【0001】
【発明の属する技術分野】
本発明は、臨床検査に用いられる血液凝固能測定用試薬及び血液凝固能の検査用試薬の検査方法に関する。より詳しくは、活性化部分トロンボプラスチン時間(activated partial thromboplastin time:以下「APTT」という。)測定試薬の検査方法に関する。
【0002】
【従来の技術】
APTTの測定は、内因性凝固機序に関係する、凝固第VIII因子、IX因子、XI因子、XII因子等の血液凝固因子の異常を鋭敏に反映し、内因系止血異常のスクリーニングとして必須の検査手段である。
体外診断薬で用いられるAPTT測定試薬は、ウサギ、ウシ、ヒトなど動物や植物から得られた粗製リン脂質を主としたPTT試薬に、カオリン、セライト、エラジン酸を添加した試薬であり、多く市販されている。
【0003】
APTT測定試薬の調製は、古くからタンニン酸から誘導させるエラグ酸、カオリン、又はセライト等を活性化剤として用いている。エラグ酸溶液に銅、ニッケル、コバルト類を混合させて活性化する方法が報告されている(米国特許3,486,981、R.E.Speckら、特表平5-506309、R.E.Speckら)。また、銅を用いる方法は、既にP.E.Bockらにより報告されている(Biochemistry,8,7258,1981)。
これらの金属イオンを用いてエラグ酸を活性化させてAPTT測定試薬を調製する方法は、溶液での安定性、検体の希釈直線性の面とプレカリクレインに対する反応性で劣ることが問題となっていた。この問題を解決し、検体の希釈直線性や溶液状態での安定性に優れ、プレカリクレインの反応性の高いAPTT測定試薬組成物を提供する方法として、アルミニウム化合物を試薬に含有させる方法が報告されている(特許文献1)。
【0004】
APTT測定試薬の品質管理、APTT分析の質の管理のため等に、APTT測定の際に血液凝固用コントロール材料が使用されるが、改善されたコントロール材料についても報告されている(特許文献2)。
【0005】
APTT測定試薬は、製造元において試薬調製時に性能検査(確認検査)として、血液凝固用コントロール材料のAPTTの測定を実施する。この測定により、予め設定した規格を満たさないロット又はバイアルについては不合格とすることで、製品として出荷しない。
しかし、確認検査において合格した試薬であっても、実際に臨床検査を行った場合に、ロット間差及び/又はバイアル間差という問題があった。これは、APTTの試薬成分が生物由来であることが原因の一つと考えられる。
【0006】
【特許文献1】
特開2002−156379号公報
【特許文献2】
特表2002−519703号公報
【0007】
【解決すべき課題】
本発明の課題は、ロット間差及び/又はバイアル間差の改善され、品質が改善されたAPTT測定試薬を提供することである。
【0008】
【課題を解決する手段】
本発明者らは鋭意研究を重ねた結果、APTT測定試薬調製の最終段階、つまり試薬製造後の検査工程において、ロット間及び/又はバイアル間における測定値の違いを反映しうる検査方法を導入することにより、上記課題を解決しうることを見出し、本発明を完成した。
【0009】
つまり、本発明は、
1.一定の希釈倍率で希釈したAPTT測定試薬を用いてコントロール血漿のAPTTを測定することを特徴とする該APTT測定試薬の検査方法、
2.希釈倍数が2〜100倍の範囲から選択される一定の希釈倍率である前項1に記載のAPTT測定試薬の検査方法、
3.APTT測定試薬を含むバイアルを37℃で10日加温した後、一定の希釈倍率で希釈したAPTT測定試薬を用いてコントロール血漿のAPTTを測定することを特徴とする前項1又は2に記載のAPTT測定試薬の検査方法、
4.前項1〜3のいずれか1に記載のAPTT測定試薬の検査方法により検査して得られたAPTT測定試薬、からなる。
【0010】
【発明の実施の形態】
本発明の試薬は、広く既知のAPTT測定試薬に適用できる。APTT測定試薬は、ウサギ、ウシ、ヒト等の動物や大豆等の植物を原料とするリン脂質にカオリン、セライト、エラジン酸、アルミニウム等の凝固反応活性化剤を加え、pH等を調整して調製される。
【0011】
APTT測定試薬は有効成分として生物由来の原料を用いていることに加え、凝固時間(APTT)は試薬中のリン脂質量、リン脂質粒子径、遊離型(非活性型)エラジン酸量などにより影響を受ける。また、試薬バイアルは通常シリコンコーティングされているが、このコーティングが不均一であったり、コーティングの剥離があったりすると、バイアルのガラスに含まれるアルミニウムイオンが溶出して試薬中の遊離型(非活性型)エラジン酸に作用し、凝固時間に影響を及ぼす。その結果、コントロールを用いて測定した場合には、ロット間及び/又はバイアル間において誤差が検出されない場合でも、実際の測定検体を測定した場合にはロット間及び/又はバイアル間において、APTT測定値が異なる場合が生じる。このように凝固時間に影響を及ぼす要因は多く、ロット間差バイアル間差が発生した場合の原因の特定は容易ではない。
【0012】
(APTT測定試薬の品質検査方法)
通常臨床検査において使用されるAPTT検査は、市販のAPTT測定試薬に添付する説明書に記載の方法に従って行われる。例えば、あらかじめ37℃に保温した小試験管に血漿0.1mLをとり、約3分加温した後、あらかじめ37℃に保温したAPTT測定試薬0.1mLを加え、軽く振とうし、37℃で5分間反応させ、ついで20〜25mMの塩化カルシウム液0.1mLを加えると同時にストップウォッチを始動し、フィブリン析出までの時間を測定する方法(臨床検査法提要、1998年、金原出版株式会社発行、第31版、410頁)が挙げられる。
このような検査方法により、正常血漿のAPTTを測定した場合、通常凝固時間は30〜40秒となる。
【0013】
本発明におけるAPTT測定試薬の品質検査は、製造して得られたAPTT測定試薬をあらかじめ希釈し、希釈後のAPTT測定試薬を用いて、通常品質検査に使用するコントロールのAPTT値を測定する希釈APTT法(dAPTT法)により行う。
【0014】
通常は、試薬間のロット間又はバイアル間の測定誤差を軽減させるために、被検試料に対して過剰量のAPTT測定試薬有効成分を加えた系で臨床検査を行っている。この系では、コントロールを用いた場合、特にAPTT測定試薬ロット間の差が生じにくく、品質検査の段階ではロット間の測定値の変動を予測することが困難であった。
しかし、実際の測定系では、コントロールの系では検出されなかったAPTT測定試薬ロット間の誤差が測定値に表れる場合がある。これは、実際の被検試料が異なる個体から採取されることで、個体毎の被検試料含有成分の違いにより、APTTの測定結果に影響を及ぼすことが原因として考えられる。
【0015】
そこで、APTT測定試薬の品質検査段階で、dAPTT法を採用すれば測定感度が上昇することを見出し、APTT測定試薬のロット間又はバイアル間の測定値のばらつきを予測することができる事を確認した。
【0016】
(APTT測定試薬の希釈条件)
本発明の品質検査において希釈するAPTT測定試薬の希釈液は、APTT試薬に含有される成分の機能を害さない溶液であればよく、特に限定されない。例えば、緩衝液はいずれの適当な緩衝液でもよく、好ましくは約6〜8、より好ましくは約7〜8の範囲のpHを有する。好ましい緩衝液として、例えば、N-2-ヒドロキシエチルピペラジン-N-2-エタンスルホン酸(HEPES)緩衝液、及び、3-(N-モルホリノ)-プロパンスルホン酸(MOPS)緩衝液、ベロナ−ル緩衝液が挙げられ、ベロナ−ル緩衝液が最も好ましい緩衝液である。他の緩衝液の例には、トリス、N,N-ビス-(ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)緩衝液、N-トリス-(ヒドロキシメチル)-メチル-2-アミノエタンスルホン酸(TES)緩衝液、3-[N-トリス(ヒドロキシメチル)メチルアミノ]-2-ヒドソキシプロパンスルホン酸(TAPSO)緩衝液、及び、3-[N-トリス-(ヒドロキシメチル-メチルアミノ]-プロパンスルホン酸(TAPS)緩衝液等が挙げられる。
【0017】
本発明のAPTT測定試薬の希釈倍数は、希釈したAPTT測定試薬を使用して、血漿のAPTTが測定可能な程度であれば良く、特に制限されないが、例えば2〜100倍であり、好ましくは20〜60倍であり、より好ましくは30〜45倍程度である。
【0018】
(APTT測定試薬の加温処理)
また、APTT測定試薬の希釈は、該試薬の保存前または保存後に行うことができるが、好ましくは保存後に行うことができる。該試薬の保存の温度は、20〜50℃、好ましくは30℃〜40℃、より好ましくは37℃で行うことができる。また保存日数は、1〜5日、好ましくは3〜15日、より好ましくは8〜12日で行うことができる。一般的には、37℃で10日保存した後に希釈することができる。試薬バイアルのシリコンコーティングの状態が不良となると、バイアルのガラス中に含まれるアルミニウムイオンが溶出して、試薬中の遊離型エラジン酸に作用を及ぼし、測定系に影響を及ぼすことになる。そこで、37℃で10日間保存という過酷な条件でAPTT測定試薬を加熱処理することにより、不良なバイアルを多く含むロットを選別し、排除することが可能となる。
【0019】
(コントロール)
コントロールは、通常APTT測定に使用されるものであれば良く、特に限定されないが、例えば血液凝固因子を正常量含む血漿が好適に使用される。血漿は、霊長類の血漿及び/又は非霊長類哺乳動物の血漿が挙げられる。
【0020】
【実施例】
以下に実施例を挙げて本発明をさらに説明するが、本発明は実施例に限定されるものではない。
【0021】
(実施例1)APTT測定試薬の調製(1)
APTT試薬(DADE BEHRING社製)をAPTT測定試薬として用いた。該試薬は、ウサギ由来のセファリンを8μL/mL及びエラジン酸を0.0001mol/L含有する。該試薬をオーレンベロナ−ル緩衝液で40倍に希釈した。
【0022】
(実施例2)APTT測定試薬の調製(2)
試薬を充填するバイアルに、APTT試薬(DADE BEHRING社製)を一定量加え、密栓を施して37℃の恒温槽中で10日間置した後、上記と同様に該試薬をオーレンベロナ−ル緩衝液で40倍に希釈した。
【0023】
(実施例3)凝固時間検査方法
血漿コントロールを50μLを採取し37℃で60秒間加温した。調製されたAPTT測定試薬を50μL混合し、さらに37℃で180秒間加温活性化した。20mM塩化カルシウム液を50μL混合し、凝固時間を測定した。本測定には全自動血液凝固分析装置CA-6000を用いて行った。
【0024】
(実験例1)APTT測定試薬ロット間差の測定値の検討
16種のロットのAPTT測定試薬に関し、希釈処理を施さなかった試薬及び実施例1に記載の方法で希釈処理を行った試薬について、実施例3に記載の凝固時間検査方法により血漿コントロールのAPTT凝固時間を測定した。
その結果を図1及び図2に示した。図2は示すように、希釈したAPTT測定試薬のほうが、ロット間のばらつきが顕著に認められた。
【0025】
(実験例2)遊離型エラジン酸量の測定
APTT測定試薬中の遊離型(非活性型)エラジン酸量と凝固時間の関係を調べることを目的として実験を行った。APTT測定試薬の希釈は、実施例1に記載の方法に従い、凝固時間は実施例3に記載の方法に従った。また、エラジン酸の量は、分光光度計を用いて波長360nmの吸光度を測定した。
その結果、図3に示すように希釈したAPTT測定試薬を用いた血漿コントロールの凝固時間及び波長360nmの吸光度の関係は、相関係数0.9728による相関関係が認められた。このことより、凝固時間の測定値から、APTT測定試薬に含有するエラジン酸量の推定が可能となる。
【0026】
(実験例3)ヒト検体の凝固時間
採取したヒト血液9容に対し3.2%クエン酸ナトリウム1容を混合して、3000rpmで10分間遠心して、血漿を分取したものをヒト検体とした。
ヒト検体について、APTT測定試薬及び実施例1に記載の方法で希釈したAPTT測定試薬を用いて、各々実施例3に記載の方法に従い、APTT凝固時間を測定した。
その結果、図4に示すように、両試薬を用いた凝固時間は相関係数0.9509による相関関係が認められた。このことより、ヒト検体の凝固時間を希釈したAPTT測定試薬で測定した場合も、APTT凝固時間の推定が可能となる。
【0027】
(実験例4)第XII因子欠乏血漿の凝固時間
第XII因子欠乏血漿(DADE BEHRING社製)について、APTT測定試薬及び実施例1に記載の方法で希釈したAPTT測定試薬を用いて、各々実施例3に記載の方法に従いAPTT凝固時間を測定した。
その結果、図5に示すように両試薬を用いた凝固時間は相関係数0.9892による相関関係が認められた。このことより、第XII因子欠乏血漿の凝固時間を希釈したAPTT測定試薬で測定した場合も、APTT凝固時間の推定が可能となる。
【0028】
(実験例5)血漿コントロールの凝固時間
血漿コントロール(DADE BEHRING社製)について、APTT測定試薬及び実施例1に記載の方法で希釈したAPTT測定試薬を用いて、各々実施例3に記載の方法にAPTT凝固時間を測定した。
その結果、図6に示すように、両試薬を用いた凝固時間は相関係数0.8948による相関関係が認められた。このことより、血漿コントロールの凝固時間を希釈したAPTT測定試薬で測定した場合も、APTT凝固時間の推定が可能となる。
【0029】
(実験例6)試薬バイアルのシリコンコーティングによる凝固時間の検討
血漿コントロール(DADE BEHRING社製)について、実施例2に記載の方法で処理したAPTT測定試薬を用いて、実施例3に記載の方法に従い凝固時間を測定した。 その結果、図7に示すようにシリコンコーティングが良品のバイアルに充填されたAPTT測定試薬については凝固時間は102秒までの値であったが、シリコンコーティングが不良のバイアルに充填されたAPTT測定試薬については凝固時間は106秒以上の値を示した。このことより、APTT測定試薬が同一ロットであっても、充填用バイアルの違いにより凝固時間の違いが確認され、バイアルの良不良の検査が可能となる。
【0030】
【発明の効果】
以上説明したように、本発明の検査方法により、APTT測定試薬のロット間の測定結果のばらつきを確認できる他、該試薬中に存在するエラジン酸量の推定が可能となることがわかった。また、ヒト検体、第XII因子欠乏血漿及び血漿コントロールのAPTT凝固時間も推定することが可能となった。すなわち、本発明の検査方法を採用することで、製造段階で受入規格に合格するロットを選別することができ、非常に有用である。さらに、本発明の検査方法により、試薬充填用バイアルのシリコンコーティングの良不良によるAPTT凝固時間に差が認められたことから、同一ロットのAPTT測定試薬を数本検査することにより、シリコンコーティング不良の多いロットをあらかじめ検出することも可能となる。本発明の検査方法によりAPTT測定試薬を選別することで、ロット間の凝固時間のばらつき及びロット内での凝固時間のばらつきを抑えた優れたAPTT測定試薬を提供することができる。
【図面の簡単な説明】
【図1】希釈処理を施さなかったAPTT測定試薬による血漿コントロールの凝固時間を示す図である。(実験例1)
【図2】希釈処理を施したAPTT測定試薬による血漿コントロールの凝固時間を示す図である。(実験例1)
【図3】希釈処理を施したAPTT測定試薬による血漿コントロールの凝固時間および遊離型エラジン酸量の関係を示す図である。(実験例2)
【図4】希釈処理を施したAPTT測定試薬および希釈処理を施さないAPTT測定試薬によるヒト検体の凝固時間の関係を示す図である。(実験例3)
【図5】希釈処理を施したAPTT測定試薬および希釈処理を施さないAPTT測定試薬による第XII因子欠乏血漿の凝固時間の関係を示す図である。(実験例4)
【図6】希釈処理を施したAPTT測定試薬および希釈処理を施さないAPTT測定試薬による血漿コントロールの凝固時間の関係を示す図である。(実験例5)
【図7】試薬バイアルのシリコンコーティングと凝固時間の関係を示す図である。(実験例6)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reagent for measuring blood coagulation ability and a method for testing a reagent for testing blood coagulation ability used in clinical tests. More specifically, the present invention relates to a method for testing an activated partial thromboplastin time (hereinafter, referred to as “APTT”) measuring reagent.
[0002]
[Prior art]
APTT measurements are sensitive tests of blood coagulation factors such as coagulation factors VIII, IX, XI, and XII, which are related to the intrinsic coagulation mechanism. Means.
The APTT measurement reagent used for in vitro diagnostics is a PTT reagent mainly composed of crude phospholipids obtained from animals and plants such as rabbits, cows, and humans, and is a reagent obtained by adding kaolin, celite, and ellagic acid. Have been.
[0003]
For the preparation of the APTT measurement reagent, ellagic acid, kaolin, celite or the like derived from tannic acid has long been used as an activator. A method of activating by mixing copper, nickel and cobalt with an ellagic acid solution has been reported (US Pat. No. 3,486,981, RESpeck et al., JP-T 5-506309, RESpeck et al.). The method using copper has already been reported by PEBock et al. (Biochemistry, 8, 7258, 1981).
The method of preparing an APTT measurement reagent by activating ellagic acid using these metal ions has a problem in that the stability in solution, the linearity of dilution of the sample and the reactivity to prekallikrein are inferior. Was. As a method of solving this problem and providing a reagent composition for measuring APTT having high prekallikrein reactivity with excellent dilution linearity and stability in a solution state, a method of including an aluminum compound in a reagent has been reported. (Patent Document 1).
[0004]
In order to control the quality of the APTT measurement reagent and the quality of the APTT analysis, a control material for blood coagulation is used at the time of APTT measurement, and an improved control material has also been reported (Patent Document 2). .
[0005]
The APTT measurement reagent measures the APTT of a blood coagulation control material as a performance test (confirmation test) at the time of reagent preparation at the manufacturer. Based on this measurement, lots or vials that do not meet the preset specifications are rejected and are not shipped as products.
However, even if the reagent passed the confirmation test, there was a problem of a difference between lots and / or a difference between vials when a clinical test was actually performed. This is considered to be one of the causes of the fact that the APTT reagent component is of biological origin.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-156379 [Patent Document 2]
Japanese Unexamined Patent Publication No. 2002-519703
【task to solve】
An object of the present invention is to provide an APTT measuring reagent with improved lot-to-lot difference and / or vial-to-vial difference and improved quality.
[0008]
[Means to solve the problem]
As a result of intensive studies, the present inventors have introduced an inspection method capable of reflecting a difference in measured values between lots and / or vials in the final stage of APTT measurement reagent preparation, that is, an inspection process after reagent production. As a result, they have found that the above problems can be solved, and have completed the present invention.
[0009]
That is, the present invention
1. A method for testing an APTT measurement reagent, comprising measuring APTT of control plasma using an APTT measurement reagent diluted at a certain dilution factor,
2. The method for testing an APTT measurement reagent according to the above 1, wherein the dilution factor is a constant dilution factor selected from a range of 2 to 100 times,
3. The APTT according to the above 1 or 2, wherein the vial containing the APTT measurement reagent is heated at 37 ° C. for 10 days, and then the APTT of the control plasma is measured using the APTT measurement reagent diluted at a certain dilution factor. Test method of measurement reagent,
4. An APTT measurement reagent obtained by an inspection according to the method for testing an APTT measurement reagent according to any one of the above items 1 to 3.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The reagent of the present invention can be applied to widely known APTT measuring reagents. The APTT measurement reagent is prepared by adding a coagulation reaction activator such as kaolin, celite, ellagic acid, or aluminum to phospholipids derived from animals such as rabbits, cows and humans, or plants such as soybeans, and adjusting the pH and the like. Is done.
[0011]
The APTT measurement reagent uses biologically derived raw materials as the active ingredient, and the coagulation time (APTT) is affected by the amount of phospholipids, phospholipid particle size, free (inactive) ellagic acid, etc. in the reagent. Receive. In addition, the reagent vial is usually coated with silicon. If the coating is uneven or the coating is peeled off, aluminum ions contained in the glass of the vial are eluted and the free form (non-active) in the reagent is removed. (Type) Acts on ellagic acid and affects clotting time. As a result, even when no error is detected between lots and / or vials when the measurement is performed using the control, the APTT measurement value is measured between lots and / or vials when the actual measurement sample is measured. May be different. As described above, there are many factors that affect the coagulation time, and it is not easy to specify the cause when the lot-to-lot difference vial difference occurs.
[0012]
(Quality inspection method of APTT measurement reagent)
An APTT test usually used in a clinical test is performed according to a method described in a manual attached to a commercially available APTT measurement reagent. For example, 0.1 mL of plasma is placed in a small test tube that has been kept at 37 ° C. in advance, heated for about 3 minutes, then 0.1 mL of an APTT measurement reagent that has been kept at 37 ° C. in advance, and shaken gently. Reaction, then add 0.1 mL of 20-25 mM calcium chloride solution and start the stopwatch at the same time to measure the time until fibrin precipitation (Procedure of Clinical Testing Methods, 1998, published by Kanehara Publishing Co., 31st edition) , P. 410).
When the APTT of normal plasma is measured by such a test method, the clotting time is usually 30 to 40 seconds.
[0013]
In the quality test of the APTT measurement reagent in the present invention, the APTT measurement reagent obtained by manufacturing is diluted in advance, and the diluted APTT measurement reagent is used to measure the APTT value of a control usually used for quality test using the diluted APTT measurement reagent. It is performed by the method (dAPTT method).
[0014]
Usually, in order to reduce a measurement error between lots or vials between reagents, a clinical test is performed in a system in which an excessive amount of an APTT measurement reagent active ingredient is added to a test sample. In this system, when a control was used, a difference between APTT measurement reagent lots was hardly generated, and it was difficult to predict a fluctuation in a measured value between lots in a quality inspection stage.
However, in an actual measurement system, an error between the APTT measurement reagent lots that is not detected in the control system may appear in the measurement value. This may be because the actual test sample is collected from a different individual, and the difference in the test sample-containing component of each individual affects the APTT measurement result.
[0015]
Therefore, in the quality test stage of the APTT measurement reagent, it was found that the measurement sensitivity was increased by employing the dAPTT method, and it was confirmed that the variation in the measurement value between lots or vials of the APTT measurement reagent could be predicted. .
[0016]
(Dilution conditions for APTT measurement reagent)
The diluting solution of the APTT measuring reagent to be diluted in the quality inspection of the present invention is not particularly limited as long as it is a solution that does not impair the function of the components contained in the APTT reagent. For example, the buffer can be any suitable buffer, preferably having a pH in the range of about 6-8, more preferably about 7-8. Preferred buffers include, for example, N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES) buffer, 3- (N-morpholino) -propanesulfonic acid (MOPS) buffer, veronal Buffers, with veronal buffer being the most preferred buffer. Examples of other buffers include Tris, N, N-bis- (hydroxyethyl) -2-aminoethanesulfonic acid (BES) buffer, N-tris- (hydroxymethyl) -methyl-2-aminoethanesulfone. Acid (TES) buffer, 3- [N-tris (hydroxymethyl) methylamino] -2-hydroxypropanesulfonic acid (TAPSO) buffer, and 3- [N-tris- (hydroxymethyl-methylamino) buffer -Propanesulfonic acid (TAPS) buffer and the like.
[0017]
The dilution factor of the APTT measurement reagent of the present invention is not particularly limited as long as the APTT of plasma can be measured using the diluted APTT measurement reagent, and is not particularly limited, but is, for example, 2 to 100 times, and preferably 20 times. It is about 60 times, more preferably about 30 to 45 times.
[0018]
(Heating treatment of APTT measurement reagent)
In addition, the dilution of the APTT measurement reagent can be performed before or after storage of the reagent, but is preferably performed after storage. The storage temperature of the reagent can be 20 to 50 ° C, preferably 30 to 40 ° C, more preferably 37 ° C. The storage period can be 1 to 5 days, preferably 3 to 15 days, more preferably 8 to 12 days. Generally, it can be diluted after storage at 37 ° C. for 10 days. If the state of the silicon coating of the reagent vial becomes poor, aluminum ions contained in the glass of the vial elute and affect the free ellagic acid in the reagent to affect the measurement system. Thus, by subjecting the APTT measurement reagent to heat treatment under severe conditions of storage at 37 ° C. for 10 days, it becomes possible to select and eliminate lots containing many defective vials.
[0019]
(Control)
The control is not particularly limited as long as it is usually used for APTT measurement. For example, plasma containing a normal amount of a blood coagulation factor is preferably used. Plasma includes primate plasma and / or plasma from non-primate mammals.
[0020]
【Example】
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to the examples.
[0021]
(Example 1) Preparation of APTT measurement reagent (1)
An APTT reagent (manufactured by DADE BEHRING) was used as an APTT measurement reagent. The reagent contains 8 μL / mL of rabbit-derived cephalin and 0.0001 mol / L of ellagic acid. The reagent was diluted 40-fold with Orlen Veronal buffer.
[0022]
(Example 2) Preparation of APTT measurement reagent (2)
A fixed amount of an APTT reagent (manufactured by DADE BEHRING) is added to a vial filled with the reagent, and the vial is sealed and placed in a thermostat at 37 ° C. for 10 days. And diluted 40 times.
[0023]
(Example 3) Coagulation time test method 50 µL of a plasma control was collected and heated at 37 ° C for 60 seconds. 50 μL of the prepared APTT measurement reagent was mixed, and heated and activated at 37 ° C. for 180 seconds. 50 μL of a 20 mM calcium chloride solution was mixed, and the coagulation time was measured. This measurement was performed using a fully automatic blood coagulation analyzer CA-6000.
[0024]
(Experimental Example 1) Examination of the measured value of the difference between the APTT measurement reagent lots Regarding the APTT measurement reagents of 16 kinds of lots, for the reagents not subjected to the dilution treatment and the reagents subjected to the dilution treatment according to the method described in Example 1, The APTT clotting time of the plasma control was measured by the clotting time test method described in Example 3.
The results are shown in FIGS. As shown in FIG. 2, lot-to-lot variation was remarkably observed in the diluted APTT measurement reagent.
[0025]
(Experimental Example 2) Measurement of the amount of free ellagic acid An experiment was conducted for the purpose of examining the relationship between the amount of free (inactive) ellagic acid in the APTT measurement reagent and the coagulation time. The dilution of the APTT measurement reagent was performed according to the method described in Example 1, and the clotting time was performed according to the method described in Example 3. The amount of ellagic acid was measured by measuring the absorbance at a wavelength of 360 nm using a spectrophotometer.
As a result, as shown in FIG. 3, the relationship between the coagulation time and the absorbance at a wavelength of 360 nm of the plasma control using the diluted APTT measurement reagent was found to have a correlation with a correlation coefficient of 0.9728. This makes it possible to estimate the amount of ellagic acid contained in the APTT measurement reagent from the measured value of the coagulation time.
[0026]
(Experimental Example 3) Coagulation time of human sample 9 volumes of human blood collected were mixed with 1 volume of 3.2% sodium citrate, and the mixture was centrifuged at 3000 rpm for 10 minutes.
The APTT clotting time of a human sample was measured according to the method described in Example 3 using the APTT measurement reagent and the APTT measurement reagent diluted by the method described in Example 1.
As a result, as shown in FIG. 4, the coagulation time using both reagents was correlated with a correlation coefficient of 0.9509. Thus, the APTT clotting time can be estimated even when the clotting time of the human sample is measured with the diluted APTT measuring reagent.
[0027]
(Experimental Example 4) Coagulation time of factor XII-deficient plasma For factor XII-deficient plasma (manufactured by DADE BEHRING), each of the examples was carried out using an APTT measuring reagent and an APTT measuring reagent diluted by the method described in Example 1. According to the method described in No. 3, the APTT clotting time was measured.
As a result, as shown in FIG. 5, the coagulation time using both reagents was correlated with a correlation coefficient of 0.9892. Accordingly, even when the clotting time of the factor XII-deficient plasma is measured with the diluted APTT measurement reagent, the APTT clotting time can be estimated.
[0028]
(Experimental example 5) Clotting time of plasma control Regarding a plasma control (manufactured by DADE BEHRING), using the APTT measurement reagent and the APTT measurement reagent diluted by the method described in Example 1, the method described in Example 3 was used. The APTT clotting time was measured.
As a result, as shown in FIG. 6, the coagulation time using both reagents was correlated with a correlation coefficient of 0.8948. Accordingly, even when the clotting time of the plasma control is measured with the diluted APTT measuring reagent, the APTT clotting time can be estimated.
[0029]
(Experimental example 6) Examination of coagulation time by silicon coating of reagent vial Regarding a plasma control (manufactured by DADE BEHRING), the method described in Example 3 was used using the APTT measurement reagent treated by the method described in Example 2. The clotting time was measured. As a result, as shown in FIG. 7, the coagulation time was up to 102 seconds for the APTT measurement reagent in which the silicon coating was filled in a non-defective vial, but the APTT measurement reagent in which the silicon coating was filled in a defective vial was used. The solidification time showed a value of 106 seconds or more. From this, even if the APTT measurement reagent is of the same lot, a difference in the coagulation time is confirmed due to a difference in the filling vial, and it is possible to inspect the quality of the vial.
[0030]
【The invention's effect】
As described above, it has been found that the test method of the present invention makes it possible to confirm the variation in the measurement result between lots of the APTT measurement reagent and to estimate the amount of ellagic acid present in the reagent. It has also become possible to estimate the APTT clotting time of human samples, factor XII-deficient plasma and plasma controls. That is, by adopting the inspection method of the present invention, it is possible to select lots that pass the acceptance standard at the manufacturing stage, which is very useful. Furthermore, the test method of the present invention showed a difference in the APTT coagulation time due to the quality of the silicon coating of the reagent filling vial. It is also possible to detect many lots in advance. By selecting the APTT measurement reagent by the test method of the present invention, it is possible to provide an excellent APTT measurement reagent in which the variation in the coagulation time between lots and the variation in the coagulation time within the lot are suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a clotting time of a plasma control using an APTT measurement reagent not subjected to a dilution treatment. (Experimental example 1)
FIG. 2 is a diagram showing a clotting time of a plasma control using a diluted APTT measurement reagent. (Experimental example 1)
FIG. 3 is a graph showing the relationship between the clotting time and the amount of free ellagic acid in a plasma control using a diluted APTT measuring reagent. (Experimental example 2)
FIG. 4 is a diagram showing the relationship between the coagulation time of a human specimen using an APTT measurement reagent subjected to a dilution treatment and an APTT measurement reagent not subjected to a dilution treatment. (Experimental example 3)
FIG. 5 is a graph showing the relationship between the coagulation time of factor XII-deficient plasma by the diluted APTT measurement reagent and the undiluted APTT measurement reagent. (Experimental example 4)
FIG. 6 is a diagram showing the relationship between the clotting time of a plasma control using an APTT measurement reagent subjected to a dilution treatment and an APTT measurement reagent not subjected to a dilution treatment. (Experimental example 5)
FIG. 7 is a diagram showing a relationship between a silicon coating of a reagent vial and a coagulation time. (Experimental example 6)