【発明の属する技術分野】
本発明は、農医薬中間体として有用な式(I)
【化1】
で表されるN−アミノピペリジン(NAP)の製造法に関する。
【従来の技術】
NAPの製造法としては式(II)
【化2】
で表される1−ピペリジンカルボキシアミド(PCA)をエタノール中、苛性ソーダ及び次亜塩素酸ソーダと反応させる方法が知られている。(Chem. Pharm. Bull. 31(2)423−428(1983))
しかしこの方法は工業的な規模で製造する場合等反応時間が長時間に渡ると生成した中間体が更に次亜塩素酸ソーダと反応する等の副反応が起こり収率の低下を招く傾向があり工業的な製法として満足のいくものではなかった。
【発明が解決しようとする課題】
本発明は、NAPの工業的に優れた製造方法を提供することをその目的とする。
【課題を解決するための手段】
本発明者等は、NAPの工業的製法に関し鋭意研究した結果、系内に次亜塩素酸ソーダが出来るだけ存在しない系で転移反応させることにより反応が長時間に渡っても収率の低下がないことを見出し本発明を完成した。即ち、本発明は、PCAと塩素とを弱塩基の存在下反応させた後苛性ソーダを反応させることを特徴とするNAPの製造法である。
反応は、水又は水溶性極性溶媒と水との混合溶媒に弱塩基及びPCAを溶解若しくは懸濁させ、更に必要に応じ水溶性極性溶媒を加えた後、塩素により塩素化反応を行う。この反応スラリー液を苛性ソーダ水溶液に添加し転移反応を完結させ、必要により溶媒洗浄等により不純物を除去した後昇温し脱炭酸反応を行わせる。
反応に用いられる水溶性極性溶媒としてはメタノール、エタノール、イソプロピルアルコール(IPA)等のアルコール類、テトラヒドロフラン、ジメトキシエタン、ジメチルスルホキシド、メチルセルソルブ、エチルセルソルブ等が挙げられ、その中でもアルコール類が特に好ましい。
水と水溶性極性溶媒とのトータルの溶媒量は攪拌が可能な量なら特に制限はないが、通常PCA1モルに対し1〜10リットル、好ましくは、1〜5リットルである。
塩素化の方法は特に制限はないが、通常系内に塩素ガスを吹き込むことにより行われる。反応のモル比はPCA1モルに対し、弱塩基1〜3等量、好ましくは1.5〜2.5等量、塩素は1〜2等量、好ましくは1.2〜1.5等量である。
反応温度は−20〜30℃、好ましくは−10〜10℃である。反応は通常数分から数時間で完結する。
次の転移反応に使用する苛性ソーダまたは苛性カリ水溶液の濃度は特に制限はないが通常5〜50%、好ましくは20〜30%で、その使用量は、塩素化反応に用いた塩素量、弱塩基量によっても異なるが、通常PCA1モルに対し、2.0当量以上、好ましくは3.0 〜6.0 等量である。
反応温度は通常−20〜20℃、好ましくは−10〜10℃である。高温で行い脱炭酸を同時に行わせることも可能であるが、収率が低下する傾向があり前記温度で行うことが好ましい。
脱炭酸の温度は40℃から用いる溶媒の沸点まで、好ましくは60〜90℃の範囲である。
転移反応、脱炭酸反応は通常トータルで1時間から10数時間で完結する。
反応終了後は、抽出等通常の後処理を行うことにより目的物を得ることが出来る。
【実施例】
次に実施例を挙げて本発明を更に詳細に説明する。
実施例1 NAPの合成
NaHCO3 12.6g(0.15mol)、PCA12.8g(0.1mol)を水100mlに溶解し、IPA23gを加え、攪拌下0〜−5℃に冷却した。
同温度で塩素9.6g(135mol%)を吹きこみ、さらに吹きこみ終了後、1時間反応した。
次いで、このスラリー反応液を、28%−NaOH 71.4g(0.5mol)の中に0〜−5℃で滴下し、滴下終了後、同温度で1時間反応した。
次に、60−65℃に昇温して同温度で2時間脱炭酸を行なった。
脱炭酸終了後、室温まで冷却しクロロホルム抽出し、クロロホルム層を濃縮して粗NAP溶液45.0gを得た。
この液をGC分析したところNAP8.73gを含有していた。(収率87.3mol%)
実施例2 NAPの合成
IPAをEtOHに代えた以外は実施例1と同様に反応し、得られたクロロホルム濃縮溶液を分析したところ、NAP 8.38gを含んでいた。収率 83.8%
実施例−3・・・NAPの合成
IPAをMeOHに代えた以外は実施例1と同様に反応し、得られたクロロホルム濃縮溶液を分析したところ、NAP 5.38gを含んでいた。収率 53.8%
【発明の効果】
本発明の製造方法は上記実施例及から明らかなように反応時間が長くなっても従来の次亜塩素酸ソーダを使用した製造方法に比べ高収率で目的物が得られる工業的に優れた製造方法である。TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compound of formula (I) useful as an agrochemical intermediate
Embedded image
And a method for producing N-aminopiperidine (NAP).
[Prior art]
The method for producing NAP is represented by the formula (II)
Embedded image
A method is known in which 1-piperidinecarboxamide (PCA) represented by the following formula is reacted with caustic soda and sodium hypochlorite in ethanol. (Chem. Pharm. Bull. 31 (2) 423-428 (1983)).
However, in the case of this method, when the reaction time is long, as in the case of manufacturing on an industrial scale, the produced intermediate tends to cause side reactions such as further reacting with sodium hypochlorite, which tends to reduce the yield. It was not satisfactory as an industrial manufacturing method.
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially superior method for producing NAP.
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the industrial production process of NAP, and as a result, it has been found that by performing a rearrangement reaction in a system in which sodium hypochlorite is not present in the system as much as possible, the yield decreases even when the reaction is performed for a long time. The present invention has been completed, and the present invention has been completed. That is, the present invention is a method for producing NAP, comprising reacting PCA with chlorine in the presence of a weak base and then reacting with caustic soda.
In the reaction, a weak base and PCA are dissolved or suspended in water or a mixed solvent of a water-soluble polar solvent and water, and if necessary, a water-soluble polar solvent is added, followed by chlorination reaction with chlorine. This reaction slurry liquid is added to an aqueous solution of caustic soda to complete the transfer reaction. If necessary, impurities are removed by washing with a solvent or the like, and then the temperature is raised to carry out a decarbonation reaction.
Examples of the water-soluble polar solvent used in the reaction include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), tetrahydrofuran, dimethoxyethane, dimethyl sulfoxide, methylcellosolve, and ethylcellosolve. Among them, alcohols are particularly preferable. preferable.
The total solvent amount of water and the water-soluble polar solvent is not particularly limited as long as stirring is possible, but is usually 1 to 10 liters, preferably 1 to 5 liters, per mole of PCA.
The chlorination method is not particularly limited, but is usually performed by blowing chlorine gas into the system. The molar ratio of the reaction is 1 to 3 equivalents of weak base, preferably 1.5 to 2.5 equivalents, and chlorine is 1 to 2 equivalents, preferably 1.2 to 1.5 equivalents to 1 mol of PCA. is there.
The reaction temperature is -20 to 30C, preferably -10 to 10C. The reaction is usually completed within minutes to hours.
The concentration of the aqueous solution of caustic soda or potassium hydroxide used in the subsequent transfer reaction is not particularly limited, but is usually 5 to 50%, preferably 20 to 30%. The amounts used are the amount of chlorine and the amount of weak base used in the chlorination reaction. It is usually 2.0 equivalents or more, preferably 3.0 to 6.0 equivalents, per 1 mol of PCA.
The reaction temperature is generally -20 to 20C, preferably -10 to 10C. Although it is possible to carry out the decarboxylation at a high temperature at the same time, it is preferable to carry out the reaction at the above temperature because the yield tends to decrease.
The temperature of the decarboxylation ranges from 40 ° C to the boiling point of the solvent used, preferably from 60 to 90 ° C.
The transfer reaction and the decarboxylation reaction are usually completed in a total of 1 to 10 hours.
After completion of the reaction, the desired product can be obtained by performing ordinary post-treatments such as extraction.
【Example】
Next, the present invention will be described in more detail with reference to examples.
Example 1 Synthesis of NAP 12.6 g (0.15 mol) of NaHCO 3 and 12.8 g (0.1 mol) of PCA were dissolved in 100 ml of water, 23 g of IPA was added, and the mixture was cooled to 0 to −5 ° C. with stirring.
At the same temperature, 9.6 g (135 mol%) of chlorine was blown, and after the blowing was completed, a reaction was performed for 1 hour.
Next, this slurry reaction liquid was dropped into 71.4 g (0.5 mol) of 28% -NaOH at 0 to -5 ° C, and after completion of the dropping, the reaction was carried out at the same temperature for 1 hour.
Next, the temperature was raised to 60 to 65 ° C., and decarbonation was performed at the same temperature for 2 hours.
After decarboxylation was completed, the mixture was cooled to room temperature, extracted with chloroform, and the chloroform layer was concentrated to obtain 45.0 g of a crude NAP solution.
This solution was analyzed by GC and found to contain 8.73 g of NAP. (Yield 87.3 mol%)
Example 2 Synthesis of NAP The reaction was carried out in the same manner as in Example 1 except that IPA was replaced with EtOH. The obtained chloroform-concentrated solution was analyzed, and it was found to contain 8.38 g of NAP. 83.8% yield
Example 3 Synthesis of NAP A reaction was carried out in the same manner as in Example 1 except that IPA was replaced with MeOH. The obtained chloroform-concentrated solution was analyzed, and it was found to contain 5.38 g of NAP. Yield 53.8%
【The invention's effect】
The production method of the present invention is industrially excellent in that the target product can be obtained in a higher yield than the conventional production method using sodium hypochlorite even if the reaction time is long, as is apparent from the above Examples and the like. It is a manufacturing method.