】
駆動回路基板101と信号読み出し回路基板102は、例えば、プリント配線基板等の基板上に駆動回路を有する駆動回路IC、信号処理回路を有する信号処理回路ICを搭載したものである。
【0017】
光電変換基板100と駆動回路基板101とは、フレキシブル基板103によって電気的に接続されている。また、光電変換基板100と信号読み出し回路基板102とは半導体部品(半導体チップ)104を実装したフレキシブル基板105によって接続されている。
【0018】
半導体部品104は光電変換回路基板100から読み出した信号を増幅する増幅回路を集積化したものであり、前述のような結晶Siの半導体チップを用いている。光電変換基板100の各画素から読み出された信号はフレキシブル基板105の信号線(図示せず)を通って半導体部品104に入力され、半導体部品104の各増幅回路で増幅される。各増幅回路で増幅された信号はフレキシブル基板105の信号線を通って信号読み出し回路基板102に入力され、信号読み出し回路基板102に設けられた信号処理回路ICにより信号処理が行われる。
【0019】
フレキシブル基板105は図2に示すように中途が八角形形状になっており、この八角形状部106に半導体部品104が実装されている。このようにフレキシブル基板105の中途に半導体部品104を実装する八角形形状部106を形成することにより、図2に示すように半導体部品104の実装部分である八角形状部106が千鳥状となるようにフレキシブル基板105が配置されている。
【0020】
本実施形態では、このようにフレキシブル基板105を八角形状部106が千鳥となるように配置することにより、フレキシブル基板105の重なりがなくなるため、半導体部品104の放熱を阻害することが無く、半導体部品104の放熱特性を改善することができる。
【0021】
ここで、フレキシブル基板105の半導体部品104を実装する実装部分を八角形状に形成しているが、これに限ることはなく、例えば、四角形状や六角形状等であっても良い。但し、フレキシブル基板105の長さ等を考慮すると八角形状が望ましい。なお、フレキシブル基板105を作製する場合には、すべてのフレキシブル基板105を1つの打ち抜き型で作製でき、2種類の打ち抜き型を用意する必要はない。
【0022】
図3は光電変換基板100内の光電変換素子と薄膜トランジスタ等を含む1画素の回路図である。図中110は光電変換素子(センサ部)、111はTFT(転送部)である。また、112は駆動ラインであり、駆動回路基板101から駆動ライン112を通して光電変換基板100に駆動信号が供給される。113は信号ラインであり、光電変換素子からの信号が信号ライン113を通して信号読み出し回路基板102に読み出される。114は光電変換素子をリセットするリセットラインである。
【0023】
図4は本発明の放射線検出装置を用いた放射線線診断システムの一実施形態を示すブロック図である。X線チューブ6050で発生したX線6060は、例えば、患者或いは被験者6061の胸部6062を透過し、上述した本発明の放射線検出装置(イメージセンサ)6040に入射する。この入射したX線には被験者6061の体内部の情報が含まれている。
【0024】
X線の入射に対応して放射線検出装置6040に設けられた蛍光体(波長変換体)によって可視光に変換され、これを光電変換して電気信号が得られる。この電気信号はデジタル変換され、イメージプロセッサ6070によって画像表示するための処理が行われ、得られた画像は制御室のディスプレイ6080で表示され観察できる。
【0025】
また、この画像情報は電話回線6090等の伝送手段により遠隔地へ転送でき、別の場所のドクタールーム等のディスプレイ6081に表示もしくは光ディスク等の保存手段に保存することができ、遠隔地の医師が診断することも可能である。また、フィルムプロセッサ6100によりフィルム6110に記録することもできる。
【0026】
なお、以上の実施形態では、X線撮像システムを例に説明したが、X線以外の放射線を光に変換し、この光を光電変換する装置構成としても同様である。放射線としては、上述のようにX線の他にα線,β線,γ線等を使用することが可能である。
【0027】
更に、以上の実施形態では、光電変換基板100と信号読み出し基板102間を半導体部品104が実装されたフレキシブル基板105を用いて接続する場合を例として説明したが、本発明は、これに限ることなく、異なる基板間を半導体部品を有するフレキシブル基板等の配線部材を用いて接続するすべての場合に使用することが可能である。
【0028】
【発明の効果】
以上説明したように本発明によれば、半導体部品が実装されたフレキシブル基板を用いて基板間を接続すると共に、半導体部品が実装された実装部分を多角形状に形成し、この多角形状部分が千鳥状となるようにフレキシブル基板を配置することにより、フレキシブル基板の重なりがなくなり、半導体部品の放熱特性を改善することができる。
【図面の簡単な説明】
【図1】本発明による放射線検出装置の一実施形態を示す平面図である。
【図2】図1の千鳥状に配置された半導体部品を有するフレキシブル基板105を詳細に示す図である。
【図3】光電変換基板内の光電変換素子と薄膜トランジスタ等からなる1画素の回路図である。
【図4】本発明の放射線検出装置を用いた放射線診断システムの一実施形態を示すブロック図である。
【図5】従来のフレキシブル基板の重なり状態を示す図である。
【符号の説明】
100 光電変換基板
101 駆動回路基板
102 信号読み出し回路基板
103 フレキシブル基板
104 半導体部品(半導体チップ)
105 フレキシブル基板
106 八角形状部
110 光電変換素子
111 TFT
112 駆動ライン
113 信号ライン
114 リセットライン
6050 X線チューブ
6060 X線
6061 患者あるいは被験者
6062 胸部
6040 放射線検出装置(イメージセンサ)
6061 被験者
6070 イメージプロセッサ
6080、6081 ディスプレイ
6090 電話回線
6100 フィルムプロセッサ
6110 フィルム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiation detection device and a radiation imaging system using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a reading device such as a facsimile, a copying machine, a scanner, or an X-ray imaging device is a system in which a reduction optical system and a CCD sensor are combined. On the other hand, in recent years, a photoelectric conversion semiconductor material represented by hydrogenated amorphous silicon (hereinafter a-Si) has been developed, and a photoelectric conversion element, a signal processing unit, and the like are formed on a large-area substrate using this semiconductor material. The development of a contact type sensor that reads information with an optical system of the same magnification as the information source is in progress.
[0003]
In particular, since a-Si can be used not only as a photoelectric conversion material but also as a semiconductor material of a thin film field effect transistor (hereinafter, TFT), a photoelectric conversion semiconductor layer and a TFT semiconductor layer are formed on a substrate such as a glass substrate. And can be formed simultaneously.
[0004]
Furthermore, in recent years, a radiation detector that captures an image by combining a wavelength converter that converts the wavelength of X-rays into visible light is provided on a large-area photoelectric conversion substrate on which a photoelectric conversion semiconductor layer and a semiconductor layer of a TFT are simultaneously formed. Is being developed. When the radiation is converted to visible light and photoelectrically converted to an electric signal in this way, the output from the photoelectric conversion substrate is a very fine charge, and it is necessary to amplify the fine charge quickly. In the immediate vicinity of the periphery of the photoelectric conversion substrate, many low-noise amplifiers having an amplification factor are arranged.
[0005]
[Problems to be solved by the invention]
By the way, a crystal Si semiconductor is suitable for amplifying very fine electric charges outputted from the photoelectric conversion substrate as quickly as possible and further amplifying with low noise. However, even a crystalline Si semiconductor requires a large current to amplify minute charges with low noise, and the size of the crystalline Si semiconductor chip increases.
[0006]
In order to quickly amplify very fine output charges from a photoelectric conversion substrate, a chip-on-glass in which a plurality of amplifiers are directly arranged around the same substrate as the photoelectric conversion substrate is known. When a semiconductor amplifier having a large chip size is mounted on a photoelectric conversion substrate, the substrate size increases.
[0007]
Therefore, it is possible to avoid an increase in the size of the photoelectric conversion substrate by mounting a semiconductor component having a large chip size on the flexible substrate and disposing the flexible substrate around the photoelectric conversion substrate. However, in this method, when the flexible boards are arranged at a high density, the flexible boards 202 on which the semiconductor components 201 having a large chip size are mounted may overlap as shown in FIG.
[0008]
On the other hand, a large current is required to amplify the minute electric charge output from the photoelectric conversion substrate with low noise, and it is necessary to radiate the heat generated by the crystalline Si semiconductor. However, as shown in FIG. If they overlap, there is a problem that heat dissipation of the semiconductor component is hindered.
[0009]
The present invention has been made in view of the above-described conventional problems, and has as its object to provide a radiation detection device capable of easily radiating heat generated by a semiconductor component, and a radiation imaging system using the radiation detection device. .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a photoelectric conversion substrate having a plurality of pixels, an electric circuit board electrically connected to the photoelectric conversion substrate, and converting radiation incident on the photoelectric conversion element into visible light. In the radiation detection device having a wavelength converter, the photoelectric conversion board and the electric circuit board are electrically connected by a flexible board on which a semiconductor component is mounted, and a mounting portion of the flexible board on which the semiconductor component is mounted is The semiconductor device is characterized by being formed in a polygonal shape, and wherein the flexible substrate is arranged such that mounting portions of the semiconductor component are staggered.
[0011]
Further, according to the present invention, the electric circuit board is a signal processing circuit that processes a signal read from the photoelectric conversion board,
The semiconductor component includes an amplifier circuit for amplifying a signal read from the photoelectric conversion substrate,
The mounting part on which the semiconductor component is mounted has an octagonal shape,
Etc. are preferably included.
[0012]
Furthermore, the present invention is characterized by including the above-mentioned radiation detecting device, an image processor for processing a signal output from the radiation detecting device, and a display for displaying an image processed by the image processor.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view showing the configuration of an embodiment of the radiation detecting apparatus according to the present invention. In the figure, reference numeral 100 denotes a photoelectric conversion substrate on which pixels including a photoelectric conversion element (photodiode) and a TFT (thin film transistor) serving as a signal transfer element for reading out a signal are two-dimensionally arranged. The photoelectric conversion substrate 100 is formed by two-dimensionally forming pixels including a photoelectric conversion element and a TFT on an insulating substrate such as a glass substrate using a thin film semiconductor process.
[0014]
The pixel region of the photoelectric conversion substrate 100 is covered with a not-shown phosphor (wavelength converter) that converts radiation into visible light. As the radiation, α-rays, β-rays, γ-rays and the like can be used in addition to X-rays.
[0015]
A drive circuit board 101 having a drive circuit for driving the photoelectric conversion substrate 100 is connected to both left and right sides of the photoelectric conversion substrate 100. A signal readout circuit board 102 having a signal processing circuit for reading out signals from the photoelectric conversion board 100 and performing signal processing is connected to both upper and lower sides of the photoelectric conversion board 100.
[0016]
The drive circuit board 101 and the signal readout circuit board 102 have, for example, a drive circuit IC having a drive circuit and a signal processing circuit IC having a signal processing circuit mounted on a substrate such as a printed wiring board.
[0017]
The photoelectric conversion substrate 100 and the drive circuit substrate 101 are electrically connected by a flexible substrate 103. The photoelectric conversion board 100 and the signal readout circuit board 102 are connected by a flexible board 105 on which a semiconductor component (semiconductor chip) 104 is mounted.
[0018]
The semiconductor component 104 integrates an amplifier circuit for amplifying a signal read from the photoelectric conversion circuit board 100, and uses a semiconductor chip of crystalline Si as described above. A signal read from each pixel of the photoelectric conversion substrate 100 is input to the semiconductor component 104 through a signal line (not shown) of the flexible substrate 105, and is amplified by each amplifier circuit of the semiconductor component 104. The signal amplified by each amplifier circuit is input to the signal readout circuit board 102 through the signal line of the flexible board 105, and the signal is processed by the signal processing circuit IC provided on the signal readout circuit board 102.
[0019]
As shown in FIG. 2, the flexible substrate 105 has an octagonal shape in the middle, and the semiconductor component 104 is mounted on the octagonal portion 106. By forming the octagonal portion 106 for mounting the semiconductor component 104 in the middle of the flexible substrate 105 in this way, the octagonal portion 106, which is the mounting portion of the semiconductor component 104, is staggered as shown in FIG. The flexible substrate 105 is disposed.
[0020]
In the present embodiment, since the flexible substrates 105 are arranged so that the octagonal portions 106 are staggered, the flexible substrates 105 do not overlap with each other. The heat radiation characteristics of the semiconductor device 104 can be improved.
[0021]
Here, the mounting portion of the flexible substrate 105 on which the semiconductor component 104 is mounted is formed in an octagonal shape, but is not limited to this, and may be, for example, a square shape or a hexagonal shape. However, an octagonal shape is desirable in consideration of the length of the flexible substrate 105 and the like. When the flexible substrate 105 is manufactured, all the flexible substrates 105 can be manufactured by one punching die, and there is no need to prepare two types of punching dies.
[0022]
FIG. 3 is a circuit diagram of one pixel including a photoelectric conversion element, a thin film transistor, and the like in the photoelectric conversion substrate 100. In the figure, reference numeral 110 denotes a photoelectric conversion element (sensor section), and 111 denotes a TFT (transfer section). Reference numeral 112 denotes a drive line, and a drive signal is supplied from the drive circuit board 101 to the photoelectric conversion substrate 100 through the drive line 112. Reference numeral 113 denotes a signal line, and a signal from the photoelectric conversion element is read out to the signal readout circuit board 102 through the signal line 113. Reference numeral 114 denotes a reset line for resetting the photoelectric conversion element.
[0023]
FIG. 4 is a block diagram showing an embodiment of a radiation diagnostic system using the radiation detection device of the present invention. The X-ray 6060 generated by the X-ray tube 6050 passes through, for example, the chest 6062 of the patient or the subject 6061 and enters the above-described radiation detection apparatus (image sensor) 6040 of the present invention. The incident X-ray includes information on the inside of the body of the subject 6061.
[0024]
The light is converted into visible light by a phosphor (wavelength converter) provided in the radiation detection device 6040 in response to the incidence of the X-rays, and is photoelectrically converted to obtain an electric signal. This electric signal is converted into a digital signal, and a process for displaying an image is performed by an image processor 6070. The obtained image is displayed on a display 6080 in the control room and can be observed.
[0025]
Further, this image information can be transferred to a remote place by a transmission means such as a telephone line 6090, displayed on a display 6081 such as a doctor room at another place, or stored in a storage means such as an optical disk. Diagnosis is also possible. Further, it can be recorded on a film 6110 by a film processor 6100.
[0026]
In the above embodiment, an X-ray imaging system has been described as an example. However, the same applies to a device configuration that converts radiation other than X-rays into light and photoelectrically converts the light. As the radiation, α-rays, β-rays, γ-rays and the like can be used in addition to X-rays as described above.
[0027]
Further, in the above embodiment, the case where the photoelectric conversion substrate 100 and the signal readout substrate 102 are connected using the flexible substrate 105 on which the semiconductor component 104 is mounted has been described as an example, but the present invention is not limited to this. Instead, the present invention can be used in all cases in which different boards are connected using a wiring member such as a flexible board having semiconductor components.
[0028]
【The invention's effect】
As described above, according to the present invention, the boards are connected using the flexible board on which the semiconductor components are mounted, and the mounting portion on which the semiconductor components are mounted is formed in a polygonal shape. By arranging the flexible substrates so as to form a shape, the overlapping of the flexible substrates is eliminated, and the heat radiation characteristics of the semiconductor component can be improved.
[Brief description of the drawings]
FIG. 1 is a plan view showing one embodiment of a radiation detecting apparatus according to the present invention.
FIG. 2 is a view showing in detail a flexible substrate 105 having semiconductor components arranged in a staggered manner in FIG. 1;
FIG. 3 is a circuit diagram of one pixel including a photoelectric conversion element and a thin film transistor in a photoelectric conversion substrate.
FIG. 4 is a block diagram showing an embodiment of a radiation diagnostic system using the radiation detection device of the present invention.
FIG. 5 is a diagram showing an overlapping state of a conventional flexible substrate.
[Explanation of symbols]
REFERENCE SIGNS LIST 100 photoelectric conversion board 101 drive circuit board 102 signal readout circuit board 103 flexible board 104 semiconductor component (semiconductor chip)
105 Flexible substrate 106 Octagonal portion 110 Photoelectric conversion element 111 TFT
112 Drive line 113 Signal line 114 Reset line 6050 X-ray tube 6060 X-ray 6061 Patient or subject 6062 Chest 6040 Radiation detection device (image sensor)
6061 subject 6070 image processor 6080, 6081 display 6090 telephone line 6100 film processor 6110 film

Claims (1)

複数の画素を有する光電変換基板と、前記光電変換基板に電気的に接続された電気回路基板と、前記光電変換素子に入射する放射線を可視光に変換する波長変換体とを有する放射線検出装置において、前記光電変換基板と電気回路基板とは半導体部品が実装されたフレキシブル基板によって電気的に接続され、前記フレキシブル基板の半導体部品が実装された実装部分は多角形形状に形成されており、且つ、前記フレキシブル基板は当該半導体部品の実装部分が千鳥状となるように配置されていることを特徴とする放射線検出装置。In a radiation detection device including a photoelectric conversion substrate having a plurality of pixels, an electric circuit board electrically connected to the photoelectric conversion substrate, and a wavelength converter for converting radiation incident on the photoelectric conversion element into visible light. The photoelectric conversion board and the electric circuit board are electrically connected by a flexible board on which a semiconductor component is mounted, and a mounting portion of the flexible board on which the semiconductor component is mounted is formed in a polygonal shape, and The radiation detection device according to claim 1, wherein the flexible substrate is arranged so that a mounting portion of the semiconductor component is staggered.
JP2003073782A 2003-03-18 2003-03-18 Radiation detector and radiation image pick-up system Pending JP2004279319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073782A JP2004279319A (en) 2003-03-18 2003-03-18 Radiation detector and radiation image pick-up system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073782A JP2004279319A (en) 2003-03-18 2003-03-18 Radiation detector and radiation image pick-up system

Publications (1)

Publication Number Publication Date
JP2004279319A true JP2004279319A (en) 2004-10-07

Family

ID=33289594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073782A Pending JP2004279319A (en) 2003-03-18 2003-03-18 Radiation detector and radiation image pick-up system

Country Status (1)

Country Link
JP (1) JP2004279319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351765A (en) * 2005-06-15 2006-12-28 Shimadzu Corp Integrated circuit package and optical detector or radiation detector provided therewith
JP2016090243A (en) * 2014-10-30 2016-05-23 三菱電機株式会社 Magnetic type position detection device
EP2224264A4 (en) * 2007-11-19 2017-04-12 Toshiba Electron Tubes & Devices Co., Ltd. Radiation detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351765A (en) * 2005-06-15 2006-12-28 Shimadzu Corp Integrated circuit package and optical detector or radiation detector provided therewith
JP4604865B2 (en) * 2005-06-15 2011-01-05 株式会社島津製作所 Method for removing an integrated circuit from an integrated circuit package
EP2224264A4 (en) * 2007-11-19 2017-04-12 Toshiba Electron Tubes & Devices Co., Ltd. Radiation detecting device
JP2016090243A (en) * 2014-10-30 2016-05-23 三菱電機株式会社 Magnetic type position detection device

Similar Documents

Publication Publication Date Title
US6627896B1 (en) Image sensing apparatus
JP4681774B2 (en) Imaging device, imaging device using the imaging device, and imaging system using the imaging device
US8222612B2 (en) Radiation image capturing apparatus
JP4908947B2 (en) Conversion device, radiation detection device, and radiation detection system
TWI447924B (en) Radiation photography device
JP2006004998A (en) Substrate for radiation image pick-up, and radiation image pick-up device and system
JP2002344809A (en) Image pick up unit, its drive method, radiographic device and radiographic system
JP4383899B2 (en) Radiation imaging apparatus and radiation imaging system
JP5400507B2 (en) Imaging apparatus and radiation imaging system
KR20090087278A (en) X-ray detector and making method of x-ray detector
JP3347708B2 (en) Two-dimensional image input device and image processing system using the same
JP3869952B2 (en) Photoelectric conversion device and X-ray imaging device using the same
JP2011078103A (en) Imaging apparatus, method of driving the same, radiation imaging apparatus and radiation imaging system using the same
JP2002369078A (en) Radiation image pickup device and its system
JPWO2006112320A1 (en) X-ray flat panel detector and X-ray diagnostic imaging apparatus
JP2004279319A (en) Radiation detector and radiation image pick-up system
US7750307B2 (en) Radiation image capturing apparatus
JP4408593B2 (en) Radiation detection apparatus and system
JP2002350551A (en) Radiation imaging apparatus and radiation imaging system using the same
JP2000278605A (en) Image pickup device and image processing system
JP2004177216A (en) Radiation imaging apparatus
JP2003163343A5 (en)
JP2002158340A (en) Radiation imaging device, photoelectric converter and radiation imaging system
JP2007159790A (en) Radiographic apparatus and radiographic system
JP2011078104A (en) Imaging apparatus, radiation imaging apparatus and radiation imaging system using the same