JP2004262863A - Method for producing orthobenzidine compound - Google Patents
Method for producing orthobenzidine compound Download PDFInfo
- Publication number
- JP2004262863A JP2004262863A JP2003055698A JP2003055698A JP2004262863A JP 2004262863 A JP2004262863 A JP 2004262863A JP 2003055698 A JP2003055698 A JP 2003055698A JP 2003055698 A JP2003055698 A JP 2003055698A JP 2004262863 A JP2004262863 A JP 2004262863A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- orthobenzidine
- atom
- group
- structure represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *c(cc1)c(*)cc1NNc1cc(*)c(*)cc1 Chemical compound *c(cc1)c(*)cc1NNc1cc(*)c(*)cc1 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、特定の構造を有するオルトベンジジン化合物の製造法に関する。
【0002】
本発明の製造法により製造される特定の構造のオルトベンジジン化合物は、医薬、農薬の中間体や、有機染料、有機顔料といった色素類の中間体、不斉合成用触媒、または、有機エレクトロルミネッセンス材料、電子写真における有機電子写真感光体の有機光導電性材料の中間体として有用である。
【0003】
【従来の技術】
ヒドラゾベンゼン化合物からベンジジン化合物を合成する方法としては、ヒドラゾベンゼン化合物を塩酸などのプロトン酸の存在下で転位反応させるベンジジン転位(非特許文献1参照)を用いた方法が知られている。
【0004】
しかし、この方法では、パラベンジジン化合物は得られるものの、オルトベンジジン化合物は全く得られないか、もしくは、得られたとしても極微量である。また、ベンジジン転位の結合位置となる4−,4’−位(窒素原子のパラ位)に置換基を導入したヒドラゾベンゼン化合物を出発物質にして、上述のプロトン酸を触媒としたベンジジン転位を適用したとしても、C−N結合が新たに生成したセミジン化合物、または、ヒドラゾベンゼン化合物が分解したアゾ化合物が生成するだけで、本発明の目的化合物であるオルトベンジジン化合物は全く得られない。
【0005】
また、オルトベンジジン化合物を得るための別の方法としては、アリールボロン酸化合物とハロゲン化アリール化合物とをカップリングさせるSuzuki反応(非特許文献2)を用いた方法や、ヨウ素化アリール化合物を銅触媒存在下、高温で加熱するUllmann反応(非特許文献3)などのビフェニル化合物を得るカップリング反応を応用する方法も考えられるが、本発明の目的化合物のような、構造中にアミノ基を有するベンジジン化合物を合成する場合には、アミノ基が反応したアリールアミンが生成するため、オルトベンジジン化合物は得られない。
【0006】
さらに、上述のカップリング反応を応用して、オルトベンジジン化合物の前駆体化合物になり得るニトロ化合物やフェノール化合物を得た後、アミノ基に置換する方法も考えられるが、カップリング反応の原料となるアリールボロン酸化合物やハロゲン化アリール化合物の合成が困難であり、実質的に合成方法として適用できない。
【0007】
さらに、ビフェニル化合物のオルト位にヨウ素原子を直接導入した後、Ullmann反応を用いてアミノ基を導入する方法もあるが、原料とするヨウ素化合物の合成収率が低いこと、および、Ullmann反応自体の収率も低いため、全収率が極端に低くなり、実用的ではないという問題点があった。
【0008】
【非特許文献1】
大有機化学(朝倉書店:1959年Vol.16), p.517〜518
【非特許文献2】
TCLメール(東京化成工業(株):2000/1 No.105), p.18〜22
【非特許文献3】
大有機化学(朝倉書店:1959年Vol.16), p.510〜513
【0009】
【発明が解決しようとする課題】
本発明は、従来の製造法では合成が困難であったオルトベンジジン化合物を、容易かつ高収率で製造する方法を提供することである。
【0010】
【課題を解決するための手段】
本発明は、下記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物を、非プロトン性のルイス酸性を示す反応剤の存在下で転位反応させることにより、下記式(2)で示される構造のオルトベンジジン化合物を合成することを特徴とするオルトベンジジン化合物の製造法である。
【0011】
【外3】
【0012】
【外4】
【0013】
(式(1)、(2)中、R1、R2は、それぞれ独立に、置換または無置換のアルキル基、置換または無置換のアルコキシ基、置換または無置換のアラルキル基、置換または無置換のアリール基、または、ハロゲン原子を示す。R3、R4は、それぞれ、水素原子を示す。ただし、R1とR3とは、結合して芳香環を形成してもよく、R2とR4とは、結合して芳香環を形成してもよい。)
本発明によれば、窒素原子のパラ位に置換基を有するオルトベンジジン化合物が高選択的、かつ高収率で得られる。反応機構は明確ではないが、非プロトン性のルイス酸性を示す反応剤の中心原子(金属原子、リン原子、ケイ素原子など)に、上記式(1)で示される構造のヒドラゾベンゼン化合物の2つ窒素原子の孤立電子対が配位し、歪みの大きな3員環構造を含む中間体を形成した後、より安定した構造になるために転位反応を起こし、オルト位での結合を形成したオルトベンジジン化合物が生成するものと考えている。
【0014】
【発明の実施の形態】
上記式(1)、(2)中R1、R2のアルキル基としては、メチル基、エチル基、n−プロピル基、t−ブチル基などが挙げられ、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基などが挙げられ、アラルキル基としては、ベンジル基、フェネチル基などが挙げられ、アリール基としては、フェニル基、ナフチル基などが挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
【0015】
また、上記各基が有してもよい置換基としては、メチル、エチル基などのアルキル基や、メトキシ、エトキシなどのアルコキシ基や、ニトロ基や、シアノ基や、フッ素原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
【0016】
以下に、上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物の具体例を示すが、本発明はこれら具体例に限定されるものではない。
【0017】
【外5】
【0018】
【外6】
【0019】
次に、上記式(2)で示される構造のオルトベンジジン化合物の具体例を示すが、本発明はこれら具体例に限定されるものではない。
【0020】
【外7】
【0021】
【外8】
【0022】
本発明の製造法において用いられる反応剤は、非プロトン性のルイス酸性を示すものであればよく、特には、その構造中に、金属原子、リン原子またはケイ素原子を含む反応剤が好ましい。そのような反応剤としては、例えば、三塩化アルミニウム、三臭化アルミニウム、三塩化リン、三臭化リン、三塩化鉄、三臭化鉄、トリメチルシリルクロリド、トリ−tert−ブチルスズなどが挙げられる。
【0023】
また、非プロトン性のルイス酸性を示す反応剤の使用量は、出発物質である上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物に対して、0.01〜10当量であることが好ましく、0.05〜5当量であることがより好ましく、0.1〜2当量であることがより一層好ましい。
【0024】
本発明の製造法に用いられる溶媒については、特に限定はないが、トルエン、ヘキサン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ジクロルメタン、クロロホルムなどの非プロトン性溶媒が好ましい。
【0025】
反応温度に関しては、ハンドリングの点で、−100〜150℃の範囲で行うことが好ましく、10〜50℃の範囲で反応を行うことがより好ましい。
【0026】
本発明の製造法は、常圧下、空気中で製造することができる方法であるが、窒素あるいはアルゴンといった不活性ガス化下で製造を行ってもよい。
【0027】
反応終了後、常法で処理することにより目的の化合物を得ることができる。
【0028】
上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物は、例えば、所望の置換基をパラ位に有するニトロベンゼン誘導体を原料として、エタノール溶媒中で、水酸化ナトリウム水溶液、水酸化カリウム水溶液、亜鉛、アルミニウムなどの触媒存在下で反応させることで、収率良く得ることができる。
【0029】
上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物の合成例を以下に示す。
【0030】
(合成例1)
・上記式(1−1)で示される構造のヒドラゾベンゼン化合物(ヒドラゾトルエン)の合成
4−ニトロトルエン(13.0g/94.8mmol)を300mlフラスコ中、エタノール(100ml)に溶解し、さらに水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加えて攪拌した。その後、亜鉛(15.2g/0.22mol)を加え、超音波により脱気した。その後、超音波に掛けながら4時間還流した。その後、室温まで冷却し、さらに亜鉛(25.0g/0.36mol)、エタノール(90ml)、水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加え、再び超音波に掛けながら2時間還流した。
【0031】
反応溶液を吸引濾過し、濾液に含まれるヒドラゾトルエンを熱したベンゼンで抽出した。ベンゼンを除去し、ヒドラゾトルエン(6.23g/29.4mmol)を得た。
【0032】
・ヒドラゾトルエン
1H−NMR(CDCl3/TMS)δ=1.26(2H,s),2.42(6H,s),7.30(4H,d,J=8.9Hz),7.81(4H,d,J=8.9Hz)
IR:(KBr)ν=3334,3049,3021,2958,2869,1603,1505,749cm−1
m.p.:123.0〜126.7℃
収率:65%
(合成例2)
・上記式(1−3)で示される構造のヒドラゾベンゼン化合物(ヒドラゾアニソール)の合成
・上記式(1−6)で示される構造のヒドラゾベンゼン化合物(4,4’−ジブロモヒドラゾベンゼン)の合成
・上記式(1−7)で示される構造のヒドラゾベンゼン化合物(4−メトキシ−4’−ブロモヒドラゾベンゼン)の合成
4−ニトロアニソール(8.0g/0.52mmol)と4−ブロモニトロベンゼン(10.6g/0.52mmol)を300mlフラスコ中、エタノール(100ml)に溶解し、さらに水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加え攪拌した。その後、アルミニウム(15.2g0.22mol)を加え、超音波により脱気した。その後、超音波に掛けながら4時間還流した。その後、室温まで冷却し、さらにアルミニウム(25.0g/0.36mol),エタノール(90ml),水酸化ナトリウム水溶液(水酸化ナトリウム16.6gと水40ml)を加え、再び超音波に掛けながら2時間還流した。
【0033】
反応溶液を吸引濾過し、濾液に含まれるヒドラゾトルエンを熱したベンゼンで抽出した。ベンゼンを除去し、カラムクロマトグラフィー(SiO2、100倍、ヘキサン:酢酸エチル=9:1)により精製し、ヒドラゾアニソール、4,4’−ジブロモヒドラゾベンゼン、4−メトキシ−4’−ブロモヒドラゾベンゼンを1:1:2の割合で得た。
【0034】
・ヒドラゾアニソール
1H−NMR(CDCl3/TMS)δ=1.18(2H,s),3.80(6H,s),6.92(4H,d,J=8.9Hz),7.80(4H,d,J=8.9Hz)
IR:(KBr)ν=3301,3084,3034,3014,2952,2835,1608,1503,1236,1031,806cm−1
m.p.:199.5〜202.6℃
収率:22%
・4,4’−ジブロモヒドラゾベンゼン
1H−NMR(CDCl3/TMS)δ=4.84(2H,s),6.72(4H,d,J=8.9Hz),7.34(4H,d,J=8.9Hz)
IR:(KBr)ν=3241,3070,1591,1069,823,809cm−1
収率:23%
・4−メトキシ−4’−ブロモヒドラゾベンゼン
1H−NMR(CDCl3/TMS)δ=3.77(3H,s),4.66(2H,bs)6.7〜6.8(6H,m,),7.33(2H,m)
