JP2004250524A - Rubber-modified styrene-based resin composition - Google Patents
Rubber-modified styrene-based resin composition Download PDFInfo
- Publication number
- JP2004250524A JP2004250524A JP2003040991A JP2003040991A JP2004250524A JP 2004250524 A JP2004250524 A JP 2004250524A JP 2003040991 A JP2003040991 A JP 2003040991A JP 2003040991 A JP2003040991 A JP 2003040991A JP 2004250524 A JP2004250524 A JP 2004250524A
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- rubber
- resin composition
- meth
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、透明性、耐衝撃性及び熱安定性に優れたゴム変性スチレン系樹脂組成物に関するものである。さらに詳しくは、フェノール系酸化防止剤と特定のラクトン系化合物と必要に応じてリン系加工安定剤とが特定割合で配合された特定のゴム変性スチレン系樹脂組成物であり、透明性、耐衝撃性に優れ、且つ押出時や成形時などの熱履歴による色相及び透明性の低下が著しく抑制されたゴム変性スチレン系樹脂組成物に関するものである。
【0002】
【従来の技術】
従来、ジエン系ゴムにその屈折率に合致するに選ばれた組成比を有するスチレン、メタアクリル酸メチル、アクリロニトリルなどの不飽和単量体混合物をグラフト共重合して得られる樹脂は、MBS樹脂、MABS樹脂として知られ、耐衝撃性と透明性に優れることから広く用いられてきた。しかしながら該樹脂は押出時や成形時などの熱履歴により色相及び透明性が低下しやすいという欠点があった。特に乳化重合法で製造されたグラフト共重合体を配合してなる該樹脂組成物は、耐衝撃性と透明性が著しく優れる反面、押出時や成形時などの熱履歴による色相の低下がより大きいという欠点があった。
【0003】
一般的に、熱可塑性樹脂組成物の酸化防止剤としては、フェノール系酸化防止剤が用いられており、酸化劣化による色相及び衝撃強度の低下に対して抑制効果があることは良く知られている。さらに、フェノール系酸化防止剤とイオウ系加工安定剤またはリン系加工安定剤とを併用する方法も良く知られており、MBS樹脂またはMABS樹脂に特定のフェノール系酸化防止剤と特定のイオウ系加工安定剤を用いる方法が知られている。(例えば、特許文献1参照。)。
しかし、これらの方法は酸素の影響に対しての効果はあるが、熱劣化による抑制効果は不十分であり、押出時や成形時などの熱履歴による色相及び透明性の低下に対しての抑制効果は十分ではなかった。
【0004】
【特許文献1】
特開平7−324153号公報
【0005】
【発明が解決しようとする課題】
このような現状に鑑み、本発明は、透明性、耐衝撃性に優れ、且つ押出時や成形時などの熱履歴による色相及び透明性の低下が著しく抑制されたゴム変性スチレン系樹脂組成物を提供することを目的とする。
本発明者らは、このような課題を解決すべく鋭意研究を重ねた結果、特定のリン系化合物を所定量配合した特定のゴム変性スチレン系樹脂組成物において、前記課題の解決が果たされることを見出し、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち本発明は、(1)(A)スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル系単量体からなるスチレン−(メタ)アクリル酸エステル系共重合体と、(B)ジエン系ゴム状弾性体、スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル単量体からなるグラフト共重合体とを主成分とするゴム変性スチレン系樹脂組成物であって、該ゴム変性スチレン系樹脂組成物のメチルエチルケトン(MEK)可溶分とMEK不溶分との質量比が95/5〜40/60であり、かつ該ゴム変性スチレン系樹脂組成物100質量%中に、(C)リン系化合物として9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド0.1〜0.5質量%を含有することを特徴とするゴム変性スチレン系樹脂組成物、(2) グラフト共重合体を60質量%以上含有するグラフト共重合体含有樹脂を乳化重合法により製造し、かつスチレン−(メタ)アクリル酸エステル系樹脂を塊状重合法、溶液重合法、懸濁重合法、及び塊状−懸濁重合法のいずれかの重合法により製造し、該グラフト共重合体含有樹脂と該スチレン−(メタ)アクリル酸エステル系樹脂とを溶融混合して得られる(1)記載のゴム変性スチレン系樹脂組成物である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のゴム変性スチレン系樹脂組成物の主成分の一つであるスチレン−(メタ)アクリル酸エステル系共重合体とは、スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル系単量体からなる共重合体である。
【0008】
本発明のゴム変性スチレン系樹脂組成物の主成分の一つであるグラフト共重合体とは、ジエン系ゴム状弾性体に、スチレン系単量体、(メタ)アクリル酸エステル系単量体、及びこれらの単量体と共重合可能なビニル単量体からなるスチレン−(メタ)アクリル酸エステル系共重合体がグラフトしてなる共重合体である。
【0009】
本発明で使用されるスチレン系単量体は、スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、m−メチルスチレン、エチルスチレン、p−t−ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらのスチレン系単量体は、単独でもよいが二種以上を併用してもよい。
【0010】
本発明で使用される(メタ)アクリル酸エステル系単量体としては、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、2−エチルヘキシルメタクリレート等のメタクリル酸エステル、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステルが挙げられるが、好ましくはメチルメタクリレート、またはn−ブチルアクリレート、特に好ましくはメチルメタクリレートである。これらの(メタ)アクリル酸エステル系単量体は単独で用いてもよいが二種以上を併用してもよい。
【0011】
さらに、必要に応じてこれらの単量体と共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、アクリロニトリル、メタアクリロニトリル、N−フェニルマレイミド、N−シクロヘキシルマレイミド等が挙げられる。
【0012】
本発明で使用されるジエン系ゴム状弾性体としては、ポリブタジエン、スチレン−ブタジエンブロック共重合体、及びスチレン−ブタジエンランダム共重合体等が挙げられる。
スチレン−ブタジエンブロック共重合体、あるいはスチレン−ブタジエンランダム共重合体のスチレン単量体単位は、60質量%以下であることがゴム変性スチレン系樹脂組成物の良好な耐衝撃性と透明性を得るために好ましい。
【0013】
本発明で使用されるリン系化合物としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(CAS No.35948−25−5)が挙げられる。
【0014】
本発明のゴム変性スチレン系樹脂組成物は、メチルエチルケトン(MEK)可溶分とMEK不溶分との質量比が95/5〜40/60である。MEK不溶分の質量比が5質量%未満では耐衝撃性が不十分であり、60質量%を超えると成形加工が劣るために好ましくない。
【0015】
なお、MEK可溶分とは、スチレン−(メタ)アクリル酸エステル系共重合体が主成分となるが、それ以外のMEKに可溶な成分は全て含まれる。
【0016】
また、MEK不溶分とは、グラフト共重合体が主成分となるが、それ以外のMEKに不溶な成分は全て含まれる。
【0017】
本発明のゴム変性スチレン系樹脂組成物のMEK可溶分とMEK不溶分の質量比測定は、ゴム変性スチレン系樹脂組成物(質量・A)をMEK中で24時間攪拌し、その後遠心分離機でMEKに対する不溶分を分離、真空乾燥したものを質量測定して(質量・B)、下記の数1及び数2により求めるものである。
【数1】
【数2】
【0018】
また、本発明のゴム変性スチレン系樹脂組成物は、スチレン−(メタ)アクリル酸エステル系共重合体とグラフト共重合体との屈折率の差が近似していることが良好な透明性を得るために好ましい。
【0019】
なお、スチレン−(メタ)アクリル酸エステル系共重合体を構成する各単量体の割合は、特に限定されるものではないが、好ましくはスチレン系単量体単位20〜70質量%、(メタ)アクリル酸エステル系単量体単位30〜80質量%、及び必要に応じて用いられるこれらの単量体と共重合可能なビニル系単量体単位0〜10質量%であり、その範囲内でグラフト共重合体との屈折率の差が近似するような単量体比であることがさらに好ましい。
【0020】
また、グラフト共重合体を構成するゴム状弾性体及び各単量体の量は、特に限定されるものではないが、好ましくはゴム状弾性体30〜80質量部に、スチレン系単量体単位20〜70質量%、(メタ)アクリル酸エステル系単量体単位30〜80質量%、及び必要に応じて用いられるこれらの単量体と共重合可能なビニル系単量体単位0〜10質量%からなるスチレン−(メタ)アクリル酸エステル系共重合体20〜70質量部がグラフトしたグラフト共重合体であり、その範囲内でグラフトしているスチレン−(メタ)アクリル酸エステル系共重合体とゴム状弾性体との屈折率の差が近似するような単量体比であることがさらに好ましい。
【0021】
本発明のゴム変性スチレン系樹脂組成物は、塊状重合法、溶液重合法、懸濁重合法、塊状−懸濁重合法、乳化重合法等の公知技術により製造することができる。
また、回分式重合法、連続式重合法のいずれの方法も用いることができる。
【0022】
好ましくは、グラフト共重合体を60質量%以上含有するグラフト共重合体含有樹脂を乳化重合法により製造し、かつスチレン−(メタ)アクリル酸エステル系樹脂を塊状重合法、溶液重合法、懸濁重合法、及び塊状−懸濁重合法のいずれかの重合法により製造し、該グラフト共重合体含有樹脂と該スチレン−(メタ)アクリル酸エステル系樹脂とを溶融混合させることにより製造することであり、耐衝撃性及び透明性が特に優れたゴム変性スチレン系樹脂組成物を得ることが出来る。
【0023】
本発明にはフェノール系酸化防止剤を併用しても良く、例えば4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−(6−t−ブチル−3−メチルフェノール)、2,6−ジ−t−ブチル−P−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェノール)ブタン、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコールビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、3,3’,3”,5,5’,5”−ヘキサ−t−ブチル−a,a’,a”−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、N,N’−へキサン−1,6−ジイルビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオナミド]4,6−ビス(オクチルチオメチル)−ο−クレゾール等が挙げられる。これらのフェノール系酸化防止剤は単独で用いてもよいが二種以上を併用してもよい。
【0024】
本発明には耐光剤を併用しても良く、例えば2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α、αジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)セバケート等が挙げられる。これらの耐光剤は単独で用いても良いが二種以上を併用しても良い。
【0025】
本発明で使用される(C)リン系化合物の量は、ゴム変性スチレン系樹脂組成物100質量%中、0.1〜0.5質量%である。
0.1質量%未満では押出時や成形時などの熱履歴時における色相悪化及び透明性低下の抑制効果が小さいので好ましくない。また、0.5質量%を超える量になると、熱履歴時における色相悪化及び透明性低下の抑制効果が添加量を増やしても上がらなくなり、経済的に不利となるため好ましくない。
【0026】
本発明のゴム変性スチレン系樹脂組成物は、上記フェノール系酸化防止剤、耐光剤を添加しなくても良いが、ゴム変性スチレン系樹脂組成物100質量%中、0.01〜2質量%の範囲で配合することにより、熱履歴時における色相悪化及び透明性低下が、より抑制されるので好ましい。但し、2質量%を超える量になると、熱履歴時における色相悪化及び透明性低下の抑制効果が添加量を増やしても上がらなくなり、経済的に不利となるため好ましくない。
【0027】
本発明のゴム変性スチレン系樹脂組成物には、公知の滑剤、可塑剤、着色剤、帯電防止剤、鉱油等、顔料、染料、無機フィラー、光拡散剤等の添加剤を、本発明のゴム変性スチレン系樹脂組成物の性能を損なわない範囲で配合してもよい。
【0028】
本発明のゴム変性スチレン系樹脂組成物は、配合・溶融押出しについては特に制限はなく、公知の方法を採用することができる。例えば、各原料をあらかじめタンブラーやヘンシェルミキサー等で均一に混合して、単軸押出機または二軸押出機等に供給して溶融混練した後、ペレットとして調整する方法がある。
このようにして得られた本発明の熱可塑性樹脂組成物は、例えば、射出成形、圧縮成形及び押出成形等の方法により各種成形体に加工され実用に供することができる。
【0029】
【実施例】
次に実施例をもって本発明を更に説明するが、本発明はこれらの例に限定されるものではない。なお、実施例で用いた部及び%は総て質量基準で示した。
【0030】
まず、原料樹脂の製造から示す。
(イ)スチレン−(メタ)アクリル酸エステル系樹脂の製造
参考例1:スチレン−(メタ)アクリル酸エステル系樹脂(A−1)
容量250リットルのオートクレーブに、純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム250g、スチレン23kg、メチルメタクリレート73kg、アクリロニトリル4kgを入れ、重合開始剤としてt−ブチルパーオキシイソブチレートを100g、t−ドデシルメルカプタン700gを添加し、回転数150rpmの撹拌下に混合液を分散させた。そしてこの混合液を温度90℃で8時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状のスチレン−(メタ)アクリル酸エステル系樹脂(A−1)を得た。
【0031】
(ロ)ゴム状弾性体ラテックスの製造
参考例2:ゴム状弾性体ラテックス(G−1)
容積200リットルのオートクレーブに純水56kg、オレイン酸カリウム400g、ロジン酸カリウム1200g、炭酸ナトリウム1.2kg、過硫酸カリウム400gを加えて撹拌下で均一に溶解した。次いでブタジエン80kg、t−ドデシルメルカプタン400gを加え、撹拌しながら60℃で30時間重合し、更に70℃に昇温して30時間放置して重合を完結し、平均粒径0.34μmのゴム状弾性体ラテックス(G−1)を得た。
【0032】
(ハ)グラフト共重合体含有樹脂の製造
参考例3:グラフト共重合体含有樹脂(B−1)
参考例2のゴム状弾性体ラテックスG−1を固形分換算で30kg計量して容積200リットルのオートクレーブに移し、純水80kgを加え、攪拌しながら窒素気流下で50℃に昇温した。ここに硫酸第一鉄1.25g、エチレンジアミンテトラ酢酸ナトリウム2.5g、ロンガリット100gを溶解した純水2kgを加え、スチレン6.9kg、メチルメタクリレート23.1kg、t−ドデシルメルカプタン60gからなる混合物と、ジイソプロピルベンゼンハイドロパーオキサイド120gをオレイン酸カリウム450gを含む純水8kgに分散した溶液とを、別々に6時間かけて連続添加した。添加終了後、温度を70℃に昇温して、更にジイソプロピルベンゼンハイドロパーオキサイド30g添加した後2時間放置して重合を終了した。
得られた乳化液に4,4’−ブチリデンビス−(6−t−ブチル−3−メチルフェノール)300gを加え、純水で固形分を15%に希釈した後に60℃に昇温し、激しく撹拌しながら希硫酸及び硫酸マグネシウムを加えて塩析を行い、その後温度を90℃に昇温して凝固させ、次に脱水、水洗、乾燥して粉末状のグラフト共重合体含有樹脂(B−1)を得た。
【0033】
参考例4:グラフト共重合体含有樹脂(B−2)
容積100リットルのオートクレーブにスチレン32kg、メチルメタクリレート41kg、アクリロニトリル3kgのモノマー混合物にスチレン−ブタジエン共重合体(スチレン含量25%、旭化成社製タフデン2000(商品名))4kgを溶解し、重合開始剤としてベンゾイルパーオキサイド32g、連鎖移動剤としてt−ドデシルメルカプタン160gを添加し、撹拌翼の回転数を260rpmに設定し、90℃に加熱した。重合転化率が30%に達した時に冷却して塊状重合を停止した。
次いで該反応混合液70kgを容積200リットルのオートクレーブに移し、これに新たに重合開始剤としてジクミルパーオキサイドを140g添加した。純水100kgにドデシルベンゼンスルホン酸ナトリウムを0.5g、第三リン酸カルシウム350gを懸濁安定剤として添加し、撹拌下に混合液を分散させた。反応系を100℃で2時間、115℃で3.5時間、130℃で2.5時間加熱重合させた。反応終了後、洗浄、脱水後乾燥し、ビーズ状のグラフト共重合体含有樹脂(B−2)を得た。
【0034】
(ニ)添加剤
参考例5:リン系化合物単独(C−1)
リン系化合物として 9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(CAS No.35948−25−5)として用いた。
【0035】
参考例6:リン系化合物単独(C−2)
リン系化合物としてビス[2,4−ビス(1,1−ジメチルエチル)−6−メチルフェニル]エチルエステル亜リン酸を添加剤(C−2)として用いた。
【0036】
参考例7:リン系化合物と耐光剤の混合物(C−3)
リン系化合物として 9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(CAS No.35948−25−5)を50質量%と耐光剤としてビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートを50質量%からなる混合物を添加剤(C−3)として用いた。
【0037】
実施例及び比較例
参考例1で製造したスチレン−(メタ)アクリル酸エステル系樹脂、参考例3〜4で製造したグラフト共重合体含有樹脂、及び参考例5〜7の添加剤表−1の配合処方にてヘンシェルミキサーで混合した後、二軸押出機(東芝機械社製 TEM−35B)でシリンダー温度260℃で溶融混練してペレット化した。
【0038】
実施例1〜4及び比較例1〜3の試料ペレットをメチルエチルケトン(MEK)可溶分とMEK不溶分とに分離し、その質量比を表1に示した。また、試料ペレット中のフェノール系酸化防止剤、下記のラクトン系化合物及びリン系加工安定剤の含有量をそれぞれ表1に示した。
【0039】
【表1】
【0040】
尚、表1のMEK可溶分とMEK不溶分の質量比の測定は以下の方法で行った。
あらかじめ質量測定しておいた試料ペレット(質量・A)をメチルエチルケトン(MEK)中で23℃で24時間攪拌し、その後遠心分離機でMEKに対する不溶分の分離を実施し、遠心分離操作後30分静置した。遠心分離機の操作条件は次の通りである。
温度:−9℃
回転数:20000rpm
時間:60分
遠心分離させた溶液の上澄み液と沈殿物とを分離し、沈殿物を真空乾燥機で乾燥した後、質量測定して(質量・B)、下記の数式3及び数式4によりMEK可溶分とMEK不溶分の質量比を求めた。
【数3】
【数4】
【0041】
また、得られた試料ペレットを用いて下記した各物性測定方法に従い物性測定を行った。測定値を表1に示した。
【0042】
(1)アイゾット(Izod)衝撃強度
ノッチ付き、ASTM D−256に準拠して測定した(単位:J/m)。
【0043】
(2)曇り度
東芝機械社製射出成形機(IS−50EP)を用いて、試料ペレットをシリンダー温度220℃で成形し、55mm×90mm×2mm寸法の角板試験片を作成し、ASTM D−1003に準拠して測定した(単位:%)。
【0044】
(4)色相
前記(2)の角板試験片を用いて、JIS K−7103に準拠してYIを測定した。
【0045】
(5)加熱テスト後の色相
前記(3)の角板試験片を80℃×5日ギヤオーブン内で加熱後用、JIS K−7103に準拠してYIを測定した。
【0046】
本発明のゴム変性スチレン系樹脂組成物に係わる実施例は、いずれも透明性及び耐衝撃性に優れ、成形後の熱履歴による色相及び透明性の低下を著しく抑制されたものであったが、本発明の条件に合わないゴム変性スチレン系樹脂組成物に係わる比較例では、成形後の熱履歴による色相及び透明性の低下が目立つものであった。
【0047】
【発明の効果】
本発明によれば、透明性及び耐衝撃性に優れ、成形後の熱履歴による色相及び透明性の低下を著しく抑制されたゴム変性スチレン系樹脂組成物を提供することが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rubber-modified styrenic resin composition having excellent transparency, impact resistance and thermal stability. More specifically, it is a specific rubber-modified styrene-based resin composition in which a phenolic antioxidant, a specific lactone-based compound and, if necessary, a phosphorus-based processing stabilizer are blended in a specific ratio, and has transparency, impact resistance, The present invention relates to a rubber-modified styrenic resin composition having excellent properties and having a markedly suppressed decrease in hue and transparency due to heat history during extrusion or molding.
[0002]
[Prior art]
Conventionally, a resin obtained by graft copolymerization of an unsaturated monomer mixture such as styrene, methyl methacrylate, and acrylonitrile having a composition ratio selected to match the refractive index of a diene rubber is an MBS resin. Known as a MABS resin, it has been widely used because of its excellent impact resistance and transparency. However, the resin has a drawback that the hue and the transparency tend to be lowered due to the heat history at the time of extrusion or molding. In particular, the resin composition containing a graft copolymer produced by an emulsion polymerization method has remarkably excellent impact resistance and transparency, but has a larger reduction in hue due to heat history during extrusion or molding. There was a disadvantage.
[0003]
Generally, as an antioxidant of a thermoplastic resin composition, a phenolic antioxidant is used, and it is well known that the phenolic antioxidant has an effect of suppressing a decrease in hue and impact strength due to oxidative deterioration. . Furthermore, a method of using a phenolic antioxidant in combination with a sulfur-based processing stabilizer or a phosphorus-based processing stabilizer is also well known, and a specific phenolic antioxidant and a specific sulfur-based processing are added to MBS resin or MABS resin. Methods using stabilizers are known. (For example, refer to Patent Document 1).
However, although these methods have an effect on the influence of oxygen, the effect of suppressing the deterioration due to thermal deterioration is insufficient, and the suppression of the decrease in the hue and the transparency due to the heat history at the time of extrusion or molding. The effect was not enough.
[0004]
[Patent Document 1]
JP-A-7-324153
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a rubber-modified styrene-based resin composition having excellent transparency, impact resistance, and in which the reduction in hue and transparency due to heat history during extrusion or molding has been significantly suppressed. The purpose is to provide.
The present inventors have conducted intensive studies to solve such problems, and as a result, the specific rubber-modified styrene-based resin composition in which a specific phosphorus-based compound is blended in a predetermined amount can achieve the above-mentioned object. And completed the present invention.
[0006]
[Means for Solving the Problems]
That is, the present invention relates to (1) a styrene monomer (A) comprising a styrene monomer, a (meth) acrylate monomer, and a vinyl monomer copolymerizable with these monomers. ) An acrylate copolymer and (B) a diene rubber-like elastic material, a styrene monomer, a (meth) acrylate monomer, and a vinyl monomer copolymerizable with these monomers. A rubber-modified styrenic resin composition comprising a graft copolymer consisting of a monomer and a copolymer as a main component, wherein the rubber-modified styrenic resin composition has a mass ratio of a methyl ethyl ketone (MEK) -soluble component to a MEK-insoluble component. 95/5 to 40/60, and (C) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- as a phosphorus compound in 100% by mass of the rubber-modified styrene resin composition. oxide (1) a rubber-modified styrenic resin composition characterized by containing from 1 to 0.5% by mass, and (2) a graft copolymer-containing resin containing the graft copolymer by 60% by mass or more by an emulsion polymerization method. And producing a styrene- (meth) acrylate resin by any one of bulk polymerization, solution polymerization, suspension polymerization, and bulk-suspension polymerization, and containing the graft copolymer. The rubber-modified styrene resin composition according to (1), which is obtained by melt-mixing a resin and the styrene- (meth) acrylate resin.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The styrene- (meth) acrylate-based copolymer, which is one of the main components of the rubber-modified styrene-based resin composition of the present invention, is a styrene-based monomer, a (meth) acrylate-based monomer, And a copolymer comprising a vinyl monomer copolymerizable with these monomers.
[0008]
The graft copolymer, which is one of the main components of the rubber-modified styrenic resin composition of the present invention, refers to a diene-based rubber-like elastic material, a styrene-based monomer, a (meth) acrylate-based monomer, And a copolymer obtained by grafting a styrene- (meth) acrylate copolymer comprising a vinyl monomer copolymerizable with these monomers.
[0009]
The styrene monomer used in the present invention includes styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, pt-butylstyrene and the like. But is preferably styrene. These styrene monomers may be used alone or in combination of two or more.
[0010]
Examples of the (meth) acrylate monomer used in the present invention include methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, Examples include acrylates such as -methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate, and are preferably methyl methacrylate or n-butyl acrylate, and particularly preferably methyl methacrylate. These (meth) acrylate monomers may be used alone or in combination of two or more.
[0011]
Further, examples of the vinyl monomer copolymerizable with these monomers as needed include acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.
[0012]
Examples of the diene rubber-like elastic material used in the present invention include polybutadiene, styrene-butadiene block copolymer, and styrene-butadiene random copolymer.
When the styrene monomer unit of the styrene-butadiene block copolymer or the styrene-butadiene random copolymer is at most 60% by mass, good impact resistance and transparency of the rubber-modified styrene resin composition will be obtained. Preferred for.
[0013]
Examples of the phosphorus compound used in the present invention include 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (CAS No. 35948-25-5).
[0014]
In the rubber-modified styrenic resin composition of the present invention, the mass ratio of the methyl ethyl ketone (MEK) soluble component to the MEK insoluble component is 95/5 to 40/60. If the mass ratio of the MEK-insoluble component is less than 5% by mass, the impact resistance is insufficient, and if it exceeds 60% by mass, the molding process is inferior, which is not preferable.
[0015]
The MEK-soluble component is mainly composed of a styrene- (meth) acrylate-based copolymer, but includes all other components that are soluble in MEK.
[0016]
The MEK-insoluble component is mainly composed of the graft copolymer, but includes all other components insoluble in MEK.
[0017]
The measurement of the mass ratio of the MEK-soluble component to the MEK-insoluble component of the rubber-modified styrene resin composition of the present invention is performed by stirring the rubber-modified styrene resin composition (mass A) in MEK for 24 hours, and then centrifuging the resin. The insolubles in MEK are separated and vacuum-dried, and the mass is measured (mass · B).
(Equation 1)
(Equation 2)
[0018]
Further, the rubber-modified styrene-based resin composition of the present invention obtains good transparency when the difference in the refractive index between the styrene- (meth) acrylate-based copolymer and the graft copolymer is close to each other. Preferred for.
[0019]
The proportion of each monomer constituting the styrene- (meth) acrylic acid ester-based copolymer is not particularly limited, but is preferably 20 to 70% by mass of the styrene-based monomer unit, ) 30 to 80% by mass of an acrylate ester monomer unit, and 0 to 10% by mass of a vinyl monomer unit copolymerizable with these monomers used as necessary. It is further preferable that the monomer ratio is such that the difference in the refractive index from the graft copolymer is similar.
[0020]
The amount of the rubber-like elastic body and each monomer constituting the graft copolymer is not particularly limited, but preferably 30 to 80 parts by mass of the rubber-like elastic body includes a styrene-based monomer unit. 20 to 70% by mass, 30 to 80% by mass of (meth) acrylic acid ester monomer unit, and 0 to 10% by mass of a vinyl monomer unit copolymerizable with these monomers used as necessary. % Of the styrene- (meth) acrylate-based copolymer is a graft copolymer in which 20 to 70 parts by mass of the styrene- (meth) acrylate-based copolymer is grafted. More preferably, the monomer ratio is such that the difference in refractive index between the rubber-like elastic body and the rubber-like elastic body is close to each other.
[0021]
The rubber-modified styrenic resin composition of the present invention can be produced by known techniques such as bulk polymerization, solution polymerization, suspension polymerization, bulk-suspension polymerization, and emulsion polymerization.
Either a batch polymerization method or a continuous polymerization method can be used.
[0022]
Preferably, a graft copolymer-containing resin containing the graft copolymer in an amount of 60% by mass or more is produced by an emulsion polymerization method, and a styrene- (meth) acrylate resin is prepared by a bulk polymerization method, a solution polymerization method, or a suspension polymerization method. The graft copolymer is produced by a polymerization method, or a bulk-suspension polymerization method, and is produced by melt-mixing the graft copolymer-containing resin and the styrene- (meth) acrylate resin. Thus, a rubber-modified styrene resin composition having particularly excellent impact resistance and transparency can be obtained.
[0023]
In the present invention, a phenolic antioxidant may be used in combination, for example, 4,4′-butylidenebis- (6-t-butyl-3-methylphenol), 2,2′-methylenebis- (4-methyl-6). -T-butylphenol), 2,2'-methylenebis- (4-ethyl-6-t-butylphenol), 4,4'-thiobis- (6-t-butyl-3-methylphenol), 2,6-di -T-butyl-P-cresol, 2,6-di-t-butyl-4-ethylphenol, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenol) butane, octadecyl- 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, Ethylene glycol bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, 3 , 3 ', 3 ", 5,5', 5" -hexa-t-butyl-a, a ', a "-(mesitylene-2,4,6-triyl) tri-p-cresol, N, N' -Hexane-1,6-diylbis [3- (3,5-di-t-butyl-4-hydroxyphenylpropionamide) 4,6-bis (octylthiomethyl) -o-cresol. May be used alone or in combination of two or more.
[0024]
In the present invention, a light stabilizer may be used in combination, for example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl]. -2H-benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzo Triazole, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate and the like. These light stabilizers may be used alone or in combination of two or more.
[0025]
The amount of the phosphorus compound (C) used in the present invention is 0.1 to 0.5% by mass based on 100% by mass of the rubber-modified styrene resin composition.
If the amount is less than 0.1% by mass, the effect of suppressing the deterioration of the hue and the decrease in the transparency at the time of heat history such as at the time of extrusion or molding is not preferable. On the other hand, if the amount exceeds 0.5% by mass, the effect of suppressing the deterioration of hue and the decrease in transparency at the time of heat history will not be improved even if the added amount is increased, and it will be economically disadvantageous.
[0026]
The rubber-modified styrenic resin composition of the present invention does not require the addition of the above-mentioned phenolic antioxidant and light-proofing agent, but 0.01 to 2% by mass in 100% by mass of the rubber-modified styrenic resin composition. Mixing in the above range is preferable because deterioration of hue and decrease in transparency at the time of heat history are further suppressed. However, if the amount exceeds 2% by mass, the effect of suppressing the deterioration of hue and the decrease in transparency at the time of heat history will not be improved even if the added amount is increased, and it will be economically disadvantageous.
[0027]
The rubber-modified styrenic resin composition of the present invention includes a known lubricant, a plasticizer, a coloring agent, an antistatic agent, an additive such as mineral oil, a pigment, a dye, an inorganic filler, a light diffusing agent, and the like. You may mix | blend in the range which does not impair the performance of a modified styrene resin composition.
[0028]
The rubber-modified styrenic resin composition of the present invention is not particularly limited with respect to blending and melt extrusion, and a known method can be employed. For example, there is a method in which each raw material is uniformly mixed in advance with a tumbler, Henschel mixer, or the like, supplied to a single-screw extruder or a twin-screw extruder, melt-kneaded, and then adjusted as pellets.
The thermoplastic resin composition of the present invention thus obtained can be processed into various molded articles by methods such as injection molding, compression molding, and extrusion molding, and can be put to practical use.
[0029]
【Example】
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples. All parts and percentages used in the examples are shown on a mass basis.
[0030]
First, the production of the raw resin will be described.
(A) Production of styrene- (meth) acrylate-based resin Reference Example 1: Styrene- (meth) acrylate-based resin (A-1)
0.5 g of sodium dodecylbenzenesulfonate, 250 g of tribasic calcium phosphate, 23 kg of styrene, 73 kg of methyl methacrylate, and 4 kg of acrylonitrile were added to 100 kg of pure water in an autoclave having a capacity of 250 liters, and t-butyl peroxyisobutyrate was used as a polymerization initiator. Was added, and 700 g of t-dodecyl mercaptan was added, and the mixture was dispersed with stirring at a rotation speed of 150 rpm. Then, the mixture was heated and polymerized at 90 ° C. for 8 hours and at 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were carried out to obtain a bead-like styrene- (meth) acrylate resin (A-1).
[0031]
(B) Production of rubber-like elastic latex Reference Example 2: Rubber-like elastic latex (G-1)
56 kg of pure water, 400 g of potassium oleate, 1200 g of potassium rosinate, 1.2 kg of sodium carbonate, and 400 g of potassium persulfate were added to a 200-liter autoclave and uniformly dissolved under stirring. Next, 80 kg of butadiene and 400 g of t-dodecylmercaptan were added, and the mixture was polymerized at 60 ° C. for 30 hours with stirring, and further heated to 70 ° C. and left for 30 hours to complete the polymerization. An elastic latex (G-1) was obtained.
[0032]
(C) Production of graft copolymer-containing resin Reference Example 3: Graft copolymer-containing resin (B-1)
30 kg of the rubber-like elastic latex G-1 of Reference Example 2 was weighed in terms of solid content, transferred to an autoclave having a volume of 200 liters, added with 80 kg of pure water, and heated to 50 ° C. under a nitrogen stream while stirring. To this, 1.25 g of ferrous sulfate, 2.5 g of sodium ethylenediaminetetraacetate, and 2 kg of pure water in which 100 g of Rongalite were added, and a mixture consisting of 6.9 kg of styrene, 23.1 kg of methyl methacrylate, and 60 g of t-dodecyl mercaptan, A solution obtained by dispersing 120 g of diisopropylbenzene hydroperoxide in 8 kg of pure water containing 450 g of potassium oleate was continuously added separately over 6 hours. After the addition was completed, the temperature was raised to 70 ° C., 30 g of diisopropylbenzene hydroperoxide was further added, and the mixture was left for 2 hours to complete the polymerization.
300 g of 4,4′-butylidenebis- (6-t-butyl-3-methylphenol) was added to the obtained emulsion, and the solid content was diluted to 15% with pure water, followed by heating to 60 ° C. and vigorous stirring. While diluting sulfuric acid and magnesium sulfate were added thereto to carry out salting out, the temperature was raised to 90 ° C. to coagulate, then dehydrated, washed and dried to obtain a powdery graft copolymer-containing resin (B-1). ) Got.
[0033]
Reference Example 4: Graft copolymer-containing resin (B-2)
In a 100 liter autoclave, 4 kg of a styrene-butadiene copolymer (styrene content: 25%, Toughden 2000 (trade name) manufactured by Asahi Kasei Corporation) was dissolved in a monomer mixture of 32 kg of styrene, 41 kg of methyl methacrylate, and 3 kg of acrylonitrile. 32 g of benzoyl peroxide and 160 g of t-dodecyl mercaptan as a chain transfer agent were added, the rotation speed of the stirring blade was set to 260 rpm, and the mixture was heated to 90 ° C. When the polymerization conversion reached 30%, the mass polymerization was stopped by cooling.
Next, 70 kg of the reaction mixture was transferred to an autoclave having a capacity of 200 liters, and 140 g of dicumyl peroxide as a polymerization initiator was newly added thereto. 0.5 g of sodium dodecylbenzenesulfonate and 350 g of tricalcium phosphate were added as suspension stabilizers to 100 kg of pure water, and the mixture was dispersed with stirring. The reaction system was heated and polymerized at 100 ° C. for 2 hours, at 115 ° C. for 3.5 hours, and at 130 ° C. for 2.5 hours. After completion of the reaction, washing, dehydration and drying were performed to obtain a bead-shaped graft copolymer-containing resin (B-2).
[0034]
(D) Additive Reference Example 5: Phosphorus compound alone (C-1)
It was used as a phosphorus compound as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (CAS No. 35948-25-5).
[0035]
Reference Example 6: Phosphorus-based compound alone (C-2)
As a phosphorus compound, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid was used as an additive (C-2).
[0036]
Reference Example 7: Mixture of phosphorus compound and light stabilizer (C-3)
50% by mass of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (CAS No. 35948-25-5) as a phosphorus compound and bis (2,2,6,6) -Tetramethyl-4-piperidyl) sebacate was used as an additive (C-3) in a mixture consisting of 50% by mass.
[0037]
Examples and Comparative Examples Styrene- (meth) acrylate resin produced in Reference Example 1, graft copolymer-containing resin produced in Reference Examples 3 to 4, and additives of Reference Examples 5 to 7 After mixing with a Henschel mixer according to the compounding formulation, the mixture was melt-kneaded at a cylinder temperature of 260 ° C. with a twin-screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) and pelletized.
[0038]
The sample pellets of Examples 1 to 4 and Comparative Examples 1 to 3 were separated into methyl ethyl ketone (MEK) soluble matter and MEK insoluble matter, and the mass ratio is shown in Table 1. Table 1 shows the contents of the phenolic antioxidant, the following lactone compound and the phosphorus-based processing stabilizer in the sample pellets.
[0039]
[Table 1]
[0040]
In addition, the measurement of the mass ratio of the MEK-soluble component and the MEK-insoluble component in Table 1 was performed by the following method.
The sample pellet (mass · A), whose mass has been measured in advance, is stirred in methyl ethyl ketone (MEK) at 23 ° C. for 24 hours, and thereafter, the insoluble matter in MEK is separated by a centrifuge, and 30 minutes after the centrifugation operation It was left still. The operating conditions of the centrifuge are as follows.
Temperature: -9 ° C
Rotation speed: 20000 rpm
Time: The supernatant liquid and the precipitate separated by centrifugation for 60 minutes are separated from each other, and the precipitate is dried with a vacuum drier, and then weighed (mass · B). The mass ratio of the soluble component to the MEK insoluble component was determined.
[Equation 3]
(Equation 4)
[0041]
Further, physical properties were measured using the obtained sample pellets according to the following physical property measuring methods. The measured values are shown in Table 1.
[0042]
(1) Izod (Izod) Impact strength Notched, measured according to ASTM D-256 (unit: J / m).
[0043]
(2) Cloudiness Using an injection molding machine (IS-50EP) manufactured by Toshiba Machine Co., a sample pellet was molded at a cylinder temperature of 220 ° C. to prepare a square plate test piece having a size of 55 mm × 90 mm × 2 mm. It was measured according to 1003 (unit:%).
[0044]
(4) Hue YI was measured using the square test piece of (2) according to JIS K-7103.
[0045]
(5) Hue after heating test The square test piece of (3) was heated in a gear oven at 80 ° C. for 5 days, and YI was measured in accordance with JIS K-7103.
[0046]
Examples relating to the rubber-modified styrenic resin composition of the present invention were all excellent in transparency and impact resistance, and the hue and transparency due to heat history after molding were significantly suppressed from being reduced. In Comparative Examples relating to the rubber-modified styrenic resin composition which does not meet the conditions of the present invention, the reduction in hue and transparency due to heat history after molding was conspicuous.
[0047]
【The invention's effect】
According to the present invention, it is possible to provide a rubber-modified styrene-based resin composition which is excellent in transparency and impact resistance, and in which a decrease in hue and transparency due to heat history after molding is significantly suppressed.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040991A JP4606699B2 (en) | 2003-02-19 | 2003-02-19 | Rubber-modified styrenic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040991A JP4606699B2 (en) | 2003-02-19 | 2003-02-19 | Rubber-modified styrenic resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004250524A true JP2004250524A (en) | 2004-09-09 |
JP4606699B2 JP4606699B2 (en) | 2011-01-05 |
Family
ID=33024692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003040991A Expired - Fee Related JP4606699B2 (en) | 2003-02-19 | 2003-02-19 | Rubber-modified styrenic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4606699B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039368A1 (en) * | 2019-08-30 | 2021-03-04 | 東レ株式会社 | Transparent thermoplastic resin composition, production method therefor, molded article obtained by molding transparent thermoplastic resin composition, and production method for molded article |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH107839A (en) * | 1996-06-24 | 1998-01-13 | Denki Kagaku Kogyo Kk | Thermoplastic resin composition, molding and its production |
JPH11181216A (en) * | 1997-10-15 | 1999-07-06 | Techno Polymer Kk | Frame-retardant thermoplastic resin composition |
JPH11189697A (en) * | 1997-10-22 | 1999-07-13 | Techno Polymer Kk | Flame-retardant thermoplastic resin composition |
JPH11228765A (en) * | 1998-02-17 | 1999-08-24 | Techno Polymer Kk | Thermoplastic resin composition |
JP2001081271A (en) * | 1999-09-09 | 2001-03-27 | Toray Ind Inc | Transparent thermoplastic resin composition |
JP2001192565A (en) * | 2000-01-11 | 2001-07-17 | Idemitsu Petrochem Co Ltd | Flame-retardant thermoplastic resin composition |
JP2001323268A (en) * | 2000-05-16 | 2001-11-22 | Sanko Kk | Organophosphorus-based flame retardant, method for producing the same and resin composition comprising the same |
JP2001342358A (en) * | 2000-06-02 | 2001-12-14 | Polyplastics Co | Flame-retardant resin composition |
JP2002105335A (en) * | 2000-07-26 | 2002-04-10 | Polyplastics Co | Flame-retardant resin composition |
JP2002226655A (en) * | 2001-01-31 | 2002-08-14 | Denki Kagaku Kogyo Kk | Rubber modified styrenic resin composition |
-
2003
- 2003-02-19 JP JP2003040991A patent/JP4606699B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH107839A (en) * | 1996-06-24 | 1998-01-13 | Denki Kagaku Kogyo Kk | Thermoplastic resin composition, molding and its production |
JPH11181216A (en) * | 1997-10-15 | 1999-07-06 | Techno Polymer Kk | Frame-retardant thermoplastic resin composition |
JPH11189697A (en) * | 1997-10-22 | 1999-07-13 | Techno Polymer Kk | Flame-retardant thermoplastic resin composition |
JPH11228765A (en) * | 1998-02-17 | 1999-08-24 | Techno Polymer Kk | Thermoplastic resin composition |
JP2001081271A (en) * | 1999-09-09 | 2001-03-27 | Toray Ind Inc | Transparent thermoplastic resin composition |
JP2001192565A (en) * | 2000-01-11 | 2001-07-17 | Idemitsu Petrochem Co Ltd | Flame-retardant thermoplastic resin composition |
JP2001323268A (en) * | 2000-05-16 | 2001-11-22 | Sanko Kk | Organophosphorus-based flame retardant, method for producing the same and resin composition comprising the same |
JP2001342358A (en) * | 2000-06-02 | 2001-12-14 | Polyplastics Co | Flame-retardant resin composition |
JP2002105335A (en) * | 2000-07-26 | 2002-04-10 | Polyplastics Co | Flame-retardant resin composition |
JP2002226655A (en) * | 2001-01-31 | 2002-08-14 | Denki Kagaku Kogyo Kk | Rubber modified styrenic resin composition |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039368A1 (en) * | 2019-08-30 | 2021-03-04 | 東レ株式会社 | Transparent thermoplastic resin composition, production method therefor, molded article obtained by molding transparent thermoplastic resin composition, and production method for molded article |
JPWO2021039368A1 (en) * | 2019-08-30 | 2021-12-23 | 東レ株式会社 | A transparent thermoplastic resin composition, a method for producing the same, a molded product obtained by molding the transparent thermoplastic resin composition, and a method for producing the molded product. |
JP7067631B2 (en) | 2019-08-30 | 2022-05-16 | 東レ株式会社 | A transparent thermoplastic resin composition, a method for producing the same, a molded product obtained by molding the transparent thermoplastic resin composition, and a method for producing the molded product. |
Also Published As
Publication number | Publication date |
---|---|
JP4606699B2 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009535476A (en) | Resin composition with excellent scratch resistance | |
US9624332B2 (en) | Graft monomer composition for thermoplastic transparent resin, composition for thermoplastic transparent resin using the same, and thermoplastic transparent resin having good transparency and color | |
GB2156365A (en) | Thermoplastic resin composition | |
JP4603653B2 (en) | Thermoplastic resin composition | |
JP2021520438A (en) | Method for producing graft copolymer powder | |
JP4166331B2 (en) | Thermoplastic resin composition | |
JPH08134312A (en) | Resin composition excellent in impact resistance | |
JP4530123B2 (en) | Thermoplastic resin composition | |
TWI481655B (en) | Rubber modified methacrylate-based resin composition | |
JP4606699B2 (en) | Rubber-modified styrenic resin composition | |
CN104119657B (en) | Thermoplastic resin composition and include its mechanograph | |
JP2002226655A (en) | Rubber modified styrenic resin composition | |
WO2003102076A1 (en) | Thermoplastic resin composition | |
JP7267679B2 (en) | Thermoplastic resin composition and molded article thereof | |
JP2003192742A (en) | Process for producing impact-resistant thermoplastic resin excellent in weatherability, and thermoplastic resin composition | |
JP2003165888A (en) | Thermoplastic resin composition and molded article thereof | |
JPH0649145A (en) | Production of graft copolymer and composition thereof | |
JPH10158508A (en) | Thermoplastic resin composition | |
JP2000154257A (en) | Molded part for electronic component packaging | |
KR20080017778A (en) | Thermoplastic resin composition with good transparence and good heat resistance | |
JP3862452B2 (en) | Thermoplastic resin composition | |
JPH11228765A (en) | Thermoplastic resin composition | |
JPH0660275B2 (en) | Impact-resistant thermoplastic resin composition having good translucency and plating properties | |
KR19980027068A (en) | Styrenic resin composition | |
US20230167218A1 (en) | Method for preparing graft copolymer, graft copolymer, and resin composition comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4606699 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |