【0001】
【発明の属する技術分野】
本発明は生分解性樹脂並びに生分解性樹脂水系分散体に関する。
【0002】
【従来の技術】
布製品や紙製品等の植物性繊維を原料とした製品は、微生物等によって分解され易く、埋没による廃棄処分が容易であるが、植物性繊維等の天然素材は耐水性、耐溶剤性、気密性、強度等の物性が充分でない場合が多い。このため、天然素材に各種の合成樹脂液等を塗布したり、噴霧したり、含浸させる等によって、天然素材に合成樹脂皮膜を形成した複合素材とすることにより、これらの問題の改善を図ってきた。
【0003】
しかしながら、従来より植物性繊維等の天然素材と複合化するために用いられていた合成樹脂は、微生物等による分解が極めて遅いため、埋没による廃棄処分が困難であり、また燃焼カロリーが高いため焼却処分した場合、焼却炉を傷める等の問題があり、更に一部の合成樹脂は焼却時に有害ガスを発生して環境汚染を生じる虞れがあった。従って、このような合成樹脂と天然素材とを複合化した素材も当然、合成樹脂の有する上記問題を生じる虞れがあり、このため近年は、従来の合成樹脂にかわる生分解性樹脂の応用開発が進められている。
【0004】
例えば、特許文献1、特許文献2、特許文献3には、パルプ、繊維等と生分解性樹脂からなる生分解性複合材料が提案されている。またポリヒドロキシ酪酸・ポリヒドロキシ吉草酸共重合体の水系分散体をコーティングした生分解性複合材料(特許文献4)や、ポリ乳酸及び/又は他のヒドロキシカルボン酸との共重合物の粒子及び充填剤を、水溶性高分子を用いて水分散させてなる水系塗料組成物(特許文献5)も提案されている。
【0005】
【特許文献1】
特開平4−334448号公報
【特許文献2】
特開平5−311600号公報
【特許文献3】
特開平8−244836号公報
【特許文献4】
特開平2−222421号公報
【特許文献5】
特開平9−78494号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1〜3に記載されている生分解性複合材料を得るには生分解性樹脂の有機溶媒溶液を用いる必要があり、しかも使用できる有機溶媒は、塩素系溶媒や芳香族系溶媒に限定されるため、安全面、環境面で好ましいものではなかった。また分子構造中にエステル結合を含む生分解性樹脂は加水分解性が高く、特にポリ乳酸系生分解性樹脂はガラス転移温度以上の温度では急速に加水分解することが知られている。このため特許文献4、5に記載されているようなエステル結合を含む生分解性樹脂の水系分散体は、樹脂を水に分散させる際の熱によって加水分解したり、水系分散体とした後も経時安定性が悪く、生分解性樹脂が徐々に加水分解されてしまう等の問題があった。
【0007】
本発明は上記の点に鑑みなされたもので、加水分解を防止して経時安定性に優れ、且つ造膜後の皮膜樹脂物性に優れた生分解性樹脂水系分散体を提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち本発明は、(1)分子構造中にエステル結合を含む生分解性樹脂のカルボキシル基末端の少なくとも一部がオキサゾリン化合物によって封止されていることを特徴とする生分解性樹脂、(2)分子構造中にエステル結合を含む生分解性樹脂のカルボキシル基末端の少なくとも一部がオキサゾリン化合物によって封止された樹脂が水系溶媒に分散していることを特徴とする生分解性樹脂の水系分散体、を要旨とする。
【0009】
【発明の実施の形態】
本発明において、分子構造中にエステル結合を含む生分解性樹脂としては、脂肪族ポリエステル系生分解性樹脂、脂肪族芳香族ポリエステル系生分解性樹脂、アセチルセルロース系生分解性樹脂、化学変性澱粉系生分解性樹脂、ポリエステルポリカーボネート系生分解性樹脂等が用いられ、これらは1種又は2種以上を混合して用いることができる。
【0010】
脂肪族ポリエステル系生分解性樹脂としては、例えばポリ乳酸、乳酸と他のヒドロキシカルボン酸との共重合体、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリブチレンアジペート等の二塩基酸ポリエステル、ポリカプロラクトン、カプロラクトンと他のヒドロキシカルボン酸との共重合体、ポリヒドロキシブチレート、ポリヒドロキシブチレートと他のヒドロキシカルボン酸との共重合体、ポリヒドロキシ酪酸、ポリヒドロキシ酪酸と他のヒドロキシカルボン酸との共重合体等が挙げられ、これらは単独又は2種以上を混合して用いることができる。
【0011】
脂肪族芳香族ポリエステル系生分解性樹脂としては、例えばコハク酸やアジピン酸、セバシン酸などの脂肪族二塩基酸及びテレフタル酸等の芳香族二塩基酸とエチレングリコールやブチレングリコール等の脂肪族グリコールとの縮重合体が挙げられ、この中でもポリエチレンテレフタレートサクシネートが特に好ましい。
【0012】
またアセチルセルロース系生分解性樹脂としては、アセチルセルロース、アセチルブチルセルロース、アセチルプロピオニルセルロース等が挙げられるが、光沢、透明性、引っ張り強さ、硬度等の物理的特性と生分解性が良好である点でアセチルセルロースが特に好ましい。
【0013】
化学変性澱粉系生分解性樹脂としては、例えば高置換度エステル化澱粉、エステル化ビニルエステルグラフト重合澱粉、エステル化ポリエステルグラフト重合澱粉等の澱粉エステル、エーテル化ビニルエステルグラフト重合澱粉、エーテル化ポリエステルグラフト重合澱粉等の澱粉エーテル、ポリエステルグラフト重合澱粉等が挙げられるが、これらの中でもエステル化ビニルエステルグラフト澱粉、エステル化ポリエステルグラフト重合澱粉が好ましい。これらエステル化ビニルエステルグラフト澱粉、エステル化ポリエステルグラフト重合澱粉に用いられるエステル化試薬としては、アシル基の炭素数2〜18のビニルエステル、又は酸無水物、酸塩化物が好ましく、グラフト試薬としては、アシル基の炭素数2〜18のビニルエステル、環員数2〜12のラクトンが好ましい。これら化学変性澱粉系生分解性樹脂は2種以上を併用することができる。
【0014】
ポリエステルポリカーボネート系生分解性樹脂としては1,3‐ブタンジオール等のグリコールと、コハク酸等の二塩基酸と、トリメチレンカーボネート、テトラメチレンカーボネート等の炭酸エステルとの共重合体や、環状のエチレンカーボネート、トリメチレンカーボネート、2,2−ジメチルトリメチレンカーボネートとε−カプロラクトン、ピバロラクトンとの開環共重合体等が挙げられる。ポリエステルポリカーボネート系生分解性樹脂は、2種以上を併用することができる。
【0015】
本発明において上記生分解性樹脂は同一種類の生分解性樹脂から選択した1種又は2種以上を用いるのみならず、異なる種類の生分解性樹脂から選択した2種以上の樹脂を適宜混合して用いることもできる。
【0016】
本発明において上記生分解性樹脂のなかでも、樹脂の耐熱性、耐水性、耐溶剤性、光沢等の点でポリ乳酸樹脂及び/又は乳酸と他のヒドロキシカルボン酸との共重合体が好ましい。乳酸と共重合する他のヒドロキシカルボン酸としては、グリコール酸、2−ヒドロキシ酪酸、2−ヒドロキシバレリン酸、2−ヒドロキシカプロン酸、2−ヒドロキシヘプタン酸、2−ヒドロキシオクタン酸、2−ヒドロキシ−2−メチルプロピオン酸、2−ヒドロキシ−2−メチル酪酸、2−ヒドロキシ−2−エチル酪酸、2−ヒドロキシ−2−メチルバレリン酸、2−ヒドロキシ−2−エチルバレリン酸、2−ヒドロキシ−2−プロピルバレリン酸、2−ヒドロキシ−2−ブチルバレリン酸、2−ヒドロキシ−2−メチルカプロン酸、2−ヒドロキシ−2−エチルカプロン酸、2−ヒドロキシ−2−プロピルカプロン酸、2−ヒドロキシ−2−ブチルカプロン酸、2−ヒドロキシ−2−ペンチルカプロン酸、2−ヒドロキシ−2−メチルヘプタン酸、2−ヒドロキシ−2−エチルヘプタン酸、2−ヒドロキシ−2−プロピルヘプタン酸、2−ヒドロキシ−2−ブチルヘプタン酸、2−ヒドロキシ−2−メチルオクタン酸、3−ヒドロキシプロピオン酸、4−ヒドロキシ酪酸、5−ヒドロキシバレリン酸、6−ヒドロキシカプロン酸、7−ヒドロキシヘプタン酸等が挙げられる。上記乳酸及びヒドロキシカルボン酸は、D体、L体、D/L体などの形をとる場合があるが、本発明においてその形態に何ら制限は無い。
【0017】
本発明の生分解性樹脂は、上記分子構造中にエステル結合を含む生分解性樹脂のカルボキシル基末端の少なくとも一部がオキサゾリン化合物によって封止された構造を有する。カルボキシル基末端の少なくとも一部がオキサゾリン化合物によって封止された構造の生分解性樹脂は、樹脂重合時の適宜の工程でオキサゾリン化合物を添加する方法、上記分子構造中にエステル結合を含む生分解性樹脂にオキサゾリン化合物を添加して溶融混練する方法等により得ることができる。分子構造中にエステル結合を含む生分解性樹脂に対するオキサゾリン化合物の割合は、0.1〜30重量%であることが好ましい。0.1重量%未満では加水分解抑制効果や樹脂物性の改善効果を十分に得られない虞れがあり、30重量%を超えると樹脂の皮膜形成性が低下すると共に膜成形後の皮膜が脆くなり耐水性が低下する等の虞れがある。
【0018】
上記オキサゾリン化合物としては、1個以上のオキサゾリン基を有するオキサゾリン誘導体を指し、1分子中に2個以上のオキサゾリン基を有する化合物であっても、1分子中に1個以上のオキサゾリン基を有するモノマー由来の繰り返し単位を有する共重合体であってもよい。例えば、2−ビニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−5,6−ジヒドロ−4H−1,3−オキサジン、4,4,6−トリメチル−2−ビニル−5,6−ジヒドロ−4H−1,3−オキサジン、2−イソプロペニル−2−オキサゾリン、4,4−ジメチル−2−イソプロペニル−2−オキサゾリン、4−アクリロイル−オキシメチル−2,4−ジメチル−2−オキサゾリン、4−メタクリロイル−オキシメチル−2,4−ジメチル−2−オキサゾリン、4−メタクリロイル−オキシメチル−2−フェニル−4−メチル−2−オキサゾリン、2−(4−ビニルフェニル)−4,4−ジメチル−2−オキサゾリン、4−エチル−4−ヒドロキシメチル−2−イソプロペニル−2−オキサゾリン、4−エチル−4−カルボエトキシメチル−2−イソプロペニル−2−オキサゾリン、ビニルオキサゾリン類をモノマー由来とした共重合体、ビニルオキサゾリン類とスチレン、メタクリル酸メチル、アクリロニトリル等の共重合可能な任意のモノマーとの共重合体等が挙げられる。特に2−オキサゾリン誘導体が反応性に富み工業的にも実用化されており好適である。本発明に用いられるオキサゾリン誘導体としては市販品である日本触媒化学工業株式会社製のエポクロスK−1000、K−1020E、K−1030E、K−2000、K−2020E、K−2030E、WS−500、WS−700、RPS−1005等が好ましい。
【0019】
本発明の生分解性樹脂の水系分散体は、カルボキシル基末端の少なくとも一部がオキサゾリン化合物で封止された上記生分解性樹脂を、水系媒体に分散させることにより得ることができる。また、カルボキシル基末端がオキサゾリン化合物で封止されていない生分解性樹脂を、オキサゾリン化合物の存在下で水系媒体に分散させることにより、カルボキシル基末端の少なくとも一部がオキサゾリン化合物で封止された生分解性樹脂の水系分散体を得ることもできる。分子構造中にエステル結合を含む生分解性樹脂に対するオキサゾリン化合物の割合は、0.1〜30重量%であることが好ましい。0.1重量%未満では加水分解抑制効果を十分に得られない虞れがあり、30重量%を超えると生分解性樹脂の水系分散体の製造が困難になる、あるいは水系分散体が経時でゲル化する等の虞れがあり、さらに造膜後の皮膜が脆くなり耐水性が低下する等の虞れがある。
【0020】
生分解性樹脂を水系媒体に分散させるには、例えば攪拌装置を有する密閉槽内に、生分解性樹脂と分散剤水溶液を同時に仕込み、加熱攪拌しながら加圧して生分解性樹脂を分散させる加圧分散法、常圧または加圧下に保持されている熱分散剤水溶液中に生分解性樹脂を添加攪拌して分散させる直接分散法、生分解性樹脂の有機溶媒溶液を分散剤水溶液中に添加攪拌して分散させた後、有機溶媒を留去する方法、生分解性樹脂を加熱溶融させ、これに分散剤水溶液を添加攪拌して生分解性樹脂を水に分散させる転相法、押出し成型機中で加熱された樹脂中に分散剤水溶液を圧入して分散体を得る押出し分散法等を採用することができる。これら以外の方法でも、生分解性樹脂の水系分散体を得ることができる方法であれば適宜採用することができるが、生分解性樹脂の幅広い種類に適応が可能な点で、上記した生分解性樹脂の有機溶媒溶液を分散剤水溶液中に添加攪拌して分散させた後、有機溶媒を留去する方法が好ましい。また水系分散体を調製するに際し、必要により高圧ホモゲナイザー等の分散装置を併用しても良い。
【0021】
生分解性樹脂を水系媒体に分散させる際に用いる分散剤としては、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、高分子界面活性剤、ポリビニルアルコール等の水溶性高分子を用いることができるが、高分子界面活性剤である(メタ)アクリルアミドと(メタ)アクリル酸ジメチルアミノエチルやその中和物等のモノマー、或いはこれらモノマーの4級塩の少なくとも一種とを主成分とする平均分子量30万以上のカチオン性高分子化合物、または(メタ)アクリルアミドと(メタ)アクリル酸やその中和物とを主成分とする平均分子量30万以上のアニオン性高分子化合物の何れかを用いると分散体の粒子径が十分に小さくなり好ましく、上記平均分子量30万以上のカチオン性高分子や平均分子量30万以上のアニオン系高分子化合物と、鹸化度70〜90%、平均分子量5〜30万のポリビニルアルコールとを混合して用いると、分散体の経時分散安定性が更に向上し好ましい。
【0022】
本発明において生分解性樹脂の水系分散体中には、必要に応じて可塑剤を添加することができ、これらは予め生分解性樹脂中に添加されていても良い。可塑剤としては、クエン酸トリエチル、クエン酸トリブチル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル等のクエン酸誘導体、ジエチレングリコールジアセテート、トリエチレングリコールジアセテート、トリエチレングリコールジプロピオネート等のエーテルエステル誘導体、グリセリントリアセテート、グリセリントリプロピオネート、グリセリントリブチレート等のグリセリン誘導体、エチルフタリルエチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルブチルグリコレート等のフタル酸誘導体、アジピン酸と1,4−ブタンジオールとの縮合体等のアジピン酸誘導体、セバシン酸と1,4−ブタンジオールとの縮合体等のセバシン酸誘導体、コハク酸と1,4−ブタンジオールとの縮合体等のコハク酸誘導体、ポリカプロラクトン、ポリプロピオラクトン等のポリヒドロキシカルボン酸等が挙げられる。これらのうちアジピン酸誘導体、フタル酸誘導体を用いたものが、造膜性向上効果が高い点で特に好ましい。可塑剤の使用量は生分解性樹脂100重量部あたり5から40重量部が好ましい。5重量部未満となると可塑化効果が発揮できなくなる虞れがあり、40重量部を超えると可塑剤のブリードアウトが発生する虞れがある。
【0023】
本発明において生分解性樹脂水系分散体には、必要に応じて上記成分以外に更に、増粘剤、表面平滑剤、離型剤、撥水剤(疎水性向上剤)、防錆剤、流動性調製剤等を含有せしめることができ、これらは、予め生分解性樹脂中に添加されていても良い。増粘剤としては、ポリエチレングリコール等のポリアルコキシド系高分子、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、カチオン化澱粉、エーテル化澱粉等の澱粉誘導体、アラビアガム、グアーガム、キサンタンガム等の植物ガム、カゼイン、キトサン、キチン等の動物性高分子等が挙げられる。一方、表面平滑性、離型性、撥水性等を改善するために、天然ワックス、合成ワックス等のワックス類を含有させることができる。天然ワックスとしては、キャンデリラワックス、カルナバワックス、ライスワックス、木ろう、ホホバ固体ろう等の植物系天然ワックス、みつろう、ラノリン、鯨ろう等の動物系天然ワックス、モンタンワックス、オゾケライト、セレシン等の鉱物系天然ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタムワックス等の石油系天然ワックス等が挙げられる。また合成ワックスとしては、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素類、モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等の変性ワックス、硬化ひまし油、硬化ひまし油誘導体等の水素化ワックス、12−ヒドロキシステアリン酸、ステアリン酸アミド、無水フタル酸イミド等が挙げられる。
【0024】
上記可塑剤、界面活性剤、増粘剤、表面平滑剤、離型剤、撥水剤(疎水性向上剤)、防錆剤、流動性調製剤等の成分を配合する場合、これらの成分は生分解性樹脂を分散させる前に予め水に添加しておいても、生分解性樹脂と一緒に水に添加しても、更には生分解性樹脂を水に分散させた後に添加しても良く、生分解性樹脂中に予め添加されていても良い。
【0025】
本発明の生分解性樹脂の水系分散体は、紙、パルプ、動植物繊維の不織布、織布、編布、皮革製品等の動植物素材からなる製品に複合化することで、これらの製品の撥水・撥油性、耐水性、気密性、表面光沢等を向上させることができる。複合化方法としては、本発明の水系分散体を、動植物素材からなるシート状物、板状物、不織布、織布、編布、成形品等の製品の表面に塗布したり噴霧したり、これらの製品に含浸させた後、加熱ロール、プレス、金型等によって加熱、加圧処理する方法等が挙げられる。また、これらの製品の製造原料として用いる動植物素材の粉末、粒状体、スラリー、ペースト等に添加して複合化したり、他の天然素材、例えば粘土、砂等の無機系鉱物質等の粉末、粒状体相互を結合するためのバインダーとして用いて粉末、粒状体等と複合化しても良い。例えば、シート基材が紙の場合、生分解性樹脂水系分散体をパルプスラリー中に添加して抄紙することにより、パルプと生分解性樹脂とを複合化させることができる。
【0026】
本発明の生分解性樹脂の水系分散体を、動植物素材からなる製品の耐水性、耐溶剤性等を高めるために用いる場合、離型性・疎水性向上剤として天然ワックス及び/又は合成ワックスを含有していることが好ましい。天然ワックス及び/又は合成ワックスを含有する場合、製品の撥水・撥油性、耐水性、耐油性、気密性等のより向上を図ることができるとともに、加工時の熱処理工程における加熱ロール、プレス、金型等からの離型性が向上するため好ましい。
【0027】
本発明の生分解性樹脂の水系分散体によって、紙、不織布、織布、編布、合成樹脂のシート、フィルム等のシート基を処理するには、シート基材を水系分散体中に浸漬してシート基材に含浸させたり、水系分散体をシート基材に塗布したり、噴霧する等の方法が挙げられる。またシート基材の製造工程において、シート基材製造原料中に添加することにより、シート基材と複合化することもできる。例えば、シート基材が紙の場合、生分解性樹脂水系分散体をパルプスラリー中に添加して抄紙する等の方法が挙げられる。
【0028】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0029】
実施例1
オキサゾリン化合物としてエポクロスRPS−1005(株式会社日本触媒製:スチレン・2−イソプロペニル−2−オキサゾリン共重合体:オキサゾリン当量 3300g/eq.)を、オキザゾリン純分が0.5重量%となるように溶融混練したポリ乳酸樹脂(残存ラクチド量300ppm)40重量部、ポリビニルアルコール(鹸化度:81.0%、平均分子量22万) 0.6重量部、アクリルアミド/メタクリル酸(重量比で83:17)共重合体(平均分子量2000万)0.4重量部、脱イオン水40重量部、酢酸エチル60重量部をホモミキサーを装着したオートクレーブ中に仕込み、100℃に加熱して10,000r.p.m.で3分間撹拌した後、40℃まで急冷した。その後、減圧下に酢酸エチルを除去して生分解性樹脂水系分散体を得た。得られた生分解性樹脂の水系分散体を25℃で保持した場合、40℃で保持した場合の酸価の変化を、水系分散体製造直後、1週間後、1ヶ月後、6ヶ月後について測定した結果を表1に示す。尚、生分解性樹脂が加水分解すると、分解生成物により酸価が高くなるため、酸価の上昇が少ないものほど加水分解の割合が少ないことを示す。
【0030】
【表1】
【0031】
実施例2
オキサゾリン化合物としてエポクロスWS−700(株式会社日本触媒製:水溶性ポリマー:オキサゾリン当量 220g/eq.)を、樹脂重量(固形分)に対するオキサゾリン純分が0.5重量%となるように添加した脱イオン水にポリ乳酸樹脂(残存ラクチド量300ppm)を実施例1と同様にして分散した。得られた水系分散体を25℃で保持した場合と、40℃で保持した場合の酸価の変化を実施例1と同様に測定した。結果を表1にあわせて示す。
【0032】
実施例3
実施例2と同様のオキサゾリン化合物を、オキサゾリン純分としての割合が樹脂(固形分)重量の1.0重量%となるように添加した他は、実施例2と同様にして生分解性樹脂の水系分散体を調整した。得られた水系分散体を25℃で保持した場合と、40℃で保持した場合の酸価の変化を実施例1と同様に測定した。結果を表1にあわせて示す。
【0033】
実施例4
実施例1と同様の樹脂を用いた他は、実施例2と同様にして生分解性樹脂の水系分散体を得た(オキサゾリン化合物のオキサゾリン純分としての総添加量は樹脂重量(固形分)の1.0重量%)。得られた水系分散体を25℃で保持した場合と、40℃で保持した場合の酸価の変化を実施例1と同様に測定した。結果を表1にあわせて示す。
【0034】
比較例1
市販品のポリ乳酸樹脂(残存ラクチド量300ppm)を使用した他は、実施例1と同様にして水系分散体を得た。得られた水系分散体を25℃で保持した場合と、40℃で保持した場合の酸価の変化を実施例1と同様に測定した。結果を表1にあわせて示す。
【0035】
実施例5
実施例1で得た生分解性樹脂水系分散体を、坪量50g/m2の再生紙に20g/m2塗布し、150℃で1分間熱プレスした後、抄紙方向の湿潤紙強度を測定した。次いで、この再生紙を40℃の蒸留水中に浸漬し、浸漬1週間後、1ヶ月後、3ヶ月後の湿潤紙強度を測定した。表2に結果を示す。尚、湿潤紙強度の測定は、JIS P8113に準拠して行った。
【0036】
比較例2
比較例1と同様にして調製した水系分散体を、実施例8と同様にして塗布した再生紙の湿潤紙強度を同様にして測定した。結果を表2にあわせて示す。
【0037】
【表2】
【0038】
【発明の効果】
以上説明したように本発明の生分解性樹脂はオキサゾリン化合物により、分子構造中にエステル結合を含む生分解性樹脂中のカルボキシル末端の少なくとも一部が封止されているため、水系媒体に分散させる際に加水分解されにくい。本発明の生分解性樹脂の水系分散体は、オキサゾリン化合物により、生分解性樹脂中のカルボキシル末端の少なくとも一部が封止された生分解性樹脂が水系媒体に分散されていることにより、保存中に生分解性樹脂の加水分解が起こりにくく、生分解性樹脂水系分散体の経時安定性に優れる等の効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biodegradable resin and an aqueous dispersion of a biodegradable resin.
[0002]
[Prior art]
Products made from vegetable fibers such as cloth and paper products are easily decomposed by microorganisms and are easily disposed of by burial, but natural materials such as vegetable fibers are water-resistant, solvent-resistant, and air-tight. In many cases, physical properties such as properties and strength are not sufficient. For this reason, these problems have been improved by forming a synthetic resin film on a natural material by applying, spraying, or impregnating various synthetic resin liquids or the like on the natural material. Was.
[0003]
However, synthetic resins that have traditionally been used to composite with natural materials such as vegetable fibers are extremely slow to decompose by microorganisms and the like, making them difficult to dispose of by burial. When disposed, there is a problem that the incinerator may be damaged, and furthermore, some synthetic resins may generate harmful gas at the time of incineration and may cause environmental pollution. Therefore, a material obtained by combining such a synthetic resin and a natural material may naturally cause the above-mentioned problem of the synthetic resin. For this reason, in recent years, application development of a biodegradable resin instead of the conventional synthetic resin has been developed. Is being promoted.
[0004]
For example, Patent Literature 1, Patent Literature 2, and Patent Literature 3 propose a biodegradable composite material including pulp, fiber, and the like and a biodegradable resin. Also, a biodegradable composite material coated with an aqueous dispersion of a polyhydroxybutyric acid / polyhydroxyvaleric acid copolymer (Patent Document 4), and particles and filling of a copolymer with polylactic acid and / or another hydroxycarboxylic acid An aqueous coating composition in which an agent is dispersed in water using a water-soluble polymer (Patent Document 5) has also been proposed.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 4-334448 [Patent Document 2]
JP-A-5-311600 [Patent Document 3]
JP-A-8-244836 [Patent Document 4]
JP-A-2-222421 [Patent Document 5]
JP-A-9-78494
[Problems to be solved by the invention]
However, in order to obtain the biodegradable composite materials described in Patent Documents 1 to 3, it is necessary to use an organic solvent solution of a biodegradable resin, and furthermore, an organic solvent that can be used is a chlorinated solvent or an aromatic solvent. However, it was not preferable in terms of safety and environment. It is known that a biodegradable resin having an ester bond in its molecular structure has a high hydrolyzability, and particularly a polylactic acid-based biodegradable resin is rapidly hydrolyzed at a temperature higher than a glass transition temperature. Therefore, an aqueous dispersion of a biodegradable resin containing an ester bond as described in Patent Documents 4 and 5 can be hydrolyzed by heat when dispersing the resin in water or even after being made into an aqueous dispersion. There are problems such as poor aging stability and the gradual hydrolysis of the biodegradable resin.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to provide a biodegradable resin aqueous dispersion that prevents hydrolysis and has excellent stability over time, and has excellent film resin properties after film formation. I do.
[0008]
[Means for Solving the Problems]
That is, the present invention provides (1) a biodegradable resin characterized in that at least a part of a carboxyl group terminal of the biodegradable resin containing an ester bond in a molecular structure is sealed with an oxazoline compound; An aqueous dispersion of a biodegradable resin, wherein the resin in which at least a part of the carboxyl group end of the biodegradable resin containing an ester bond in the molecular structure is sealed with an oxazoline compound is dispersed in an aqueous solvent. , And the gist.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, examples of the biodegradable resin containing an ester bond in the molecular structure include an aliphatic polyester-based biodegradable resin, an aliphatic aromatic polyester-based biodegradable resin, an acetylcellulose-based biodegradable resin, and a chemically modified starch. Biodegradable resins, polyester polycarbonate biodegradable resins and the like are used, and these can be used alone or in combination of two or more.
[0010]
As the aliphatic polyester-based biodegradable resin, for example, polylactic acid, a copolymer of lactic acid and another hydroxycarboxylic acid, polybutylene succinate, polyethylene succinate, dibasic polyesters such as polybutylene adipate, polycaprolactone, Copolymer of caprolactone and other hydroxycarboxylic acids, polyhydroxybutyrate, copolymer of polyhydroxybutyrate and other hydroxycarboxylic acids, polyhydroxybutyric acid, copolymer of polyhydroxybutyric acid and other hydroxycarboxylic acids Polymers and the like can be mentioned, and these can be used alone or in combination of two or more.
[0011]
Examples of the aliphatic aromatic polyester-based biodegradable resin include aliphatic dibasic acids such as succinic acid, adipic acid and sebacic acid and aromatic dibasic acids such as terephthalic acid and aliphatic glycols such as ethylene glycol and butylene glycol. And polyethylene terephthalate succinate is particularly preferred.
[0012]
Examples of the acetylcellulose-based biodegradable resin include acetylcellulose, acetylbutylcellulose, acetylpropionylcellulose, etc., which have good physical properties and biodegradability such as gloss, transparency, tensile strength and hardness. Acetyl cellulose is particularly preferred in that respect.
[0013]
Examples of the chemically modified starch-based biodegradable resin include starch esters such as highly substituted esterified starch, esterified vinyl ester graft polymerized starch, esterified polyester graft polymerized starch, etherified vinyl ester graft polymerized starch, and etherified polyester graft. Examples thereof include starch ethers such as polymerized starch, and polyester-grafted starch, and among them, esterified vinyl ester-grafted starch and esterified polyester-grafted starch are preferable. As the esterification reagent used for these esterified vinyl ester graft starch and esterified polyester graft polymerized starch, a vinyl ester having 2 to 18 carbon atoms of an acyl group, or an acid anhydride or an acid chloride is preferable. And vinyl esters having 2 to 18 carbon atoms of an acyl group, and lactones having 2 to 12 ring members are preferred. Two or more of these chemically modified starch-based biodegradable resins can be used in combination.
[0014]
Polyester polycarbonate biodegradable resins include copolymers of glycols such as 1,3-butanediol, dibasic acids such as succinic acid, and carbonates such as trimethylene carbonate and tetramethylene carbonate, and cyclic ethylene. And ring-opening copolymers of carbonate, trimethylene carbonate, 2,2-dimethyltrimethylene carbonate, ε-caprolactone, and pivalolactone. Two or more polyester polycarbonate-based biodegradable resins can be used in combination.
[0015]
In the present invention, as the biodegradable resin, not only one kind or two or more kinds selected from the same kind of biodegradable resins are used, but also two or more kinds of resins selected from different kinds of biodegradable resins are appropriately mixed. Can also be used.
[0016]
In the present invention, among the above biodegradable resins, polylactic acid resins and / or copolymers of lactic acid and other hydroxycarboxylic acids are preferable in terms of heat resistance, water resistance, solvent resistance, gloss and the like of the resin. Other hydroxycarboxylic acids copolymerized with lactic acid include glycolic acid, 2-hydroxybutyric acid, 2-hydroxyvaleric acid, 2-hydroxycaproic acid, 2-hydroxyheptanoic acid, 2-hydroxyoctanoic acid, and 2-hydroxy-2. -Methylpropionic acid, 2-hydroxy-2-methylbutyric acid, 2-hydroxy-2-ethylbutyric acid, 2-hydroxy-2-methylvaleric acid, 2-hydroxy-2-ethylvaleric acid, 2-hydroxy-2-propyl Valeric acid, 2-hydroxy-2-butyl valeric acid, 2-hydroxy-2-methylcaproic acid, 2-hydroxy-2-ethylcaproic acid, 2-hydroxy-2-propylcaproic acid, 2-hydroxy-2-butyl Caproic acid, 2-hydroxy-2-pentylcaproic acid, 2-hydroxy-2-methyl Butanoic acid, 2-hydroxy-2-ethylheptanoic acid, 2-hydroxy-2-propylheptanoic acid, 2-hydroxy-2-butylheptanoic acid, 2-hydroxy-2-methyloctanoic acid, 3-hydroxypropionic acid, 4 -Hydroxybutyric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid, 7-hydroxyheptanoic acid and the like. The above-mentioned lactic acid and hydroxycarboxylic acid may be in the form of D-form, L-form, D / L-form, etc., but the form is not limited in the present invention.
[0017]
The biodegradable resin of the present invention has a structure in which at least a part of the carboxyl group terminal of the biodegradable resin containing an ester bond in the molecular structure is sealed with an oxazoline compound. A biodegradable resin having a structure in which at least a part of the carboxyl group terminal is sealed with an oxazoline compound is a method of adding an oxazoline compound in an appropriate step during resin polymerization, a biodegradable resin containing an ester bond in the molecular structure. It can be obtained by a method in which an oxazoline compound is added to a resin and melt-kneaded. The ratio of the oxazoline compound to the biodegradable resin containing an ester bond in the molecular structure is preferably 0.1 to 30% by weight. If the amount is less than 0.1% by weight, the effect of inhibiting hydrolysis and the effect of improving the properties of the resin may not be sufficiently obtained. If the amount exceeds 30% by weight, the film formability of the resin is reduced and the film after film formation is brittle. There is a possibility that the water resistance may decrease.
[0018]
The oxazoline compound refers to an oxazoline derivative having one or more oxazoline groups, and a compound having one or more oxazoline groups in one molecule even if the compound has two or more oxazoline groups in one molecule. It may be a copolymer having a repeating unit derived therefrom. For example, 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-5,6- Dihydro-4H-1,3-oxazine, 4,4,6-trimethyl-2-vinyl-5,6-dihydro-4H-1,3-oxazine, 2-isopropenyl-2-oxazoline, 4,4-dimethyl -2-isopropenyl-2-oxazoline, 4-acryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl-oxymethyl -2-phenyl-4-methyl-2-oxazoline, 2- (4-vinylphenyl) -4,4-dimethyl-2-oxazoline, 4-ethyl 4-Hydroxymethyl-2-isopropenyl-2-oxazoline, 4-ethyl-4-carbethoxymethyl-2-isopropenyl-2-oxazoline, copolymers derived from vinyloxazolines as monomers, vinyloxazolines and styrene And a copolymer with any copolymerizable monomer such as methyl methacrylate and acrylonitrile. In particular, 2-oxazoline derivatives are preferred because they have high reactivity and are practically used industrially. The oxazoline derivative used in the present invention is a commercially available product, Epocross K-1000, K-1020E, K-1030E, K-2000, K-2020E, K-2030E, WS-500, manufactured by Nippon Shokubai Chemical Industry Co., Ltd. WS-700, RPS-1005 and the like are preferable.
[0019]
The aqueous dispersion of the biodegradable resin of the present invention can be obtained by dispersing the biodegradable resin in which at least a part of the carboxyl group terminal is sealed with an oxazoline compound in an aqueous medium. Further, by dispersing a biodegradable resin whose carboxyl group terminal is not sealed with an oxazoline compound in an aqueous medium in the presence of the oxazoline compound, at least a part of the carboxyl group terminal is sealed with an oxazoline compound. An aqueous dispersion of a degradable resin can also be obtained. The ratio of the oxazoline compound to the biodegradable resin containing an ester bond in the molecular structure is preferably 0.1 to 30% by weight. If the amount is less than 0.1% by weight, the effect of inhibiting hydrolysis may not be sufficiently obtained. If the amount exceeds 30% by weight, it becomes difficult to produce an aqueous dispersion of the biodegradable resin, or There is a fear that the film may be gelled or the like, and furthermore, the film after film formation may become brittle and the water resistance may decrease.
[0020]
In order to disperse the biodegradable resin in the aqueous medium, for example, a biodegradable resin and an aqueous solution of a dispersant are simultaneously charged into a closed tank having a stirring device, and pressurized while heating and stirring to disperse the biodegradable resin. Pressure dispersion method, direct dispersion method in which a biodegradable resin is added to an aqueous solution of a heat dispersant maintained at normal pressure or under pressure, and stirred to disperse. After stirring and dispersing, a method of distilling off the organic solvent, heating and melting the biodegradable resin, adding a dispersant aqueous solution to the solution, stirring and dispersing the biodegradable resin in water, an extrusion method, extrusion molding. An extrusion dispersion method or the like in which an aqueous solution of a dispersant is pressed into a resin heated in a machine to obtain a dispersion can be employed. In addition to these methods, any method capable of obtaining an aqueous dispersion of a biodegradable resin can be appropriately employed.However, the above-described biodegradable resin can be applied to a wide variety of biodegradable resins. It is preferable to add an organic solvent solution of the water-soluble resin to the aqueous dispersant solution, stir and disperse the mixture, and then distill off the organic solvent. In preparing the aqueous dispersion, a dispersing device such as a high-pressure homogenizer may be used in combination, if necessary.
[0021]
Examples of the dispersant used when dispersing the biodegradable resin in an aqueous medium include water-soluble resins such as anionic surfactants, cationic surfactants, nonionic surfactants, polymer surfactants, and polyvinyl alcohol. Although a molecule can be used, (meth) acrylamide which is a polymer surfactant and a monomer such as dimethylaminoethyl (meth) acrylate or a neutralized product thereof, or at least one quaternary salt of these monomers are mainly used. Any of a cationic polymer compound having an average molecular weight of 300,000 or more as a component, or an anionic polymer compound having an average molecular weight of 300,000 or more containing (meth) acrylamide, (meth) acrylic acid or a neutralized product thereof as a main component It is preferable that the particle size of the dispersion is sufficiently small when using the above, and the cationic polymer having an average molecular weight of 300,000 or more or the average molecular weight of 300,000 or more is preferably used. And anion-based polymer compound, a degree of saponification of 70% to 90%, when used as a mixture with polyvinyl alcohol having an average molecular weight 5-300000, is further improved preferred temporal dispersion stability of the dispersion.
[0022]
In the present invention, a plasticizer can be added to the aqueous dispersion of the biodegradable resin, if necessary, and these may be added to the biodegradable resin in advance. Examples of the plasticizer include citric acid derivatives such as triethyl citrate, tributyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate, diethylene glycol diacetate, triethylene glycol diacetate, and ether ester derivatives such as triethylene glycol dipropionate. Glycerin derivatives such as glycerin triacetate, glycerin tripropionate and glycerin tributyrate, phthalic acid derivatives such as ethyl phthalyl ethyl glycolate, ethyl phthalyl butyl glycolate and butyl phthalyl butyl glycolate, adipic acid and 1,4- Adipic acid derivatives such as condensates with butanediol, sebacic acid derivatives such as condensates of sebacic acid and 1,4-butanediol, condensates of succinic acid and 1,4-butanediol, etc. Haq acid derivatives, polycaprolactone, and poly-hydroxy acids such as polypropiolactone lactone. Of these, those using an adipic acid derivative or a phthalic acid derivative are particularly preferred because of their high film-forming property improving effect. The use amount of the plasticizer is preferably 5 to 40 parts by weight per 100 parts by weight of the biodegradable resin. If the amount is less than 5 parts by weight, the plasticizing effect may not be exhibited. If the amount exceeds 40 parts by weight, bleed out of the plasticizer may occur.
[0023]
In the present invention, the aqueous biodegradable resin dispersion may further contain a thickener, a surface smoothing agent, a release agent, a water repellent (hydrophobicity improver), a rust inhibitor, a fluid And the like. The composition may contain a sex adjuster or the like, and these may be added to the biodegradable resin in advance. Examples of the thickener include polyalkoxide polymers such as polyethylene glycol, cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, and hydroxypropylmethylcellulose, cationized starch, starch derivatives such as etherified starch, and gum arabic. And plant gums such as guar gum and xanthan gum; and animal polymers such as casein, chitosan and chitin. On the other hand, in order to improve the surface smoothness, the releasability, the water repellency, and the like, waxes such as natural wax and synthetic wax can be contained. Natural waxes include plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax and jojoba solid wax, animal-based natural waxes such as beeswax, lanolin, and whale wax, montan wax, ozokerite, and ceresin and other minerals. Natural wax, paraffin wax, microcrystalline wax, petroleum wax, and other petroleum natural waxes. Examples of the synthetic wax include synthetic hydrocarbons such as Fischer-Tropsch wax and polyethylene wax, denatured waxes such as montan wax derivatives, paraffin wax derivatives, and microcrystalline wax derivatives; hydrogenated waxes such as hardened castor oil and hardened castor oil derivatives; -Hydroxystearic acid, stearic acid amide, phthalic anhydride and the like.
[0024]
When components such as the above-mentioned plasticizer, surfactant, thickener, surface smoothing agent, mold release agent, water repellent (hydrophobicity improver), rust inhibitor, fluidity modifier, etc. are blended, these components are Even if the biodegradable resin is previously added to water before being dispersed, it may be added to water together with the biodegradable resin, or even added after the biodegradable resin is dispersed in water. It may be added to the biodegradable resin in advance.
[0025]
The aqueous dispersion of the biodegradable resin of the present invention is paper, pulp, nonwoven fabric of animal and plant fibers, woven fabric, knitted fabric, and composited into products made of animal and plant materials such as leather products, and the water repellency of these products is obtained. -Oil repellency, water resistance, airtightness, surface gloss, etc. can be improved. As a compounding method, the aqueous dispersion of the present invention is applied or sprayed on the surface of a product such as a sheet, a plate, a nonwoven fabric, a woven fabric, a knitted fabric, a molded product made of animal or plant material, And then heating and pressurizing with a heating roll, a press, a mold or the like. In addition, they can be added to animal and plant material powders, granules, slurries, pastes, and the like used as raw materials for the production of these products to form composites or other natural materials, such as powders and granules of inorganic minerals such as clay and sand. It may be used as a binder for bonding the bodies, and may be combined with a powder, a granular body or the like. For example, when the sheet substrate is paper, the pulp and the biodegradable resin can be compounded by adding the aqueous biodegradable resin dispersion to the pulp slurry and making the paper.
[0026]
When the aqueous dispersion of the biodegradable resin of the present invention is used to increase the water resistance, solvent resistance, etc. of products made of animal and plant materials, natural waxes and / or synthetic waxes are used as mold release / hydrophobicity improvers. It is preferable that it is contained. When natural waxes and / or synthetic waxes are contained, the product can be further improved in water repellency and oil repellency, water resistance, oil resistance, airtightness, and the like. It is preferable because the releasability from a mold or the like is improved.
[0027]
To treat sheet base such as paper, nonwoven fabric, woven fabric, knitted fabric, sheet of synthetic resin, film and the like with the aqueous dispersion of the biodegradable resin of the present invention, immerse the sheet substrate in the aqueous dispersion. To impregnate the sheet base material, apply an aqueous dispersion to the sheet base material, spray, or the like. In addition, in the production process of the sheet base material, it can be compounded with the sheet base material by adding it to the sheet base material. For example, when the sheet substrate is paper, a method of adding an aqueous biodegradable resin dispersion to a pulp slurry and making paper is used.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0029]
Example 1
Epocross RPS-1005 (manufactured by Nippon Shokubai Co., Ltd .: styrene / 2-isopropenyl-2-oxazoline copolymer: oxazoline equivalent: 3300 g / eq.) As an oxazoline compound so that the oxazoline pure content becomes 0.5% by weight. 40 parts by weight of melt-kneaded polylactic acid resin (residual lactide amount: 300 ppm), 0.6 parts by weight of polyvinyl alcohol (saponification degree: 81.0%, average molecular weight: 220,000), acrylamide / methacrylic acid (83:17 by weight ratio) 0.4 parts by weight of a copolymer (average molecular weight: 20,000,000), 40 parts by weight of deionized water, and 60 parts by weight of ethyl acetate were charged into an autoclave equipped with a homomixer, heated to 100 ° C., and heated to 10,000 rpm. p. m. And then rapidly cooled to 40 ° C. Thereafter, ethyl acetate was removed under reduced pressure to obtain a biodegradable resin aqueous dispersion. When the obtained aqueous dispersion of the biodegradable resin was kept at 25 ° C., the change in the acid value when kept at 40 ° C. was measured for one week, one month, and six months immediately after the production of the aqueous dispersion. Table 1 shows the measurement results. In addition, when the biodegradable resin is hydrolyzed, the acid value increases due to the decomposition product. Therefore, the smaller the increase in the acid value, the lower the rate of hydrolysis.
[0030]
[Table 1]
[0031]
Example 2
Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd .: water-soluble polymer: oxazoline equivalent 220 g / eq.) Was added as an oxazoline compound so that the oxazoline pure content relative to the resin weight (solid content) was 0.5% by weight. A polylactic acid resin (residual lactide amount: 300 ppm) was dispersed in ion water in the same manner as in Example 1. The change in the acid value when the obtained aqueous dispersion was kept at 25 ° C. and when it was kept at 40 ° C. was measured in the same manner as in Example 1. The results are shown in Table 1.
[0032]
Example 3
Except that the same oxazoline compound as in Example 2 was added so that the ratio of oxazoline pure content was 1.0% by weight of the resin (solid content) weight, the biodegradable resin was produced in the same manner as in Example 2. An aqueous dispersion was prepared. The change in the acid value when the obtained aqueous dispersion was kept at 25 ° C. and when it was kept at 40 ° C. was measured in the same manner as in Example 1. The results are shown in Table 1.
[0033]
Example 4
An aqueous dispersion of a biodegradable resin was obtained in the same manner as in Example 2 except that the same resin as in Example 1 was used (the total amount of the oxazoline compound added as oxazoline pure content was the resin weight (solid content)). 1.0% by weight). The change in the acid value when the obtained aqueous dispersion was kept at 25 ° C. and when it was kept at 40 ° C. was measured in the same manner as in Example 1. The results are shown in Table 1.
[0034]
Comparative Example 1
An aqueous dispersion was obtained in the same manner as in Example 1, except that a commercially available polylactic acid resin (residual lactide amount: 300 ppm) was used. The change in the acid value when the obtained aqueous dispersion was kept at 25 ° C. and when it was kept at 40 ° C. was measured in the same manner as in Example 1. The results are shown in Table 1.
[0035]
Example 5
The biodegradable resin aqueous dispersion obtained in Example 1, 20 g / m 2 coated on recycled paper basis weight 50 g / m 2, after 1 minute hot-pressed at 0.99 ° C., measured wet paper strength machine direction did. Next, the recycled paper was immersed in distilled water at 40 ° C., and the wet paper strength was measured one week, one month, and three months after the immersion. Table 2 shows the results. The wet paper strength was measured in accordance with JIS P8113.
[0036]
Comparative Example 2
The wet paper strength of the recycled paper applied in the same manner as in Example 8 using the aqueous dispersion prepared in the same manner as in Comparative Example 1 was measured in the same manner. The results are shown in Table 2.
[0037]
[Table 2]
[0038]
【The invention's effect】
As described above, the biodegradable resin of the present invention is dispersed in an aqueous medium because at least a part of the carboxyl terminal in the biodegradable resin containing an ester bond in the molecular structure is blocked by the oxazoline compound. Not easily hydrolyzed. The aqueous dispersion of the biodegradable resin of the present invention is preserved because the biodegradable resin in which at least a part of the carboxyl terminal in the biodegradable resin is blocked by the oxazoline compound is dispersed in the aqueous medium. Hydrolysis of the biodegradable resin hardly occurs therein, and the biodegradable resin aqueous dispersion has effects such as excellent stability over time.