IR:(KBr)ν=3330,2954,2835,1588,1230,1070,1033,824cm−1
m.p.225.2〜228.1℃
収率:46%
その他の上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物も、合成例1、2と同様にして合成できる。
【0035】
【実施例】
以下に、上記式(1)で示される構造の4−,4’−位に置換基を有するヒドラゾベンゼン化合物から上記式(2)で示される構造のオルトベンジジン化合物を合成する実施例を示すが、本発明はこれら実施例に限定されるものではない。
【0036】
(実施例1)
・上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)の合成
上記式(1−1)で示される構造のヒドラゾベンゼン化合物(ヒドラゾトルエン)2.0g(9.42mmol)を100mlフラスコ中、アルゴン置換し、ヘキサン50ml(溶媒)に溶解し、攪拌した。そこに、非プロトン性のルイス酸性を示す反応剤としてPBr3(3.77mmol/ml:0.4当量)を滴下し、1日攪拌した。その後、溶媒を除去し、炭酸水素ナトリウム水溶液でクエンチ、ジエチルエーテルで抽出をした。その後、抽出溶媒を除去し、カラムクロマトグラフィー(SiO2、100倍、ヘキサン:酢酸エチル=9:1)により精製し、上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)を得た。
1H−NMR(CDCl3/TMS)δ=1.25(2H,s),2.64(6H,s),7.66(2H,d, J=8.9Hz),7.97(2H,s),8.11(2H,d,J=8.9Hz)
IR:(KBr)ν=3435,3051,2924,2853,1638,1514,1356,803cm−1
m.p.:242.1〜245.9℃
収率:71%
(実施例2〜11)
実施例1において、出発原料を表1に示すヒドラゾベンゼン化合物に変更した以外は、実施例1と同様にして、表1に示すオルトベンジジン化合物を合成した。
【0037】
(実施例12〜16)
実施例1において、非プロトン性のルイス酸性を示す反応剤の種類・量および溶媒を表1に示すとおりに変更した以外は、それぞれ実施例1と同様にして、表1に示すオルトベンジジン化合物を合成した。
【0038】
実施例1〜16の結果を表1に示す。
【0039】
【表1】
【0040】
(比較例1)
実施例1において、非プロトン性のルイス酸性を示す反応剤であるPBr3を、プロトン性の酸である塩酸に変更した以外は、実施例1と同様にして反応させた。しかし、目的化合物である上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)は全く得られなかった。
【0041】
(比較例2)
3,3’−ジメチルビフェニル3.6g(19.8mmol)、ヨウ素4.0g(31.6mmol)、過ヨウ素酸1.8g(7.9mmol)、氷酢酸20ml、水5mlを、ジムロート型冷却管、温度計、攪拌機を装着した100ml三つ口フラスコに入れ、80℃で2時間過熱攪拌した。
【0042】
反応終了後、生成物をトルエンで抽出した後、有機層を10%チオ硫酸ナトリウム水溶液、10%炭酸水素ナトリウム水溶液、水の順で、有機層を洗浄した。
【0043】
その後、トルエンを留去し、カラムクロマトグラフィーを用いて、精製を行い、3,3’−ジメチル−6,6’−ヨードビフェニル1.2g(収率14.0%)を得た。
【0044】
次に、3,3’−ジメチル−6,6’−ヨードビフェニル1.2g(2.76mmol)、アセトアミド0.33g(5.52mmol)、銅紛0.88g(13.8mmol)、炭酸カリウム0.76g(5.52mmol)およびオルトジクロロベンゼン10mlを入れ、オイルバスにて、8時間加熱還流を行った(Ullmann反応)。
【0045】
放冷後、トルエン20mlを加えた後、濾過で触媒を除いた。
【0046】
さらに、得られた粗反応物にナトリウムメチキシドを加え、2時間加熱還流を行った。反応液を水に注いだ後、トルエンで抽出し、有機層を水洗した。その後、有機層を分取し、トルエンを濃縮した後、カラムクロマトグラフィーを用いて、目的物を分取し、上記式(2−1)で示される構造のオルトベンジジン化合物(4,4’−ジメチルオルトベンジジン)0.1gを得た(収率17.1%)。
【0047】
実施例ではいずれの場合も、上記式(2)で示される構造のオルトベンジジン化合物が収率良く得られているが、従来の方法(比較例1:ベンジジン転位法、比較例2:Ullmann反応による合成法)を使用した場合には、目的物が全く得られない、または、収率が極めて低いという結果であった。
【0048】
以上のことから、本発明の有用性は明らかである。
【0049】
【発明の効果】
本発明によれば、従来の製造法では合成が困難であったオルトベンジジン化合物を、容易かつ高収率で製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an orthobenzidine compound having a specific structure.
[0002]
The orthobenzidine compound having a specific structure produced by the production method of the present invention is a pharmaceutical, an intermediate for agricultural chemicals, an intermediate for dyes such as organic dyes and organic pigments, a catalyst for asymmetric synthesis, or an organic electroluminescent material. It is useful as an intermediate of an organic photoconductive material of an organic electrophotographic photosensitive member in electrophotography.
[0003]
[Prior art]
As a method for synthesizing a benzidine compound from a hydrazobenzene compound, a method using a benzidine rearrangement in which a hydrazobenzene compound is subjected to a rearrangement reaction in the presence of a protonic acid such as hydrochloric acid (see Non-Patent Document 1) is known.
[0004]
However, according to this method, although a parabenzidine compound is obtained, an orthobenzidine compound is not obtained at all, or even a very small amount is obtained. In addition, the above-mentioned benzidine rearrangement using a protonic acid as a catalyst is carried out using a hydrazobenzene compound having a substituent introduced at the 4-, 4'-position (para position of a nitrogen atom) as a bond position of the benzidine rearrangement as a starting material. Even if it is applied, only a semizine compound in which a C—N bond is newly generated or an azo compound in which a hydrazobenzene compound is decomposed is generated, and an orthobenzidine compound as an object compound of the present invention is not obtained at all.
[0005]
Other methods for obtaining an orthobenzidine compound include a method using a Suzuki reaction (Non-patent Document 2) for coupling an arylboronic acid compound and an aryl halide compound, and a method using a copper catalyst as an iodinated aryl compound. A method of applying a coupling reaction to obtain a biphenyl compound, such as the Ullmann reaction (Non-patent Document 3), which is heated at a high temperature in the presence of the compound, is also conceivable. In the case of synthesizing a compound, an orthobenzidine compound cannot be obtained because an arylamine in which an amino group has reacted is generated.
[0006]
Furthermore, a method of applying the above-described coupling reaction to obtain a nitro compound or a phenol compound which can be a precursor compound of an orthobenzidine compound and then substituting the nitro compound or a phenol compound with an amino group is also considered. It is difficult to synthesize an aryl boronic acid compound or an aryl halide compound, and the method cannot be practically applied as a synthesis method.
[0007]
Furthermore, there is a method in which an iodine atom is directly introduced into the ortho position of the biphenyl compound, and then an amino group is introduced by using the Ullmann reaction. However, the synthesis yield of the iodine compound used as a raw material is low, and the Ullmann reaction itself is not used. Since the yield is low, the total yield is extremely low, which is not practical.
[0008]
[Non-patent document 1]
Dai Organic Chemistry (Asakura Shoten: Vol. 16, 1959), p. 517-518
[Non-patent document 2]
TCL Mail (Tokyo Chemical Industry Co., Ltd .: 2000/1 No. 105), p. 18-22
[Non-Patent Document 3]
Dai Organic Chemistry (Asakura Shoten: Vol. 16, 1959), p. 510-513
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for easily producing an orthobenzidine compound, which has been difficult to synthesize by a conventional production method, in a high yield.
[0010]
[Means for Solving the Problems]
According to the present invention, a hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the following formula (1) is subjected to a rearrangement reaction in the presence of an aprotic Lewis acidic reagent. And synthesizing an orthobenzidine compound having a structure represented by the following formula (2).
[0011]
[Outside 3]
[0012]
[Outside 4]
[0013]
(In the formulas (1) and (2), R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or,, .R 3, R 4 which represents a halogen atom, respectively, a hydrogen atom. However, R 1 and R 3, may form an aromatic ring bonded to an R 2 It may combine with R 4 to form an aromatic ring.)
According to the present invention, an orthobenzidine compound having a substituent at the para-position of a nitrogen atom can be obtained with high selectivity and high yield. Although the reaction mechanism is not clear, the central atom (metal atom, phosphorus atom, silicon atom, etc.) of the aprotic reagent exhibiting Lewis acidity is added to the hydrazobenzene compound of the structure represented by the above formula (1). After the lone pair of nitrogen atoms coordinate to form an intermediate containing a highly strained three-membered ring structure, a rearrangement reaction takes place to form a more stable structure, and an ortho-form bond is formed. It is believed that a benzidine compound is formed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the above formulas (1) and (2), examples of the alkyl group of R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group and a t-butyl group, and examples of the alkoxy group include a methoxy group and an ethoxy group. Groups, propoxy group, etc., as aralkyl group, benzyl group, phenethyl group, etc., as aryl group, phenyl group, naphthyl group, etc., as halogen atom, fluorine atom, chlorine atom, And a bromine atom.
[0015]
Examples of the substituent which each of the above groups may have include alkyl groups such as methyl and ethyl groups, alkoxy groups such as methoxy and ethoxy, nitro groups, cyano groups, fluorine atoms, chlorine atoms, and bromine. And halogen atoms such as atoms.
[0016]
Hereinafter, specific examples of the hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the above formula (1) will be shown, but the present invention is not limited to these specific examples.
[0017]
[Outside 5]
[0018]
[Outside 6]
[0019]
Next, specific examples of the orthobenzidine compound having the structure represented by the above formula (2) are shown, but the present invention is not limited to these specific examples.
[0020]
[Outside 7]
[0021]
[Outside 8]
[0022]
The reactant used in the production method of the present invention only needs to exhibit aprotic Lewis acidity, and in particular, a reactant containing a metal atom, a phosphorus atom or a silicon atom in its structure is preferable. Examples of such a reactant include aluminum trichloride, aluminum tribromide, phosphorus trichloride, phosphorus tribromide, iron trichloride, iron tribromide, trimethylsilyl chloride, tri-tert-butyltin, and the like.
[0023]
The amount of the aprotic Lewis acid reactant used is based on the hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the above formula (1) as a starting material. , 0.01 to 10 equivalents, more preferably 0.05 to 5 equivalents, and even more preferably 0.1 to 2 equivalents.
[0024]
The solvent used in the production method of the present invention is not particularly limited, but an aprotic solvent such as toluene, hexane, acetonitrile, dimethylformamide, dimethylsulfoxide, dichloromethane or chloroform is preferable.
[0025]
The reaction temperature is preferably in the range of -100 to 150C from the viewpoint of handling, and more preferably in the range of 10 to 50C.
[0026]
The production method of the present invention is a method that can be produced in the air under normal pressure, but it may be produced under an inert gas such as nitrogen or argon.
[0027]
After the completion of the reaction, the desired compound can be obtained by treating with a conventional method.
[0028]
The hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the above formula (1) can be obtained, for example, by using a nitrobenzene derivative having a desired substituent at a para position as a raw material in an ethanol solvent. By performing the reaction in the presence of a catalyst such as an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, zinc, or aluminum, a high yield can be obtained.
[0029]
An example of the synthesis of a hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the above formula (1) will be shown below.
[0030]
(Synthesis example 1)
-Synthesis of hydrazobenzene compound (hydrazotoluene) having the structure represented by the above formula (1-1) 4-Nitrotoluene (13.0 g / 94.8 mmol) was dissolved in ethanol (100 ml) in a 300 ml flask, and further dissolved. An aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) was added and stirred. Thereafter, zinc (15.2 g / 0.22 mol) was added, and the mixture was degassed by ultrasonic waves. Thereafter, the mixture was refluxed for 4 hours while applying ultrasonic waves. Thereafter, the mixture is cooled to room temperature, and zinc (25.0 g / 0.36 mol), ethanol (90 ml), and an aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) are added, and the mixture is again ultrasonicated for 2 hours. Refluxed.
[0031]
The reaction solution was subjected to suction filtration, and hydrazotoluene contained in the filtrate was extracted with hot benzene. The benzene was removed to obtain hydrazotoluene (6.23 g / 29.4 mmol).
[0032]
・ Hydrazotoluene
1 H-NMR (CDCl 3 / TMS) δ = 1.26 (2H, s), 2.42 (6H, s), 7.30 (4H, d, J = 8.9 Hz), 7.81 (4H , D, J = 8.9 Hz)
IR: (KBr) v = 3334,3049,3021,958,2869,1603,1505,749cm- 1
m. p. : 123.0-126.7 ° C
Yield: 65%
(Synthesis example 2)
-Synthesis of a hydrazobenzene compound (hydrazoanisole) having a structure represented by the above formula (1-3)-A hydrazobenzene compound (4,4'-dibromohydrazo) having a structure represented by the above formula (1-6) Synthesis of hydrazobenzene compound (4-methoxy-4′-bromohydrazobenzene) having a structure represented by the above formula (1-7) 4-nitroanisole (8.0 g / 0.52 mmol) 4-Bromonitrobenzene (10.6 g / 0.52 mmol) was dissolved in ethanol (100 ml) in a 300 ml flask, and an aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water) was added and stirred. Thereafter, aluminum (15.2 g 0.22 mol) was added, and the mixture was degassed by ultrasonic waves. Thereafter, the mixture was refluxed for 4 hours while applying ultrasonic waves. Thereafter, the mixture is cooled to room temperature, further added with aluminum (25.0 g / 0.36 mol), ethanol (90 ml), and an aqueous sodium hydroxide solution (16.6 g of sodium hydroxide and 40 ml of water), and again subjected to ultrasonic waves for 2 hours. Refluxed.
[0033]
The reaction solution was subjected to suction filtration, and hydrazotoluene contained in the filtrate was extracted with hot benzene. The benzene was removed, and the product was purified by column chromatography (SiO 2 , 100-fold, hexane: ethyl acetate = 9: 1) to obtain hydrazoanisole, 4,4′-dibromohydrazobenzene, 4-methoxy-4′-bromo. The hydrazobenzene was obtained in a ratio of 1: 1: 2.
[0034]
・ Hydrazoanisole
1 H-NMR (CDCl 3 / TMS) δ = 1.18 (2H, s), 3.80 (6H, s), 6.92 (4H, d, J = 8.9 Hz), 7.80 (4H) , D, J = 8.9 Hz)
IR: (KBr) v = 3301, 3084, 3034, 3014, 2952, 2835, 1608, 1503, 1236, 1031, 806 cm -1
m. p. 199.5-202.6 ° C
Yield: 22%
・ 4,4′-dibromohydrazobenzene
1 H-NMR (CDCl 3 / TMS) δ = 4.84 (2H, s), 6.72 (4H, d, J = 8.9 Hz), 7.34 (4H, d, J = 8.9 Hz)
IR: (KBr) ν = 3241, 3070, 1591, 1069, 823, 809 cm −1
Yield: 23%
-4-methoxy-4'-bromohydrazobenzene
1 H-NMR (CDCl 3 / TMS) δ = 3.77 (3H, s), 4.66 (2H, bs) 6.7 to 6.8 (6H, m,), 7.33 (2H, m) )
IR: (KBr) ν = 3330, 2954, 2835, 1588, 1230, 1070, 1033, 824 cm -1
m. p. 225.2-228.1 ° C
Yield: 46%
Other hydrazobenzene compounds having a substituent at the 4-, 4'-position of the structure represented by the above formula (1) can be synthesized in the same manner as in Synthesis Examples 1 and 2.
[0035]
【Example】
Hereinafter, an example of synthesizing an orthobenzidine compound having the structure represented by the above formula (2) from a hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the above formula (1) will be described. However, the present invention is not limited to these examples.
[0036]
(Example 1)
-Synthesis of orthobenzidine compound (4,4'-dimethylorthobenzidine) having the structure represented by the above formula (2-1) Hydrazobenzene compound (hydrazotoluene) 2 having the structure represented by the above formula (1-1) In a 100 ml flask, 0.0 g (9.42 mmol) was replaced with argon, dissolved in 50 ml of hexane (solvent), and stirred. Thereto, PBr 3 (3.77 mmol / ml: 0.4 equivalent) was added dropwise as a reactant exhibiting aprotic Lewis acidity, and the mixture was stirred for one day. Thereafter, the solvent was removed, quenched with an aqueous sodium hydrogen carbonate solution, and extracted with diethyl ether. Thereafter, the extraction solvent was removed, and the product was purified by column chromatography (SiO 2 , 100 times, hexane: ethyl acetate = 9: 1), and the orthobenzidine compound (4,4) having the structure represented by the above formula (2-1) was obtained. '-Dimethylorthobenzidine).
1 H-NMR (CDCl 3 / TMS) δ = 1.25 (2H, s), 2.64 (6H, s), 7.66 (2H, d, J = 8.9 Hz), 7.97 (2H) , S), 8.11 (2H, d, J = 8.9 Hz)
IR: (KBr) ν = 3435, 3051, 924, 2853, 1638, 1514, 1356, 803 cm −1
m. p. : 242.1 to 245.9 ° C
Yield: 71%
(Examples 2 to 11)
An orthobenzidine compound shown in Table 1 was synthesized in the same manner as in Example 1 except that the starting material was changed to the hydrazobenzene compound shown in Table 1.
[0037]
(Examples 12 to 16)
In Example 1, the orthobenzidine compound shown in Table 1 was prepared in the same manner as in Example 1 except that the type and amount of the aprotic Lewis acidic reactant and the solvent were changed as shown in Table 1. Synthesized.
[0038]
Table 1 shows the results of Examples 1 to 16.
[0039]
[Table 1]
[0040]
(Comparative Example 1)
The reaction was carried out in the same manner as in Example 1 except that PBr 3 , which was a reactant exhibiting aprotic Lewis acidity, was changed to hydrochloric acid, which is a protic acid. However, the target compound, an orthobenzidine compound (4,4′-dimethylorthobenzidine) having the structure represented by the above formula (2-1) was not obtained at all.
[0041]
(Comparative Example 2)
3.6 g (19.8 mmol) of 3,3′-dimethylbiphenyl, 4.0 g (31.6 mmol) of iodine, 1.8 g (7.9 mmol) of periodic acid, 20 ml of glacial acetic acid, and 5 ml of water were added to a Dimroth condenser. The mixture was placed in a 100 ml three-necked flask equipped with a thermometer and a stirrer, and stirred at 80 ° C. for 2 hours.
[0042]
After the reaction was completed, the product was extracted with toluene, and the organic layer was washed with a 10% aqueous sodium thiosulfate solution, a 10% aqueous sodium hydrogen carbonate solution and water in this order.
[0043]
Thereafter, toluene was distilled off, and purification was performed using column chromatography to obtain 1.2 g of 3,3′-dimethyl-6,6′-iodobiphenyl (14.0% yield).
[0044]
Next, 1.2 g (2.76 mmol) of 3,3′-dimethyl-6,6′-iodobiphenyl, 0.33 g (5.52 mmol) of acetamide, 0.88 g (13.8 mmol) of copper powder, and 0% of potassium carbonate 0.76 g (5.52 mmol) and 10 ml of orthodichlorobenzene were added, and the mixture was heated and refluxed for 8 hours in an oil bath (Ullmann reaction).
[0045]
After cooling, 20 ml of toluene was added, and the catalyst was removed by filtration.
[0046]
Further, sodium methoxide was added to the obtained crude reaction product, and the mixture was heated under reflux for 2 hours. The reaction solution was poured into water, extracted with toluene, and the organic layer was washed with water. Thereafter, the organic layer was separated, the toluene was concentrated, and then the target product was separated using column chromatography, and the orthobenzidine compound (4,4′-) having a structure represented by the above formula (2-1) was obtained. 0.1 g of dimethyl orthobenzidine) was obtained (yield 17.1%).
[0047]
In each of the examples, the orthobenzidine compound having the structure represented by the above formula (2) was obtained in good yield in all cases, but the conventional methods (Comparative Example 1: Benzidine rearrangement method, Comparative Example 2: Ullmann reaction) In the case of using the synthesis method), the desired product was not obtained at all, or the yield was extremely low.
[0048]
From the above, the usefulness of the present invention is clear.
[0049]
【The invention's effect】
According to the present invention, an orthobenzidine compound, which was difficult to synthesize by a conventional production method, can be produced easily and in a high yield.
Claims (2)
【外1】
【外2】
(式(1)、(2)中、R1、R2は、それぞれ独立に、置換または無置換のアルキル基、置換または無置換のアルコキシ基、置換または無置換のアラルキル基、置換または無置換のアリール基、または、ハロゲン原子を示す。R3、R4は、それぞれ、水素原子を示す。ただし、R1とR3とは、結合して芳香環を形成してもよく、R2とR4とは、結合して芳香環を形成してもよい。)By subjecting a hydrazobenzene compound having a substituent at the 4-, 4'-position of the structure represented by the following formula (1) to a rearrangement reaction in the presence of an aprotic Lewis acidic reactant, the following formula: A method for producing an orthobenzidine compound, comprising synthesizing an orthobenzidine compound having the structure represented by (2).
[Outside 1]
[Outside 2]
(In the formulas (1) and (2), R 1 and R 2 each independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or,, .R 3, R 4 which represents a halogen atom, respectively, a hydrogen atom. However, R 1 and R 3, may form an aromatic ring bonded to an R 2 It may combine with R 4 to form an aromatic ring.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055698A JP4307108B2 (en) | 2003-03-03 | 2003-03-03 | Method for producing orthobenzidine compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003055698A JP4307108B2 (en) | 2003-03-03 | 2003-03-03 | Method for producing orthobenzidine compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004262863A true JP2004262863A (en) | 2004-09-24 |
JP4307108B2 JP4307108B2 (en) | 2009-08-05 |
Family
ID=33119634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003055698A Expired - Fee Related JP4307108B2 (en) | 2003-03-03 | 2003-03-03 | Method for producing orthobenzidine compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4307108B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384648A (en) * | 2015-09-30 | 2016-03-09 | 常州市阳光药业有限公司 | Preparation method for 2,2'-di(methoxy)-4,4'-diaminophenyl |
CN111269129A (en) * | 2020-02-19 | 2020-06-12 | 天津科技大学 | Method for preparing 4,4 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by continuous flow oxidation coupling method |
CN111574380A (en) * | 2020-02-19 | 2020-08-25 | 天津科技大学 | Method for preparing 4,4 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by reduction coupling method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005532516A (en) | 2002-07-10 | 2005-10-27 | ターボコー インク. | Thrust load relaxation device for rotor bearing system using permanent magnet |
CN102321891A (en) * | 2011-09-19 | 2012-01-18 | 北京化工大学 | High-yield electrochemical method for synthesizing 2,2'-dichlorohydrazobenzene |
-
2003
- 2003-03-03 JP JP2003055698A patent/JP4307108B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384648A (en) * | 2015-09-30 | 2016-03-09 | 常州市阳光药业有限公司 | Preparation method for 2,2'-di(methoxy)-4,4'-diaminophenyl |
CN111269129A (en) * | 2020-02-19 | 2020-06-12 | 天津科技大学 | Method for preparing 4,4 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by continuous flow oxidation coupling method |
CN111574380A (en) * | 2020-02-19 | 2020-08-25 | 天津科技大学 | Method for preparing 4,4 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by reduction coupling method |
CN111269129B (en) * | 2020-02-19 | 2023-03-03 | 天津科技大学 | Method for preparing 5,5 '-disubstituted-2, 2' -diaminobiphenyl and hydrochloride thereof by continuous flow oxidation coupling method |
Also Published As
Publication number | Publication date |
---|---|
JP4307108B2 (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09323958A (en) | Production of triarylamine and arylamine | |
KR20190097124A (en) | Naphthobiscalcogenadiazole derivatives and preparation method thereof | |
CA3058686C (en) | Method for preparing 2-aryl malonamide and applications thereof | |
JP4307108B2 (en) | Method for producing orthobenzidine compounds | |
JP4467935B2 (en) | Method for producing halogenated aromatic amine compound | |
JP5712481B2 (en) | Method for producing aromatic difluoroacetate | |
CN108689874B (en) | Method for preparing 2-aryl malonamide and application thereof | |
JP5023683B2 (en) | Process for producing benzofluorene derivative and intermediate thereof | |
JP3002791B2 (en) | Benzyl phenyl ketone derivative | |
KR20040039430A (en) | Process for producing (2-nitrophenyl)acetonitrile derivative and intermediate therefor | |
KR20070121787A (en) | Method for producing nicotinic acid derivative or salt thereof | |
JP2003520840A (en) | Synthesis of N4, N4'-diphenyl-N4, N4'-di-m-tolyl-biphenyl-4,4'-diamine from asymmetric amines | |
JP2020533349A (en) | Improved method of preparing trifloxystrobin | |
JP2003055285A (en) | 4-tert-BUTOXY-4'-HALOGENOBIPHENYL, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING 4-HALOGENO-4'- HYDROXYBIPHENYL | |
JP4194984B2 (en) | Phenylnaphthylimidazole compound | |
JP2003171359A (en) | Method for producing 2-nitrophenylacetonitrile derivative, and its synthetic intermediate | |
TW201713626A (en) | Aromatic compound production method | |
CA2207953A1 (en) | Process for the manufacture of acetonylbenzamides | |
JP2706554B2 (en) | 4-trifluoromethylaniline derivative and method for producing the same | |
JP2007246400A (en) | Fluorene skeleton-containing phthalimides and diamines derived therefrom | |
JP5036445B2 (en) | Method for producing iodine compound | |
CN117342931A (en) | Preparation method of 5-alkyl resorcinol compound | |
JP4013772B2 (en) | 2-Hydroxyimino-3-oxopropionitrile and process for producing the same | |
JP2003113153A (en) | METHOD FOR PRODUCING beta-OXONITRILE DERIVATIVE OR ALKALI METAL SALT THEREOF | |
JP4505876B2 (en) | 4-halobenzofuran derivative and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090421 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090428 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140515 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |