JP2004195658A - Regeneration treatment method for polyurethane foam waste material and regenerated polyurethane molded object - Google Patents
Regeneration treatment method for polyurethane foam waste material and regenerated polyurethane molded object Download PDFInfo
- Publication number
- JP2004195658A JP2004195658A JP2002363301A JP2002363301A JP2004195658A JP 2004195658 A JP2004195658 A JP 2004195658A JP 2002363301 A JP2002363301 A JP 2002363301A JP 2002363301 A JP2002363301 A JP 2002363301A JP 2004195658 A JP2004195658 A JP 2004195658A
- Authority
- JP
- Japan
- Prior art keywords
- polyurethane foam
- compression
- polyurethane
- soft
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、熱硬化性ポリウレタンフォームを粉砕した後に、接着剤その他のバインダーを用いないで加熱、圧縮することにより成形体を得るポリウレタンフォームの再生処理方法及び再生ポリウレタン成形体に係り、詳しくは、硬質および/または軟質のポリウレタンフォーム廃材をそれぞれトゲ状突起を有する微細粉末に粉砕し、硬軟混合粉砕物又は軟質粉砕物を出発原料として型込めし、脱気圧縮〔一次圧縮〕及び加熱圧縮〔二次圧縮〕して圧密一体化し、かつ、賦型化することにより、発泡体の性質を除去した可撓性(準剛性)又は軟質性(柔軟性)を有する成形体を得るポリウレタンフォーム廃材の再生処理方法及び再生ポリウレタン成形体に関する。
【0002】
【従来の技術】
従来より、ポリウレタンフォーム廃材の再生処理方法は、粉砕処理したチップフォームに接着剤その他のバインダーを塗布又は混合し、加熱、賦型化することがよくおこなわれてきた。しかしながら、接着剤その他のバインダーや蒸気加熱を要するために、ポットライフの工程管理や環境保全上の問題が指摘されてきた。
【0003】
こうしたなかで、上記従来法における接着剤その他のバインダーを不要として、粉砕処理後、板厚制御下で加熱、圧縮、成形して発泡体としての性質を残した再生ポリウレタン成形シートを得るポリウレタフォームの再生方法の提案があった。(例えば、特許文献1を参照。)
【0004】
【特許文献1】
特許第2993250号公報(全頁)
【0005】
ここでは、再生処理における粒径範囲、加熱処理における予熱範囲、加熱圧縮成形における温度範囲及び圧縮範囲(密度指標)を制限条件として記載している。
【0006】
しかしながら、上記文献公知発明1では、発泡体としての性質を残すことに有意性を見ており、加熱圧縮成形における温度範囲及び圧縮範囲(密度指標)を重要視している。ここでは、粉砕処理における粒径範囲は、常法のチップフォームと同様の粗粉砕のレベルにとどまり、ことさら有意な条件となっていない。具体的には、粒径1mmで密度0.75g/ccに成形した再生物は、発泡体の性質を残しても所望の物性効果が得られず、最適粒径5mmで密度0.85g/ccより大に成形した再生物は、発泡体の性質が失われるとしていずれも排除している。
【0007】
また、その後、硬質ウレタンフォームの廃材をバインダーを使用することなしに加熱、圧縮、成形して剛性のある成形品を再生する提案があった。(例えば、特許文献2を参照。)
【0008】
【特許文献2】
特開2001−277268公報(全頁)
【0009】
ここでは、硬質ウレタンフォームの廃材(出発原料)の最大直径を10mm以下の寸法に粉砕することを推奨しており、金型温度は 180〜250 ℃、圧下量は体積比1/3〜1/30である。なお、再生成形品の密度は概して50kg/m3 以上を得るとしている。
【0010】
しかしながら、上記文献公知発明2では、粉砕手段はハンマーミルやニーダ等による剪断破砕であり、後述の解繊装置による粉砕とは同じ剪断破砕であっても粉砕寸法の程度が大きく相違する。つまり、前記粉砕手段では10mm以下であっても、本発明に関する1mm以下のトゲ状突起を有する微細粉末状(海綿状)に切り刻む(粉砕する)ことは不可能であり、より細かく粉砕しようとすれば粉引きのように磨り潰すこと(磨砕)になると推認される。
【0011】
この差異は極めて重要であって、硬質の場合、粒径が1mm以上であると、温度条件と圧下量(加圧力)を高位に保持しないと発泡体の性質を除去することが困難であり、粒径が1mm以下であって磨り潰したものは、自己接着性に欠けるという問題がある。ここで、自己接着性は熱融着性又は熱可塑性的性質による結合形態を含む。
【0012】
これに対し、硬質の場合1mm以下のトゲ状突起を有する微細粉末状(海綿状)に切り刻んだ粉砕物(ポリウレタンフォーム廃材)は、比較的低い温度条件(加熱条件)下で自己接着性を発生可能で、発泡体の性質を除去可能であることが確認されている。また、軟質の場合は1mm以下の微粉砕化はかなり困難であり、上記同様の自己接着性及び発泡体の性質除去に関する発現について5mm以下であれば可能である。なお、硬軟混合粉砕物の場合、粉砕粒径を揃えるのが好ましいため、後述のとおり硬質の粉砕粒径は2mm程度まで許容される。
【0013】
ところで、本発明者らは、故紙等の繊維含有材料の再生利用に関し、該繊維含有材料の粗粉砕から解繊までを効率的におこなう解繊装置(粗粉砕装置を含む)を提案してきた。(例えば、特許文献3を参照。)
【0014】
【特許文献3】
特許第3051981号公報(全頁、全図)
【0015】
この開発技術によれば、繊維含有材料を粒径(片状のものであれば長さ)1mm以下にトゲ状突起を有する微細粉末状(海綿状)に切り刻む(粉砕する)ことができ、もって利用価値の高い再生原料を得ることができる。
【0016】
本発明に関するポリウレタンフォームは組織的にも繊維含有材料と同様に取り扱うことができる。しかも、粉砕をより微細化してゆくと、トゲ状突起を有する微細粉末状(海綿状)になり、その粒径は従来的なチップフォームの粒径より1桁低いオーダーまでほぼ均一に粉砕できる。
【0017】
こうして獲得したポリウレタンフォーム廃材の粉体(再生原料)は、樹脂粉末の圧縮成形技術を適用できる。
【0018】
もとより、硬質ポリウレタンフォーム廃材を再生処理して、建材、剛性ボード、代替枠材その他の剛性材に転換しようとする要請があり、こうしたなかで本出願人は、先に発泡体の性質を除去した硬質の成形体(樹脂再生物)を得る再生処理方法及び再生ポリウレタン成形体を提案してきた。〔特願2001−356000〕
【0019】
【発明が解決しようとする課題】
しかしながら、これまでは専ら硬質のポリウレタンフォーム廃材を手掛けてきたのであるが、その後の研究開発のなかで、粉砕のしかたによっては軟質のポリウレタンフォーム廃材についても同様に取り扱うことができることを見いだした。ここでは、軟質のポリウレタンフォーム廃材の粉砕粒径は5mm未満、好ましくは2mm程度を指標とする。したがって、後述の硬軟混合粉砕物を得ようとするときには、硬質のポリウレタンフォーム廃材の粉砕粒径も粒径を揃えるために2mm程度まで許容する。なお、軟質のポリウレタンフォーム廃材のみを再生原料( 出発原料)とするときには、粉砕粒径は5mm未満であればよい。
【0020】
この軟質のポリウレタンフォーム廃材の再生処理については、これまでにバインダーを使用せずに融着を含む自己接着性の発生させ、かつ、発泡体の性質を除去したものは他に見あたらない。
【0021】
その理由としては、微粉砕化し難いことによる融着を含む自己接着性の発生の困難性、そのための賦型化(成形性)の困難性が挙げられる。したがって、軟質のポリウレタンフォーム廃材を再生原料とする従来的な再生成形体は、バンダーを使用し、かつ、発泡体の性質を温存したもの(疑似発泡体)に止まっているのが現状である。
【0022】
そこで、バインダーを使用せずに融着を含む自己接着性を発生させ、かつ、発泡体の性質を除去するためには、粉砕処理における粒径の微細化が出発原料(再生原料)として重要な構成要素(制限条件)となってくる。
【0023】
本発明はこのような事情に鑑みなされたものであって、上記課題を解消し、硬質および/または軟質のポリウレタンフォーム廃材をそれぞれトゲ状突起を有する微細粉末に粉砕し、硬軟混合粉砕物又は軟質粉砕物を出発原料として型込めし、脱気圧縮〔一次圧縮〕及び加熱圧縮〔二次圧縮〕して圧密一体化し、かつ、賦型化することにより、発泡体の性質を除去した可撓性(準剛性)又は軟質性(柔軟性)を有する成形体を得るポリウレタンフォーム廃材の再生処理方法及び再生ポリウレタン成形体を提供するものである。
【0024】
【課題を解決するための手段】
課題を解決するために本発明は、熱硬化性ポリウレタンフォーム廃材を粉砕した後、接着剤その他のバインダーを用いないで加熱、圧縮することにより発泡体の性質を除去した可撓性又は準剛性を有する成形体を得るためのポリウレタンフォーム廃材の再生処理方法であって、
硬質ポリウレタンフォーム廃材及び軟質ポリウレタンフォーム廃材をそれぞれ粒径2mm以下のトゲ状突起を有する微細粉末に粉砕して再生原料とし、該再生原料100重量部に対して軟質ポリウレタンフォーム廃材の割合を5〜20重量%とする硬軟混合粉砕物を調製し、該硬軟混合粉砕物を出発原料として型込めし、脱気のための一次圧縮を施し、つづいて 120〜170 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化することを特徴とするものである。
【0025】
また、発泡体の性質を除去した軟質性又は柔軟性を有する成形体を得るためのポリウレタンフォーム廃材の再生処理方法であって、
軟質ポリウレタンフォーム廃材を粒径5mm未満のトゲ状突起を有する微細粉末に粉砕して出発原料とし、該出発原料を型込めして脱気のための一次圧縮を施し、つづいて 110〜160 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化することを特徴とするものである。
【0026】
さらに、上記各方法により得られる接着剤その他のバインダーを含有しない可撓性(準剛性)又は軟質性(柔軟性)の再生ポリウレタン成形体であって、発泡体の性質を除去したものである。
【0027】
【発明の実施の形態】
本発明の実施の形態は、可撓性又は準剛性を有する再生ポリウレタン成形体を得るための上記構成の再生処理方法において、硬質ポリウレタンフォーム廃材及び軟質ポリウレタンフォーム廃材をそれぞれ粒径2mm以下のトゲ状突起を有する微細粉末に粉砕して再生原料とし、該再生原料100重量部に対して軟質ポリウレタンフォーム廃材の割合を5〜20重量%とする硬軟混合粉砕物を調製し、該硬軟混合粉砕物を出発原料として金型内に充填し、常温下で所定重量を負荷した加圧板を圧下させながら脱気を促すとともに、圧下の進行途中から加圧板を含む金型を 120〜170 ℃の温度範囲内に加熱し、該加熱雰囲気下で外部から間欠的に加圧力を増補しながら圧下の進行を調整していき、所定圧下量に達したところで加圧板を保持した後放冷することにより、圧密一体化し、かつ、賦型化するものである。
【0028】
ここで、粉砕は粒径10mm以下に粗粉砕した後、さらに繊維含有材料の解繊装置に投入して粒径 0.5〜2.0 mmのトゲ状突起を有する微細粉末の再生原料を得るものである。
【0029】
図1は、粉砕前のポリウレタンフォーム廃材の組織形状(結合状態)を示す模式図である。
【0030】
図2は、粗粉砕後のポリウレタンフォーム廃材の断片形状(粒径)を示す模式図である。
【0031】
図3は、トゲ状突起を有する微細粉末に粉砕したポリウレタンフォーム廃材の断片形状(粒径)を示す模式図である。
【0032】
一方、軟質の再生ポリウレタン成形体を得るための上記構成の再生処理方法において、軟質ポリウレタンフォーム廃材を粒径5mm未満のトゲ状突起を有する微細粉末に粉砕して出発原料とし、金型内に充填し、常温下で所定重量を負荷した加圧板を圧下させながら脱気を促すとともに、圧下の進行途中から加圧板を含む金型を 110〜160 ℃の温度範囲内に加熱し、該加熱雰囲気下で外部から間欠的に加圧力を増補しながら圧下の進行を調整していき、所定圧下量に達したところで加圧板を保持した後放冷することにより、圧密一体化し、かつ、賦型化するものである。
【0033】
上記各方法により得られる可撓性(準剛性)又は軟質性(柔軟性)の再生ポリウレタン成形体の結合状態は、いずれも融着を含む自己接着性により圧密一体化している。また、圧下量に関し、みかけ比重は 0.6〜1.2 を指標とするものである。
【0034】
強度(又は硬さ)に関し、硬軟混合粉砕物の配合を変えることにより得られる可撓性(準剛性)の再生ポリウレタン成形体は、引張強度(最大引張応力)で10〜20MPa 範囲を指標とする。
【0035】
また、軟質の再生ポリウレタン成形体は、引張強度(最大引張応力)で5MPa 以下を指標とする。
【0036】
いずれも、好適な成形品としては、板厚2〜15mmの成形シート、又は板厚15mm以上の成形ブロックとして再生される。
【0037】
【実施例】
本発明の一実施例について添付図面を参照しながら以下説明する。
【0038】
(実施例1)
本実施例の再生ポリウレタン成形体〔以下、単に成形体という。〕は、硬質ポリウレタンフォーム廃材及び軟質ポリウレタンフォーム廃材をそれぞれ粗粉砕した後、さらに繊維含有材料の解繊装置を用いてトゲ状突起を有する微細粉末に粉砕して再生原料とし、該再生原料100重量部に対して軟質ポリウレタンフォーム廃材の割合を5〜20重量%とする硬軟混合粉砕物を調製し、該硬軟混合粉砕物を出発原料とし、金型に充填して脱気のための一次圧縮を施し、つづいて 120〜170 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化して得られるものである。
【0039】
ここでは、軟質のポリウレタンフォーム廃材をそれぞれ粒径10mm以下に粗粉砕した後、さらに繊維含有材料の解繊装置に投入して粒径 0.5〜2.0 mmのトゲ状突起を有する微細粉末とした硬軟混合粉砕物(再生原料)を得るのであるが、本実施例では、解繊装置の多孔スクリーン(図示省略)のメッシュを硬質ポリウレタンフォーム廃材については0.5mm( 0.5パス) 、軟質ポリウレタンフォーム廃材については1.0mm( 1.0パス) として微粉砕し、硬軟混合粉砕物の配合を変えて圧縮成形した成形体a、b、cを製造し、これらから各数本ずつを切り出して引張試験〔1軸〕のための供試体A群、B群、C群を作製した。
【0040】
図4、図5、及び図6に供試体A群:標本数(001〜005)、B群:標本数(001〜005)、C群:標本数(001〜006)についておこなった引張試験〔1軸〕の結果を示す。各群ごとに個々の標本の荷重−伸び線図とデータ表を示し、具体的な製造方法及び性質を述べる。なお、数値については、実験的規模にとどまっているが、本発明の要旨に影響するものではないことを断っておく。
【0041】
製造方法は共通し、成形金型内に常温で硬軟混合粉砕物〔各軟質を5、10、15重量%配合し残部は硬質〕400cm3(重量65g)を充填し、上部から加圧重量3tを指標として漸次圧下することにより、脱気しながら圧縮していく。〔一次圧縮〕この間に金型を 150℃に加熱する。脱気と加熱が進行すると、樹脂内圧が変動し、加圧重量3tの指標が得られなくなるが、成形体の板厚が15mmとなるところまでジャッキアップにより加圧調整しながら圧縮する。〔二次圧縮〕所定の圧下量に達した後、3〜5分加熱保持する。その後、加熱を停止し、放置冷却する。
【0042】
こうして得られた各成形体は、融着を含む自己接着性により圧密一体化しており、発泡体の性質が除去され、かつ、可撓性(準剛性)を有している。引張試験によると、各供試体の引張強度(最大引張応力)が10〜20MPa 範囲であり、最大荷重点変位(一様伸びの終点)が数mm以下であった。
【0043】
(実施例2)
本実施例の成形体は、軟質ポリウレタンフォーム廃材を粗粉砕した後、さらに繊維含有材料の解繊装置を用いてトゲ状突起を有する微細粉末に粉砕して出発原料とし、金型に充填して脱気のための一次圧縮を施し、つづいて 110〜160 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化して得られるものである。
【0044】
ここでは、軟質ポリウレタンフォーム廃材をそれぞれ粒径10mm以下に粗粉砕した後、さらに繊維含有材料の解繊装置に投入して粒径5mm未満のトゲ状突起を有する微細粉末とした軟質粉砕物(再生原料)を得るのであるが、本実施例では、解繊装置の多孔スクリーン(図示省略)のメッシュを1.0mm( 1.0パス) として微粉砕し、上記硬軟混合粉砕物と同様の温度条件(150 ℃)で圧縮成形した成形体dを製造し、これらから各数本ずつを切り出して引張試験〔1軸〕のための供試体D群を作製した。
【0045】
図7に供試体D群:標本数(001〜005)についておこなった引張試験〔1軸〕の結果を示す。各群ごとに個々の標本の荷重−伸び線図とデータ表を示す。
【0046】
得られた成形体は、融着を含む自己接着性により圧密一体化しており、発泡体の性質が除去され、かつ、軟質性(柔軟性)を有している。引張試験によると、供試体の引張強度(最大引張応力)が5MPa 以下であった。
【0047】
また、軟質ポリウレタンフォーム廃材のうち、低弾性フォ−ムに属するより軟質性の高いものをそれぞれ粒径10mm以下に粗粉砕した後、さらに繊維含有材料の解繊装置に投入し、多孔スクリーン(図示省略)のメッシュを2.0mm( 2.0パス) として微粉砕し、上記同様の温度条件(150 ℃)で圧縮成形した成形体eと、 1.0mm( 1.0 パス) として微粉砕し圧縮成形した成形体fを製造した。これらから各数本ずつを切り出して引張試験〔1軸〕のための供試体E群、F群を作製した。
【0048】
図8に供試体E群:標本数(001〜005)、図9に供試体F群:標本数(001〜006)についておこなった引張試験〔1軸〕の結果を示す。各群ごとに個々の標本の荷重−伸び線図とデータ表を示す。
【0049】
得られた成形体は、より一層の軟質性(柔軟性)を有しており、緩衝マットなどのシート状敷物やスペーサなどの衝撃吸収体として利用可能である。引張試験によると、供試体の引張強度(最大引張応力)が1MPa 以下であり、一様伸びは20〜40mmであった。なお、温度条件及び加圧条件とも下限方向にシフトする。
【0050】
以上のとおり、熱硬化性ポリウレタンフォーム廃材のうち硬質や軟質のもののいずれであっても、その発泡体の性質を除去する一方、硬さに関する性質は温存して所望に応じた硬さて再生することができるので、極めて広範な利用先が期待できる。
【0051】
【発明の効果】
本発明は以上の構成よりなるものであり、これによれば樹脂粉末の圧縮成形技術を適用して、熱硬化性ポリウレタンフォーム廃材のうち硬質や軟質のもののいずれであっても、再生原料とすることができるとともに、その発泡体の性質を除去する一方、硬さに関する性質は温存して所望に応じた硬さで成形体を得ることができる。ここでは、接着剤その他のバインダーを用いることを要しないので、ポットライフの工程管理や環境保全上の問題がない。
【0052】
得られた再生ポリウレタン成形体は、可撓性材(準剛性材)から軟質性材(柔軟性材)まで種々の用途に応じて広範な材料開発が可能であり、資源(廃材)の有効利用(再生利用)に寄与するという点で産業上有益である。
【図面の簡単な説明】
【図1】粉砕前のポリウレタンフォーム廃材の組織形状(結合状態)を示す模式図である。
【図2】粗粉砕後のポリウレタンフォーム廃材の断片形状(粒径1mm)を示す模式図である。
【図3】トゲ状突起を有する微細粉末に粉砕したポリウレタンフォーム廃材の断片形状(粒径0.5mm)を示す模式図である。
【図4】可撓性材(準剛性材)である供試体A群:標本数(001〜005)についておこなった引張試験〔1軸〕における個々の標本の荷重−伸び線図、及びデータ表である。
【図5】可撓性材(準剛性材)である供試体B群:標本数(001〜005)についておこなった引張試験〔1軸〕における個々の標本の荷重−伸び線図、及びデータ表である。
【図6】可撓性材(準剛性材)である供試体C群:標本数(001〜006)についておこなった引張試験〔1軸〕における個々の標本の荷重−伸び線図、及びデータ表である。
【図7】軟質性材(柔軟性材)である供試体D群:標本数(001〜005)についておこなった引張試験〔1軸〕における個々の標本の荷重−伸び線図、及びデータ表である。
【図8】軟質性材(柔軟性材)である供試体E群:標本数(001〜005)についておこなった引張試験〔1軸〕における個々の標本の荷重−伸び線図、及びデータ表である。
【図9】軟質性材(柔軟性材)である供試体F群:標本数(001〜006)についておこなった引張試験〔1軸〕における個々の標本の荷重−伸び線図、及びデータ表である。
【符号の説明】
1 トゲ状突起を有する微細粉末(ポリウレタンフォーム廃材の粉砕断片)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of regenerating a polyurethane foam and a regenerated polyurethane molded article obtained by pulverizing a thermosetting polyurethane foam and then heating and compressing the molded article without using an adhesive or other binder to obtain a molded article. The hard and / or soft waste polyurethane foam is pulverized into fine powder each having barb-like projections, and the hard and soft mixed pulverized material or the soft pulverized material is molded as a starting material, and deaerated compression (primary compression) and heat compression [2 Next compression], consolidation and integration, and shaping to obtain a molded article having flexibility (quasi-rigidity) or softness (flexibility) from which the properties of the foam have been removed. The present invention relates to a treatment method and a recycled polyurethane molded article.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a method of regenerating polyurethane foam waste material often involves applying or mixing an adhesive or other binder to a crushed chip foam, heating and shaping the chip foam. However, problems such as pot life process control and environmental conservation have been pointed out because adhesives and other binders and steam heating are required.
[0003]
Under these circumstances, the adhesive and other binders in the above-mentioned conventional method are unnecessary, and after the pulverization treatment, heating, compression, and molding are performed under thickness control to obtain a regenerated polyurethane molded sheet which retains the properties as a foam. There was a suggestion on how to play it. (For example, see Patent Document 1)
[0004]
[Patent Document 1]
Japanese Patent No. 2993250 (all pages)
[0005]
Here, the particle size range in the regeneration treatment, the preheating range in the heat treatment, the temperature range and the compression range (density index) in the heat compression molding are described as limiting conditions.
[0006]
However, in the above-mentioned literature known
[0007]
Further, after that, there has been a proposal to recycle a rigid molded product by heating, compressing and molding the waste material of the rigid urethane foam without using a binder. (See, for example, Patent Document 2)
[0008]
[Patent Document 2]
JP 2001-277268 A (all pages)
[0009]
Here, it is recommended that the maximum diameter of the waste material (starting material) of the rigid urethane foam is pulverized to a size of 10 mm or less, the mold temperature is 180 to 250 ° C., and the reduction amount is 1/3 to 1/1 / volume ratio. 30. In addition, it is stated that the density of the recycled molded product is generally 50 kg / m 3 or more.
[0010]
However, in the above-mentioned document known
[0011]
This difference is extremely important. In the case of a hard material, if the particle size is 1 mm or more, it is difficult to remove the properties of the foam unless the temperature conditions and the reduction (pressing force) are maintained at a high level. Grinded particles having a particle size of 1 mm or less have a problem that they lack self-adhesiveness. Here, the self-adhesive property includes a bonding form based on a heat-fusing property or a thermoplastic property.
[0012]
On the other hand, in the case of a hard material, a pulverized material (polyurethane foam waste material) cut into fine powder (spongy) having barb-like projections of 1 mm or less generates self-adhesiveness under relatively low temperature conditions (heating conditions). It has been found possible and that the properties of the foam can be removed. In the case of a soft material, pulverization of 1 mm or less is very difficult, and it is possible to achieve a self-adhesion property similar to the above and removal of properties of the foam of 5 mm or less. In the case of a hard-soft mixed pulverized product, it is preferable that the pulverized particle size is uniform, so that the hard pulverized particle size is allowed up to about 2 mm as described later.
[0013]
By the way, the present inventors have proposed a fibrillation apparatus (including a coarse pulverizing apparatus) for efficiently performing a process from coarse pulverization to fibrillation of the fiber-containing material with respect to recycling of fiber-containing material such as waste paper. (See, for example, Patent Document 3)
[0014]
[Patent Document 3]
Japanese Patent No. 3051981 (all pages, all drawings)
[0015]
According to this development technology, the fiber-containing material can be chopped (crushed) into a fine powder (spongy) having barb-like projections with a particle diameter (length of a piece) of 1 mm or less. Highly useful recycled materials can be obtained.
[0016]
The polyurethane foam according to the invention can also be treated systematically in the same way as the fiber-containing material. In addition, when the pulverization is further refined, the powder becomes a fine powder (spongy) having barb-like projections, and the particle size can be almost uniformly reduced to the order of one order of magnitude smaller than that of a conventional chip foam.
[0017]
The polyurethane foam waste powder (recycled raw material) obtained in this way can be applied with a resin powder compression molding technique.
[0018]
Originally, there was a request to recycle hard polyurethane foam waste materials to convert them to building materials, rigid boards, alternative frame materials, and other rigid materials. In such circumstances, the present applicant had previously removed the properties of foam. A regeneration treatment method and a recycled polyurethane molded article for obtaining a hard molded article (resin regenerated product) have been proposed. [Japanese Patent Application 2001-356000]
[0019]
[Problems to be solved by the invention]
Until now, however, we have dealt exclusively with hard polyurethane foam waste, but in our subsequent research and development, we have found that soft polyurethane foam waste can be handled in the same way depending on how it is ground. Here, the crushed particle size of the soft polyurethane foam waste material is less than 5 mm, preferably about 2 mm as an index. Therefore, when trying to obtain a hard-soft mixed pulverized product described later, the hard polyurethane foam waste material is allowed to have a ground particle size of about 2 mm in order to make the particle size uniform. When only the soft polyurethane foam waste material is used as the recycled material (starting material), the pulverized particle size may be less than 5 mm.
[0020]
As for the reclaiming treatment of this soft polyurethane foam waste material, there is no other material which has produced self-adhesiveness including fusing without using a binder and has removed the properties of the foam.
[0021]
The reasons include difficulty in generating self-adhesiveness including fusion due to difficulty in pulverization, and difficulty in shaping (moldability) therefor. Therefore, at present, conventional reconstituted molded articles using soft polyurethane foam waste as regenerating raw materials use only a bander and preserve the properties of the foam (pseudo-foam).
[0022]
Therefore, in order to generate self-adhesiveness including fusion without using a binder and to remove the properties of the foam, it is important to reduce the particle size in the pulverization process as a starting material (recycled material). It becomes a component (restriction condition).
[0023]
The present invention has been made in view of such circumstances, and solves the above-mentioned problems, and crushes hard and / or soft waste polyurethane foam into fine powder having barb-like projections, respectively, to obtain a hard / soft mixed ground or soft powder. The pulverized material is cast as a starting material, deaerated compression (primary compression) and heat compression (secondary compression) to consolidate and form, and by shaping, the flexibility of foam is removed. An object of the present invention is to provide a method for regenerating a polyurethane foam waste material and a regenerated polyurethane molded article, which obtain a molded article having (quasi-rigidity) or softness (flexibility).
[0024]
[Means for Solving the Problems]
In order to solve the problem, the present invention is to improve the flexibility or quasi-rigidity by removing the properties of the foam by crushing the waste thermosetting polyurethane foam, heating and compressing without using an adhesive or other binder. A method for regenerating polyurethane foam waste material to obtain a molded article,
The hard polyurethane foam waste material and the soft polyurethane foam waste material are each pulverized into fine powder having barb-shaped projections having a particle diameter of 2 mm or less to be used as a recycled material, and the ratio of the flexible polyurethane foam waste material to 5 to 20 parts by weight of the recycled material is 5 to 20. % Of hard-soft mixed pulverized material is prepared, and the hard-soft mixed pulverized material is molded as a starting material, subjected to primary compression for deaeration, and then heated in a heating atmosphere within a temperature range of 120 to 170 ° C. It is characterized in that it is subjected to secondary compression until a predetermined reduction amount is reached, so that it is consolidated and integrated, and is shaped.
[0025]
Further, a method for regenerating polyurethane foam waste material to obtain a molded article having flexibility or flexibility by removing the properties of the foam,
The waste flexible polyurethane foam is pulverized into fine powder having barb-like projections having a particle size of less than 5 mm as a starting material, and the starting material is molded and subjected to primary compression for deaeration. It is characterized in that it is subjected to secondary compression in a heating atmosphere within a temperature range until a predetermined amount of reduction is reached, thereby consolidating and integrating, and being shaped.
[0026]
Furthermore, it is a flexible (quasi-rigid) or soft (flexible) recycled polyurethane molded article which does not contain an adhesive or other binder obtained by each of the above-mentioned methods, and which has properties of a foam removed.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention is directed to a recycling method having the above structure for obtaining a regenerated polyurethane molded article having flexibility or quasi-rigidity, wherein the hard polyurethane foam waste material and the soft polyurethane foam waste material each have a barb-like shape having a particle diameter of 2 mm or less. Pulverized into fine powder having projections to obtain a regenerated raw material, and a hard / soft mixed pulverized product in which the ratio of the waste flexible polyurethane foam is 5 to 20% by weight with respect to 100 parts by weight of the regenerated raw material is prepared. Filling in a mold as a starting material, while depressing a pressing plate loaded with a predetermined weight at room temperature to promote deaeration, and moving the die including the pressing plate within the temperature range of 120 to 170 ° C during the progress of the reduction In the heating atmosphere, the progress of the reduction is adjusted while intermittently increasing the pressing force from the outside, and when the predetermined reduction amount is reached, the pressure plate is held and then cooled. By doing so, they are consolidated and integrated.
[0028]
Here, in the pulverization, after coarsely pulverizing to a particle diameter of 10 mm or less, the raw material is further fed to a fiber-containing material defibrating device to obtain a regenerated raw material of fine powder having barb-like projections having a particle diameter of 0.5 to 2.0 mm.
[0029]
FIG. 1 is a schematic diagram showing the structure (bonded state) of the waste polyurethane foam before pulverization.
[0030]
FIG. 2 is a schematic diagram showing a fragment shape (particle size) of the waste polyurethane foam after the coarse pulverization.
[0031]
FIG. 3 is a schematic diagram showing a fragment shape (particle diameter) of waste polyurethane foam material pulverized into fine powder having barb-like projections.
[0032]
On the other hand, in the regeneration treatment method having the above configuration for obtaining a soft recycled polyurethane molded article, the soft polyurethane foam waste material is pulverized into fine powder having barb-like projections having a particle diameter of less than 5 mm, used as a starting material, and filled in a mold. Then, while depressurizing the pressurized plate loaded with a predetermined weight at room temperature to promote deaeration, the mold including the pressurized plate is heated to a temperature range of 110 to 160 ° C. during the progress of the depressurization. In the process, the progress of the reduction is adjusted while intermittently increasing the pressing force from the outside, and when the predetermined reduction amount is reached, the pressure plate is held down and then cooled, whereby the consolidation is integrated and shaped. Things.
[0033]
The bonding state of the flexible (quasi-rigid) or soft (flexible) regenerated polyurethane molded article obtained by each of the above methods is all consolidated by self-adhesion including fusion. The apparent specific gravity of the reduction is 0.6 to 1.2.
[0034]
Regarding the strength (or hardness), a flexible (quasi-rigid) regenerated polyurethane molded article obtained by changing the composition of the hard / soft mixed ground product has a tensile strength (maximum tensile stress) in the range of 10 to 20 MPa as an index. .
[0035]
The soft recycled polyurethane molded article has an index of 5 MPa or less in tensile strength (maximum tensile stress).
[0036]
In any case, suitable molded articles are regenerated as molded sheets having a thickness of 2 to 15 mm or molded blocks having a thickness of 15 mm or more.
[0037]
【Example】
An embodiment of the present invention will be described below with reference to the accompanying drawings.
[0038]
(Example 1)
Recycled polyurethane molded article of the present embodiment [hereinafter simply referred to as molded article. Is roughly crushed from the waste hard polyurethane foam and the soft polyurethane foam waste, and further crushed into fine powder having barb-like projections by using a fibrillation device for a fiber-containing material to obtain a recycle raw material. A hard / soft mixed pulverized material having a ratio of waste of flexible polyurethane foam waste material of 5 to 20% by weight per part is prepared, and the hard / soft mixed pulverized material is used as a starting material, filled in a mold, and subjected to primary compression for deaeration. Then, it is compacted and integrated by secondary compression in a heating atmosphere within a temperature range of 120 to 170 ° C. until a predetermined amount of reduction is reached, and is obtained by shaping.
[0039]
Here, each of the soft polyurethane foam waste materials is roughly pulverized to a particle size of 10 mm or less, and then put into a fibrillation device for a fiber-containing material to be hard-soft mixed into a fine powder having barb-like projections having a particle size of 0.5 to 2.0 mm. In this embodiment, the mesh of the porous screen (not shown) of the defibrating device is set to 0.5 mm (0.5 pass) for hard polyurethane foam waste material and 1.0 mm for soft polyurethane foam waste material. mm (1.0 pass), finely pulverized, compression-molded compacts a, b, and c were manufactured by changing the mixture of hard and soft mixed and pulverized materials. Specimens A, B, and C were prepared.
[0040]
4, 5, and 6, the tensile tests performed on the specimen A group: the number of specimens (001 to 005), the B group: the number of specimens (001 to 005), and the C group: the number of specimens (001 to 006) [ 1 axis]. The load-elongation diagram and data table of each sample are shown for each group, and specific manufacturing methods and properties are described. It should be noted that although the numerical values are only on an experimental scale, they do not affect the gist of the present invention.
[0041]
The manufacturing method is common, and 400 cm 3 (weight 65 g) is filled into a molding die at room temperature and mixed with soft, soft and pulverized materials (each softness is blended at 5, 10, and 15% by weight, and the balance is hard). By gradually reducing the pressure with the index as an index, the material is compressed while being deaerated. [Primary compression] During this time, the mold is heated to 150 ° C. As the degassing and heating progress, the internal pressure of the resin fluctuates, and an index of the pressurized weight of 3 t cannot be obtained. However, the molded body is compressed while adjusting the pressure by jacking up to a thickness of 15 mm. [Secondary compression] After reaching a predetermined amount of reduction, heat and hold for 3 to 5 minutes. Thereafter, the heating is stopped, and the system is left to cool.
[0042]
Each of the molded bodies thus obtained is consolidated by self-adhesiveness including fusion, has properties of a foam removed, and has flexibility (quasi-rigidity). According to the tensile test, the tensile strength (maximum tensile stress) of each specimen was in the range of 10 to 20 MPa, and the maximum load point displacement (end point of uniform elongation) was several mm or less.
[0043]
(Example 2)
The molded article of the present example is obtained by coarsely pulverizing waste flexible polyurethane foam, and further pulverizing it into fine powder having barb-like projections by using a fibrillation device for a fiber-containing material to form a starting material and filling the mold. Primary compression for degassing is performed, followed by secondary compression in a heating atmosphere within a temperature range of 110 to 160 ° C. until a predetermined reduction amount is reached. Things.
[0044]
Here, each of the flexible polyurethane foam waste materials is coarsely pulverized to a particle diameter of 10 mm or less, and then charged into a fiber-containing material defibrating device to form a soft pulverized material having fine particles having barb-like projections having a particle diameter of less than 5 mm (recycled). In this example, the mesh of the porous screen (not shown) of the defibrating device was finely pulverized with a mesh of 1.0 mm (1.0 pass), and the same temperature conditions (150 ° C. ) Was manufactured by compression molding, and several specimens were cut out of each of them to prepare a specimen D group for a tensile test (one axis).
[0045]
FIG. 7 shows the results of a tensile test [one axis] performed on the specimen D group: the number of samples (001 to 005). The load-elongation diagram of each sample and the data table are shown for each group.
[0046]
The obtained molded body is consolidated by self-adhesiveness including fusion, has the properties of the foam removed, and has softness (flexibility). According to the tensile test, the tensile strength (maximum tensile stress) of the specimen was 5 MPa or less.
[0047]
Also, among the flexible polyurethane foam waste materials, those having higher softness belonging to the low elasticity foam are each coarsely pulverized to a particle size of 10 mm or less, and then charged into a fibrillation device for fiber-containing materials, and then the porous screen (illustrated). (Omitted), a compacted product e which was finely pulverized into a mesh of 2.0 mm (2.0 passes) and compression-molded under the same temperature conditions (150 ° C.), and a compacted product f which was finely pulverized and compressed by a 1.0 mm (1.0 pass) condition Was manufactured. Specimens E and F for a tensile test [one-axis] were prepared by cutting out several pieces from each of these.
[0048]
FIG. 8 shows the results of a tensile test (one axis) performed on the specimen E group: the number of specimens (001 to 005), and FIG. 9 shows the specimen F group: the number of specimens (001 to 006). The load-elongation diagram of each sample and the data table are shown for each group.
[0049]
The obtained molded body has more flexibility (flexibility) and can be used as a sheet-like rug such as a buffer mat or a shock absorber such as a spacer. According to the tensile test, the tensile strength (maximum tensile stress) of the specimen was 1 MPa or less, and the uniform elongation was 20 to 40 mm. Note that both the temperature condition and the pressurizing condition shift in the lower limit direction.
[0050]
As described above, regardless of the hard or soft thermosetting polyurethane foam waste material, the properties of the foam are removed while the properties related to hardness are preserved and regenerated with desired hardness. It can be expected to be used in a very wide range of applications.
[0051]
【The invention's effect】
The present invention is constituted by the above constitution, and according to this, applying the compression molding technology of the resin powder, any of the hard and soft thermosetting polyurethane foam waste materials is used as a recycled material. While removing the properties of the foam, the properties relating to hardness can be preserved to obtain a molded article with the desired hardness. Here, since it is not necessary to use an adhesive or other binders, there is no problem in the process management of the pot life and environmental conservation.
[0052]
The obtained recycled polyurethane molded article can be used for a wide range of material development from flexible materials (quasi-rigid materials) to soft materials (flexible materials) according to various uses, and effectively uses resources (waste materials). (Recycling) is industrially beneficial.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a texture (bonded state) of a waste polyurethane foam material before pulverization.
FIG. 2 is a schematic view showing a fragment shape (particle diameter: 1 mm) of a waste polyurethane foam material after coarse pulverization.
FIG. 3 is a schematic view showing a fragment shape (particle diameter: 0.5 mm) of waste polyurethane foam crushed into fine powder having barb-like projections.
FIG. 4 Specimen A group which is a flexible material (quasi-rigid material): Load-elongation diagram and data table of each sample in a tensile test [one axis] performed on the number of samples (001 to 005) It is.
FIG. 5: Specimen B group, which is a flexible material (quasi-rigid material): Load-elongation diagram and data table of each sample in a tensile test [one axis] performed on the number of samples (001 to 005) It is.
FIG. 6: Specimen C group which is a flexible material (quasi-rigid material): Load-elongation diagram and data table of each sample in a tensile test [1 axis] performed on the number of samples (001 to 006) It is.
FIG. 7: Specimen D group which is a soft material (flexible material): Load-elongation diagram and data table of each sample in a tensile test [1 axis] performed on the number of samples (001 to 005). is there.
FIG. 8 shows a specimen E group which is a soft material (flexible material): a load-elongation diagram of each sample and a data table in a tensile test [one axis] performed on the number of samples (001 to 005). is there.
FIG. 9 shows a specimen F group which is a soft material (flexible material): a load-elongation diagram and a data table of each sample in a tensile test [one axis] performed on the number of samples (001 to 006). is there.
[Explanation of symbols]
1 Fine powder with barb-like protrusions (crushed fragments of waste polyurethane foam)
Claims (7)
発泡体の性質を除去した可撓性又は準剛性を有する成形体を得るためのポリウレタンフォーム廃材の再生処理方法であって、
硬質ポリウレタンフォーム廃材及び軟質ポリウレタンフォーム廃材をそれぞれ粒径2mm以下のトゲ状突起を有する微細粉末に粉砕して再生原料とし、該再生原料100重量部に対して軟質ポリウレタンフォーム廃材の割合を5〜20重量%とする硬軟混合粉砕物を調製し、該硬軟混合粉砕物を出発原料として型込めし、脱気のための一次圧縮を施し、つづいて 120〜170 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化することを特徴とするポリウレタンフォーム廃材の再生処理方法。After grinding the thermosetting polyurethane foam waste material, heating and compression without using an adhesive or other binder, in a polyurethane foam regeneration method for obtaining a molded body by compression,
A method for regenerating polyurethane foam waste material to obtain a molded article having flexibility or quasi-rigidity by removing properties of a foam,
The hard polyurethane foam waste material and the soft polyurethane foam waste material are each pulverized into fine powder having barb-shaped projections having a particle diameter of 2 mm or less to be used as a recycled material, and the ratio of the flexible polyurethane foam waste material to 5 to 20 parts by weight of the recycled material is 5 to 20. % Of hard-soft mixed pulverized material is prepared, and the hard-soft mixed pulverized material is molded as a starting material, subjected to primary compression for deaeration, and then heated in a heating atmosphere within a temperature range of 120 to 170 ° C. A method for reclaiming waste polyurethane foam, comprising consolidating and integrating by secondary compression until a predetermined reduction amount is reached, and shaping.
発泡体の性質を除去した軟質性又は柔軟性を有する成形体を得るためのポリウレタンフォーム廃材の再生処理方法であって、
軟質ポリウレタンフォーム廃材を粒径5mm未満のトゲ状突起を有する微細粉末に粉砕して出発原料とし、該出発原料を型込めして脱気のための一次圧縮を施し、つづいて 110〜160 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化することを特徴とするポリウレタンフォーム廃材の再生処理方法。After grinding the thermosetting polyurethane foam waste material, heating and compression without using an adhesive or other binder, in a polyurethane foam regeneration method for obtaining a molded body by compression,
A method for regenerating a polyurethane foam waste material to obtain a molded product having flexibility or flexibility by removing properties of a foam,
The waste flexible polyurethane foam is pulverized into fine powder having barb-like projections having a particle size of less than 5 mm as a starting material, and the starting material is molded and subjected to primary compression for deaeration. A method for reclaiming polyurethane foam waste material, which comprises subjecting a polyurethane foam to secondary consolidation in a heating atmosphere within a temperature range to a predetermined reduction amount, thereby consolidating and shaping, and shaping.
硬質ポリウレタンフォーム廃材及び軟質ポリウレタンフォーム廃材をそれぞれ粗粉砕した後、さらに繊維含有材料の解繊装置を用いて粒径2mm以下のトゲ状突起を有する微細粉末に粉砕して再生原料として硬軟混合粉砕物を調製し、金型に充填して脱気のための一次圧縮を施し、つづいて 120〜170 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化して得られる発泡体の性質を除去した成形体であって、該成形体100重量部に対する軟質ポリウレタンフォーム廃材の割合が5〜20重量%であり、可撓性又は準剛性を有することを特徴とする再生ポリウレタン成形体。In a recycled polyurethane molded body containing no adhesive or other binder,
The hard polyurethane foam waste and the soft polyurethane foam waste are each roughly pulverized, and then further pulverized into fine powder having barb-like projections having a particle diameter of 2 mm or less using a fibrillation device for a fiber-containing material. And then subjected to primary compression for degassing, followed by secondary compression in a heating atmosphere within a temperature range of 120 to 170 ° C until a predetermined reduction amount was reached. And a molded article from which the properties of the foam obtained by shaping have been removed, wherein the ratio of waste flexible polyurethane foam to 100 parts by weight of the molded article is 5 to 20% by weight, A recycled polyurethane molded article having rigidity.
軟質ポリウレタンフォーム廃材を粗粉砕した後、さらに繊維含有材料の解繊装置を用いてトゲ状突起を有する5mm未満の微細粉末に粉砕して再生原料とし、金型に充填して脱気のための一次圧縮を施し、つづいて 110〜160 ℃の温度範囲内の加熱雰囲気中で所定の圧下量に達するまで二次圧縮することにより圧密一体化し、かつ、賦型化して得られる発泡体の性質を除去した成形体であって、軟質性又は柔軟性を有することを特徴とする再生ポリウレタン成形体。In a recycled polyurethane molded body containing no adhesive or other binder,
After coarsely pulverizing the flexible polyurethane foam waste material, it is further pulverized into fine powder of less than 5 mm having barb-like projections by using a fibrillation device for fiber-containing materials to obtain a regenerated raw material, and filled in a mold for deaeration. The primary compression is performed, followed by secondary compression in a heating atmosphere within a temperature range of 110 to 160 ° C. until a predetermined reduction amount is reached. A reclaimed polyurethane molded article which has been removed and has softness or flexibility.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002363301A JP4356085B2 (en) | 2002-12-16 | 2002-12-16 | Recycled polyurethane foam waste material and recycled polyurethane molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002363301A JP4356085B2 (en) | 2002-12-16 | 2002-12-16 | Recycled polyurethane foam waste material and recycled polyurethane molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004195658A true JP2004195658A (en) | 2004-07-15 |
JP4356085B2 JP4356085B2 (en) | 2009-11-04 |
Family
ID=32761481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002363301A Expired - Fee Related JP4356085B2 (en) | 2002-12-16 | 2002-12-16 | Recycled polyurethane foam waste material and recycled polyurethane molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4356085B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102585137A (en) * | 2011-12-23 | 2012-07-18 | 山东东大一诺威聚氨酯有限公司 | Environmentally-friendly high-strength regenerated foam polyurethane adhesive, and preparation method and use method thereof |
WO2014011537A1 (en) * | 2012-07-10 | 2014-01-16 | Nike International Ltd | Bead foam compression molding method for low density product |
US9144956B2 (en) | 2013-02-12 | 2015-09-29 | Nike, Inc. | Bead foam compression molding method with in situ steam generation for low density product |
AU2015215968B2 (en) * | 2012-07-10 | 2016-11-10 | Nike Innovate C.V. | Bead foam compression molding method for low density product |
CN110576546A (en) * | 2019-09-27 | 2019-12-17 | 赛诺(浙江)聚氨酯新材料有限公司 | Method and device for preparing regenerated sponge from polyurethane sponge waste |
CN111605118A (en) * | 2020-05-29 | 2020-09-01 | 江苏联茂智能家居有限公司 | Equipment for manufacturing regenerated sponge |
JP2022065648A (en) * | 2020-10-15 | 2022-04-27 | 捷欣企業股▲ふん▼有限公司 | Sheet structure |
-
2002
- 2002-12-16 JP JP2002363301A patent/JP4356085B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102585137A (en) * | 2011-12-23 | 2012-07-18 | 山东东大一诺威聚氨酯有限公司 | Environmentally-friendly high-strength regenerated foam polyurethane adhesive, and preparation method and use method thereof |
AU2015215968B2 (en) * | 2012-07-10 | 2016-11-10 | Nike Innovate C.V. | Bead foam compression molding method for low density product |
US9682522B2 (en) | 2012-07-10 | 2017-06-20 | Nike, Inc. | Low density foamed article made by bead foam compression molding method |
CN104797392A (en) * | 2012-07-10 | 2015-07-22 | 耐克创新有限合伙公司 | Bead foam compression molding method for low density product |
US8961844B2 (en) | 2012-07-10 | 2015-02-24 | Nike, Inc. | Bead foam compression molding method for low density product |
KR101569659B1 (en) | 2012-07-10 | 2015-11-16 | 나이키 이노베이트 씨.브이. | Bead foam compression molding method for low density product |
WO2014011537A1 (en) * | 2012-07-10 | 2014-01-16 | Nike International Ltd | Bead foam compression molding method for low density product |
TWI556936B (en) * | 2012-07-10 | 2016-11-11 | 耐吉創新有限公司 | Bead foam compression molding method for low density product and articles prepared by the method |
US9144956B2 (en) | 2013-02-12 | 2015-09-29 | Nike, Inc. | Bead foam compression molding method with in situ steam generation for low density product |
US9834656B2 (en) | 2013-02-12 | 2017-12-05 | Nike International Ltd. | Bead foam compression molding method with in situ steam generation for low density product |
US10442910B2 (en) | 2013-02-12 | 2019-10-15 | Nike, Inc. | Bead foam compression molding method with in situ steam generation for low density product |
CN110576546A (en) * | 2019-09-27 | 2019-12-17 | 赛诺(浙江)聚氨酯新材料有限公司 | Method and device for preparing regenerated sponge from polyurethane sponge waste |
CN111605118A (en) * | 2020-05-29 | 2020-09-01 | 江苏联茂智能家居有限公司 | Equipment for manufacturing regenerated sponge |
JP2022065648A (en) * | 2020-10-15 | 2022-04-27 | 捷欣企業股▲ふん▼有限公司 | Sheet structure |
JP7265800B2 (en) | 2020-10-15 | 2023-04-27 | 捷欣企業股▲ふん▼有限公司 | seat structure |
Also Published As
Publication number | Publication date |
---|---|
JP4356085B2 (en) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105602057B (en) | The thermoset composition prepared by engineering recycling rubber powder | |
Potadar et al. | Preparation and testing of composites using waste groundnut shells and coir fibres | |
Hulme et al. | Cost effective reprocessing of polyurethane by hot compression moulding | |
JP2004195658A (en) | Regeneration treatment method for polyurethane foam waste material and regenerated polyurethane molded object | |
EP1375104A1 (en) | Method of producing polyurethane parts and use of the parts | |
JP4399700B2 (en) | Recycling method for waste polyurethane foam | |
JP3663512B2 (en) | Paper-polyurethane composite recycled molded article and method for producing the same | |
UA87985C2 (en) | method for producing fibrous material | |
JP2010208306A (en) | Cushioning material containing parenchyma cell, and method for manufacturing it | |
AU760198B2 (en) | Magnetic-abrasive powder, and method of producing the same | |
BE1007739A3 (en) | Agglomerated polyurethane foam and method for manufacturing the same. | |
JPS60151205A (en) | Improved graphite for nuclear power and manufacture | |
CN107199521B (en) | Process for manufacturing grinding block by using waste materials | |
JP2003011109A (en) | Method for producing wood-based hot-pressed material | |
US20110263728A1 (en) | Recycled latex foam material and its preparation method | |
JP2003160687A (en) | Melamine foam molding and cleaning tool | |
Oliveira et al. | Influence of leather fiber on modulus of elasticity in bending test and of bend strength of particleboards | |
JP3622088B2 (en) | Recycled molded product using waste paper and method for producing the same | |
Islam et al. | Facile fabrication of abrasive materials for sandpaper from waste materials | |
JP2012056303A (en) | Hot-press treated wood and production method thereof | |
US20120313297A1 (en) | Method for manufacturing ceramic product | |
JP4409712B2 (en) | Recycling method of rigid urethane foam | |
EP1901898B1 (en) | Procedure for producing insulating building units from plastic and/or rubber waste containing metal | |
JPH08112584A (en) | Granular composite material, its secondary worked body and their production | |
JP2010023394A (en) | Regenerated synthetic lumber and regenerating method of synthetic lumber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090630 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090724 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4356085 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150814 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |