JP2004274978A - Controlling device for three-phase ac generator motor - Google Patents
Controlling device for three-phase ac generator motor Download PDFInfo
- Publication number
- JP2004274978A JP2004274978A JP2003107100A JP2003107100A JP2004274978A JP 2004274978 A JP2004274978 A JP 2004274978A JP 2003107100 A JP2003107100 A JP 2003107100A JP 2003107100 A JP2003107100 A JP 2003107100A JP 2004274978 A JP2004274978 A JP 2004274978A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- generator
- battery
- mos
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Charge By Means Of Generators (AREA)
Abstract
Description
【0001】
【産業上の利用分野】
本発明は、バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によってバッテリを充電させる三相整流回路として機能する制御回路の通電制御を行わせる三相交流発電動機の制御装置に関する。
【0002】
【従来の技術】
一般に、三相交流発電動機を車両に搭載して、エンジンの始動時にはバッテリを電源に用いて三相インバータ回路を介して三相交流電動機として駆動させ、エンジンの始動後には三相交流発電機として駆動させて三相整流回路を介してバッテリの充電を行わせるようにしている。
【0003】
最近、このような三相交流発電動機を電動機として駆動するときの三相インバータ回路と三相交流発電動機を発電機として駆動するときの三相整流回路とを兼ねる制御回路にあっては、図1に示すように、U,V,W各相の制御素子にMOS・FET1〜6を用いて通電制御を行わせるようにしている。図中、M/Gは永久磁石式などによる三相交流発電動機、Battはバッテリ、DはMOS・FETの寄生ダイオードである。
【0004】
従来、このような三相交流発電動機の制御回路において、三相交流発電動機M/Gを発電機として駆動してその発電電圧によってバッテリBattの充電を行わせる場合、図示しないコントローラの制御下で、図2に示すように、各相における正電位側および負電位側ともにMOS・FET1〜6のゲートのオン、オフを行わせることによって通電制御を行わせるようにしている。
【0005】
【発明が解決しようとする課題】
解決しようとする問題点は、バッテリを用いて三相交流発電動機を電動機として駆動するときの三相インバータ回路と三相交流発電動機を発電機として駆動してバッテリを充電するときの三相整流回路とを兼ねる制御回路における各相の制御素子にMOS・FETを用いたものにあって、バッテリ充電時の三相整流回路として機能させるに際して、各相における正電位側および負電位側のMOS・FET1〜6のゲートのオン,オフによる通電制御を行わせるのでは、その制御が複雑になっていることである。
【0006】
また、三相交流発電動機の発電電圧によってバッテリの充電を行わせるに際して、三相交流発電動機の回転数や負荷に変動をきたすと発電電圧が変動してしまい、バッテリの充電電圧が変動してしまうという問題がある。
【0007】
【課題を解決するための手段】
本発明は、バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によってバッテリを充電させる際の三相整流回路として機能する制御回路における各相の制御素子にMOS・FETを用いた三相交流発電動機の制御装置にあって、三相整流のための通電制御を簡単にするとともに、三相交流発電動機の回転数や負荷の変動の影響を受けることなくバッテリの充電を効率良く行わせることができるようにするべく、三相交流発電機としての駆動時に、その制御回路における各相の負電位側のMOS・FETのみを用いて同期整流を行わせる手段と、その制御回路における各相の負電位側のMOS・FETのゲート制御によって通電タイミングの進角、遅角を行わせる手段をとるようにしている。
【0009】
【実施例】
本発明による三相交流発電動機の制御装置は、図3に示す構成にあって、三相交流発電動機M/Gを発電機として駆動してその発電電圧によってバッテリBattの充電を行わせる場合、図示しないコントローラの制御下で、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみの各ゲートをオン,オフすることによって三相整流のための通電制御を行せるようにしている。
【0008】
図4は、各相における負電位側の各MOS・FET2,4,6のオン,オフに応じた三相整流波形(a)、各MOS・FET2,4,6におけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示している。なお、各相における正電位側の各MOS・FET1,3,5のゲートはオフ状態に維持されている。
【0009】
図5は、各相における正電位側および負電位側の全てのMOS・FET1〜6をオフ状態にして、各寄生ダイオードDによって三相整流を行わせたときの三相整流波形(a)、各MOS・FET2,4,6におけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示している。図6は、そのときの制御回路1の等価回路を示している。
【0010】
このように、三相交流発電動機M/Gの発電電圧によってバッテリBattを充電する際に、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみを用いて同期整流を行わせることによって、整流ロスを低減して、バッテリBattの充電効率を有効に高めることができるようになる。また、従来のように各相における正電位側および負電位側ともにMOS・FET1〜6のゲートのオン、オフの制御を行わせる場合に比して、その制御が簡単になる。
【0011】
また、三相交流発電動機M/Gの発電電圧によってバッテリBattを充電する際には制御回路1における各相の正電位側のMOS・FET1,3,5のゲートをオフ状態に維持するようにしているので、三相交流発電動機M/Gが電動機として誤作動することが防止できる。
【0012】
本発明は、このような三相交流発電動機の制御装置にあって、特に、三相交流発電動機M/Gを発電機として駆動してその発電電圧によってバッテリBattの充電を行わせる場合、図示しないコントローラの制御下で、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみの各ゲートをオン,オフすることによって通電タイミン7の進角、遅角を行わせるようにしている。
【0013】
その場合、三相交流発電動機M/Gの回転数や負荷の変動によって、発電電圧が上がり過ぎたら、通電タイミングを進角させることにより減磁作用を利用して発電電圧を低下させ、発電電圧が下がり過ぎたら、通電タイミングを遅角させることにより増磁作用を利用して発電電圧を上昇させるようにして、バッテリBattの充電電圧が常に一定になるようにする。
【0014】
図7は、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみのゲートのオン,オフによる通電制御のタイミングを電気角で60°進角させた場合、そのときの三相整流波形(a)、各MOS・FET2,4,6におけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示している。なお、各相における正電位側の各MOS・FET1,3,5のゲートはオフ状態に維持されている。
【0015】
この場合、三相整流波形(a)の特性からして、バッテリBattの充電電圧が所定に低下することになる。
【0016】
図8は、制御回路1におけるU,V,W各相の負電位側のMOS・FET2、MOS・FET4、MOS・FET6のみのゲートのオン,オフによる通電制御のタイミングを電気角で60°遅角させた場合、そのときの三相整流波形(a)、各MOS・FET2,4,6におけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示している。
【0017】
この場合、三相整流波形(a)の特性からして、バッテリBattの充電電圧が所定に上昇することになる。
【0018】
図9は、バッテリBattの充電電圧が一定の14Vになるように本発明によって通電タイミングの制御を行わせたときの回転数をパラメータとした負荷電流に対する制御電圧の特性を示している。
【0019】
また、図10は、本発明によって通電タイミングの制御を行わせたときの負荷電流と回転数とに対するバッテリBattの充電効率の分布特性を示している。ここで、Aは85〜90%の充電効率の分布領域を、Bは80〜85%の充電効率の分布領域を、Cは70〜80%の充電効率の分布領域を、Dは60〜70%の充電効率の分布領域を、Eはは50〜60%の充電効率の分布領域を、Fは40〜50%の充電効率の分布領域を、Gは30〜40%の充電効率の分布領域を示している。
【0020】
本発明では、図10のA,Bで示す充電効率の分布領域となるように通電タイミングの制御を行わせるようにしている。
【0021】
【発明の効果】
以上、本発明は、バッテリを用いて三相交流電動機として駆動させる際の三相インバータ回路を兼ね、三相交流発電機として駆動させたときの発電出力によっでバッテリを充電させる際の三相整流回路として機能する制御回路における各相の制御素子にMOS・FETを用いた三相交流発電動機の制御装置にあって、三相交流発電機としての駆動時に、三相整流のための通電制御を簡単にするとともに、三相交流発電動機の回転数や負荷の変動の影響を受けることなくバッテリの充電を効率良く行わせることができるようになり、バッテリ損失の軽減と過電圧負荷によるユニットの破損防止とを有効に図ることができるという利点を有している。また、三相交流発電機としての駆動時に、低回転からのバッテリ充電電圧を確保できるという利点を有している。
【図面の簡単な説明】
【図1】バッテリを電源として三相交流発電動機を電動機として駆動するときの三相インバータ回路と三相交流発電動機を発電機として駆動してバッテリを充電するときの三相整流回路とを兼ねる各相の制御素子にMOS・FETを用いた制御回路を示す図である。
【図2】図1に示す制御回路においてバッテリ充電時に三相交流発電動機の出力電圧に応じて各相における正電位側および負電位側ともにMOS・FETのゲートのオン、オフ制御を行わせたときのタイミングチャートである。
【図3】図1に示す制御回路にあって、本発明によって各相の負電位側のMOS・FETのみの各ゲートをオン,オフすることによって三相整流のための通電制御を行せたときの電流の流れを示す図である。
【図4】図1に示す制御回路にあって、本発明によって各相の負電位側のMOS・FETのみの各ゲートをオン,オフしたときの各相における負電位側の各MOS・FETのオン,オフに応じた三相整流波形(a)、各MOS・FETにおけるドレインD−ソースS間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形(c)をそれぞれ示す図である。
【図5】図1に示す制御回路にあって、各相における正電位側および負電位側の全てのMOS・FETをオフ状態にして、各寄生ダイオードDによって三相整流を行わせたときの三相整流波形(a)、各MOS・FETにおけるドレイン−ソース間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示す図である。
【図6】図1に示す制御回路にあって、各相における正電位側および負電位側の全てのMOS・FETをオフ状態にして、各寄生ダイオードDによって三相整流を行わせたときそのときの等価回路を示す図である。
【図7】図1に示す制御回路における各相の負電位側のMOS・FETのみのゲートのオン,オフによる通電制御のタイミングを電気角で60°進角させたときの三相整流波形(a)、各MOS・FETにおけるドレイン−ソース間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示す図である。
【図8】図1に示す制御回路における各相の負電位側のMOS・FETのみのゲートのオン,オフによる通電制御のタイミングを電気角で60°遅角させたときの三相整流波形(a)、各MOS・FETにおけるドレイン−ソース間の電圧波形(b)およびU相を中性点とした各相の誘起電圧波形をそれぞれ示している。
【図9】バッテリの充電電圧が一定の14Vになるように本発明によって通電タイミングの制御を行わせたときの回転数をパラメータとした負荷電流に対する制御電圧の特性を示す図である。
【図10】本発明によって通電タイミングの制御を行わせたときの負荷電流と回転数とに対するバッテリの充電効率の分布特性を示す図である。
【符号の説明】
1 制御回路
M/G 三相交流発電動機
Batt バッテリ
D 寄生ダイオード[0001]
[Industrial applications]
The present invention relates to a control functioning as a three-phase rectifier circuit that also serves as a three-phase inverter circuit when driven as a three-phase AC motor using a battery and that charges a battery with a generated output when driven as a three-phase AC generator. The present invention relates to a control device for a three-phase alternating-current power generator for controlling power supply to a circuit.
[0002]
[Prior art]
In general, a three-phase AC generator is mounted on a vehicle, and when the engine is started, the battery is used as a power source and driven as a three-phase AC motor via a three-phase inverter circuit. When driven, the battery is charged via the three-phase rectifier circuit.
[0003]
Recently, a control circuit that functions as a three-phase inverter circuit for driving such a three-phase AC generator as a motor and a three-phase rectifier for driving the three-phase AC generator as a generator are shown in FIG. As shown in FIG. 1, the control elements of the U, V, and W phases are controlled to be energized by using MOSFETs 1-6. In the figure, M / G is a three-phase AC generator of a permanent magnet type or the like, Batt is a battery, and D is a parasitic diode of a MOS-FET.
[0004]
Conventionally, in such a control circuit of a three-phase AC generator, when the three-phase AC generator M / G is driven as a generator to charge the battery Batt with the generated voltage, the battery Batt is controlled under the control of a controller (not shown). As shown in FIG. 2, the energization control is performed by turning on and off the gates of the MOSFETs 1 to 6 on both the positive potential side and the negative potential side in each phase.
[0005]
[Problems to be solved by the invention]
The problems to be solved are a three-phase inverter circuit when driving a three-phase AC generator as a motor using a battery and a three-phase rectification when driving a three-phase AC generator as a generator to charge a battery. In the control circuit that also serves as a circuit, a MOS-FET is used as a control element for each phase, and when functioning as a three-phase rectifier circuit during battery charging, the MOS-FET on the positive potential side and the negative potential side in each phase is used. Performing the energization control by turning on and off the gates of the FETs 1 to 6 complicates the control.
[0006]
Also, when charging the battery with the generated voltage of the three-phase AC generator, if the rotation speed or load of the three-phase AC generator fluctuates, the generated voltage fluctuates, and the charging voltage of the battery fluctuates. Problem.
[0007]
[Means for Solving the Problems]
The present invention also functions as a three-phase inverter circuit when driven as a three-phase AC motor using a battery, and functions as a three-phase rectifier circuit when the battery is charged with a power output when driven as a three-phase AC generator. A control device for a three-phase AC generator using a MOS-FET as a control element for each phase in a control circuit that performs three-phase rectification and simplifies energization control for the three-phase AC generator MOS-FET on the negative potential side of each phase in its control circuit when driving as a three-phase AC generator so that the battery can be charged efficiently without being affected by fluctuations in load and load. Means for performing synchronous rectification by using only the gate and controlling the gate of the MOS-FET on the negative potential side of each phase in the control circuit to advance or retard the energization timing. It has to take the means.
[0009]
【Example】
The control device of the three-phase AC generator motor according to the present invention has the configuration shown in FIG. 3 and drives the three-phase AC generator motor M / G as a generator to charge the battery Batt with the generated voltage. Under the control of a controller (not shown), three-phase rectification is performed by turning on / off each gate of only the MOS-FET 2, MOS-
[0008]
FIG. 4 shows a three-phase rectified waveform (a) corresponding to the on / off state of each of the MOS-
[0009]
FIG. 5 shows a three-phase rectified waveform (a) when all the MOSFETs 1 to 6 on the positive potential side and the negative potential side in each phase are turned off and three-phase rectification is performed by each parasitic diode D; The voltage waveform (b) between the drain D and the source S in each of the
[0010]
As described above, when the battery Batt is charged with the voltage generated by the three-phase AC generator M / G, the MOS • FET2, the MOS • FET4, and the MOS • FET4 on the negative potential side of each of the U, V, and W phases in the control circuit 1. By performing the synchronous rectification using only the FET 6, the rectification loss can be reduced, and the charging efficiency of the battery Batt can be effectively increased. In addition, the control is simpler than in the case where the ON / OFF control of the gates of the MOSFETs 1 to 6 is performed on both the positive potential side and the negative potential side in each phase as in the related art.
[0011]
When the battery Batt is charged by the generated voltage of the three-phase AC generator M / G, the gates of the positive-side MOS-
[0012]
The present invention relates to such a control device for a three-phase AC generator, particularly when the battery Batt is charged with the generated voltage by driving the three-phase AC generator M / G as a generator. Under the control of the controller, the timing of the energizing
[0013]
In this case, if the generated voltage is excessively increased due to a change in the rotation speed or load of the three-phase AC generator M / G, the generated voltage is reduced by utilizing the demagnetization effect by advancing the energization timing, and the generated voltage is reduced. If the battery voltage is too low, the power generation voltage is increased by utilizing the magnetizing action by delaying the energization timing, so that the charging voltage of the battery Batt is always constant.
[0014]
FIG. 7 shows the timing of the energization control by turning ON / OFF the gates of only the MOS-FET2, MOS-FET4 and MOS-FET6 on the negative potential side of each phase of U, V, W in the control circuit 1 by 60 electrical degrees. In this case, the three-phase rectified waveform at that time (a), the voltage waveform between the drain D and source S in each of the
[0015]
In this case, from the characteristics of the three-phase rectified waveform (a), the charging voltage of the battery Batt decreases to a predetermined value.
[0016]
FIG. 8 shows that the timing of the energization control by turning on and off only the gates of the MOS-FET 2, MOS-
[0017]
In this case, the charging voltage of the battery Batt rises to a predetermined level due to the characteristics of the three-phase rectified waveform (a).
[0018]
FIG. 9 shows the characteristics of the control voltage with respect to the load current using the rotation speed as a parameter when the energization timing is controlled according to the present invention so that the charging voltage of the battery Batt becomes a constant 14 V.
[0019]
FIG. 10 shows the distribution characteristics of the charging efficiency of the battery Batt with respect to the load current and the rotation speed when the energization timing is controlled according to the present invention. Here, A is the distribution area of the charging efficiency of 85 to 90%, B is the distribution area of the charging efficiency of 80 to 85%, C is the distribution area of the charging efficiency of 70 to 80%, D is 60 to 70%. %, The distribution area of the charging efficiency of 50 to 60%, the distribution area of the charging efficiency of 40 to 50%, and the distribution area of the charging efficiency of 30 to 40%. Is shown.
[0020]
In the present invention, the energization timing is controlled so as to be in the distribution area of the charging efficiency shown by A and B in FIG.
[0021]
【The invention's effect】
As described above, the present invention also functions as a three-phase inverter circuit when driven as a three-phase AC motor using a battery, and is used to charge a battery by a power generation output when driven as a three-phase AC generator. In a control device for a three-phase AC generator using a MOS-FET as a control element for each phase in a control circuit functioning as a rectifier circuit, when driving as a three-phase AC generator, energizing control for three-phase rectification Battery charging can be performed efficiently without being affected by fluctuations in the rotational speed or load of the three-phase AC generator, reducing battery loss and damaging the unit due to overvoltage load. This has the advantage that prevention can be effectively achieved. In addition, there is an advantage that a battery charging voltage from a low rotation can be ensured when driven as a three-phase AC generator.
[Brief description of the drawings]
FIG. 1 shows a three-phase inverter circuit for driving a three-phase AC generator as a motor using a battery as a power source and a three-phase rectifier circuit for charging a battery by driving the three-phase AC generator as a generator. FIG. 3 is a diagram showing a control circuit using a MOS-FET as a control element for each phase.
FIG. 2 shows that the control circuit shown in FIG. 1 controls ON / OFF of a gate of a MOSFET on both the positive potential side and the negative potential side in each phase according to the output voltage of the three-phase AC generator during battery charging. It is a timing chart at the time.
FIG. 3 is a circuit diagram showing the control circuit shown in FIG. 1. According to the present invention, the energization control for three-phase rectification can be performed by turning on / off each gate of only the MOS-FET on the negative potential side of each phase. FIG. 9 is a diagram showing a current flow at the time.
FIG. 4 is a circuit diagram of the control circuit shown in FIG. 1 in which the gates of only the MOS-FETs on the negative potential side of each phase are turned on and off according to the present invention; The three-phase rectified waveform (a) according to ON / OFF, the voltage waveform (b) between the drain D and the source S in each MOS • FET, and the induced voltage waveform (c) of each phase with the U phase as a neutral point are shown. FIG.
FIG. 5 is a diagram illustrating the control circuit shown in FIG. 1 in which all the MOSFETs on the positive potential side and the negative potential side in each phase are turned off, and three-phase rectification is performed by each parasitic diode D; It is a figure which shows the three-phase rectification waveform (a), the voltage waveform (b) between drain-source in each MOS-FET, and the induced voltage waveform of each phase which made U phase a neutral point.
FIG. 6 is a circuit diagram showing the control circuit shown in FIG. 1 in which all the MOSFETs on the positive potential side and the negative potential side in each phase are turned off and three-phase rectification is performed by each parasitic diode D; FIG. 9 is a diagram showing an equivalent circuit at the time.
FIG. 7 shows a three-phase rectified waveform obtained by advancing the timing of energization control by turning on and off the gate of only the MOS-FET on the negative potential side of each phase in the control circuit shown in FIG. 1 by an electrical angle of 60 ° ( 3A is a diagram showing a drain-source voltage waveform (b) in each MOS • FET, and FIG. 4B is a diagram showing an induced voltage waveform in each phase with the U phase as a neutral point.
FIG. 8 is a three-phase rectified waveform when the timing of energization control by turning on and off only the gate of only the MOS-FET on the negative potential side of each phase in the control circuit shown in FIG. a), a voltage waveform (b) between the drain and the source in each MOS • FET, and an induced voltage waveform of each phase with the U phase as a neutral point.
FIG. 9 is a diagram showing a characteristic of a control voltage with respect to a load current using a rotation speed as a parameter when energization timing is controlled according to the present invention so that a charging voltage of a battery is a constant 14V.
FIG. 10 is a diagram showing a distribution characteristic of a battery charging efficiency with respect to a load current and a rotation speed when the energization timing is controlled according to the present invention.
[Explanation of symbols]
1 Control circuit M / G Three-phase AC generator motor Batt Battery D Parasitic diode
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107100A JP2004274978A (en) | 2003-03-06 | 2003-03-06 | Controlling device for three-phase ac generator motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107100A JP2004274978A (en) | 2003-03-06 | 2003-03-06 | Controlling device for three-phase ac generator motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004274978A true JP2004274978A (en) | 2004-09-30 |
Family
ID=33127956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003107100A Pending JP2004274978A (en) | 2003-03-06 | 2003-03-06 | Controlling device for three-phase ac generator motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004274978A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009071904A (en) * | 2007-09-10 | 2009-04-02 | Toyo Denso Co Ltd | Controller for inverter generator |
-
2003
- 2003-03-06 JP JP2003107100A patent/JP2004274978A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009071904A (en) * | 2007-09-10 | 2009-04-02 | Toyo Denso Co Ltd | Controller for inverter generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3710602B2 (en) | Power generator | |
US20050001582A1 (en) | Motor control device | |
KR960039537A (en) | Vehicle generator | |
JP4023353B2 (en) | Inverter circuit device for three-phase rotating electrical machine for vehicles | |
JP2006296194A (en) | Sensorless and brushless dc motor drive using speed control by pulse width modulation at motor frequency | |
JP2002010694A (en) | Control unit for field-winding type rotating electirc machine | |
JP2007135391A (en) | Double voltage electrical system | |
US20160352272A1 (en) | Motor controller and method for controlling motor | |
US11316457B2 (en) | Inverter type engine generator | |
JP3412329B2 (en) | Power generation equipment for vehicles | |
WO2022237307A1 (en) | Power tool and control method therefor | |
JP2004201453A (en) | Drive unit of direct-current, three-phase brushless motor | |
JP4254544B2 (en) | Battery charger | |
JP3899942B2 (en) | Inverter for AC generator motor | |
JPWO2018016090A1 (en) | VEHICLE DRIVE DEVICE, VEHICLE DRIVE SYSTEM, AND CONTROL METHOD FOR VEHICLE DRIVE DEVICE | |
JP2004274978A (en) | Controlling device for three-phase ac generator motor | |
JP2001157497A (en) | Power generation controller for synchronous generator | |
JP3515359B2 (en) | Inverter circuit | |
JP4749663B2 (en) | Motor control device | |
JP2004274979A (en) | Controller for three-phase ac generator/motor | |
US20060066271A1 (en) | Control device for three phase ac generator-motor | |
JP2005065460A (en) | Vehicular dynamotor control device | |
WO2022168290A1 (en) | Power generator | |
WO2022168289A1 (en) | Power generator | |
JP6091571B1 (en) | Rotating electric machine and method for controlling rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070927 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080715 |