Nothing Special   »   [go: up one dir, main page]

JP2004268045A - Die for forming gear and method for manufacturing gear - Google Patents

Die for forming gear and method for manufacturing gear Download PDF

Info

Publication number
JP2004268045A
JP2004268045A JP2003058017A JP2003058017A JP2004268045A JP 2004268045 A JP2004268045 A JP 2004268045A JP 2003058017 A JP2003058017 A JP 2003058017A JP 2003058017 A JP2003058017 A JP 2003058017A JP 2004268045 A JP2004268045 A JP 2004268045A
Authority
JP
Japan
Prior art keywords
die
punch
gear
molding
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058017A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Hirasawa
勝芳 平澤
Kuniaki Doda
邦明 堂田
Shiko O
志剛 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Priority to JP2003058017A priority Critical patent/JP2004268045A/en
Publication of JP2004268045A publication Critical patent/JP2004268045A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die for forming a gear by which the gear can be formed by using a thin wall material to be formed compared with a material for the conventional one, and a method for manufacturing the gear. <P>SOLUTION: When a cylinder material 52 is pressed by a punch 40 and it is pushed into a punch thrust-in hole 26 formed to a die 30, the cylinder material 52 is moved over a forming tooth 33 on the die side projected from the inner peripheral face of the punch thrust-in hole 26 and it is deformed inwardly in the die 10 for forming the gear. Then, unevenness is formed on the inner peripheral face of the cylinder material 52 by a forming tooth 43 on the punch side inserted to the inside of the cylinder material 52. Here, the forming tooth 43 on the punch side is projected toward the tooth bottom of the forming tooth 33 on the die side. Accordingly, a part of the cylinder material 52 sandwiched between the forming tooth 33 on the die side and the forming tooth 43 on the punch side is formed into a corrugated shape. The equalization of the wall thickness of the tooth and the tooth bottom is realized compared with the conventional one. As a result, the gear can be formed by using the thinner wall cylinder material 52 than that of the conventional one. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状の被成形素材に歯車を成形するための歯車成形用金型及びその歯車成形用金型を用いた歯車の製造方法に関する。
【0002】
【従来の技術】
従来、この種の歯車成形用金型によって成形された歯車は、円筒状の被成形素材の外周面又は内周面の何れか一方の周面にのみ複数の歯を備えた構造になっていた(特許文献1参照)。
【0003】
【特許文献1】
特開2002−96136号公報(第2図、第11図)
【0004】
【発明が解決しようとする課題】
しかしながら、上記したものでは、被成形素材のうち複数の歯と、隣り合った歯の間の歯底部分との肉厚差が大きくなる。このため、歯底部分の肉厚を確保するため被成形素材のうち歯車成形部分以外の部位の肉厚が過剰に大きくなり、成形品が重たくなるという問題が生じていた。
【0005】
本発明は、上記事情に鑑みてなされたもので、従来用より薄肉の被成形素材を用いて歯車を成形することが可能な歯車成形用金型及び歯車の製造方法の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するためなされた請求項1の発明に係る歯車成形用金型(10)は、パンチ(40)及びダイス(30)を備え、円筒状の被成形素材(52)をパンチ(40)で押圧してダイス(30)に設けたパンチ突入孔(26)に押し込み、パンチ突入孔(26)の内周面から突出した複数のダイス側成形歯(33)によって被成形素材(52)の外周面に歯車部(59)を成形する歯車成形用金型(10)であって、パンチ(40)のうち被成形素材(52)の内側に挿入可能な部分(42)の外周面には、ダイス側成形歯(33)の歯底に向かって突出した複数のパンチ側成形歯(43)が設けられたところに特徴を有する。
【0007】
請求項2の発明は、請求項1記載の歯車成形用金型(10)において、パンチ(40)には、被成形素材(52)の一端面を押圧するための素材押圧面(45)が備えられたところに特徴を有する。
【0008】
請求項3の発明は、請求項1又は2に記載の歯車成形用金型(10)において、ダイス側成形歯(33)の歯底径(D4)は、被成形素材(52)における歯車成形部分(57)の外径(D6)より小さいところに特徴を有する。
【0009】
請求項4の発明は、請求項1乃至3の何れかに記載の歯車成形用金型(10)において、パンチ突入孔(26)の内周面には、被成形素材(52)の外径(D6)を、ダイス側成形歯(33)の歯底径(D4)まで縮径変形させるためのテーパー部(26T)が設けられたところに特徴を有する。
【0010】
請求項5の発明に係る歯車(60)の製造方法は、円筒状の被成形素材(52)をパンチ(40)で押圧して、ダイス(30)に設けたパンチ突入孔(26)に押し込み、そのパンチ突入孔(26)の内周面から突出した複数のダイス側成形歯(33)によって被成形素材(52)の外周面に歯車部(59)を成形する歯車(60)の製造方法であって、パンチ(40)のうち被成形素材(52)の内側に挿入される部分(42)の外周面に複数のパンチ側成形歯(43)を形成しておき、ダイス側成形歯(33)とパンチ側成形歯(43)との間で、被成形素材(52)を波形形状に成形するところに特徴を有する。
【0011】
請求項6の発明は、請求項5に記載の歯車(60)の製造方法において、パンチ(40)のうちパンチ側成形歯(43)より基端側に、被成形素材(52)の一端面を押圧するための素材押圧面(45)を設けておき、素材押圧面(45)によって、被成形素材(52)の一端面を押圧しながらダイス側成形歯(33)の内側に被成形素材(52)を押し込むところに特徴を有する。
【0012】
請求項7の発明は、請求項6に記載の歯車(60)の製造方法において、被成形素材(52)内にパンチ側成形歯(43)を挿入する工程の後に、被成形素材(52)における歯車成形部分(57)をダイス側成形歯(33)の内側に押し込む工程を行うところに特徴を有する。
【0013】
請求項8の発明は、請求項7に記載の歯車(60)の製造方法において、歯車成形部分(57)をダイス側成形歯(33)の内側に押し込む工程の後に、素材押圧面(45)にて被成形素材(52)を更に押圧する工程を行うところに特徴を有する。
【0014】
【発明の作用及び効果】
<請求項1及び5の発明>
請求項1及び5の発明では、円筒状の被成形素材(52)をパンチ(40)で押圧してダイス(30)に設けたパンチ突入孔(26)に押し込むと、被成形素材(52)が、パンチ突入孔(26)の内周面から突出したダイス側成形歯(33)に乗り上がって内側に変形する。すると、被成形素材(52)の内側に挿入されたパンチ側成形歯(43)によって、被成形素材(52)の内周面に凹凸が形成される。ここで、パンチ側成形歯(43)は、ダイス側成形歯(33)の歯底に向かって突出しているので、被成形素材(52)のうちダイス側成形歯(33)とパンチ側成形歯(43)との間に挟まれた部分が波形形状になり、従来のように被成形素材の内周面又は外周面の何れかにのみ複数の歯を形成したものに比べて、歯と歯底部分の肉厚の均一化が図られる。これにより、従来より薄肉の被成形素材(52)を用いて歯車を成形することが可能になる。
【0015】
<請求項2及び6の発明>
請求項2及び6の発明によれば、被成形素材(52)をパンチ(40)における素材押圧面(45)で押圧して、ダイス側成形歯(33)とパンチ側成形歯(43)との間の成形領域(R1)の隅々にまで被成形素材(52)を行き渡らせることができ、成形品質が向上する。
【0016】
<請求項3の発明>
請求項3の歯車成形用金型(10)では、ダイス側成形歯(33)の歯底径(D4)が、被成形素材(52)における歯車成形部分(57)の外径(D6)より小さいので、被成形素材(52)自体の反力によって、被成形素材(52)がダイス側成形歯(33)に押し付けられ、ダイス側成形歯(33)に隅々まで被成形素材(52)が行き渡り、成形品質が向上する。
【0017】
<請求項4の発明>
請求項4の歯車成形用金型(10)では、被成形素材(52)がテーパー部(26T)を通過することで縮径変形され、その反力によって被成形素材(52)がダイス側成形歯(33)に押し付けられてダイス側成形歯(33)の隅々まで被成形素材(52)が行き渡り、成形品質が向上する。
【0018】
<請求項7の発明>
請求項7の歯車(60)の製造方法では、被成形素材(52)内にパンチ側成形歯(43)を挿入してから、被成形素材(52)における歯車成形部分(57)がダイス側成形歯(33)の内側に押し込まれるので、被成形素材(52)が、ダイス側成形歯(33)に乗り上がって内側に変形したときには、その被成形素材(52)の内側でパンチ側成形歯(43)が待ち構えた状態になり、これにより被成形素材(52)の内側における流れが簡素化され、ダイス側成形歯(33)側の成形精度が向上する。
【0019】
<請求項8の発明>
請求項8の歯車(60)の製造方法では、被成形素材(52)における歯車成形部分(57)をダイス側成形歯(33)の内側に押し込む工程に次いで、素材押圧面(45)により被成形素材(52)を更に押圧するので、これにより、ダイス側成形歯(33)の隅々まで被成形素材(52)が行き渡り、成形品質が向上する。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図8に基づいて説明する。
図1には、本実施形態の歯車製造装置20が示されている。この歯車製造装置20は、上下方向で対向した上台21と下台22とを備えてなり、例えば、上台21がガイドポスト23に案内されて上下動する。そして、これら下台22に固定されたダイス30と、上台21に固定されたパンチ40とによって本発明に係る歯車成形用金型10が構成されている。
【0021】
ダイス30は、ベース部成形型31の上面に歯部成形型32を重ねてなる。また、ダイス30の上面には、ダイス30を下台22に固定するための下側ホルダー24が重ねられている。そして、これらベース部成形型31、歯部成形型32及び下側ホルダー24とに連通形成した断面円形のパンチ突入孔26にパンチ40が突入可能になっている。
【0022】
ベース部成形型31におけるパンチ突入孔26内には、ノックアウトピン34が嵌合されている。そして、後述する円筒素材52が、このノックアウトピン34とパンチ40との間に挟まれた状態でパンチ突入孔26の奥側に押し込まれる。また、ノックアウトピン34の軸芯部分に形成した貫通孔にはバーリングパンチ35が嵌合されている。
【0023】
図2及び図4に示すように、歯部成形型32におけるパンチ突入孔26の内周面には、下端部分に複数のダイス側成形歯33が形成されている。各ダイス側成形歯33は、稜線が上下方向に延びた突条をなしている。そして、図5に示すように、ダイス側成形歯33による成形領域R1の形状が、インボリュート歯車の形状になっている。また、これらダイス側成形歯33の上端部分は上方に向かうに従って幅及び高さが徐々に小さくなっている(図2参照)。
なお、図3(A)に示すように、パンチ突入孔26のうちダイス側成形歯33より上方部分には、ダイス側成形歯33に接近するに従って縮径されたテーパー部26Tが設けられている。
【0024】
一方、パンチ40は、図1に示すように、上側ホルダー25から垂下した円柱部41と、円柱部41の下端面から下方に突出した歯形成形体42とからなる。図2に示すように、歯形成形体42は、下端部に向かうに従って若干縮径している。また、歯形成形体42の下端面には、前記したバーリングパンチ35の先端が突入する突入孔48が形成されている。
【0025】
図2及び図4に示すように、歯形成形体42の外周面には、上端部に複数のパンチ側成形歯43が形成されている。これらパンチ側成形歯43は、図5に示すように、ダイス側成形歯33の歯底に向かって突出しており、これにより、パンチ側成形歯43とダイス側成形歯33との間の成形領域R1が波形状になっている。
【0026】
図6に示すように、パンチ側成形歯43の歯先径D2は、ダイス側成形歯33の歯先径D3より小さくなっている。また、図2に示すように、パンチ40における円柱部41の下端面の外径D10は、パンチ側成形歯43の歯先径D3より大きくなっており、その円柱部41の下端面の縁部が、後述する円筒素材52の上端面を押圧するための素材押圧面45になっている。
【0027】
さて、上記した歯車製造装置20を製造工程の一部に用いたインボリュート歯車60(図8参照)の製造方法について以下説明する。その第1の工程として、板金から図7(A)に示した円板素材50を打ち抜く。このとき、円板素材50の中心には、丸孔51を打ち抜いておく。
【0028】
第2の工程として、上記した円板素材50を絞り成形して、図7(B)に示した円筒素材52を成形する。ここで、円筒素材52は、円筒壁53の一端に底壁54を備えた一端有底の円筒状をなし、底壁54の中心には、円板素材50における丸孔51の縁部を円筒壁53の内側に向けて絞ったエンボス55が成形される。また、円筒壁53は、互いに径が異なる小径部56と大径部57とをテーパー部58で繋げてなり、小径部56が底壁54側に配置されている。
【0029】
図6に示すように、大径部57の内径D5及び外径D6は共に、ダイス側成形歯33の歯先径D3より大きくなっている。また、大径部57の外径D6は、ダイス側成形歯33の歯底径D4よりも大きくなっている。
【0030】
なお、小径部56の外径は、ダイス側成形歯33の歯先径D3より小さくなっている。従って、小径部56が、ダイス側成形歯33の内側に押し込まれてもその小径部56には歯車は成形されない。また、この第2の工程では、円板素材50から円筒素材52が絞り成形されてから、円筒素材52の円筒壁53が軸方向に押圧されることで、大径部57の外径D6と内径D5との差である大径部57の肉厚が、円板素材50の板厚より大きくなっている。具体的には、円板素材50の板厚が例えば4.0mmだとすると、大径部57の外径D6は、84.2mm、内径D5は75.8mmとなり、大径部57の肉厚は、8.3mm(=D6−D5)となっている。
【0031】
次いで、第3の工程として、歯車製造装置20におけるパンチ突入孔26内に円筒素材52をセットする。具体的には、円筒素材52を底壁54側からパンチ突入孔26に挿入して、パンチ突入孔26の上方開放端に係止した状態にする。そして、歯車製造装置20を作動させる。すると、パンチ40が降下し、パンチ40における歯形成形体42が円筒素材52の内側に挿入されて、歯形成形体42とノックアウトピン34との間に円筒素材52の底壁54を挟んだ状態になる。
【0032】
この底壁54が挟まれた状態を保持しながら、パンチ40が円筒素材52をパンチ突入孔26の奥部に押し込んでいく。すると、パンチ突入孔26に設けたテーパー部26Tを円筒素材52の大径部57が通過することで縮径変形される。これにより、大径部57には、拡大方向の内部応力が発生した状態になり、大径部57がパンチ突入孔26の内周面に密着する。また、このとき、大径部57の上端部に、パンチ40における素材押圧面45に当接して、大径部57が軸方向に延びる変形を規制する。これにより、円筒素材52がパンチ突入孔26の奥側に押し込まれる過程において、大径部57の肉厚が増加する。
【0033】
さらにパンチ40が円筒素材52を押し込んでいくと、やがて、図3(A)に示すように円筒素材52の小径部56がダイス側成形歯33の内側に挿入され、さらに、図3(B)に示すように、円筒素材52の大径部57が、ダイス側成形歯33の上端部の傾斜に沿ってダイス側成形歯33に乗り上がる。ここで、大径部57は、前述したように拡大する方向の内部応力が発生した状態になっているので、大径部57を構成する素材が、ダイス側成形歯33に確実に密着する。
【0034】
ダイス側成形歯33に乗り上がることで内側に変形した大径部57は、その大径部57の内側で待ちかまえていたパンチ側成形歯43に押し付けられる。このように、本実施形態では、円筒素材52がダイス側成形歯33に乗り上がって内側に変形したときには、その円筒素材52の内側でパンチ側成形歯43が待ち構えた状態になり、これにより円筒素材52の内側における流れが簡素化されて、ダイス側成形歯33側の成形精度が向上する。
【0035】
ここで、パンチ側成形歯43は、ダイス側成形歯33の歯底に向かって突出しているので、大径部57はパンチ側成形歯43とダイス側成形歯33との間に挟まれて、図8に示すように波形形状になる。これにより、単に大径部57の外面に複数の歯を成形した場合に比べて、歯車形成部分の板厚の均一化が図られる。また、大径部57を構成する素材が、ダイス側成形歯33に押し返されて、確実にダイス側成形歯33の歯先から歯底までの全体に密着し、成形品質が向上する。
【0036】
そして、大径部57がダイス側成形歯33の下端部まで至ると、ベース部成形型31の上端面31A(図4参照)に大径部57の下端部が押し付けられた状態になる。この状態になってもパンチ40はさらにパンチ突入孔26の奥側に押し込まれる。これにより、大径部57の上面がパンチ40の素材押圧面45に押され、大径部57を構成する素材が、ダイス側成形歯33の歯底とベース部成形型31の上面31Aとの角部の隅まで行き渡る。これにより、図8に示すように、円筒素材52に成形された歯車部59の歯先がその歯幅方向の下端部(図8の符号59Aで示した部分)まで確実に成形される。
【0037】
そして、パンチ突入孔26から円筒素材52を取り出せば、図8に示すように、外面に歯車部59を備えたインボリュート歯車60が完成する。
【0038】
このように本実施形態の歯車成形用金型10によれば、円筒素材52のうちダイス側成形歯33とパンチ側成形歯43との間に挟まれた部分が波形形状になり、従来のように被成形素材の内周面又は外周面の何れかにのみ複数の歯を形成したものに比べて、歯と歯底の肉厚の均一化が図られる。これにより、従来より薄肉の円筒素材52を用いてインボリュート歯車60を製造することが可能になる。また、ダイス側成形歯33とパンチ側成形歯43の間に挟まれた円筒素材52をパンチ40における素材押圧面45で押圧して、ダイス側成形歯33とダイス側成形歯33との間の成形領域R1の隅々にまで円筒素材52を行き渡らせることができ、成形品質が向上する。
【0039】
<他の実施形態>
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)前記実施形態の円筒素材52は、一端有底の円筒形状であったが、両端開放の円筒形状のものを成形する歯車の製造方法及び歯車成形用金型に本発明を適用してもよい。
【0040】
(2)前記実施形態では、円筒素材52における大径部57の内径が、ダイス側成形歯33の歯先径より大きかったが、円筒素材における歯車を成形する部位の内径は、ダイス側成形歯の歯先径より小さくてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る歯車製造装置の断面図
【図2】歯車成形用金型の部分断面図
【図3】(A)円筒素材が歯が成形される直前の状態の歯車成形用金型の部分断面図
(B)円筒素材が歯が成形されている状態の歯車成形用金型の部分断面図
【図4】歯車成形用金型の部分斜視図
【図5】図3(B)のA−A切断面における歯車成形用金型の断面図
【図6】円筒素材とダイス側成形歯とパンチ側成形歯の大きさを比較した断面図
【図7】(A)円板素材の斜視図
(B)円筒素材の斜視図
【図8】完成した歯車の斜視図
【符号の説明】
10…歯車成形用金型
26…パンチ突入孔
26T…テーパー部
30…ダイス
32…歯部成形型
33…ダイス側成形歯
40…パンチ
42…歯形成形体
43…パンチ側成形歯
45…素材押圧面
52…円筒素材(被成形素材)
57…大径部(歯車成形部分)
59…歯車部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear forming mold for forming a gear on a cylindrical material to be formed, and a gear manufacturing method using the gear forming mold.
[0002]
[Prior art]
Conventionally, a gear formed by this type of gear molding mold has a structure having a plurality of teeth only on one of the outer peripheral surface and the inner peripheral surface of a cylindrical molding material. (See Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-96136 (FIGS. 2 and 11)
[0004]
[Problems to be solved by the invention]
However, in the above-described material, a difference in wall thickness between a plurality of teeth of the material to be molded and a root portion between adjacent teeth becomes large. For this reason, in order to secure the thickness of the tooth bottom portion, the thickness of the portion other than the gear forming portion of the material to be molded becomes excessively large, resulting in a problem that the molded product becomes heavy.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gear molding die and a gear manufacturing method capable of molding a gear using a material to be molded that is thinner than conventional ones.
[0006]
[Means for Solving the Problems]
A gear molding die (10) according to the invention of claim 1 made to achieve the above object comprises a punch (40) and a die (30), and a cylindrical material (52) is punched (40). ) To be pressed into the punch entry hole (26) provided in the die (30), and the material to be molded (52) is formed by a plurality of die side forming teeth (33) protruding from the inner peripheral surface of the punch entry hole (26). A gear molding die (10) for forming a gear portion (59) on the outer peripheral surface of the punch (40) on the outer peripheral surface of a portion (42) of the punch (40) that can be inserted inside the molding material (52). Is characterized in that a plurality of punch side molding teeth (43) protruding toward the root of the die side molding teeth (33) are provided.
[0007]
According to a second aspect of the present invention, in the gear molding die (10) according to the first aspect, the punch (40) has a material pressing surface (45) for pressing one end surface of the material to be molded (52). It is characterized by where it is provided.
[0008]
According to a third aspect of the present invention, in the gear molding die (10) according to the first or second aspect, the root diameter (D4) of the die side molding tooth (33) is the gear molding in the material to be molded (52). It is characterized by being smaller than the outer diameter (D6) of the portion (57).
[0009]
According to a fourth aspect of the present invention, in the gear molding die (10) according to any one of the first to third aspects, an outer diameter of the material to be molded (52) is formed on the inner peripheral surface of the punch entry hole (26). It is characterized in that a tapered portion (26T) for reducing the diameter of (D6) to the root diameter (D4) of the die-side molded tooth (33) is provided.
[0010]
According to a fifth aspect of the present invention, there is provided a method of manufacturing a gear (60), wherein a cylindrical workpiece (52) is pressed by a punch (40) and is pressed into a punch entry hole (26) provided in a die (30). The gear (60) manufacturing method of forming the gear part (59) on the outer peripheral surface of the material (52) to be molded by the plurality of die side forming teeth (33) protruding from the inner peripheral surface of the punch entry hole (26) In the punch (40), a plurality of punch-side molding teeth (43) are formed on the outer peripheral surface of the portion (42) to be inserted inside the material to be molded (52). 33) and the punch side forming tooth (43), the material (52) is shaped into a corrugated shape.
[0011]
The invention of claim 6 is the gear (60) manufacturing method according to claim 5, wherein one end surface of the material to be molded (52) is located proximal to the punch side molding teeth (43) in the punch (40). A material pressing surface (45) for pressing the material is provided, and the material to be molded is placed inside the die side molding teeth (33) while pressing one end surface of the material to be molded (52) by the material pressing surface (45). (52) is characterized by being pushed in.
[0012]
A seventh aspect of the present invention is the method of manufacturing a gear (60) according to the sixth aspect, wherein after the step of inserting the punch-side molding teeth (43) into the molding material (52), the molding material (52). Is characterized in that a step of pushing the gear forming portion (57) into the inside of the die side forming tooth (33) is performed.
[0013]
According to an eighth aspect of the present invention, in the method for manufacturing the gear (60) according to the seventh aspect, the material pressing surface (45) is provided after the step of pressing the gear forming portion (57) into the inside of the die side forming tooth (33). Is characterized in that the step of further pressing the material to be molded (52) is performed.
[0014]
[Action and effect of the invention]
<Invention of Claims 1 and 5>
In the inventions of claims 1 and 5, when the cylindrical material to be molded (52) is pressed by the punch (40) and pressed into the punch entry hole (26) provided in the die (30), the material to be molded (52) However, it rides on the die side forming teeth (33) protruding from the inner peripheral surface of the punch entry hole (26) and deforms inward. Then, an unevenness | corrugation is formed in the internal peripheral surface of a to-be-molded material (52) by the punch side molding tooth (43) inserted inside the to-be-molded material (52). Here, since the punch side molding tooth (43) protrudes toward the bottom of the die side molding tooth (33), the die side molding tooth (33) and the punch side molding tooth of the material to be molded (52). The portion sandwiched between (43) has a corrugated shape, and the teeth and teeth are compared to those in which a plurality of teeth are formed only on either the inner peripheral surface or the outer peripheral surface of the material to be molded as in the past. The thickness of the bottom portion is made uniform. Thereby, it becomes possible to shape | mold a gearwheel using the to-be-shaped material (52) thinner than before.
[0015]
<Invention of Claims 2 and 6>
According to invention of Claim 2 and 6, a to-be-molded raw material (52) is pressed with the raw material press surface (45) in a punch (40), die side molding teeth (33), punch side molding teeth (43), The material to be molded (52) can be spread to every corner of the molding region (R1) between, and the molding quality is improved.
[0016]
<Invention of Claim 3>
In the gear molding die (10) according to claim 3, the root diameter (D4) of the die side molding tooth (33) is larger than the outer diameter (D6) of the gear molding portion (57) of the molding material (52). Since it is small, the material to be molded (52) is pressed against the die side molding tooth (33) by the reaction force of the material to be molded (52) itself, and the material to be molded (52) to every corner of the die side molding tooth (33). Will spread and mold quality will improve.
[0017]
<Invention of Claim 4>
In the gear molding die (10) according to claim 4, the material to be molded (52) is reduced in diameter by passing through the tapered portion (26T), and the material to be molded (52) is formed on the die side by the reaction force. The material to be molded (52) reaches the corners of the die side molding teeth (33) by being pressed against the teeth (33), and the molding quality is improved.
[0018]
<Invention of Claim 7>
In the manufacturing method of the gear (60) according to claim 7, after the punch-side molding teeth (43) are inserted into the molding material (52), the gear molding portion (57) of the molding material (52) is on the die side. Since it is pushed inside the forming tooth (33), when the material to be formed (52) rides on the die side forming tooth (33) and is deformed inside, the punch side forming is performed inside the material to be formed (52). The teeth (43) are in a ready state, whereby the flow inside the molding material (52) is simplified, and the molding accuracy on the die side molding teeth (33) side is improved.
[0019]
<Invention of Claim 8>
In the manufacturing method of the gear (60) according to claim 8, following the step of pushing the gear forming portion (57) of the material to be formed (52) into the inside of the die side forming tooth (33), the material pressing surface (45) is used. Since the molding material (52) is further pressed, the molding material (52) reaches all corners of the die-side molding teeth (33), and the molding quality is improved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 shows a gear manufacturing apparatus 20 of the present embodiment. The gear manufacturing apparatus 20 includes an upper base 21 and a lower base 22 that face each other in the vertical direction. For example, the upper base 21 is guided by a guide post 23 and moves up and down. The die 30 fixed to the lower base 22 and the punch 40 fixed to the upper base 21 constitute the gear molding die 10 according to the present invention.
[0021]
The die 30 is formed by overlapping a tooth part forming die 32 on the upper surface of a base part forming die 31. A lower holder 24 for fixing the die 30 to the lower base 22 is overlaid on the upper surface of the die 30. A punch 40 can be inserted into a punch insertion hole 26 having a circular cross section formed in communication with the base portion forming die 31, the tooth portion forming die 32 and the lower holder 24.
[0022]
A knockout pin 34 is fitted in the punch insertion hole 26 in the base part molding die 31. A cylindrical material 52, which will be described later, is pushed into the back side of the punch insertion hole 26 while being sandwiched between the knockout pin 34 and the punch 40. Further, a burring punch 35 is fitted in a through hole formed in the shaft core portion of the knockout pin 34.
[0023]
As shown in FIGS. 2 and 4, a plurality of die-side molding teeth 33 are formed at the lower end portion of the inner peripheral surface of the punch entry hole 26 in the tooth portion molding die 32. Each die-side molded tooth 33 has a ridge whose ridgeline extends in the vertical direction. And as shown in FIG. 5, the shape of the shaping | molding area | region R1 by the die | dye side shaping | molding tooth | gear 33 is the shape of an involute gear. Moreover, the width | variety and height are gradually small as the upper end part of these die side shaping teeth 33 goes upwards (refer to Drawing 2).
As shown in FIG. 3A, a taper portion 26 </ b> T whose diameter is reduced as it approaches the die side molding tooth 33 is provided in a portion of the punch entry hole 26 above the die side molding tooth 33. .
[0024]
On the other hand, as shown in FIG. 1, the punch 40 includes a cylindrical portion 41 that hangs down from the upper holder 25, and a tooth forming feature 42 that protrudes downward from the lower end surface of the cylindrical portion 41. As shown in FIG. 2, the tooth forming feature 42 is slightly reduced in diameter toward the lower end. Further, a piercing hole 48 into which the tip of the burring punch 35 pierces is formed on the lower end surface of the tooth forming feature 42.
[0025]
As shown in FIGS. 2 and 4, a plurality of punch side forming teeth 43 are formed on the upper end portion of the outer peripheral surface of the tooth forming body 42. As shown in FIG. 5, these punch-side formed teeth 43 protrude toward the bottom of the die-side formed teeth 33, thereby forming a forming region between the punch-side formed teeth 43 and the die-side formed teeth 33. R1 has a wave shape.
[0026]
As shown in FIG. 6, the tip diameter D <b> 2 of the punch side molding tooth 43 is smaller than the tip diameter D <b> 3 of the die side molding tooth 33. Further, as shown in FIG. 2, the outer diameter D <b> 10 of the lower end surface of the cylindrical portion 41 in the punch 40 is larger than the tip diameter D <b> 3 of the punch side molding tooth 43, and the edge portion of the lower end surface of the cylindrical portion 41 Is a material pressing surface 45 for pressing an upper end surface of a cylindrical material 52 to be described later.
[0027]
Now, a method for manufacturing the involute gear 60 (see FIG. 8) using the gear manufacturing apparatus 20 described above as a part of the manufacturing process will be described. As the first step, the disc material 50 shown in FIG. 7A is punched from the sheet metal. At this time, a round hole 51 is punched in the center of the disc material 50.
[0028]
As a second step, the above-described disc material 50 is drawn to form the cylindrical material 52 shown in FIG. 7B. Here, the cylindrical material 52 has a cylindrical shape with one end having a bottom wall 54 at one end of the cylindrical wall 53, and the edge of the round hole 51 in the disc material 50 is cylindrical at the center of the bottom wall 54. An emboss 55 squeezed toward the inside of the wall 53 is formed. The cylindrical wall 53 is formed by connecting a small diameter portion 56 and a large diameter portion 57 having different diameters with a tapered portion 58, and the small diameter portion 56 is disposed on the bottom wall 54 side.
[0029]
As shown in FIG. 6, both the inner diameter D5 and the outer diameter D6 of the large diameter portion 57 are larger than the tooth tip diameter D3 of the die side forming tooth 33. Further, the outer diameter D6 of the large diameter portion 57 is larger than the root diameter D4 of the die side molding tooth 33.
[0030]
The outer diameter of the small diameter portion 56 is smaller than the tip diameter D3 of the die side molding tooth 33. Therefore, even if the small diameter portion 56 is pushed into the inside of the die side forming tooth 33, no gear is formed on the small diameter portion 56. Further, in this second step, after the cylindrical material 52 is drawn from the disk material 50, the cylindrical wall 53 of the cylindrical material 52 is pressed in the axial direction, so that the outer diameter D6 of the large diameter portion 57 and The thickness of the large-diameter portion 57 that is the difference from the inner diameter D5 is larger than the thickness of the disc material 50. Specifically, if the thickness of the disc material 50 is, for example, 4.0 mm, the outer diameter D6 of the large diameter portion 57 is 84.2 mm, the inner diameter D5 is 75.8 mm, and the thickness of the large diameter portion 57 is It is 8.3 mm (= D6-D5).
[0031]
Next, as a third step, the cylindrical material 52 is set in the punch entry hole 26 in the gear manufacturing apparatus 20. Specifically, the cylindrical material 52 is inserted into the punch insertion hole 26 from the bottom wall 54 side, and is engaged with the upper open end of the punch insertion hole 26. Then, the gear manufacturing apparatus 20 is operated. Then, the punch 40 is lowered, and the tooth forming feature 42 in the punch 40 is inserted inside the cylindrical material 52 so that the bottom wall 54 of the cylindrical material 52 is sandwiched between the tooth forming feature 42 and the knockout pin 34. Become.
[0032]
The punch 40 pushes the cylindrical material 52 into the deep part of the punch insertion hole 26 while maintaining the state where the bottom wall 54 is sandwiched. Then, the diameter of the cylindrical material 52 is reduced by being reduced by passing the large diameter portion 57 of the cylindrical material 52 through the tapered portion 26 </ b> T provided in the punch insertion hole 26. As a result, an internal stress in the expansion direction is generated in the large diameter portion 57, and the large diameter portion 57 is in close contact with the inner peripheral surface of the punch insertion hole 26. At this time, the upper end portion of the large-diameter portion 57 is brought into contact with the material pressing surface 45 of the punch 40 to restrict deformation of the large-diameter portion 57 extending in the axial direction. Thereby, in the process in which the cylindrical material 52 is pushed into the back side of the punch insertion hole 26, the thickness of the large-diameter portion 57 increases.
[0033]
Further, when the punch 40 pushes in the cylindrical material 52, the small diameter portion 56 of the cylindrical material 52 is inserted into the inside of the die side molding teeth 33 as shown in FIG. 3A, and further, FIG. As shown in FIG. 5, the large diameter portion 57 of the cylindrical material 52 rides on the die side molding tooth 33 along the inclination of the upper end portion of the die side molding tooth 33. Here, since the large-diameter portion 57 is in a state in which the internal stress in the expanding direction is generated as described above, the material constituting the large-diameter portion 57 is securely in close contact with the die-side molding teeth 33.
[0034]
The large-diameter portion 57 deformed inward by riding on the die-side molded teeth 33 is pressed against the punch-side molded teeth 43 that have been waiting inside the large-diameter portion 57. As described above, in this embodiment, when the cylindrical material 52 rides on the die-side molded teeth 33 and deforms inward, the punch-side molded teeth 43 are waiting inside the cylindrical material 52. The flow inside the material 52 is simplified, and the molding accuracy on the die side molding tooth 33 side is improved.
[0035]
Here, since the punch side molding tooth 43 protrudes toward the bottom of the die side molding tooth 33, the large diameter portion 57 is sandwiched between the punch side molding tooth 43 and the die side molding tooth 33, As shown in FIG. Thereby, compared with the case where a several tooth | gear is simply shape | molded on the outer surface of the large diameter part 57, the plate | board thickness of a gear formation part is equalized. Moreover, the raw material which comprises the large diameter part 57 is pushed back by the die | dye side shaping | molding tooth | gear 33, and it closely_contact | adheres to the whole from the tip of the die side shaping | molding tooth | gear 33 to a tooth bottom, and molding quality improves.
[0036]
When the large diameter portion 57 reaches the lower end portion of the die side forming tooth 33, the lower end portion of the large diameter portion 57 is pressed against the upper end surface 31A (see FIG. 4) of the base portion forming die 31. Even in this state, the punch 40 is further pushed into the back side of the punch insertion hole 26. Thereby, the upper surface of the large diameter portion 57 is pushed by the material pressing surface 45 of the punch 40, and the material constituting the large diameter portion 57 is formed between the tooth bottom of the die side molding tooth 33 and the upper surface 31 A of the base portion molding die 31. Go all the way to the corner. As a result, as shown in FIG. 8, the tooth tip of the gear portion 59 formed on the cylindrical material 52 is reliably formed to the lower end portion (the portion indicated by reference numeral 59 </ b> A in FIG. 8) in the tooth width direction.
[0037]
When the cylindrical material 52 is taken out from the punch entry hole 26, an involute gear 60 having a gear portion 59 on the outer surface is completed as shown in FIG.
[0038]
As described above, according to the gear molding die 10 of the present embodiment, a portion of the cylindrical material 52 sandwiched between the die side molding teeth 33 and the punch side molding teeth 43 has a corrugated shape, which is conventional. Compared with the case where a plurality of teeth are formed only on either the inner peripheral surface or the outer peripheral surface of the material to be molded, the thickness of the teeth and the bottom of the teeth can be made uniform. As a result, the involute gear 60 can be manufactured using the cylindrical material 52 that is thinner than the conventional one. Further, the cylindrical material 52 sandwiched between the die side molding teeth 33 and the punch side molding teeth 43 is pressed by the material pressing surface 45 of the punch 40, so that the gap between the die side molding teeth 33 and the die side molding teeth 33 is reached. The cylindrical material 52 can be spread to every corner of the molding region R1, and the molding quality is improved.
[0039]
<Other embodiments>
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) The cylindrical material 52 of the above embodiment has a cylindrical shape with one end, but the present invention is applied to a gear manufacturing method and a gear molding mold for forming a cylindrical shape with both ends open. Also good.
[0040]
(2) In the above-described embodiment, the inner diameter of the large-diameter portion 57 in the cylindrical material 52 is larger than the tip diameter of the die-side molded teeth 33. It may be smaller than the tooth tip diameter.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a gear manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a partial cross-sectional view of a gear forming die. FIG. 3 (A) is a state immediately before a cylindrical material is formed with teeth. Partial sectional view of the gear molding die (B) Partial sectional view of the gear molding die in which the teeth of the cylindrical material are molded. FIG. 4 is a partial perspective view of the gear molding die. Sectional view of gear molding die at section A-A in 3 (B) [FIG. 6] Sectional view comparing the size of cylindrical material, die side molding teeth and punch side molding teeth [FIG. 7] (A) Perspective view of disc material (B) Perspective view of cylindrical material [Fig. 8] Perspective view of completed gear [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Gear shaping | molding die 26 ... Punch entry hole 26T ... Tapered part 30 ... Dies 32 ... Tooth part shaping | molding die 33 ... Die side shaping | molding tooth 40 ... Punch 42 ... Tooth formation form 43 ... Punch side shaping | molding tooth 45 ... Material pressing surface 52 ... Cylindrical material (molded material)
57 ... Large diameter part (gear forming part)
59 ... Gear part

Claims (8)

パンチ(40)及びダイス(30)を備え、円筒状の被成形素材(52)を前記パンチ(40)で押圧して、前記ダイス(30)に設けたパンチ突入孔(26)に押し込み、前記パンチ突入孔(26)の内周面から突出した複数のダイス側成形歯(33)によって前記被成形素材(52)の外周面に歯車部(59)を成形する歯車成形用金型(10)であって、
前記パンチ(40)のうち前記被成形素材(52)の内側に挿入可能な部分(42)の外周面には、前記ダイス側成形歯(33)の歯底に向かって突出した複数のパンチ側成形歯(43)が設けられたことを特徴とする歯車成形用金型(10)。
A punch (40) and a die (30) are provided, and a cylindrical workpiece (52) is pressed by the punch (40) and is pushed into a punch entry hole (26) provided in the die (30). A gear molding die (10) for molding a gear portion (59) on the outer peripheral surface of the material (52) to be molded by a plurality of die side molding teeth (33) protruding from the inner peripheral surface of the punch entry hole (26). Because
A plurality of punch sides projecting toward the bottom of the die-side molding teeth (33) are formed on the outer peripheral surface of a portion (42) of the punch (40) that can be inserted into the molding material (52). A gear molding die (10), characterized in that it is provided with molding teeth (43).
前記パンチ(40)には、前記被成形素材(52)の一端面を押圧するための素材押圧面(45)が備えられたことを特徴とする請求項1記載の歯車成形用金型(10)。The gear molding die (10) according to claim 1, wherein the punch (40) is provided with a material pressing surface (45) for pressing one end surface of the material to be molded (52). ). 前記ダイス側成形歯(33)の歯底径(D4)は、前記被成形素材(52)における歯車成形部分(57)の外径(D6)より小さいことを特徴とする請求項1又は2に記載の歯車成形用金型(10)。The root diameter (D4) of the die side forming tooth (33) is smaller than the outer diameter (D6) of the gear forming portion (57) of the material to be formed (52). The gear molding die (10) as described. 前記パンチ突入孔(26)の内周面には、前記被成形素材(52)の外径(D6)を、前記ダイス側成形歯(33)の歯底径(D4)まで縮径変形させるためのテーパー部(26T)が設けられたことを特徴とする請求項1乃至3の何れかに記載の歯車成形用金型(10)。In the inner peripheral surface of the punch entry hole (26), the outer diameter (D6) of the material to be molded (52) is reduced in diameter to the root diameter (D4) of the die-side molding tooth (33). The gear molding die (10) according to any one of claims 1 to 3, wherein a tapered portion (26T) is provided. 円筒状の被成形素材(52)をパンチ(40)で押圧して、ダイス(30)に設けたパンチ突入孔(26)に押し込み、そのパンチ突入孔(26)の内周面から突出した複数のダイス側成形歯(33)によって前記被成形素材(52)の外周面に歯車部(59)を成形する歯車(60)の製造方法であって、
前記パンチ(40)のうち前記被成形素材(52)の内側に挿入される部分(42)の外周面に複数のパンチ側成形歯(43)を形成しておき、前記ダイス側成形歯(33)と前記パンチ側成形歯(43)との間で、前記被成形素材(52)を波形形状に成形することを特徴とする歯車(60)の製造方法。
A cylindrical shaped material (52) is pressed by a punch (40), pressed into a punch entry hole (26) provided in a die (30), and a plurality of protrusions protruding from the inner peripheral surface of the punch entry hole (26). A manufacturing method of a gear (60), in which a gear part (59) is formed on the outer peripheral surface of the material to be molded (52) by the die side molding teeth (33) of
A plurality of punch side molding teeth (43) are formed on an outer peripheral surface of a portion (42) inserted inside the molding material (52) of the punch (40), and the die side molding teeth (33) are formed. ) And the punch side forming teeth (43), the material (52) to be formed is formed into a corrugated shape.
前記パンチ(40)のうち前記パンチ側成形歯(43)より基端側に、前記被成形素材(52)の一端面を押圧するための素材押圧面(45)を設けておき、
前記素材押圧面(45)によって、前記被成形素材(52)の一端面を押圧しながら前記ダイス側成形歯(33)の内側に前記被成形素材(52)を押し込むことを特徴とする請求項5に記載の歯車(60)の製造方法。
A material pressing surface (45) for pressing one end surface of the material to be molded (52) is provided closer to the base end side than the punch side molding teeth (43) in the punch (40),
The material to be molded (52) is pushed inside the die side molding teeth (33) while pressing one end surface of the material to be molded (52) by the material pressing surface (45). A manufacturing method of the gear (60) according to claim 5.
前記被成形素材(52)内に前記パンチ側成形歯(43)を挿入する工程の後に、前記被成形素材(52)における歯車成形部分(57)を前記ダイス側成形歯(33)の内側に押し込む工程を行うことを特徴とする請求項6に記載の歯車(60)の製造方法。After the step of inserting the punch side molding tooth (43) into the molding material (52), the gear molding part (57) of the molding material (52) is placed inside the die side molding tooth (33). The manufacturing method of the gear (60) according to claim 6, wherein a pressing step is performed. 前記歯車成形部分(57)を前記ダイス側成形歯(33)の内側に押し込む工程の後に、前記素材押圧面(45)にて前記被成形素材(52)を更に押圧する工程を行うことを特徴とする請求項7に記載の歯車(60)の製造方法。The step of further pressing the material to be molded (52) with the material pressing surface (45) is performed after the step of pushing the gear forming portion (57) into the inside of the die side forming tooth (33). A manufacturing method of the gear (60) according to claim 7.
JP2003058017A 2003-03-05 2003-03-05 Die for forming gear and method for manufacturing gear Pending JP2004268045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058017A JP2004268045A (en) 2003-03-05 2003-03-05 Die for forming gear and method for manufacturing gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058017A JP2004268045A (en) 2003-03-05 2003-03-05 Die for forming gear and method for manufacturing gear

Publications (1)

Publication Number Publication Date
JP2004268045A true JP2004268045A (en) 2004-09-30

Family

ID=33121226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058017A Pending JP2004268045A (en) 2003-03-05 2003-03-05 Die for forming gear and method for manufacturing gear

Country Status (1)

Country Link
JP (1) JP2004268045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177965A (en) * 2005-12-28 2007-07-12 Ooka Giken Kk Gear
JP2009156351A (en) * 2007-12-27 2009-07-16 O-Oka Corp Integrally molded internal gear
JP2011202676A (en) * 2010-03-24 2011-10-13 O-Oka Corp Gear including wave-like groove near dedendum
CN106001360A (en) * 2016-06-16 2016-10-12 上海交通大学 Thin-wall part progressive upset forming mold and forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177965A (en) * 2005-12-28 2007-07-12 Ooka Giken Kk Gear
JP2009156351A (en) * 2007-12-27 2009-07-16 O-Oka Corp Integrally molded internal gear
JP2011202676A (en) * 2010-03-24 2011-10-13 O-Oka Corp Gear including wave-like groove near dedendum
CN106001360A (en) * 2016-06-16 2016-10-12 上海交通大学 Thin-wall part progressive upset forming mold and forming method

Similar Documents

Publication Publication Date Title
JP3408121B2 (en) Mold for forming spiral strips on metal tubes
JP3462996B2 (en) Method for manufacturing fins for heat exchanger and mold for fins for heat exchanger
JP4938715B2 (en) Manufacturing method for thickened press products
JP2790999B2 (en) Fin unit for heat exchanger
US6289710B1 (en) Method of manufacturing a hollow rack bar
JP4328372B2 (en) Core metal manufacturing method, core metal and injection gear
JP2004268045A (en) Die for forming gear and method for manufacturing gear
JP2009061503A5 (en)
JP2009061503A (en) Metal parts manufacturing method, core metal, and injection gear
JPH09239478A (en) Manufacture of sheet metal gear
US7178375B2 (en) Apparatus and method for stamping and deburring clutch discs
JP5557374B2 (en) Press mold
KR20100116340A (en) Can for cylindrical-type battery and method of the same
JP2002267014A (en) Piston for clutching and its manufacturing method
JP3452757B2 (en) Press mold
JPH01138034A (en) Manufacture of stepped hollow gear
JPH02121723A (en) Method for forming tooth profile on cylindrical part of flanged cylinder
JP2003205321A (en) Burring processing method and die for the same
KR101521133B1 (en) Round holes forming manufacturing methods
JP4523697B2 (en) Manufacturing method of laminated iron core
JP2000176557A (en) Method for deep draw forming and device therefor
JP4655732B2 (en) Molded part manufacturing method, molded part manufacturing apparatus, and molded part
JP2000326032A (en) Method for producing heat exchanger fin and die for heat exchanger fin
JP3977712B2 (en) Commutator manufacturing method, commutator manufacturing device, commutator forming plate material manufacturing method, commutator forming plate material manufacturing device, commutator forming plate material, and commutator
JP2706257B2 (en) Sheet Metal Formed Tooth Forming with Outer Flange and Method of Manufacturing Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050316

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070808