JP2004111944A - Radial anisotropic ring magnet and manufacturing method of the same - Google Patents
Radial anisotropic ring magnet and manufacturing method of the same Download PDFInfo
- Publication number
- JP2004111944A JP2004111944A JP2003302486A JP2003302486A JP2004111944A JP 2004111944 A JP2004111944 A JP 2004111944A JP 2003302486 A JP2003302486 A JP 2003302486A JP 2003302486 A JP2003302486 A JP 2003302486A JP 2004111944 A JP2004111944 A JP 2004111944A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnet
- ring magnet
- powder
- radial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 230000005291 magnetic effect Effects 0.000 claims abstract description 246
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000000843 powder Substances 0.000 claims description 71
- 238000000465 moulding Methods 0.000 claims description 62
- 230000004907 flux Effects 0.000 claims description 31
- 239000003302 ferromagnetic material Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 14
- 239000006247 magnetic powder Substances 0.000 claims description 13
- 230000005294 ferromagnetic effect Effects 0.000 claims description 11
- 230000005415 magnetization Effects 0.000 claims description 11
- 239000011162 core material Substances 0.000 description 55
- 238000007493 shaping process Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000005389 magnetism Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910001172 neodymium magnet Inorganic materials 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 102220005308 rs33960931 Human genes 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、ラジアル異方性リング磁石及びその製造方法に関する。 The present invention relates to a radial anisotropic ring magnet and a method for manufacturing the same.
フェライトや希土類合金のような結晶磁気異方性材料を粉砕し、特定の磁場中でプレス成形を行い作製される異方性磁石は、スピーカ、モータ、計測器、その他の電気機器等に広く使用されている。このうち特にラジアル方向に異方性を有する磁石は、磁気特性に優れ、自由な着磁が可能であり、またセグメント磁石のような磁石固定用の補強の必要もないため、ACサーボモータ、DCブラシレスモータ等に使用されている。特に近年はモータの高性能化にともない、長尺のラジアル異方性磁石が求められてきた。 Anisotropic magnets made by crushing crystalline magnetic anisotropic materials such as ferrites and rare earth alloys and pressing them in a specific magnetic field are widely used in speakers, motors, measuring instruments, and other electrical equipment. Have been. Among them, magnets having anisotropy in the radial direction are particularly excellent in magnetic properties, can be freely magnetized, and do not require reinforcement for fixing magnets such as segment magnets. Used in brushless motors and the like. In particular, in recent years, a long radial anisotropic magnet has been demanded as the performance of a motor becomes higher.
ラジアル配向を有する磁石は垂直磁場垂直成形法又は後方押し出し法により製造される。垂直磁場垂直成形法は、プレス方向より、コアを介して磁場を対向方向から印加し、ラジアル配向を得ることを特徴とするものである。即ち、垂直磁場垂直成形法は、図1に示されるように、配向磁場コイル2において発生させた磁場をコア4及び5を介して対向させ、コアよりダイス3を通過し、成形機架台1を経て循環するような磁気回路にて、充填磁石粉8をラジアル配向させるものである。なお、図中6は上パンチ、7は下パンチである。
磁石 A magnet having a radial orientation is manufactured by a vertical magnetic field vertical molding method or a backward extrusion method. The vertical magnetic field vertical forming method is characterized in that a magnetic field is applied from a facing direction through a core from a pressing direction to obtain a radial orientation. That is, in the vertical magnetic field vertical molding method, as shown in FIG. 1, the magnetic field generated in the orientation
このように、この垂直磁場垂直成形装置において、コイルにより発生した磁界はコア、ダイス成形機架台、コアとなる磁路を形成させている。この場合、磁場漏洩損失低下のため、磁路を形成する部分の材料には強磁性体を用い、主に鉄系金属が使われる。しかし、磁石粉を配向させるための磁場強度は、以下のようにして決まってしまう。コア径をB(磁石粉充填内径)、ダイス径をA(磁石粉充填外径)、磁石粉充填高さをLとする。上下コアを通過した磁束がコア中央でぶつかり対向し、ダイスに至る。コアを通った磁束量はコアの飽和磁束密度で決定され、鉄製コアで磁束密度が20kG程度である。従って磁石粉充填内外径での配向磁場は、上下コアの通った磁束量を磁石粉充填部の内面積及び外面積で割ったものとなり、
2・π・(B/2)2・20/(π・B・L)=10・B/L …内周、
2・π・(B/2)2・20/(π・A・L)=10・B2/(A・L)…外周
となる。外周での磁場は内周より小さいので、磁石粉の充填部すべてにおいて良好な配向を得るには、外周で10kOe以上必要であり、このため、10・B2/(A・L)=10となり、従って、L=B2/Aとなる。成形体高さは充填粉の高さの約半分で、焼結時、更に8割程度になるので、磁石の高さは非常に小さくなる。このようにコアの飽和が配向磁界の強度を決定するためコア形状により配向可能な磁石の大きさ即ち高さが決まってしまい、円筒軸方向に長尺品を製造することが困難であった。特に、径が小さな円筒磁石では非常に短尺品しか製造することができなかった。
As described above, in this vertical magnetic field vertical forming apparatus, the magnetic field generated by the coil forms the core, the die forming machine base, and the magnetic path serving as the core. In this case, in order to reduce the magnetic field leakage loss, a ferromagnetic material is used as a material of a portion forming a magnetic path, and an iron-based metal is mainly used. However, the magnetic field strength for orienting the magnet powder is determined as follows. The core diameter is B (magnet powder filling inner diameter), the die diameter is A (magnet powder filling outer diameter), and the magnet powder filling height is L. The magnetic flux that has passed through the upper and lower cores strikes at the center of the core and opposes to the die. The amount of magnetic flux passing through the core is determined by the saturation magnetic flux density of the core, and the magnetic flux density of an iron core is about 20 kG. Therefore, the orientation magnetic field at the inner and outer diameters of the magnet powder filling is obtained by dividing the amount of magnetic flux passing through the upper and lower cores by the inner area and the outer area of the magnet powder filling portion,
2 · π · (B / 2) 2 · 20 / (π · B · L) = 10 · B / L...
2 · π · (B / 2) 2 · 20 / (π · A · L) = 10 · B 2 / (A · L)... Since the magnetic field at the outer circumference is smaller than the inner circumference, 10 kOe or more is required at the outer circumference in order to obtain a good orientation in all the filled portions of the magnet powder. Therefore, 10 · B 2 / (AL·L) = 10 , Therefore, L = B 2 / a. The height of the compact is about half of the height of the filling powder and becomes about 80% during sintering, so that the height of the magnet is extremely small. As described above, since the saturation of the core determines the strength of the alignment magnetic field, the size, that is, the height of the orientable magnet is determined by the shape of the core, and it is difficult to manufacture a long product in the cylindrical axis direction. In particular, only a very short product could be manufactured with a cylindrical magnet having a small diameter.
また、後方押し出し法は設備が大掛かりで、歩留まりが悪く、安価な磁石を製造することが困難であった。 後方 In addition, the backward extrusion method requires large facilities, has a low yield, and it has been difficult to manufacture an inexpensive magnet.
このようにラジアル異方性磁石は、いかなる方法においても製造が困難であり、安く大量に製造することは難しく、ラジアル異方性磁石を用いたモータも非常にコストが高くなってしまうという不利があった。 As described above, the radial anisotropic magnet is difficult to manufacture by any method, it is difficult to manufacture the mass inexpensively, and the motor using the radial anisotropic magnet has a disadvantage that the cost is very high. there were.
近年、ユーザーからの材料並びに組み立て時のコストダウンの要請が強く、ラジアル異方性リング磁石においても、生産性及び組み立て性の向上が急務である。加えて、小型化、省力化から高性能化が望まれている。このようなユーザーの要求を満たすためには、長尺のラジアル異方性リング磁石が好ましいとされている(長尺品は内径<L寸のものをいう)。 In recent years, there has been a strong demand from users for cost reduction in materials and assembly, and there is an urgent need to improve productivity and assemblability of radially anisotropic ring magnets. In addition, high performance is demanded from miniaturization and labor saving. In order to satisfy such user requirements, a long radial anisotropic ring magnet is considered preferable (a long product has an inner diameter <L).
長尺品は組み立てコストが削減できるが、短尺品では複数個の段積みを行う際、以下の問題が生じる。即ち、磁石とモータコアは接着剤及び磁石と強磁性モータコアの磁気的な吸引力により接合されている。しかし、接着剤が剥がれた際に、磁石同士の吸引力が磁石とコアの吸引力よりも強く、N極とS極がくっついてしまう。これによりモータの役割をなさなくなる。また、剥がれていない状態においても、磁極のNとSがくっつこうとする力により、接着剤にはせん断応力が働き、剥がれ易くなる。これに対し、一体物では上記のようなことが起こらず、仮に、接着剤が剥がれても、強磁性体であるモータコアと磁気的な力により引き合うため分離することがない。 組 み 立 て Assembly costs can be reduced for long products, but the following problems occur when multiple products are stacked for short products. That is, the magnet and the motor core are joined by the adhesive and the magnetic attraction of the magnet and the ferromagnetic motor core. However, when the adhesive is peeled off, the attractive force between the magnets is stronger than the attractive force between the magnet and the core, and the N pole and the S pole are stuck together. As a result, the motor does not play a role. Even in a state where the magnetic poles are not peeled off, a shear stress acts on the adhesive due to the force of the N and S of the magnetic poles sticking to each other, so that the adhesive is easily peeled off. On the other hand, the above-mentioned phenomenon does not occur in the case of an integrated body, and even if the adhesive is peeled off, it is not separated because it is attracted by the magnetic force to the motor core which is a ferromagnetic material.
しかし、ラジアル異方性リング磁石の成形においては、図1に示される垂直磁場垂直成形法により成形がなされるが、このような通常の方法では、短尺ものしか製造できなかった。この場合、長尺一体物のラジアル磁石の製造法として、特開平2−281721号公報に提案がある。即ち、特開平2−281721号公報では、キャビティに充填された原料粉を配向及び加圧成形した成形体を、ダイス非磁性部に移し、その後できたダイス内磁性部分のキャビティに原料粉を充填し加圧成形し、更に得られた成形体を下方に移し、給粉、加圧成形を任意回数繰り返し、リング軸方向の寸法L(以下、L寸と呼ぶ)の大なる成形体を得る成形方法(以下、多段成形法という)を提案している。 However, in forming a radially anisotropic ring magnet, molding is performed by a vertical magnetic field vertical molding method shown in FIG. 1, but only a short one can be manufactured by such an ordinary method. In this case, Japanese Patent Application Laid-Open No. 2-281721 proposes a method for manufacturing a long integrated radial magnet. That is, in Japanese Patent Application Laid-Open No. 2-281721, a molded body obtained by orienting and pressing a raw material powder filled in a cavity is transferred to a non-magnetic portion of a die, and then the raw material powder is filled in a cavity of a magnetic portion in the die. Then, the obtained molded body is moved downward, and powder feeding and pressure molding are repeated an arbitrary number of times to obtain a molded body having a large dimension L (hereinafter, referred to as L dimension) in the ring axis direction. A method (hereinafter, referred to as a multi-stage molding method) is proposed.
この多段成形法によると、Lの大きなラジアル異方性リング磁石を製造することができる。しかし、この方法は給粉、成形を繰り返し行い、接合部が発生し、1つの多層な成形体を製造するので成形時間が長く、量産に適さないばかりか、成形体を成形する際の荷重が一定であるため、成形体密度が等しい焼結体において、成形体の接合面に亀裂が発生し易いという問題があった。この点の改善に関しては、特開平10−55929号公報に提案がある。即ち、特開平10−55929号公報では、多段成形時の成形体密度をNd−Fe−B系磁石において3.1g/cm3以上とし、最終成形により(最終成形によりできた成形体を最終成形体と呼ぶ)、それまでの成形体(予備成形体という)より0.2g/cm3以上高い密度の成形体密度となるよう成形することで、成形体の接合面に発生する亀裂を軽減する提案がなされている。 According to the multi-stage molding method, a radial anisotropic ring magnet having a large L can be manufactured. However, this method repeats powder feeding and molding to form a joint, so that one multilayer molded body is manufactured, so that the molding time is long, which is not suitable for mass production. Since it is constant, there is a problem that cracks are likely to occur at the joint surface of the molded body in the sintered body having the same molded body density. An improvement in this respect is proposed in Japanese Patent Application Laid-Open No. H10-55929. That is, in Japanese Patent Application Laid-Open No. H10-55929, the density of the compact during multi-stage molding is set to 3.1 g / cm 3 or more in a Nd—Fe—B-based magnet, and the final compact (the compact formed by the final compact is finally molded). ), And by forming the molded body to have a density of 0.2 g / cm 3 or more higher than that of the previous molded body (referred to as a preformed body), cracks generated at the joint surface of the molded body are reduced. A proposal has been made.
しかし、該方法では圧力制御を厳密に行わなければならず、また、磁石粉の粒度及び粒度分布、バインダーの種類や量により磁石粉の状態は大きく異なり、最適圧力がその都度異なるため条件設定が難しい。加えて予備成形体密度が低いと2回目以降の磁場の影響を受けて磁気特性が悪く、最終成形体密度が低いと接合面に亀裂が発生し、最終成形体密度が高すぎると最終成形時に配向の乱れを生じてしまうため、特性と歩留まりを兼ね備えた長尺ラジアル異方性リング磁石の製造はきわめて困難であった。 However, in this method, pressure control must be strictly performed, and the state of the magnet powder greatly varies depending on the particle size and particle size distribution of the magnet powder, and the type and amount of the binder. difficult. In addition, if the density of the preformed body is low, the magnetic properties are poor due to the influence of the second and subsequent magnetic fields, and if the density of the final formed body is low, cracks are generated at the joint surface. Since the orientation is disturbed, it has been extremely difficult to manufacture a long radial anisotropic ring magnet having both characteristics and yield.
本発明は上記事情に鑑みなされたもので、磁気特性の良好なラジアル異方性リング磁石、及び水平磁場垂直成形法による該ラジアル異方性リング磁石の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has as its object to provide a radial anisotropic ring magnet having good magnetic properties and a method for manufacturing the radial anisotropic ring magnet by a horizontal magnetic field vertical forming method.
本発明は、上記目的を達成するため、下記のラジアル異方性リング磁石及びその製造方法を提供する。
(1)磁石全般にわたり、リング磁石の中心軸とラジアル異方性付与方向とのなす角度が80°以上100°以下であることを特徴とするラジアル異方性リング磁石。
(2)ラジアル異方性リング磁石におけるリング磁石中心軸との垂直面上において、ラジアル方向に対する磁石粉の平均配向度が80%以上であることを特徴とする(1)のラジアル異方性リング磁石。
(3)リング磁石の中心軸方向の長さを内径で割った値が0.5以上であることを特徴とする(1)又は(2)のラジアル異方性リング磁石。
(4)円筒磁石用成形金型のコアの少なくとも一部の材質に飽和磁束密度5kG以上を有する強磁性体を用い、金型キャビティ内に充填した磁石粉を水平磁場垂直成形法により磁石粉に配向磁界を印加して成形することにより、ラジアル異方性リング磁石を製造する方法であって、下記(i)〜(v)
(i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
(ii)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
(iii)磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる、
(iv)磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
(v)複数のコイル対を用い、1つのコイル対に磁場印加した後、他のコイル対に磁場を印加する
の操作のうち少なくとも一の操作を行い、磁石粉に対し一方向よりも多くの方向から磁場を印加して、加圧成形で製造され、磁石全般にわたりリング磁石の中心軸とラジアル異方性付与方向とのなす角度が80°以上100°以下であるラジアル異方性リング磁石を得ることを特徴とするラジアル異方性リング磁石の製造方法。
(5)充填磁石粉を回転させる際、コア、ダイス及びパンチのうち少なくとも1つを周方向に回転させることで充填磁石粉を回転せしめることを特徴とする(4)のラジアル異方性リング磁石の製造方法。
(6)磁場印加後充填磁石粉を回転させる際、強磁性コア及び磁石粉の残留磁化の値が50G以上であり、コアを周方向に回転させることで磁石粉を回転せしめることを特徴とする(4)のラジアル異方性リング磁石の製造方法。
(7)水平磁場垂直成形工程で発生する磁場が0.5〜10kOeであることを特徴とする(4)〜(6)のラジアル異方性リング磁石の製造方法。
(8)成形直前又は成形中の水平磁場垂直成形装置で発生する磁場が0.5〜3kOeであることを特徴とする(4)〜(7)のラジアル異方性リング磁石の製造方法。
(9)1回又は複数回の磁場印加後、コイルよりの発生磁場を0〜0.5kOe未満にした状態で磁石粉を60〜120°+n×180°(nは0以上の整数)で回転させ、更にその前に印加した磁場の1/20〜1/3の大きさの磁場を印加し、印加後又は印加中成形することを特徴とする(4)〜(8)のラジアル異方性リング磁石の製造方法。
The present invention provides the following radial anisotropic ring magnet and a method for manufacturing the same to achieve the above object.
(1) A radially anisotropic ring magnet, wherein the angle formed between the central axis of the ring magnet and the direction in which the radial anisotropy is provided is 80 ° or more and 100 ° or less over the entire magnet.
(2) The radial anisotropic ring according to (1), wherein the average degree of orientation of the magnet powder in the radial direction on a plane perpendicular to the ring magnet center axis in the radial anisotropic ring magnet is 80% or more. magnet.
(3) The radial anisotropic ring magnet according to (1) or (2), wherein a value obtained by dividing a length of the ring magnet in a central axis direction by an inner diameter is 0.5 or more.
(4) A ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used as at least a part of the material of the core of the molding die for a cylindrical magnet, and the magnet powder filled in the mold cavity is formed into a magnet powder by a horizontal magnetic field vertical molding method. A method for producing a radially anisotropic ring magnet by applying an orientation magnetic field and molding, comprising the following steps (i) to (v):
(I) rotating the magnet powder by a predetermined angle in the circumferential direction of the mold while applying a magnetic field;
(Ii) After applying the magnetic field, rotate the magnet powder by a predetermined angle in the circumferential direction of the mold, and then apply the magnetic field again.
(Iii) rotating the magnetic field generating coil with respect to the magnet powder by a predetermined angle in the circumferential direction of the mold during application of the magnetic field;
(Iv) After applying the magnetic field, rotate the magnetic field generating coil by a predetermined angle in the circumferential direction of the mold with respect to the magnet powder, and then apply the magnetic field again.
(V) After applying a magnetic field to one coil pair using a plurality of coil pairs, at least one operation of applying a magnetic field to another coil pair is performed, and more than one direction is applied to the magnet powder in one direction. Applying a magnetic field from the direction, manufactured by pressure molding, the radial anisotropic ring magnet in which the angle between the central axis of the ring magnet and the radial anisotropy providing direction is 80 ° or more and 100 ° or less over the entire magnet. A method for producing a radially anisotropic ring magnet, comprising:
(5) The radially anisotropic ring magnet according to (4), wherein, when rotating the charged magnet powder, at least one of the core, the die, and the punch is rotated in the circumferential direction to rotate the charged magnet powder. Manufacturing method.
(6) When the filled magnet powder is rotated after applying the magnetic field, the value of the residual magnetization of the ferromagnetic core and the magnet powder is 50 G or more, and the magnet powder is rotated by rotating the core in the circumferential direction. (4) The method for producing a radial anisotropic ring magnet.
(7) The method for producing a radial anisotropic ring magnet according to (4) to (6), wherein the magnetic field generated in the horizontal magnetic field vertical forming step is 0.5 to 10 kOe.
(8) The method for producing a radially anisotropic ring magnet according to (4) to (7), wherein the magnetic field generated by the horizontal magnetic field vertical molding device immediately before or during molding is 0.5 to 3 kOe.
(9) After applying the magnetic field one or more times, the magnetic powder is rotated at 60 to 120 ° + n × 180 ° (n is an integer of 0 or more) with the magnetic field generated from the coil set to 0 to less than 0.5 kOe. (4) to (8), wherein a magnetic field having a magnitude of 1/20 to 1/3 of the magnetic field applied before is applied, and molding is performed after or during the application. Manufacturing method of ring magnet.
本発明によれば、性能に優れ、組み立て作業性がよいラジアル異方性リング磁石を廉価で大量に供給することができる。 According to the present invention, it is possible to supply a large amount of radially anisotropic ring magnets that are excellent in performance and good in assembling work at low cost.
本発明によれば、磁気特性の良好なラジアル異方性リング磁石を提供し得る。 According to the present invention, a radial anisotropic ring magnet having good magnetic properties can be provided.
以下、本発明につき更に詳しく説明する。なお、以下では、主としてNd−Fe−B系の円筒燒結磁石について説明するが、フェライト磁石、Sm−Co系希土類磁石及び各種ボンド磁石等の製造においても有効であり、Nd−Fe−B系磁石に限るものではない。 Hereinafter, the present invention will be described in more detail. In the following, a cylindrical sintered magnet of Nd-Fe-B system will be mainly described, but it is also effective in the manufacture of ferrite magnets, Sm-Co-based rare earth magnets, various bonded magnets, and the like. It is not limited to.
本発明のラジアル異方性リング磁石は、好ましくは成形直前に磁場を変位させ、加圧成形により製造され、かつ、磁石全般にわたり、図2に示したように、リング磁石の中心軸とラジアル異方性付与方向とのなす角度が80°以上100°以下である。この場合、リング磁石中心軸との垂直面上において、ラジアル方向に対する磁石粉の平均配向度が80%以上であることが好ましく、またリング磁石の中心軸方向の長さを内径で割った値が0.5以上であることが好ましい。 The radial anisotropic ring magnet of the present invention is preferably manufactured by press-molding by displacing the magnetic field immediately before molding, and over the entire magnet, as shown in FIG. The angle formed by the anisotropy direction is 80 ° or more and 100 ° or less. In this case, the average degree of orientation of the magnet powder in the radial direction on the plane perpendicular to the ring magnet center axis is preferably 80% or more, and the value obtained by dividing the length of the ring magnet in the center axis direction by the inner diameter is as follows. It is preferably 0.5 or more.
リング磁石中心軸とラジアル異方性付与方向とのなす角が80°以上100°以下の範囲から外れるに従い、ラジアル異方性リング磁石から生じる磁束量の余弦成分のみしか回転力に寄与しなくなり、モータトルクが小さくなるので、リング磁石中心軸とラジアル異方性付与方向とのなす角を80°以上100°以下にする。加えて、ラジアルリング磁石の実用の多くは、ACサーボモータ、DCブラシレスモータ等であるが、モータにラジアル異方性リング磁石が使われる際、コギング対策として磁石又はステータにスキューを施す。リング磁石中心軸とラジアル異方性付与方向とのなす角が80〜100°から外れる角度であると、スキューの効果が軽減されてしまう。特に、ラジアル異方性リング磁石のL寸方向の端部でリング磁石中心軸とラジアル異方性付与方向とのなす角が80〜100°からのずれが大きい場合、この傾向が顕著となる。スキューが施されている場合、端部と中央部で逆の極になる部分があり、N極とS極の磁束量の比がリニアーに徐々に変わっていくことによりコギングを低減する。しかし、端部でリング磁石中心軸とラジアル異方性付与方向とのなす角が80〜100°からのずれが大きく、中央部と逆極の端部磁束量が小さくなる。 As the angle between the ring magnet center axis and the radial anisotropy imparting direction deviates from the range of 80 ° or more and 100 ° or less, only the cosine component of the amount of magnetic flux generated from the radial anisotropic ring magnet contributes to the rotational force, Since the motor torque is reduced, the angle between the center axis of the ring magnet and the direction in which the radial anisotropy is provided is set to 80 ° or more and 100 ° or less. In addition, most of the practical use of the radial ring magnet is an AC servomotor, a DC brushless motor or the like. When a radial anisotropic ring magnet is used for the motor, the magnet or the stator is skewed as a countermeasure against cogging. If the angle between the center axis of the ring magnet and the direction in which the radial anisotropy is provided is out of the range of 80 to 100 °, the effect of skew is reduced. In particular, when the angle between the center axis of the ring magnet and the direction in which the radial anisotropy is formed at the end of the radially anisotropic ring magnet in the L dimension greatly deviates from 80 to 100 °, this tendency becomes remarkable. When the skew is applied, there is a portion where the poles are opposite at the end and the center, and cogging is reduced by gradually changing the ratio of the magnetic flux amount between the N pole and the S pole linearly. However, the angle between the center axis of the ring magnet and the direction of imparting radial anisotropy at the end portion is largely deviated from 80 to 100 °, and the amount of magnetic flux at the end portion between the central portion and the opposite pole decreases.
このように端部で特にずれが大きい磁石は、以下の製造方法の場合生じる。即ち、従来、ラジアル異方性リング磁石の成形においては、図1に示される垂直磁場垂直成形法により成形がなされるが、通常の方法では、先にも述べたが短尺のものしか製造できない。多段成形法では接合面より剥がれが生じ、磁極の乱れが生じるほか、分断されたり、剥がれ面に表面処理ができず、腐食の原因となる。図1で垂直磁場垂直成形プレスにより配向を行う際、長尺化を行うためにコアの飽和磁化以上の磁場を印加すると、コアの飽和後は上パンチの磁場コイルと下パンチの磁場コイルからの磁力線が、コアを介さずに対向してぶつかり、ラジアル方向に磁場が発生するものの、コアの中心線とラジアル異方性付与方向とのなす角が80〜100°から大きく逸脱し、この傾向は上下パンチ付近で大きくなる。このためリング磁石中心軸とラジアル異方性付与方向とのなす角が磁石端部で小さくなり、この方法はラジアルリング磁石の製造には適さない。 磁石 A magnet with a particularly large deviation at the end as described above occurs in the following manufacturing method. That is, conventionally, in forming a radially anisotropic ring magnet, forming is performed by a vertical magnetic field vertical forming method shown in FIG. 1. However, as described above, only a short one can be manufactured by a normal method. In the multi-stage molding method, peeling occurs from the joining surface, causing disturbance of the magnetic poles, and also causes separation, and surface treatment cannot be performed on the peeled surface, which causes corrosion. In FIG. 1, when the orientation is performed by a vertical magnetic field vertical forming press, when a magnetic field equal to or more than the saturation magnetization of the core is applied in order to lengthen the core, after the core is saturated, the magnetic field of the upper punch magnetic field coil and the lower punch magnetic field coil are reduced. Although the lines of magnetic force collide against each other without passing through the core and a magnetic field is generated in the radial direction, the angle between the center line of the core and the direction in which the radial anisotropy is imparted greatly deviates from 80 to 100 °, and this tendency is It becomes larger near the upper and lower punches. For this reason, the angle between the center axis of the ring magnet and the direction in which the radial anisotropy is provided becomes small at the end of the magnet, and this method is not suitable for manufacturing a radial ring magnet.
従って、磁石全般にわたり、リング磁石の中心軸とラジアル異方性付与方向とのなす角度が80°以上100°以下であることが必要である。
更に、磁石の配向度fは以下の式で算出される。
f=Br/[Is×{ρ/ρ0×(1−α)}2/3]
Br:残留磁束密度
Is:飽和磁化
ρ:焼結体密度
ρ0:理論密度
α:非磁性相の体積率
Therefore, it is necessary that the angle between the central axis of the ring magnet and the direction in which the radial anisotropy is provided is 80 ° or more and 100 ° or less over the entire magnet.
Further, the degree of orientation f of the magnet is calculated by the following equation.
f = Br / [Is × {ρ / ρ 0 × (1-α)} 2/3 ]
Br: residual magnetic flux density Is: saturation magnetization ρ: sintered body density ρ 0 : theoretical density α: volume fraction of non-magnetic phase
配向度が低いと、磁石より発生する磁束量が少なくなり、モータトルクが小さくなり、また、そればかりか着磁性が損なわれるおそれがあり、モータの着磁の際には、モータのロータを使っての着磁が多く、着磁性の低下は大きな問題となる場合がある。従って、ラジアル異方性リング磁石では、磁石粉の平均配向度は80%以上であることが好ましく、より好ましくは80〜100%である。 If the degree of orientation is low, the amount of magnetic flux generated from the magnet will be small, and the motor torque will be small.In addition, the magnetization may be impaired. In many cases, the decrease in magnetization may be a serious problem. Therefore, in the radial anisotropic ring magnet, the average degree of orientation of the magnet powder is preferably 80% or more, more preferably 80 to 100%.
また、組み立て作業性を考慮すると、リング磁石の中心方向の長さをリング磁石の内径で割った値(L寸/磁石内径)は0.5以上、好ましくは0.5〜50とするとよい。 Also, in consideration of assembly workability, the value obtained by dividing the length of the ring magnet in the center direction by the inner diameter of the ring magnet (L dimension / magnet inner diameter) is 0.5 or more, preferably 0.5 to 50.
このようなラジアルリング磁石の製造方法は以下の水平磁場垂直成形法を採用することが好ましい。ここで、図3は、円筒磁石の成形時、磁場中配向を行うための水平磁場垂直成形装置の説明図であり、特にモータ用磁石の水平磁場垂直成形機である。ここで、図1の場合と同様、1は成形機架台、2は配向磁場コイル、3はダイスを示し、また5aはコアを示す。6は上パンチ、7は下パンチ、8は充填磁石粉であり、また9はポールピースを示す。 は As a method for manufacturing such a radial ring magnet, it is preferable to adopt the following horizontal magnetic field vertical forming method. Here, FIG. 3 is an explanatory view of a horizontal magnetic field vertical forming apparatus for performing orientation in a magnetic field when forming a cylindrical magnet, and particularly a horizontal magnetic field vertical forming machine for a motor magnet. Here, as in the case of FIG. 1, 1 is a molding machine stand, 2 is an orientation magnetic field coil, 3 is a die, and 5a is a core. 6 is an upper punch, 7 is a lower punch, 8 is a charged magnetic powder, and 9 is a pole piece.
本発明においては、上記コア5aの少なくとも一部、好ましくは全体を飽和磁束密度5kG以上、好ましくは5〜24kG、更に好ましくは10〜24kGの強磁性体にて形成する。かかるコア材質としては、Fe系材料、Co系材料及びそれらの合金材料等の素材を用いた強磁性体が挙げられる。
In the present invention, at least a part, preferably the whole, of the
このように、飽和磁束密度5kG以上を有する強磁性体をコアに使用すると、磁石粉に配向磁界を印加する場合、磁束は強磁性体に垂直に入ろうとするためラジアルに近い磁力線を描く。従って、図4aに示されるように、磁石粉充填部の磁界方向をラジアル配向に近づけることができる。これに対し、従来はコア5b全体を非磁性又は磁石粉と同等の飽和磁束密度を有した材料を用いており、この場合、磁力線は図4bに示したように、互いに平行で、図において中央付近はラジアル方向であるが、上側及び下側に向うにつれてコイルによる配向磁場方向となる。コアを強磁性体で形成してもコアの飽和磁束密度が5kG未満の場合、コアは容易に飽和してしまい、強磁性コアを用いたにもかかわらず、磁場は図4bに近い状態となる。加えて、5kG未満では充填磁石粉の飽和密度(磁石の飽和磁束密度×充填率)と等しくなり、充填磁石粉及び強磁性コア内での磁束の方向はコイルの磁界方向に等しくなってしまう。 Thus, when a ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used for the core, when an orientation magnetic field is applied to the magnet powder, the magnetic flux draws lines of magnetic force close to radial because it tends to enter the ferromagnetic material perpendicularly. Therefore, as shown in FIG. 4A, the magnetic field direction of the magnet powder filling portion can be made closer to the radial orientation. On the other hand, conventionally, the core 5b is entirely made of a material having a non-magnetic or a saturation magnetic flux density equivalent to that of the magnet powder. In this case, the lines of magnetic force are parallel to each other as shown in FIG. The vicinity is the radial direction, but the direction of the orientation magnetic field by the coil becomes higher and lower. Even when the core is formed of a ferromagnetic material, if the saturation magnetic flux density of the core is less than 5 kG, the core is easily saturated, and the magnetic field is close to that of FIG. . In addition, if it is less than 5 kG, it becomes equal to the saturation density of the charged magnet powder (saturation magnetic flux density of the magnet × filling rate), and the direction of the magnetic flux in the charged magnet powder and the ferromagnetic core becomes equal to the magnetic field direction of the coil.
また、コアの一部に5kG以上の強磁性体を用いた際も上記と同様な効果が得られ有効であるが、全体が強磁性体であることが好ましい。 Also, when a ferromagnetic material of 5 kG or more is used for a part of the core, the same effect as described above can be obtained and effective, but it is preferable that the whole is a ferromagnetic material.
ただ、コア材質を単に強磁性体にて形成するだけでは、コイルによる配向磁場方向に対し垂直方向近傍方向でラジアル配向とならない。磁場中に強磁性体がある場合、磁束は強磁性体に垂直に入ろうとし強磁性体に引き寄せられるため、強磁性体の磁場方向面では磁束密度が上昇し、垂直方向では磁束密度が低下する。このため、金型内に強磁性体コアを配した場合、充填磁石粉において強磁性体コアの磁場方向部では強い磁場により良好な配向が得られ、垂直方向部ではあまり配向しない。これを補うために磁石粉をコイルによる発生磁場に対し、印加中又は印加後、相対的に回転させ、不完全配向部を磁場方向の強い磁場部で磁場を変化させて再度配向することで、良好な磁石が得られる。より好ましくは印加後又は最初に印加した磁場の1/3以下の磁場中に相対的に回転させるとよい。なお、ここではじめに配向した部分に関しては、その後の配向時に垂直方向部となることがあり得るが、この部分の磁束密度は小さいので、最初の良好な配向はあまり乱されない。 However, simply forming the core material from a ferromagnetic material does not result in radial orientation in a direction near the direction perpendicular to the direction of the orientation magnetic field by the coil. When there is a ferromagnetic material in the magnetic field, the magnetic flux tries to enter the ferromagnetic material perpendicularly and is attracted to the ferromagnetic material. I do. For this reason, when the ferromagnetic core is disposed in the mold, a good orientation is obtained by the strong magnetic field in the magnetic field direction of the ferromagnetic core in the filled magnet powder, and the orientation is not so much in the vertical direction. To compensate for this, the magnet powder is relatively rotated during or after application to the magnetic field generated by the coil, and the incompletely oriented part is reoriented by changing the magnetic field with a strong magnetic field part in the magnetic field direction, Good magnets can be obtained. More preferably, it is preferable to relatively rotate the magnetic field after application or in a magnetic field of 1/3 or less of the magnetic field initially applied. Note that the initially oriented portion may become a vertical portion during subsequent orientation, but since the magnetic flux density in this portion is low, the initial good orientation is not disturbed much.
ここで、磁石粉をコイルによる発生磁場に対し、相対的に回転させる方法としては、下記(i)〜(v)
(i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
(ii)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
(iii)磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる、
(iv)磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
(v)複数のコイル対を用い、1つのコイル対に磁場印加した後、他のコイル対に磁場を印加する
の操作のうち少なくとも一の操作を1回又は繰り返して磁場を変化させて複数回行うものである。
Here, as a method of rotating the magnet powder relatively to the magnetic field generated by the coil, the following (i) to (v)
(I) rotating the magnet powder by a predetermined angle in the circumferential direction of the mold while applying a magnetic field;
(Ii) After applying the magnetic field, rotate the magnet powder by a predetermined angle in the circumferential direction of the mold, and then apply the magnetic field again.
(Iii) rotating the magnetic field generating coil with respect to the magnet powder by a predetermined angle in the circumferential direction of the mold during application of the magnetic field;
(Iv) After applying the magnetic field, rotate the magnetic field generating coil by a predetermined angle in the circumferential direction of the mold with respect to the magnet powder, and then apply the magnetic field again.
(V) Using a plurality of coil pairs, applying a magnetic field to one coil pair, and changing the magnetic field by repeating at least one of the operations of applying a magnetic field to another coil pair once or multiple times to change the magnetic field. Is what you do.
なお、充填磁石粉の回転については、図5で示すように磁石粉をコイルによる発生磁場方向に対し、相対的に回転できれば、配向磁場コイル2、コア5a、ダイス3、上下パンチ6,7のいずれかを回転させてもよい。このうち特に、磁場印加後、充填磁石粉を回転させる際、強磁性コア及び磁石粉の残留磁化を50G以上、好ましくは100G以上存在させておけば、磁石粉は強磁性コアとの間に磁気的な吸引力が発生するため、強磁性コアを回転させるだけで磁石粉も回転させることができる。
In addition, as for the rotation of the charged magnet powder, as shown in FIG. 5, if the magnet powder can be rotated relatively to the direction of the magnetic field generated by the coil, if the orientation
複数のコイル対を用い一方に磁場印加後、他方に磁場印加させても、磁場方向と磁石粉を相対的に回転させたのと同義であるため、この方法を用いても同様な効果が得られる。 Using a plurality of coil pairs, applying a magnetic field to one and then applying a magnetic field to the other is synonymous with rotating the magnetic powder relative to the direction of the magnetic field, so the same effect can be obtained using this method. Can be
成形直前の磁場印加前の回転においては、回転後の印加磁場が小さいため、回転中に大きな磁場が印加されると最後の磁場印加の効果が現れなくなる。従って回転中の磁場は、0〜0.5kOeが好ましい。より好ましくは0.3kOe以下で、典型的には無磁場が好ましい。回転角度については回転前の磁場印加により乱された部位は回転前の磁場方向に対し垂直方向であるので、この部位の乱れを改善するために回転角度は、好ましくは60〜120°+n×180°(nは0以上の整数)、より好ましくは90°+n×180°(nは0以上の整数)±10°。典型的には90°+n×180°(nは0以上の整数)。印加磁場強度は、回転前の磁場強度が、強いと磁場方向に対し垂直方向でのラジアル配向からの乱れが大きいので、回転後の磁場強度も回転前の磁場が弱い場合よりも大きくしなければ、配向の乱れは改善されず、大きすぎると磁場方向の垂直方向にラジアル配向からの乱れが発生してしまうため、磁場は回転前に印加した磁場の1/20〜1/3。より好ましくは1/10〜1/3にすることがよい。 回 転 In rotation before applying a magnetic field immediately before molding, the applied magnetic field after rotation is small, so if a large magnetic field is applied during rotation, the effect of the last magnetic field application will not appear. Therefore, the magnetic field during rotation is preferably 0 to 0.5 kOe. More preferably 0.3 kOe or less, and typically no magnetic field is preferred. Regarding the rotation angle, since the part disturbed by the application of the magnetic field before rotation is perpendicular to the direction of the magnetic field before rotation, the rotation angle is preferably 60 to 120 ° + nx180 to improve the disturbance of this part. ° (n is an integer of 0 or more), more preferably 90 ° + n × 180 ° (n is an integer of 0 or more) ± 10 °. Typically 90 ° + n × 180 ° (n is an integer of 0 or more). When the applied magnetic field strength is strong, the magnetic field strength before rotation is strong, and the disturbance from the radial orientation in the direction perpendicular to the magnetic field direction is large, so the magnetic field strength after rotation must be larger than that when the magnetic field before rotation is weak. The disturbance of the orientation is not improved, and if it is too large, disturbance from the radial orientation occurs in the direction perpendicular to the direction of the magnetic field. Therefore, the magnetic field is 1/20 to 1/3 of the magnetic field applied before rotation. More preferably, it should be 1/10 to 1/3.
ここで、水平磁場垂直成形装置で発生する磁場が大きい場合、図4aの5aのコアが飽和してしまい、図4bに近い状態になり、配向磁界が径方向配向に近くなり、ラジアル配向とならなくなるため、磁場は10kOe以下にすることが好ましい。強磁性コアを用いると磁束がコアに集中するため、コア周辺では、コイルによる磁場より大きな磁場が得られる。しかし、磁場があまり小さいとコア周辺においても配向に十分な磁場が得られなくなるため、0.5kOe以上が好ましい。前述のように強磁性体周辺では磁束が集まり、磁場が大きくなるため、ここで言う水平磁場垂直成形装置で発生する磁場とは、強磁性体から十分に離れた場所における磁場、又は、強磁性コアを取り除いて測定したときの磁場の値を意味する。 Here, when the magnetic field generated by the horizontal magnetic field vertical shaping device is large, the core of 5a in FIG. 4a is saturated, and becomes a state close to FIG. 4b. Therefore, the magnetic field is preferably set to 10 kOe or less. When a ferromagnetic core is used, the magnetic flux concentrates on the core, so that a magnetic field larger than the magnetic field generated by the coil is obtained around the core. However, if the magnetic field is too small, a magnetic field sufficient for orientation cannot be obtained even around the core, so that the magnetic field is preferably 0.5 kOe or more. As described above, magnetic flux gathers around the ferromagnetic material and the magnetic field increases, so the magnetic field generated by the horizontal magnetic field vertical shaping device here is the magnetic field at a place sufficiently away from the ferromagnetic material, or The value of the magnetic field when the core is removed is measured.
磁石粉をコイルによる発生磁場方向に対し相対的に回転させ、不完全配向部を磁場方向の強い磁場より再度配向することができ、はじめに配向した部分に関しては、その後の配向時に垂直方向部となることがあり得るが、この部分の磁束密度は小さいので、最初の良好な配向はあまり乱されないことを説明したが、発生磁場が比較的大きいとき、部分的な乱れが生じる場合がある。このような場合は、成形直前、磁場をかけない状態で、コイル磁場に対し、相対的に90°程度磁石粉を回転させた後、成形時より低い磁場、好ましくは0.5〜3kOeの磁場を印加し、成形することにより、磁場方向のみ再配向でき、より完全なラジアル配向が得られる。成形前の水平磁場垂直成形装置で発生する磁場が3kOeを超えてしまうと、前述のようにこれ以上大きな磁場を印加すると良好な配向をすでに得られている部分に不必要な磁場がかかるため好ましくなく、0.5kOe未満では、磁場が弱すぎて配向が改善されないため、0.5〜3kOeとすることが好ましい。
更に、本発明では、数回にわたり配向させるとよいが、多段階で磁場を下げていくことが好ましい。特に3回にわたり配向させることが好ましい。5回までにした方が特性の点から好ましい。
The magnet powder can be rotated relative to the direction of the magnetic field generated by the coil, and the incompletely oriented part can be re-oriented with a strong magnetic field in the direction of the magnetic field. Although the magnetic flux density in this area is small, it has been explained that the initial good orientation is not disturbed much. However, when the generated magnetic field is relatively large, partial disturbance may occur. In such a case, immediately before molding, the magnetic powder is rotated by about 90 ° relative to the coil magnetic field in a state where no magnetic field is applied, and then a magnetic field lower than that during molding, preferably a magnetic field of 0.5 to 3 kOe. By applying and shaping, only the direction of the magnetic field can be reoriented, and a more complete radial orientation can be obtained. If the magnetic field generated by the horizontal magnetic field vertical molding device before molding exceeds 3 kOe, an unnecessary magnetic field is applied to a portion where good orientation has already been obtained when a larger magnetic field is applied as described above. If it is less than 0.5 kOe, the magnetic field is too weak and the orientation is not improved.
Further, in the present invention, the alignment may be performed several times, but it is preferable to lower the magnetic field in multiple steps. In particular, it is preferable to perform the alignment three times. It is more preferable to perform it up to 5 times from the viewpoint of characteristics.
本発明は、上記のように成形するものであるが、それ以外は通常の水平磁場垂直成形法により磁石粉に配向磁界を印加して、50〜2000kgf/cm2の加圧範囲で成形し、更に不活性ガス下で1000〜1200℃で焼結し、必要により時効処理、加工処理等を施し、焼結磁石を得ることができる。ここで、本発明においては、1回の給粉、1回の加圧で所用軸長の磁石を得ることができるが、複数回の加圧により磁石を得るようにしてもよい。 In the present invention, the molding is performed as described above. Otherwise, an orientation magnetic field is applied to the magnet powder by a normal horizontal magnetic field vertical molding method, and the magnetic powder is molded in a pressure range of 50 to 2000 kgf / cm 2 , Furthermore, sintering is performed at 1000 to 1200 ° C. under an inert gas, and aging treatment, processing, and the like are performed as necessary to obtain a sintered magnet. Here, in the present invention, a magnet having a required axial length can be obtained by one powder supply and one press, but the magnet may be obtained by a plurality of presses.
なお、磁石粉としては、特に制限されるものではなく、Nd−Fe−B系の円筒磁石を製造する場合に好適であるほか、フェライト磁石、Sm−Co系希土類磁石、各種ボンド磁石等の製造においても有効であるが、いずれも平均粒径0.1〜10μm、特に1〜8μmの合金粉を用いて成形することが好ましい。 The magnet powder is not particularly limited, and is suitable for producing an Nd-Fe-B-based cylindrical magnet, as well as producing ferrite magnets, Sm-Co-based rare earth magnets, various bond magnets, and the like. However, it is preferable to use an alloy powder having an average particle size of 0.1 to 10 μm, particularly 1 to 8 μm.
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例、比較例]
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[Examples and Comparative Examples]
それぞれ純度99.7重量%のNd、Dy、Fe、Co、M(MはAl、Si、Cu)と純度99.5重量%のBを用い、真空溶解炉で溶解鋳造してNd2Fe14B系磁石合金(Nd31.5Dy2Fe62Co3B1Cu0.2Al0.3Si1(重量%))インゴットを作製した。このインゴットをジョウクラッシャーで粗粉砕し、更に窒素気流中ジェットミル粉砕により平均粒径3.5μmの微粉末を得た。この粉末を飽和磁束密度20kGの強磁性体コア(S50C)を配置し、図3の水平磁場垂直成形装置にて成形を行った。 Using Nd, Dy, Fe, Co, M (M is Al, Si, Cu) having a purity of 99.7% by weight and B having a purity of 99.5% by weight, melting and casting in a vacuum melting furnace to obtain Nd 2 Fe 14 A B-based magnet alloy (Nd 31.5 Dy 2 Fe 62 Co 3 B 1 Cu 0.2 Al 0.3 Si 1 (wt%)) ingot was produced. The ingot was coarsely pulverized with a jaw crusher, and further subjected to jet mill pulverization in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was molded with a ferromagnetic core (S50C) having a saturation magnetic flux density of 20 kG by a horizontal magnetic field vertical molding apparatus shown in FIG.
実施例1として、コイルの発生磁場4kOeの磁場中において配向させた後、コイルを90°回転させ、1kOeの配向磁場を付与し、500kgf/cm2の成形圧にて成形した。この際の金型形状はφ30mm×φ17mm、キャビティ60mm、磁石粉の充填率33%であった。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石φ26mm×φ19mm×L27mm(L寸/内径=1.4)で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:12.1kG、iHc:15kOe、配向度89%であった。また、リング磁石の中心軸とラジアル異方性付与方向とのなす角度がLの中心で87°、上3mmでは91°、下3mmでは89°であった。 In Example 1, after the coil was oriented in a magnetic field of 4 kOe generated by the coil, the coil was rotated 90 °, an orientation magnetic field of 1 kOe was applied, and molding was performed at a molding pressure of 500 kgf / cm 2 . The shape of the mold at this time was φ30 mm × φ17 mm, the cavity was 60 mm, and the filling ratio of the magnet powder was 33%. The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. With the radial magnet φ26 mm × φ19 mm × L27 mm (L dimension / inner diameter = 1.4) obtained as described above, a magnet of 2 mm square was cut out from the direction of the magnetic field in the center of the magnet, and the magnetism was measured by VSM. : 12.1 kG, iHc: 15 kOe, degree of orientation 89%. The angle formed by the center axis of the ring magnet and the direction of imparting radial anisotropy was 87 ° at the center of L, 91 ° at 3 mm above, and 89 ° at 3 mm below.
実施例2として、実施例1と同様な金型及び磁石粉を用い、磁石粉充填率32%、コイルの発生磁場4kOeの磁場中において配向させた後、ダイスとコア及びパンチを90°回転させ、1.5kOeの配向磁場を付与し、500kgf/cm2の成形圧にて成形した。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石φ26mm×φ19mm×L27mm(L寸/内径=1.4)で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:12.0kG、iHc:15kOe、配向度88%であった。 In Example 2, the same die and magnet powder as in Example 1 were used, and the orientation was performed in a magnetic field of a magnetic powder filling rate of 32% and a magnetic field of 4 kOe generated by the coil. Then, the die, the core, and the punch were rotated by 90 °. , And an orientation magnetic field of 1.5 kOe was applied, and molding was performed at a molding pressure of 500 kgf / cm 2 . The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. With the radial magnet φ26 mm × φ19 mm × L27 mm (L dimension / inner diameter = 1.4) obtained as described above, a 2 mm square magnet was cut out from the direction of the magnetic field in the center of the magnet, and the magnetism was measured by VSM. : 12.0 kG, iHc: 15 kOe, orientation degree: 88%.
実施例3として、実施例1と同様な金型及び磁石粉を用い、磁石粉充填率32%とし、コイルの発生磁場4.5kOeの磁場中において配向させた後、先端部の残留磁化が0.2kGのコアを90°回転させた。このときの磁石粉の残留磁化は600Gであった。その後0.7kOeの配向磁場を付与し、500kgf/cm2の成形圧にて成形した。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石φ26mm×φ19mm×L27mm(L寸/内径=1.4)で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:11.9kG、iHc:15kOe、配向度87%であった。 In Example 3, the same mold and magnet powder as in Example 1 were used, the magnetic powder filling rate was set to 32%, and the coil was oriented in a magnetic field of 4.5 kOe generated by the coil. The 2 kG core was rotated 90 °. The residual magnetization of the magnet powder at this time was 600G. Thereafter, an orientation magnetic field of 0.7 kOe was applied, and molding was performed at a molding pressure of 500 kgf / cm 2 . The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. With the radial magnet φ26 mm × φ19 mm × L27 mm (L dimension / inner diameter = 1.4) obtained as described above, a 2 mm square magnet was cut out from the direction of the magnetic field in the center of the magnet, and the magnetism was measured by VSM. : 11.9 kG, iHc: 15 kOe, and orientation degree 87%.
実施例1,2,3の磁石は、その後加工を行い、φ25mm×φ20mm×L25mmの円筒磁石とした。 磁石 The magnets of Examples 1, 2, and 3 were then processed into cylindrical magnets of φ25 mm × φ20 mm × L25 mm.
上記の円筒磁石を図6に示す着磁機にて6極、20°でスキュー着磁し、着磁後の磁石を磁石と同一高さの図7に示す構成のステータ内に組み込んだモータを作製した。
ここで、11は円筒磁石、20は着磁機、21は着磁機磁極歯、22は着磁機コイル、30は3相モータ、31はステータ歯、32はコイルである。
A motor in which the above cylindrical magnet is skew-magnetized at 6 poles and 20 ° by a magnetizing machine shown in FIG. 6 and the magnetized magnet is incorporated in a stator having the same height as the magnet and having a configuration shown in FIG. Produced.
Here, 11 is a cylindrical magnet, 20 is a magnetizer, 21 is magnetic pole teeth of a magnetizer, 22 is a magnetizer coil, 30 is a three-phase motor, 31 is a stator tooth, and 32 is a coil.
実施例1のモータを5000rpmで回転させた際の誘起電圧及び同モータを5rpmで回転させた際の荷重計によるトルクリップルの大きさを測定した。その他の実施例においても同様に測定した。表1に誘起電圧の絶対値の最大及びトルクリップルの最大最小の差を示す。 (5) The induced voltage when the motor of Example 1 was rotated at 5000 rpm and the magnitude of the torque ripple by a load meter when the motor was rotated at 5 rpm were measured. The same measurement was performed in other examples. Table 1 shows the difference between the maximum value of the absolute value of the induced voltage and the maximum value and the minimum value of the torque ripple.
実施例4として、実施例1と同じコイルを回転させることができる水平磁場垂直成形装置を用い、10kOeの磁場中において90°回転させながら配向を行い、その後、無磁場で90°回転させた後で1.5kOeの磁場中で再び配向させながら500kgf/cm2の成形圧にて成形した。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石φ26mm×φ19mm×L27mm(L寸/内径=1.4)で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:12.0kG、iHc:15kOe、配向度88%であった。実施例1と同一形状に磁石を加工し、モータ特性を測定した。 Example 4 As Example 4, using a horizontal magnetic field vertical forming apparatus capable of rotating the same coil as in Example 1, orientation was performed while rotating 90 ° in a magnetic field of 10 kOe, and then, after rotating 90 ° without a magnetic field, At a molding pressure of 500 kgf / cm 2 while reorienting in a magnetic field of 1.5 kOe. The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. With the radial magnet φ26 mm × φ19 mm × L27 mm (L dimension / inner diameter = 1.4) obtained as described above, a 2 mm square magnet was cut out from the direction of the magnetic field in the center of the magnet, and the magnetism was measured by VSM. : 12.0 kG, iHc: 15 kOe, orientation degree: 88%. A magnet was machined into the same shape as in Example 1, and the motor characteristics were measured.
比較例1として、金型形状及びコア材質は実施例1と同じとし、ダイス材質は飽和磁束密度15kGのSKD11材を用いた垂直磁場垂直成形装置を使い、磁石粉の充填率は33%として、上下のコイルより30kOeのパルス磁場を対向するように印加した。その後500kgf/cm2の成形圧にて成形した。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石は、上下部φ27mm×φ19.5mm、中央部φ26mm×φ18.7mm×L27mmで、平均のL寸/内径=1.35で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:11.8kG、iHc:15kOe、配向度87%であった。磁石の上下3mmではリング磁石の中心軸とラジアル異方性付与方向とのなす角度が上は120°、下は60°であった。実施例1と同一形状に磁石を加工し、この磁石を実施例1と同様モータ特性を測定した。 As Comparative Example 1, the mold shape and the core material were the same as those in Example 1, the die material was a vertical magnetic field vertical molding device using a SKD11 material having a saturation magnetic flux density of 15 kG, and the filling rate of the magnet powder was 33%. A pulse magnetic field of 30 kOe was applied from upper and lower coils so as to face each other. Thereafter, molding was performed at a molding pressure of 500 kgf / cm 2 . The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. The radial magnet thus obtained has an upper and lower part of φ27 mm × φ19.5 mm, a central part of φ26 mm × φ18.7 mm × L27 mm, an average L dimension / inner diameter = 1.35, and a 2 mm square from the magnet central part magnetic field direction. Was cut out and subjected to magnetic measurement using a VSM. As a result, Br: 11.8 kG, iHc: 15 kOe, and the degree of orientation: 87%. At 3 mm above and below the magnet, the angle between the center axis of the ring magnet and the direction in which the radial anisotropy was provided was 120 ° at the top and 60 ° at the bottom. A magnet was machined into the same shape as in Example 1, and the magnet was measured for motor characteristics in the same manner as in Example 1.
比較例2として、金型形状及びコア材質は実施例1と同じとし、ダイス材質は飽和磁束密度15kGのSKD11材を用いた垂直磁場垂直成形装置を使い、磁石粉の充填率は28%として、上下のコイルより3kOeのパルス磁場を対向するように印加した。その後300kgf/cm2の成形圧にて成形した。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石は、φ25.8mm×φ19.5mm×L27mmで平均のL寸/内径=1.4で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:9.5kG、iHc:16kOe、配向度70%であった。実施例1と同一形状に磁石を加工し、モータ特性を測定した。 As Comparative Example 2, the mold shape and the core material were the same as those in Example 1, the die material was a vertical magnetic field vertical molding device using a SKD11 material having a saturation magnetic flux density of 15 kG, and the filling rate of the magnet powder was 28%. A pulse magnetic field of 3 kOe was applied from upper and lower coils so as to face each other. Thereafter, molding was performed at a molding pressure of 300 kgf / cm 2 . The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. The radial magnet obtained in this manner is 25.8 mm × 19.5 mm × L27 mm, average L dimension / inner diameter = 1.4, a 2 mm square magnet is cut out from the direction of the magnetic field at the center of the magnet, and the magnet is magnetized by VSM. As a result of measurement, Br: 9.5 kG, iHc: 16 kOe, and the degree of orientation were 70%. A magnet was machined into the same shape as in Example 1, and the motor characteristics were measured.
比較例3として、実施例1と同じ成形条件で4kOeの磁場で配向させ、その後は同一とせず、回転させずにそのまま磁界中500kgf/cm2の成形圧にて成形した。成形体はArガス中1090℃で1時間焼結を行い、引き続き490℃で1時間の熱処理を行った。このようにして得られたラジアル磁石φ26mm×φ19mm×L27mm(L寸/内径=1.4)で、磁石中央部磁場方向から2mm角の磁石を切り出し、VSMにて磁気測定を行ったところ、Br:12.3kG、iHc:15kOe、配向度90%であった。次に磁石中央部磁場方向からリング中心軸垂直面上90°ずれた方向より同形状の2mm角の磁石を切り出し、磁気測定を行ったところ、Br:2.5kG、iHc:15.8kOe、配向度18%であった。実施例1と同一形状に磁石を加工し、モータ特性を測定した。
これらの結果を表1に示す。
As Comparative Example 3, orientation was performed with a magnetic field of 4 kOe under the same molding conditions as in Example 1, and thereafter, molding was performed without being rotated at the molding pressure of 500 kgf / cm 2 in the magnetic field without rotation. The molded body was sintered in Ar gas at 1090 ° C. for 1 hour, and subsequently heat-treated at 490 ° C. for 1 hour. With the radial magnet φ26 mm × φ19 mm × L27 mm (L dimension / inner diameter = 1.4) obtained as described above, a 2 mm square magnet was cut out from the direction of the magnetic field in the center of the magnet, and the magnetism was measured by VSM. : 12.3 kG, iHc: 15 kOe, orientation degree 90%. Next, a 2 mm square magnet of the same shape was cut out from a direction shifted 90 ° on the plane perpendicular to the ring center axis from the direction of the magnetic field at the center of the magnet, and the magnetism was measured. The degree was 18%. A magnet was machined into the same shape as in Example 1, and the motor characteristics were measured.
Table 1 shows the results.
表1より、比較例に対し実施例ではトルクに相応する誘起電圧が大きく改善されており、本発明がモータ用磁石の製造方法として優れた方法であることがわかる。
また、図8は実施例1、図9は比較例3の着磁後のロータ磁石の表面磁束を測定したものである。実施例は比較例に対し各極が均一化しており、かつ極の面積が大きくなっており、実施例は大きな磁場を均一に発生できることがわかる。
From Table 1, it can be seen that the induced voltage corresponding to the torque is greatly improved in the example as compared with the comparative example, and that the present invention is an excellent method as a method for manufacturing a magnet for a motor.
8 shows the measurement of the surface magnetic flux of the magnetized rotor magnet of Example 1 and FIG. 9 shows the measurement of the surface magnetic flux of the magnetized rotor of Comparative Example 3. In the example, each pole is made uniform and the area of the pole is larger than that of the comparative example, and it can be seen that the example can generate a large magnetic field uniformly.
1 成形機架台
2 配向磁場コイル
3 ダイス
5a コア
6 上パンチ
7 下パンチ
8 充填磁石粉
9 ポールピース
11 円筒磁石
20 着磁機
21 着磁機磁極歯
22 着磁機コイル
30 3相モータ
31 ステータ歯
32 コイル
DESCRIPTION OF
Claims (9)
(i)磁場印加中、磁石粉を金型周方向に所定角度回転させる、
(ii)磁場印加後、磁石粉を金型周方向に所定角度回転させ、その後再び磁場を印加する、
(iii)磁場印加中、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させる、
(iv)磁場印加後、磁場発生コイルを磁石粉に対し金型周方向に所定角度回転させ、その後再び磁場を印加する、
(v)複数のコイル対を用い、1つのコイル対に磁場印加した後、他のコイル対に磁場を印加する
の操作のうち少なくとも一の操作を行い、磁石粉に対し一方向よりも多くの方向から磁場を印加して、加圧成形で製造され、磁石全般にわたりリング磁石の中心軸とラジアル異方性付与方向とのなす角度が80°以上100°以下であるラジアル異方性リング磁石を得ることを特徴とするラジアル異方性リング磁石の製造方法。 A ferromagnetic material having a saturation magnetic flux density of 5 kG or more is used as at least a part of the material of the core of the molding die for cylindrical magnets. The magnet powder filled in the mold cavity is subjected to an orientation magnetic field by a horizontal magnetic field vertical molding method. A method for producing a radially anisotropic ring magnet by applying and molding, comprising the following steps (i) to (v):
(I) rotating the magnet powder by a predetermined angle in the circumferential direction of the mold while applying a magnetic field;
(Ii) After applying the magnetic field, rotate the magnet powder by a predetermined angle in the circumferential direction of the mold, and then apply the magnetic field again.
(Iii) rotating the magnetic field generating coil with respect to the magnet powder by a predetermined angle in the circumferential direction of the mold during application of the magnetic field;
(Iv) After applying the magnetic field, rotate the magnetic field generating coil by a predetermined angle in the circumferential direction of the mold with respect to the magnet powder, and then apply the magnetic field again.
(V) After applying a magnetic field to one coil pair using a plurality of coil pairs, at least one operation of applying a magnetic field to another coil pair is performed, and more than one direction is applied to the magnet powder in one direction. A radial anisotropic ring magnet manufactured by pressure molding by applying a magnetic field from the direction and having an angle between the central axis of the ring magnet and the radial anisotropy imparting direction of 80 ° or more and 100 ° or less over the entire magnet. A method for producing a radially anisotropic ring magnet, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003302486A JP4133686B2 (en) | 2002-08-29 | 2003-08-27 | Radial anisotropic ring magnet and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002250657 | 2002-08-29 | ||
JP2003302486A JP4133686B2 (en) | 2002-08-29 | 2003-08-27 | Radial anisotropic ring magnet and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008102227A Division JP4650643B2 (en) | 2002-08-29 | 2008-04-10 | Manufacturing method of radial anisotropic ring magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004111944A true JP2004111944A (en) | 2004-04-08 |
JP4133686B2 JP4133686B2 (en) | 2008-08-13 |
Family
ID=32301281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003302486A Expired - Fee Related JP4133686B2 (en) | 2002-08-29 | 2003-08-27 | Radial anisotropic ring magnet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4133686B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005104337A1 (en) * | 2004-04-20 | 2005-11-03 | Aichi Steel Corporation | Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor |
JP2005310853A (en) * | 2004-04-19 | 2005-11-04 | Mitsubishi Electric Corp | Annular sintered magnet and manufacturing method therefor |
WO2005124796A1 (en) * | 2004-06-22 | 2005-12-29 | Shin-Etsu Chemical Co., Ltd. | Radial anisotropic cylindrical sintered magnet and permanent magnet motor |
WO2005124800A1 (en) * | 2004-06-22 | 2005-12-29 | Shin-Etsu Chemical Co., Ltd. | Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet |
WO2007069454A1 (en) | 2005-12-13 | 2007-06-21 | Shin-Etsu Chemical Co., Ltd. | Process for producing radially anisotropic magnet |
US7498914B2 (en) * | 2004-12-20 | 2009-03-03 | Harmonic Drive Systems Inc. | Method for magnetizing ring magnet and magnetic encoder |
JP2009239287A (en) * | 2008-03-27 | 2009-10-15 | Shenzhen Radimag Technology Co Ltd | Method and apparatus for manufacturing radially oriented annular magnet |
JP2010258181A (en) * | 2009-04-24 | 2010-11-11 | Mitsubishi Electric Corp | Anisotropic magnet and method of manufacturing the same |
JP2011049440A (en) * | 2009-08-28 | 2011-03-10 | Hitachi Metals Ltd | Method for manufacturing r-t-b based permanent magnet |
JP2011049441A (en) * | 2009-08-28 | 2011-03-10 | Hitachi Metals Ltd | Method for manufacturing r-t-b based permanent magnet |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI298892B (en) * | 2002-08-29 | 2008-07-11 | Shinetsu Chemical Co | Radial anisotropic ring magnet and method of manufacturing the ring magnet |
-
2003
- 2003-08-27 JP JP2003302486A patent/JP4133686B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005310853A (en) * | 2004-04-19 | 2005-11-04 | Mitsubishi Electric Corp | Annular sintered magnet and manufacturing method therefor |
JP4527436B2 (en) * | 2004-04-19 | 2010-08-18 | 三菱電機株式会社 | Ring-type sintered magnet and method for manufacturing the same |
US7750776B2 (en) | 2004-04-20 | 2010-07-06 | Aichi Steel Corporation | Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor |
WO2005104337A1 (en) * | 2004-04-20 | 2005-11-03 | Aichi Steel Corporation | Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor |
US7592889B2 (en) | 2004-04-20 | 2009-09-22 | Aichi Steel Corporation | Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor |
WO2005124796A1 (en) * | 2004-06-22 | 2005-12-29 | Shin-Etsu Chemical Co., Ltd. | Radial anisotropic cylindrical sintered magnet and permanent magnet motor |
WO2005124800A1 (en) * | 2004-06-22 | 2005-12-29 | Shin-Etsu Chemical Co., Ltd. | Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet |
JPWO2005124800A1 (en) * | 2004-06-22 | 2008-04-17 | 信越化学工業株式会社 | Manufacturing method of radial anisotropic cylindrical sintered magnet and cylindrical multipolar magnet for permanent magnet motor |
US7626300B2 (en) | 2004-06-22 | 2009-12-01 | Shin-Etsu Chemical Co., Ltd. | Radial anisotropic cylindrical sintered magnet and permanent magnet motor |
US7498914B2 (en) * | 2004-12-20 | 2009-03-03 | Harmonic Drive Systems Inc. | Method for magnetizing ring magnet and magnetic encoder |
WO2007069454A1 (en) | 2005-12-13 | 2007-06-21 | Shin-Etsu Chemical Co., Ltd. | Process for producing radially anisotropic magnet |
US7740714B2 (en) | 2005-12-13 | 2010-06-22 | Shin-Etsu Chemical Co., Ltd. | Method for preparing radially anisotropic magnet |
KR101108559B1 (en) | 2005-12-13 | 2012-01-30 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Method for preparing radially anisotropic magnet |
TWI416556B (en) * | 2005-12-13 | 2013-11-21 | Shinetsu Chemical Co | Method for manufacturing radiant anisotropic magnets |
JP2009239287A (en) * | 2008-03-27 | 2009-10-15 | Shenzhen Radimag Technology Co Ltd | Method and apparatus for manufacturing radially oriented annular magnet |
JP2010258181A (en) * | 2009-04-24 | 2010-11-11 | Mitsubishi Electric Corp | Anisotropic magnet and method of manufacturing the same |
JP2011049440A (en) * | 2009-08-28 | 2011-03-10 | Hitachi Metals Ltd | Method for manufacturing r-t-b based permanent magnet |
JP2011049441A (en) * | 2009-08-28 | 2011-03-10 | Hitachi Metals Ltd | Method for manufacturing r-t-b based permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JP4133686B2 (en) | 2008-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4650643B2 (en) | Manufacturing method of radial anisotropic ring magnet | |
KR100891855B1 (en) | Radial Anisotropic Cylindrical Magnet, Magnet Rotor and Motor | |
JP4438967B2 (en) | Manufacturing method of radial anisotropic magnet | |
JP4133686B2 (en) | Radial anisotropic ring magnet and manufacturing method thereof | |
JP5089979B2 (en) | Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor | |
US20070151629A1 (en) | Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet | |
JP4238971B2 (en) | Manufacturing method of radial anisotropic sintered magnet | |
JP5353976B2 (en) | Radial anisotropic sintered magnet and magnet rotor | |
JP2005287181A (en) | Permanent magnet rotary machine, metal mold, magnetic field molding machine and permanent magnet and manufacturing method for the same | |
JP2000116090A (en) | Permanent magnet motor | |
KR20070023644A (en) | Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet | |
KR20070030746A (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4133686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140606 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |