JP2004182648A - Method for producing alicyclic diepoxy compound - Google Patents
Method for producing alicyclic diepoxy compound Download PDFInfo
- Publication number
- JP2004182648A JP2004182648A JP2002351437A JP2002351437A JP2004182648A JP 2004182648 A JP2004182648 A JP 2004182648A JP 2002351437 A JP2002351437 A JP 2002351437A JP 2002351437 A JP2002351437 A JP 2002351437A JP 2004182648 A JP2004182648 A JP 2004182648A
- Authority
- JP
- Japan
- Prior art keywords
- water
- alicyclic
- diepoxy compound
- acid
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CC(*)(C1(*)C(*)(C2(*)*)C(*)=C(*)C1(*)*)C(C)=C2I Chemical compound CC(*)(C1(*)C(*)(C2(*)*)C(*)=C(*)C1(*)*)C(C)=C2I 0.000 description 2
Images
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は脂環式ジエポキシ化合物の製造方法に関するものであり、詳しくは、テトラヒドロインデンをはじめとする脂環のインデン骨格を持つ不飽和基含有化合物を実質的に水分を含まない有機過カルボン酸と反応させ、次いで、エポキシの安定化剤を存在させて精製することによるものである。
【0002】
【従来技術】
分子内に2個の脂環骨格を持つエポキシ化合物は、現在様々な種類のものが市販されている。例えばダイセル化学工業製の3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート(CEL−2021)、1,2,8,9−ジエポキシリモネン(CEL−3000)、ε−カプロラクトンオリゴマーの両端に、それぞれ3,4−エポキシシクロヘキシルメタノールと3,4−エポキシシクロヘキサンカルボン酸がエステル結合したもの(CEL−2081)等がある。これらエポキシ化合物は種々の硬化剤および硬化触媒と反応させることにより硬化物が得られる。このエポキシ樹脂硬化物は、脂環骨格を持つ化合物を用いた樹脂の特徴である耐熱性、透明性、良好な誘電特性を持たせることができ、これらエポキシ化合物を用いた用途としては、コーティング、接着剤、インキ、シーラントの成分または医薬品および医療用品を含む種々の最終用途に有用な他の化合物を製造するための中間体として有用である。
CEL−3000は、そのエポキシ基を構成する炭素原子上にメチル基を有するため、その立体障害により反応性が低い。また、CEL−2021,CEL−2081は、分子内にエステル基を持つため加水分解性を有し、高温高湿下での使用や強酸が発生する条件等に用いた場合、硬化物の物性低下が起こることがあった。
そこで、分子内にエステル基を持たない脂環骨格を持つエポキシ化合物が望まれている。
石油学会誌J. Japan Petrol. Inst., 21, (6), 410−414(1978)では、一般式(I)で表わされるテトラヒドロインデン(以下、THIと記載することもある)のジエポキシドの合成のためのエポキシ化剤として過酸化水素と触媒量の二酸化セレンやモリブデン酸を用いているが、生成物はインデンと五員環のオレフィンのみエポキシ化されたモノエポキシドで、ジエポキサイドは得られていない。
一方、THIの2倍モルの過安息香酸を用いると五員環のオレフィンのみエポキシ化されたモノエポキシドの他に六員環のオレフィンのみエポキシ化されたモノエポキシドとジエポキサイドの三種エポキシの共存が認められたことも報告されている。
ただし、酸との反応性が高いとされる脂環式エポキシドの合成においては、有機過カルボン酸を用いる場合、共存する有機酸が水の存在下で生成したエポキシ基と容易に反応し、エポキシ基が開環して高純度でジエポキサイドを得ることができない。
これらのエポキシ化合物の合成において、酸を調整する手段として予めエポキシ化反応系内にアルカリ塩や中性塩を入れることが有効であるように考えられるが、エポキシの安定性保持とともに有機過酸のエポキシ化能力を低下させることによりエポキシドの収率も低下することが確認されている。
例えば、1965年のUSP3,183,249においてテトラヒドロインデンの有機過酸によるジエポキシ化の合成に関する記載があるが、この反応系ではエポキシ基の開環防止のために、反応系に予め無水酢酸ナトリウムを加え21から24℃と低温で反応を行っている。しかしながら、このUSPにおけるジエポキシ化テトラヒドロインデンの収率は約42%と低収率である。
【0003】
【課題を解決するための手段】
本発明者は、前記目的を達成するために鋭意検討した結果、実質的に水分を含まない有機過カルボン酸を用いて経済的、収率よく高純度の脂環式ジエポキシ化合物が得られることを見出し、本発明を完成するに至った。
すなわち、本発明の第1は、下記一般式(II)で表わされる脂環式オレフィン化合物を有機過カルボン酸によりエポキシ化して一般式(I)で表わされる脂環式ジエポキシ化合物を製造する際、実質的に水分を含まない有機過カルボン酸を使用してエポキシ化し、次いで、粗液中に実質的に水分を存在させずにカルボン酸アルカリ金属塩を存在させ、次いでアルカリ水溶液及び/又は水で洗浄することを特徴とする脂環式ジエポキシ化合物の製造方法を提供する。
【化2】
本発明の第2は、実質的に水分を含まない有機過カルボン酸が対応するアルデヒドの酸素による酸化により得られたものである上記発明に記載の脂環式ジエポキシ化合物の製造方法を提供する。
本発明の第3は、実質的に水分を含まない有機過カルボン酸中の水分が0.8重量%以下である上記発明に記載の脂環式ジエポキシ化合物の製造方法を提供する。
本発明の第4は、実質的に水分を含まない有機過カルボン酸が過酢酸である上記発明に記載の脂環式ジエポキシ化合物の製造方法を提供する。
本発明の第5は、過酢酸が酢酸エチル溶液である上記発明に記載の脂環式ジエポキシ化合物の製造方法を提供する。
本発明の第6は、上記一般式(I)および(II)におけるR1〜R12が全て水素原子である上記発明に記載の脂環式ジエポキシ化合物の製造方法を提供する。
【0004】
脂環骨格を持つ上記一般式(I)で表わされる脂環式ジエポキシ化合物は、インデン骨格を持つ上記一般式(II)で表わされる不飽和化合物を有機過カルボン酸によって酸化させることにより製造されることは前記USP等により公知である。本発明は、エポキシ化反応後の精製工程において、水が実質的に存在しない状態でエポキシ基の安定化作用を有する化合物を存在させ、その後水洗等の精製をすることにより、高い収率で上記一般式(I)で表わされるジエポキシ化合物が得られる製造方法を提供する。
【0005】
【発明の実施の形態】
一般式(I)および一般式(II)において、R1〜R12は、それぞれ同一であっても異なっていてもよい。これらは、水素原子、ハロゲン原子、酸素原子もしくはハロゲン原子を含んでよい炭化水素基、又は置換基を有してよいアルコキシ基である。
上記脂環式インデン骨格を持つ不飽和化合物のうちR1〜R12がいずれも水素原子であるテトラヒドロインデンは、シクロペンタジエンとブタジエンのDiels−Alder反応により得られる4−ビニルシクロへキセンやジシクロペンタジエン等の混合物から精製することで得ることができる。
本発明によれば、脂環式ジエポキシ化合物は、テトラヒドロインデンをはじめとする脂環のインデン骨格を持つ不飽和化合物と有機過カルボン酸とを反応させることによって製造することができる。
【0006】
本発明の製造方法においては、エポキシ化剤としては有機過カルボン酸(有機過カルボン酸とは過ギ酸、過酢酸、過安息香酸、過イソ酪酸、トリフルオロ過酢酸等のことをいう)を用いることができる。有機過カルボンの中でも特に過酢酸は、本発明における脂環式エポキシ化合物の製造の際に必要な反応性を有すると同時に、安定度が高いことから好ましいエポキシ化剤である。
本発明の製造方法においては、有機過カルボン酸の中でも、実質的に水分を含まないものを使用することが必須であり、具体的には、水分含有量0.8重量%以下、好ましくは0.6重量%以下の有機過カルボン酸が使用される。それにより、高い収率で、かつ、高い比率で目的のジエポキシ化合物が得られる。本発明でいう実質的に水分を含まない有機過カルボン酸は、アルデヒド類、例えば、アセトアルデヒドの空気酸化により製造されるものであり、例えば、過酢酸についてはドイツ公開特許公報1418465号や特開昭54−3006に記載された方法により製造される。この方法によれば、過酸化水素から有機過カルボン酸を合成し、溶媒により抽出して有機過カルボン酸を製造する場合に比べて、連続して大量に高濃度の有機過カルボン酸を合成できるために、実質的に安価に得ることができる。
本発明の製造方法に用いるエポキシ化剤である実質的に水分を含まない有機過カルボン酸の使用量には厳密な制限がなく、それぞれの場合における最適量は使用する個々の有機過カルボン酸や原料である一般式(II)で表される脂環式オレフィン化合物の反応性、目的とするエポキシ化の割合等の可変要因によって決まる。
【0007】
エポキシ化反応は、装置や原料物性に応じて溶媒使用の有無や反応温度を調節して行う。溶媒としては、原料粘度の低下、エポキシ化剤の希釈による安定化などの目的で使用することができ、溶媒比率を上げることでエポキシ化反応の際発生する有機酸の濃度を下げることができ、これにより生成したエポキシの開環が防止しやすくなる。溶媒の種類としては過酢酸の場合であればエステル類、芳香族化合物、エーテル類などを用いることができる。特に好ましい溶媒は、酢酸エチル、ヘキサン、シクロヘキサン、トルエン、ベンゼン等であり、とりわけ、酢酸エチルが好ましい。反応温度は用いるエポキシ化剤と不飽和基含有化合物の反応性によって定まる。
例えば、好ましいエポキシ化剤である過酢酸を使用する場合の反応温度は、一般に20〜70℃が好ましい。20℃未満では反応が遅く、70℃を超える温度では過酢酸が発熱を伴って分解するので、好ましくない。但し、本エポキシ化合物の合成のようにエポキシ化合物が脂環式で有機酸との反応性が高い場合は反応温度が40℃以下である方が、生成エポキシの開環が防げて好ましい。
不飽和結合に対するエポキシ化剤の仕込みモル比は、不飽和結合をどれくらい残存させたいかなどの目的に応じて変化させることができる。エポキシ化率が高い化合物が目的の場合、エポキシ化剤は不飽和基1モルに対して望ましくは1.0〜2.0モル、より望ましくは1.05〜1.5モル加える。
2.0倍モルを超えることは経済性のみならず、結果として有機酸濃度が高くなり、これにより生成エポキシが開環しやすくなる副反応が生じて、通常不利である。本発明の製造方法によれば、高価なエポキシ化剤や触媒を使用する必要はない。
一般的に有機過カルボン酸を用いるエポキシ化反応では特別な操作は必要なく、例えばエポキシ化後の粗液を1〜5時間攪拌し、熟成させればよい。得られた粗液中の有機酸を中和・洗浄して除去した後のエポキシ化合物の単離は適当な方法、例えば貧溶媒で沈殿させる方法、エポキシ化物を熱水中に攪拌の下で投入し溶媒を蒸留除去する方法、直接脱溶媒法などで行うことができる。
しかし、本発明に係る脂環式エポキシ化合物のように生成エポキシが有機酸で開環しやすいものに関しては、熟成後に有機酸を除去せずに直接脱溶媒法を行ったり、エポキシ化物を熱水中に攪拌の下で投入し溶媒を蒸留除去する方法をとると、エポキシの開環が起こり高純度のジエポキシ化合物を得ることができない。本発明では、反応後、一定時間熟成させ、熟成終了後、炭酸ナトリウムや苛性ソーダ、苛性カリのような塩基性物質を用いて存在している有機酸を中和して有機酸のアルカリ金属塩を生成させた状態で、次いで、苛性ソーダ水溶液および/又は水にて洗浄を行うのが好ましい。この洗浄を行って生成した中和塩を水にて洗い出し、溶媒を加熱蒸発等で除去することにより、ジエポキシ化合物の含有比率が高く、かつ、ジエポキシ化合物を高い収率で得ることができる。
塩基性物質の添加量は熟成後の粗液中に存在している有機酸の一部だけが中和されて有機酸が一部、具体的には、25%以下、好ましくは20%未満は残っていてもよく、水または塩基性物質の水溶液の添加前に必ずしも有機酸の全部を中和してしまう必要はない。有機酸が25%より多く残っていると水と接触することによりジエポキシ化合物の安定性に悪影響が出る。
また、苛性ソーダ、苛性カリのような塩基性物質を用いて存在している有機酸を中和して有機酸のアルカリ金属塩等を生成させる代りに、熟成後の粗液中に酢酸ソーダのような有機酸のアルカリ金属塩を添加して粗液中のエポキシを安定化してその後に塩基性物質の水溶液を添加し、次いで、水洗して精製してもよい。水洗は、ジエポキシ化合物中に残存する酸価が2KOHmg/g未満、好ましくは、0.5KOHmg/g未満になるまで行う。ジエポキシ化合物中に残存する有機過酸の濃度が2KOHmg/gを超えると、ジエポキシ化合物の安定性の点で好ましくない。
【0008】
本発明の製造方法で製造される前記一般式(I)で表される脂環式エポキシ化合物は、安定性に優れており、単独重合、共重合又はさらに他の化合物と反応させることによって様々なコーティング、インキ、接着剤、シーラント、成形品又は、これらを用いた他の用途のための中間体を生成することができる。前記一般式(I)で表される脂環式エポキシ化合物を用いた最終用途の例としては、酸除去剤、家具コーティング、装飾コーティング、飲料缶及びその他の缶コーティング、接着剤、自動車下塗り、シーラー、仕上げ塗り、文字情報又は画像情報のインキ、電子部品用のシーラント、印刷版又は印刷回路版を開発するのに適したフォトレジスト、注型印刷ロール、不飽和ポリエステル及びスチレンを主体としガラス、炭素、グラファイト又は、他の繊維によって強化された成形配合物又はシート形成配合物によって作られた成形品、溶媒、難燃剤、医薬品および医療用品を含む種々の最終用途に有用な他の化合物を製造するための中間体などがある。また、前記一般式(I)で表される脂環式エポキシ化合物は、脂環骨格を持つ化合物を用いた樹脂の特徴である耐熱性、透明性、良好な誘電特性を持たせることができる。
【0009】
【実施例】
以下の実施例は、本発明を例示するためのものであり、その範囲を何ら限定するものではない。
【0010】
[実施例1]
前記一般式(II)で表される脂環式オレフィン化合物であるテトラヒドロインデン240g、酢酸エチル480gを仕込み、窒素を気相部に吹き込みながら、かつ、反応系内の温度を30℃になるようにコントロールしながら約3時間かけて30重量%過酢酸の酢酸エチル溶液(水分率0.41重量%)1220gを滴下した。過酢酸溶液滴下終了後、30℃で6時間熟成し反応を終了した。
さらに20℃以下で攪拌状態の反応終了時の粗液に398gの炭酸ナトリウムを加え半中和した後、さらに10%NaOHの1500gを加え、攪拌を止めて2層に分離し、下層の水層を払い出した。その後、上層の有機層に対して1000gの脱イオン水を用いて、残存する中和塩を洗浄払い出しを行った。
洗浄済みの粗液を40℃/10mmHgで低沸点化合物の除去を行い、ジエポキシ化合物を含む生成物243gを得た。これが全てジエポキシ化合物であるとみなした場合のみかけの収率は80%であった。
1H−NMRの測定では、図1に示す原料テトラヒドロインデンのNMRチャートにみられるδ5.5〜6.0ppm付近の内部二重結合に由来するピークが消失し、δ3.0〜3.5ppm付近にエポキシ基に由来するプロトンのピークの生成が確認され、前記一般式(I)で表される脂環式エポキシ化合物であることが確認された(図2)。
【0011】
また、MS−GCの測定では、rtで11分から12分の間に4つ大小ピークとが見られ、これらはすべて分子量79に最強ピークを持ちかつ分子量151が最大であることが共通している(図3)。このことからこれらはいずれもジエポキシ化テトラヒドロインデンの立体異性体と考えられる。なお、rtで約1.5分のピークは測定溶剤のアセトンによるものであるためこれらを差し引いて換算するとこれら4つの異性体比率はrt順に 41:19:34:1.1でありこれら4つの異性体比率総計は94.9%占めている。この他の微小ピークとしてrtが15.5分と15.8分前後に見られるが、15.5分は分子量212が最大であることからジエポキシ化テトラヒドロインデンに酢酸付加したもので約1.5%、15.8分が最大分子量503であることから多量体が約2.3%であった。
【0012】
[実施例2]
実施例1と同一な反応及び熟成条件で得た反応粗液に対し、20℃以下の攪拌状態で酢酸エチル200gを追加した後に10%NaOHの3000gを加え、攪拌を止めて2層に分離し、下層の水層を払い出した。その後、上層の有機層に対して1000gの脱イオン水を用いて、残存する中和塩を洗浄払い出しを行った。
洗浄済みの粗液を40℃/10mmHgで低沸点化合物の除去を行い、ジエポキシ化合物を含む生成物228gを得た。このときのみかけの収率は75%であった。
【0013】
1H−NMRの測定では、δ5.5〜6.0pm付近の内部二重結合に由来するピークが消失し、δ3.0〜3.5ppm付近にエポキシ基に由来するプロトンのピークの生成が確認され、前記一般式(I)で表される脂環式エポキシ化合物であることが確認された。
また、MS−GCの測定では、実施例1と同様にrtで11分から12分の間にジエポキシ化テトラヒドロインデンの立体異性体と考えられる4つ大小ピークが見られた。なお、異性体比率総計は93.5%占め、ジエポキシ化テトラヒドロインデンに酢酸付加したものが約1.9%、多量体が約2.8%含まれていた。
【0014】
[比較例1]
前記一般式(II)で表される脂環式オレフィン化合物であるテトラヒドロインデン120g、酢酸エチル120gを仕込み、窒素を気相部に吹き込みながら、かつ、反応系内の温度を40℃になるようにコントロールしながら約3時間かけて30重量%過酢酸の酢酸エチル溶液(水分率0.41重量%)610gを滴下した。過酢酸溶液滴下終了後、40℃で4時間熟成し反応を終了した。
さらに20℃以下で攪拌状態の反応終了時の粗液に1000gの脱イオン水を加え、攪拌を止めて2層に分離し、下層の水層を払い出した。その後 上層の有機層に対して10%NaOHを1000gを加え、攪拌を止めて2層分離し、下層の水層を払い出した。
さらに、上層の有機層に対して500gの脱イオン水を用いて、残存する中和塩を洗浄払い出しを行った。
洗浄済みの粗液を40℃/10mmHgで低沸点化合物の除去を行い、ジエポキシ化合物を含む生成物123gを得た。このときのみかけの収率は81%であった。
【0015】
1H−NMRの測定では、δ5.5〜6.0ppm付近の内部二重結合に由来するピークが消失し、δ3.0〜3.5ppm付近にエポキシ基に由来するプロトンのピークの生成が確認された。
次に、MS−GCの測定では、実施例1のようにrtで11分から12分の間に4つピークが見られたが、rtが15.5分と15.8分前後のピークが大きく見られ、その比率がそれぞれ22.5%と29.9%でジエポキシ化テトラヒドロインデンの立体異性体の45.2%を上回った。
【0016】
[比較例2]
前記一般式(II)で表される脂環式オレフィン化合物であるテトラヒドロインデン240g、酢酸エチル480g及び無水酢酸ナトリウム 40gを仕込み、窒素を気相部に吹き込みながら、かつ、反応系内の温度を30℃になるようにコントロールしながら約3時間かけて30重量%過酢酸の酢酸エチル溶液(水分率0.41重量%)1220gを滴下した。過酢酸溶液滴下終了後、30℃で6時間熟成し反応を終了した。
さらに、20℃以下で攪拌状態の反応終了時の粗液に10%NaOH 3000gを加え、攪拌を止めて2層に分離し、下層の水層を払い出した。その後、上層の有機層に対して1000gの脱イオン水を用いて、残存する中和塩を洗浄払い出しを行った。
洗浄済みの粗液を40℃/10mmHgで低沸点化合物の除去を行い、ジエポキシ化合物を含む生成物235gを得た。このときのみかけの収率は47%であった。
【0017】
1H−NMRの測定では、実施例1と同様に二重結合に由来するピークが消失し、エポキシ基に由来するプロトンのピークの生成が確認され、前記一般式(I)で表される脂環式エポキシ化合物であることが確認された。
また、MS−GCの測定では、実施例1と同様にrtで11分から12分の間にジエポキシ化テトラヒドロインデンの立体異性体と考えられる4つ大小ピークが見られた。なお、異性体比率総計は95.0%占め、ジエポキシ化テトラヒドロインデンに酢酸付加したものが約1.5%、多量体が約2.2%含まれていた。
【0018】
上記のように、たとえ、実質的に水分を含まない過カルボン酸を使用してもエポキシ化反応粗液を精製する際、カルボン酸が存在した状態で水と接触させると(上記比較例1)、エポキシ化合物のみかけの収率はある程度維持できるが、目的とするジエポキシ化合物の比率が低下する。また、前記USPに記載されているように、エポキシ化反応工程で安定化剤を存在(上記比較例2)させてエポキシ基の開環を防ぐ手段を講じて、その後の精製工程において水と接触させるような手段をとると、ジエポキシ化合物の比率は高いが、エポキシ化反応時の収率が低い。
これに対して、実施例1や実施例2におけるように、実質的に水分を含まない有機過カルボン酸を使用してエポキシ化を行ない、次いで、粗液中に実質的に水分を存在させない状態で固形の塩基性物質と接触させてカルボン酸アルカリ金属塩が生成するような手段を講じて、次いでアルカリ水溶液及び/又は水でカルボン酸アルカリ金属塩を洗浄するエポキシ化を行えば、ジエポキシ化合物の比率が高く、かつ、高い収率でジエポキシ化合物を得ることができる。
【0019】
【発明の効果】
本発明によれば、前記一般式(II)で表わされる脂環式オレフィン化合物から、安価に収率よく、一般式(I)で表わされる高純度脂環式エポキシ化合物を製造することができる。
【図面の簡単な説明】
【図1】実施例1の原料テトラヒドロインデンの1H−NMRチャート
【図2】実施例1のジエポキシ化テトラヒドロインデンの1H−NMRチャート
【図3】実施例1のGC−MSチャート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an alicyclic diepoxy compound, specifically, an organic percarboxylic acid substantially free of water containing an unsaturated group-containing compound having an alicyclic indene skeleton such as tetrahydroindene. By reacting and then purifying in the presence of an epoxy stabilizer.
[0002]
[Prior art]
Currently, various types of epoxy compounds having two alicyclic skeletons in the molecule are commercially available. For example, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate (CEL-2021), 1,2,8,9-diepoxylimonene (CEL-3000), ε-caprolactone manufactured by Daicel Chemical Industries, Ltd. There are oligomers in which 3,4-epoxycyclohexylmethanol and 3,4-epoxycyclohexanecarboxylic acid are ester-bonded to both ends of the oligomer (CEL-2081). These epoxy compounds are reacted with various curing agents and curing catalysts to obtain cured products. This cured epoxy resin can have heat resistance, transparency, and good dielectric properties, which are characteristics of a resin using a compound having an alicyclic skeleton, and applications using these epoxy compounds include coating, It is useful as an intermediate for making adhesives, inks, components of sealants or other compounds useful in various end uses, including pharmaceuticals and medical supplies.
CEL-3000 has a low reactivity due to its steric hindrance since it has a methyl group on the carbon atom constituting the epoxy group. In addition, CEL-2021 and CEL-2081 have an ester group in the molecule and therefore have a hydrolyzability, and when used under high temperature and high humidity conditions or under conditions where a strong acid is generated, the physical properties of the cured product are deteriorated. Could happen.
Therefore, an epoxy compound having an alicyclic skeleton having no ester group in the molecule has been desired.
Journal of the Japan Petroleum Institute. Japan Petrol. Inst. , 21, (6), 410-414 (1978) disclose hydrogen peroxide as an epoxidizing agent for the synthesis of a diepoxide of tetrahydroindene represented by the general formula (I) (hereinafter sometimes referred to as THI). However, the product is a monoepoxide in which only indene and a 5-membered olefin are epoxidized, and no diepoxide is obtained.
On the other hand, the use of perbenzoic acid at twice the molar amount of THI results in the coexistence of a monoepoxide in which only a 5-membered olefin is epoxidized and a monoepoxide in which only a 6-membered olefin is epoxidized and a diepoxide. It has been reported that it was recognized.
However, in the synthesis of an alicyclic epoxide which is considered to have high reactivity with an acid, when an organic percarboxylic acid is used, the coexisting organic acid easily reacts with an epoxy group generated in the presence of water, and the The group is ring-opened and cannot give diepoxide with high purity.
In the synthesis of these epoxy compounds, it is thought that it is effective to add an alkali salt or a neutral salt in the epoxidation reaction system in advance as a means for adjusting the acid. It has been confirmed that reducing the epoxidation ability also reduces the epoxide yield.
For example, US Pat. No. 3,183,249 in 1965 describes the synthesis of diepoxylation of tetrahydroindene with an organic peracid. In this reaction system, anhydrous sodium acetate was previously added to the reaction system in order to prevent ring opening of the epoxy group. In addition, the reaction is performed at a low temperature of 21 to 24 ° C. However, the yield of diepoxidized tetrahydroindene in this USP is as low as about 42%.
[0003]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to achieve the above object, and as a result, has found that a high-purity alicyclic diepoxy compound can be obtained economically and with good yield using an organic percarboxylic acid containing substantially no water. As a result, the present invention has been completed.
That is, a first aspect of the present invention is to produce an alicyclic diepoxy compound represented by the general formula (I) by epoxidizing an alicyclic olefin compound represented by the following general formula (II) with an organic percarboxylic acid: Epoxidation using a substantially water-free organic percarboxylic acid, then the presence of the alkali metal carboxylate in the crude liquid with substantially no water present, followed by aqueous alkali and / or water Provided is a method for producing an alicyclic diepoxy compound, which is characterized by washing.
Embedded image
A second aspect of the present invention provides a method for producing an alicyclic diepoxy compound according to the above-mentioned invention, wherein the organic percarboxylic acid substantially free of water is obtained by oxidation of a corresponding aldehyde with oxygen.
A third aspect of the present invention provides the method for producing an alicyclic diepoxy compound according to the above-mentioned invention, wherein the water content in the organic percarboxylic acid substantially containing no water is 0.8% by weight or less.
A fourth aspect of the present invention provides a method for producing an alicyclic diepoxy compound according to the above invention, wherein the organic percarboxylic acid substantially free of water is peracetic acid.
A fifth aspect of the present invention provides the method for producing an alicyclic diepoxy compound according to the above invention, wherein the peracetic acid is an ethyl acetate solution.
A sixth aspect of the present invention provides the method for producing an alicyclic diepoxy compound according to the above invention, wherein R 1 to R 12 in the above general formulas (I) and (II) are all hydrogen atoms.
[0004]
The alicyclic diepoxy compound represented by the above general formula (I) having an alicyclic skeleton is produced by oxidizing an unsaturated compound represented by the above general formula (II) having an indene skeleton with an organic percarboxylic acid. This is known from the aforementioned USP and the like. The present invention provides, in a purification step after an epoxidation reaction, a compound having a function of stabilizing an epoxy group in a state where water is substantially absent, followed by purification by washing with water or the like, so that the yield is high. Provided is a method for producing a diepoxy compound represented by the general formula (I).
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In the general formulas (I) and (II), R 1 to R 12 may be the same or different. These are a hydrogen atom, a halogen atom, a hydrocarbon group which may contain an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent.
Among the unsaturated compounds having an alicyclic indene skeleton, tetrahydroindene in which R 1 to R 12 are all hydrogen atoms is 4-vinylcyclohexene or dicyclopentadiene obtained by a Diels-Alder reaction between cyclopentadiene and butadiene. And the like can be obtained by purifying the mixture.
According to the present invention, the alicyclic diepoxy compound can be produced by reacting an unsaturated compound having an alicyclic indene skeleton such as tetrahydroindene with an organic percarboxylic acid.
[0006]
In the production method of the present invention, an organic percarboxylic acid (organic percarboxylic acid refers to formic acid, peracetic acid, perbenzoic acid, perisobutyric acid, trifluoroperacetic acid and the like) is used as the epoxidizing agent. be able to. Among organic percarboxylic acids, peracetic acid is a preferable epoxidizing agent because it has the reactivity necessary for producing the alicyclic epoxy compound in the present invention and has high stability.
In the production method of the present invention, among the organic percarboxylic acids, it is essential to use those which do not substantially contain water. Specifically, the water content is 0.8% by weight or less, preferably 0% by weight. Up to 0.6% by weight of organic percarboxylic acid is used. Thereby, the target diepoxy compound can be obtained in a high yield and at a high ratio. The organic percarboxylic acid substantially free of water as referred to in the present invention is produced by air oxidation of aldehydes, for example, acetaldehyde. For example, peracetic acid is disclosed in German Patent Publication No. 1418465 and It is manufactured by the method described in JP-A-54-3006. According to this method, an organic percarboxylic acid is synthesized from hydrogen peroxide, and a large amount of the organic percarboxylic acid can be continuously synthesized in a large amount as compared with a case where an organic percarboxylic acid is produced by extracting with a solvent. Therefore, it can be obtained substantially inexpensively.
There is no strict limit on the amount of the organic percarboxylic acid which is substantially free of water, which is the epoxidizing agent used in the production method of the present invention, and the optimal amount in each case is the individual organic percarboxylic acid used or It is determined by variable factors such as the reactivity of the alicyclic olefin compound represented by the general formula (II) as a raw material and the target epoxidation ratio.
[0007]
The epoxidation reaction is carried out by adjusting the presence or absence of a solvent and the reaction temperature according to the apparatus and the physical properties of the raw materials. As the solvent, it can be used for the purpose of lowering the viscosity of the raw material, stabilizing by diluting the epoxidizing agent, and the concentration of the organic acid generated during the epoxidation reaction can be reduced by increasing the solvent ratio, This makes it easier to prevent ring opening of the produced epoxy. As the type of the solvent, in the case of peracetic acid, esters, aromatic compounds, ethers and the like can be used. Particularly preferred solvents are ethyl acetate, hexane, cyclohexane, toluene, benzene and the like, with ethyl acetate being particularly preferred. The reaction temperature is determined by the reactivity of the epoxidizing agent used and the unsaturated group-containing compound.
For example, when peracetic acid, which is a preferred epoxidizing agent, is used, the reaction temperature is generally preferably from 20 to 70C. If the temperature is lower than 20 ° C., the reaction is slow, and if the temperature is higher than 70 ° C., peracetic acid is undesirably decomposed with generation of heat. However, when the epoxy compound is alicyclic and has high reactivity with an organic acid as in the synthesis of the present epoxy compound, a reaction temperature of 40 ° C. or lower is preferable because ring opening of the formed epoxy can be prevented.
The charged molar ratio of the epoxidizing agent to the unsaturated bond can be changed depending on the purpose such as how much the unsaturated bond is desired to remain. When a compound having a high epoxidation rate is intended, the epoxidizing agent is preferably added in an amount of 1.0 to 2.0 mol, more preferably 1.05 to 1.5 mol, per 1 mol of unsaturated group.
Exceeding the molar ratio of 2.0 times is not only economical, but also results in an increase in the concentration of the organic acid, which is usually disadvantageous because a side reaction occurs in which the formed epoxy tends to open the ring. According to the production method of the present invention, it is not necessary to use an expensive epoxidizing agent or catalyst.
Generally, no special operation is required in the epoxidation reaction using an organic percarboxylic acid. For example, the crude liquid after the epoxidation may be stirred for 1 to 5 hours to be aged. Isolation of the epoxy compound after neutralization, washing and removal of the organic acid in the obtained crude liquid is performed by an appropriate method, for example, a method of precipitating with a poor solvent, and the epoxidized product is poured into hot water with stirring. The solvent can be removed by distillation, a direct solvent removal method, or the like.
However, as for the alicyclic epoxy compound according to the present invention, for those in which the formed epoxy is easily opened with an organic acid, a direct desolvation method is performed without removing the organic acid after aging, or the epoxidized product is heated with hot water. If a method is employed in which the solvent is introduced under stirring and the solvent is distilled off, ring opening of the epoxy takes place and a high-purity diepoxy compound cannot be obtained. In the present invention, after the reaction, aging is performed for a certain period of time, and after completion of the aging, the existing organic acid is neutralized using a basic substance such as sodium carbonate, caustic soda, and caustic potash to produce an alkali metal salt of the organic acid. Then, it is preferable to perform washing with an aqueous solution of caustic soda and / or water. The neutralized salt generated by this washing is washed out with water, and the solvent is removed by heating and evaporating, so that the content ratio of the diepoxy compound is high and the diepoxy compound can be obtained in a high yield.
The amount of the basic substance added is such that only a part of the organic acid present in the crude liquid after aging is neutralized and a part of the organic acid, specifically, 25% or less, preferably less than 20% It may remain and it is not necessary to neutralize all of the organic acids before adding the water or the aqueous solution of the basic substance. If more than 25% of the organic acid remains, contact with water adversely affects the stability of the diepoxy compound.
Also, instead of using a basic substance such as caustic soda and caustic potash to neutralize the existing organic acid to produce an alkali metal salt of the organic acid, etc. The epoxy in the crude liquid may be stabilized by adding an alkali metal salt of an organic acid, and then an aqueous solution of a basic substance may be added, followed by washing with water for purification. The water washing is performed until the acid value remaining in the diepoxy compound is less than 2 KOH mg / g, preferably less than 0.5 KOH mg / g. If the concentration of the organic peracid remaining in the diepoxy compound exceeds 2 KOH mg / g, it is not preferable in view of the stability of the diepoxy compound.
[0008]
The alicyclic epoxy compound represented by the general formula (I) produced by the production method of the present invention has excellent stability, and can be variously polymerized by homopolymerization, copolymerization, or reaction with another compound. Intermediates for coatings, inks, adhesives, sealants, moldings, or other applications using them can be produced. Examples of end uses using the alicyclic epoxy compound represented by the general formula (I) include acid removers, furniture coatings, decorative coatings, coatings for beverage cans and other cans, adhesives, automotive primers, sealers , Finish coating, ink for character information or image information, sealant for electronic parts, photoresist suitable for developing printing plate or printed circuit board, cast printing roll, glass mainly made of unsaturated polyester and styrene, carbon Manufactures other compounds useful in a variety of end-use applications, including moldings, solvents, flame retardants, pharmaceuticals and medical supplies made by graphite or other fiber-reinforced or sheet-forming formulations And intermediates. Further, the alicyclic epoxy compound represented by the general formula (I) can have heat resistance, transparency, and good dielectric properties, which are characteristics of a resin using a compound having an alicyclic skeleton.
[0009]
【Example】
The following examples are intended to illustrate the invention and do not limit its scope in any way.
[0010]
[Example 1]
240 g of tetrahydroindene, which is an alicyclic olefin compound represented by the general formula (II), and 480 g of ethyl acetate are charged, and the temperature in the reaction system is adjusted to 30 ° C. while blowing nitrogen into the gas phase. While controlling, 1220 g of a 30% by weight peracetic acid ethyl acetate solution (water content: 0.41% by weight) was added dropwise over about 3 hours. After completion of the dropwise addition of the peracetic acid solution, the reaction was aged at 30 ° C. for 6 hours to complete the reaction.
Further, 398 g of sodium carbonate was added to the crude liquid at the end of the reaction in a stirring state at 20 ° C. or lower, and the mixture was semi-neutralized. 1500 g of 10% NaOH was further added, stirring was stopped, and the mixture was separated into two layers. Paid out. Thereafter, the remaining neutralized salt was washed out of the upper organic layer using 1000 g of deionized water.
The low boiling point compound was removed from the washed crude liquid at 40 ° C./10 mmHg to obtain 243 g of a product containing a diepoxy compound. The apparent yield was 80% when all of these were regarded as diepoxy compounds.
In the 1 H-NMR measurement, the peak derived from an internal double bond at around δ 5.5 to 6.0 ppm, which is observed in the NMR chart of the raw material tetrahydroindene shown in FIG. 1 disappears, and around δ 3.0 to 3.5 ppm In addition, generation of a peak of a proton derived from an epoxy group was confirmed, and it was confirmed that the compound was an alicyclic epoxy compound represented by the general formula (I) (FIG. 2).
[0011]
In the measurement of MS-GC, four large and small peaks were observed between 11 and 12 minutes at rt, and it was common that all of these peaks had a strongest peak at a molecular weight of 79 and a maximum molecular weight of 151. (FIG. 3). From this, it is considered that these are all stereoisomers of diepoxidized tetrahydroindene. Since the peak of about 1.5 minutes at rt is due to acetone as the measuring solvent, when these are subtracted and converted, the ratio of these four isomers is 41: 19: 34: 1.1 in rt order, and these four isomer ratios are obtained. The total isomer ratio accounts for 94.9%. As other minute peaks, rt is observed at around 15.5 minutes and 15.8 minutes. Since the molecular weight of 212 is the largest at 15.5 minutes, acetic acid is added to diepoxidized tetrahydroindene to obtain about 1.5 minutes. %, 15.8 minutes has a maximum molecular weight of 503, so that the multimer was about 2.3%.
[0012]
[Example 2]
To the reaction crude liquid obtained under the same reaction and aging conditions as in Example 1, 200 g of ethyl acetate was added under stirring at 20 ° C. or lower, and then 3000 g of 10% NaOH was added. The stirring was stopped to separate into two layers. And the lower aqueous layer was drained. Thereafter, the remaining neutralized salt was washed out of the upper organic layer using 1000 g of deionized water.
The low boiling point compound was removed from the washed crude liquid at 40 ° C./10 mmHg to obtain 228 g of a product containing a diepoxy compound. At this time, the apparent yield was 75%.
[0013]
In the 1 H-NMR measurement, the peak derived from an internal double bond near δ 5.5 to 6.0 pm disappeared, and the generation of a proton peak derived from an epoxy group near δ 3.0 to 3.5 ppm was confirmed. It was confirmed that the compound was an alicyclic epoxy compound represented by the general formula (I).
In addition, in the measurement of MS-GC, four large and small peaks considered to be stereoisomers of diepoxidized tetrahydroindene were observed between 11 minutes and 12 minutes at rt as in Example 1. The total isomer ratio occupied 93.5%, and the addition of acetic acid to the diepoxidized tetrahydroindene contained about 1.9% and the multimer was about 2.8%.
[0014]
[Comparative Example 1]
120 g of tetrahydroindene, which is an alicyclic olefin compound represented by the general formula (II), and 120 g of ethyl acetate are charged, and the temperature in the reaction system is set to 40 ° C. while blowing nitrogen into the gas phase. Under control, 610 g of a 30% by weight peracetic acid ethyl acetate solution (water content: 0.41% by weight) was added dropwise over about 3 hours. After completion of the dropwise addition of the peracetic acid solution, the reaction was aged at 40 ° C. for 4 hours to complete the reaction.
Further, 1000 g of deionized water was added to the crude liquid at the end of the reaction in a stirring state at 20 ° C. or lower, stirring was stopped to separate into two layers, and the lower aqueous layer was discharged. Thereafter, 1000 g of 10% NaOH was added to the upper organic layer, stirring was stopped to separate the two layers, and the lower aqueous layer was discharged.
Further, 500 g of deionized water was used to wash and remove remaining neutralized salts from the upper organic layer.
The low boiling point compound was removed from the washed crude liquid at 40 ° C./10 mmHg to obtain 123 g of a product containing a diepoxy compound. At this time, the apparent yield was 81%.
[0015]
In the measurement of 1 H-NMR, the peak derived from an internal double bond around δ 5.5 to 6.0 ppm disappeared, and the generation of a proton peak derived from an epoxy group around δ 3.0 to 3.5 ppm was confirmed. Was done.
Next, in the measurement of MS-GC, four peaks were observed between 11 minutes and 12 minutes at rt as in Example 1, but the peaks at rt of 15.5 minutes and around 15.8 minutes were large. The ratio was 22.5% and 29.9%, respectively, which exceeded 45.2% of the stereoisomer of diepoxidized tetrahydroindene.
[0016]
[Comparative Example 2]
240 g of tetrahydroindene, which is an alicyclic olefin compound represented by the general formula (II), 480 g of ethyl acetate, and 40 g of anhydrous sodium acetate are charged, and while the nitrogen is blown into the gas phase, the temperature in the reaction system is reduced to 30 g. 1220 g of a 30% by weight peracetic acid solution in ethyl acetate (water content: 0.41% by weight) was added dropwise over about 3 hours while controlling the temperature to ° C. After completion of the dropwise addition of the peracetic acid solution, the reaction was aged at 30 ° C. for 6 hours to complete the reaction.
Further, 3000 g of 10% NaOH was added to the crude liquid at the end of the reaction in a stirring state at 20 ° C. or lower, stirring was stopped to separate into two layers, and the lower aqueous layer was discharged. Thereafter, the remaining neutralized salt was washed out of the upper organic layer using 1000 g of deionized water.
The low boiling point compound was removed from the washed crude liquid at 40 ° C./10 mmHg to obtain 235 g of a product containing a diepoxy compound. At this time, the apparent yield was 47%.
[0017]
In the 1 H-NMR measurement, the peak derived from the double bond disappeared, and the generation of the peak of the proton derived from the epoxy group was confirmed as in Example 1. Thus, the oil represented by the general formula (I) was confirmed. It was confirmed to be a cyclic epoxy compound.
In addition, in the measurement of MS-GC, four large and small peaks considered to be stereoisomers of diepoxidized tetrahydroindene were observed between 11 minutes and 12 minutes at rt as in Example 1. The total isomer ratio occupied 95.0%, about 1.5% of epoxidized tetrahydroindene added with acetic acid, and about 2.2% of multimers.
[0018]
As described above, even when a percarboxylic acid containing substantially no water is used, when the epoxidation reaction crude liquid is purified, if it is brought into contact with water in the presence of a carboxylic acid (Comparative Example 1 above). Although the apparent yield of the epoxy compound can be maintained to some extent, the ratio of the target diepoxy compound decreases. Further, as described in the above-mentioned USP, a means for preventing the ring-opening of the epoxy group by providing a stabilizer in the epoxidation reaction step (Comparative Example 2 described above) and taking contact with water in the subsequent purification step is adopted. If such a measure is taken, the ratio of the diepoxy compound is high, but the yield during the epoxidation reaction is low.
On the other hand, as in Examples 1 and 2, epoxidation was carried out using an organic percarboxylic acid substantially free of water, and then a state in which substantially no water was present in the crude liquid. By taking measures such that the alkali metal carboxylate is formed by contacting with a solid basic substance, and then performing epoxidation by washing the alkali metal carboxylate with an aqueous alkali solution and / or water, The diepoxy compound can be obtained with a high ratio and a high yield.
[0019]
【The invention's effect】
According to the present invention, a high-purity alicyclic epoxy compound represented by the general formula (I) can be produced inexpensively and with high yield from the alicyclic olefin compound represented by the general formula (II).
[Brief description of the drawings]
[1] the 1 H-
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002351437A JP2004182648A (en) | 2002-12-03 | 2002-12-03 | Method for producing alicyclic diepoxy compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002351437A JP2004182648A (en) | 2002-12-03 | 2002-12-03 | Method for producing alicyclic diepoxy compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004182648A true JP2004182648A (en) | 2004-07-02 |
Family
ID=32753351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002351437A Pending JP2004182648A (en) | 2002-12-03 | 2002-12-03 | Method for producing alicyclic diepoxy compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004182648A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005019298A1 (en) * | 2003-08-25 | 2005-03-03 | Daicel Chemical Industries, Ltd. | Thermosetting epoxy resin composition and transparent material |
WO2006054461A1 (en) * | 2004-11-18 | 2006-05-26 | Konica Minolta Medical & Graphic, Inc. | Active ray-curable composition, active ray-curable ink and image-forming method |
US7781543B2 (en) | 2002-09-05 | 2010-08-24 | Daicel Chemical Industries, Ltd. | Curable alicyclic diepoxy resin composition |
US7786224B2 (en) * | 2001-03-23 | 2010-08-31 | Daicel Chemical Industries, Ltd | Liquid composition of alicyclic diepoxide, curing agent and/or curing accelerator |
JP2013014643A (en) * | 2011-06-30 | 2013-01-24 | Nippon Zeon Co Ltd | Epoxy resin composition for sealing semiconductor and semiconductor device |
JP2013028790A (en) * | 2011-06-24 | 2013-02-07 | Nippon Zeon Co Ltd | Highly-pure alicyclic diepoxy compound, curable epoxy resin composition, cured product, transparent sealing material, and light emitting device |
JP2013072058A (en) * | 2011-09-29 | 2013-04-22 | Nippon Zeon Co Ltd | Underfill material, semiconductor device and method for manufacturing the same |
JP2014040534A (en) * | 2012-08-23 | 2014-03-06 | Nippon Zeon Co Ltd | High-purity alicyclic diepoxy compound, curable epoxy resin composition, cured product, transparent encapsulation material, and light emitting element |
US9212188B2 (en) | 2012-05-22 | 2015-12-15 | JX Nippon Oil & Enery Corporation | Method for producing alicyclic diepoxy compound |
US9464186B2 (en) | 2011-04-08 | 2016-10-11 | Jx Nippon Oil & Energy Corporation | Resin composition, hardened coating films therefrom, and photosemiconductor device using same |
-
2002
- 2002-12-03 JP JP2002351437A patent/JP2004182648A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7786224B2 (en) * | 2001-03-23 | 2010-08-31 | Daicel Chemical Industries, Ltd | Liquid composition of alicyclic diepoxide, curing agent and/or curing accelerator |
US7781543B2 (en) | 2002-09-05 | 2010-08-24 | Daicel Chemical Industries, Ltd. | Curable alicyclic diepoxy resin composition |
WO2005019298A1 (en) * | 2003-08-25 | 2005-03-03 | Daicel Chemical Industries, Ltd. | Thermosetting epoxy resin composition and transparent material |
WO2006054461A1 (en) * | 2004-11-18 | 2006-05-26 | Konica Minolta Medical & Graphic, Inc. | Active ray-curable composition, active ray-curable ink and image-forming method |
JPWO2006054461A1 (en) * | 2004-11-18 | 2008-05-29 | コニカミノルタエムジー株式会社 | Actinic ray curable composition, ink actinic ray curable ink, and image forming method |
US9464186B2 (en) | 2011-04-08 | 2016-10-11 | Jx Nippon Oil & Energy Corporation | Resin composition, hardened coating films therefrom, and photosemiconductor device using same |
JP2013028790A (en) * | 2011-06-24 | 2013-02-07 | Nippon Zeon Co Ltd | Highly-pure alicyclic diepoxy compound, curable epoxy resin composition, cured product, transparent sealing material, and light emitting device |
JP2013014643A (en) * | 2011-06-30 | 2013-01-24 | Nippon Zeon Co Ltd | Epoxy resin composition for sealing semiconductor and semiconductor device |
JP2013072058A (en) * | 2011-09-29 | 2013-04-22 | Nippon Zeon Co Ltd | Underfill material, semiconductor device and method for manufacturing the same |
US9212188B2 (en) | 2012-05-22 | 2015-12-15 | JX Nippon Oil & Enery Corporation | Method for producing alicyclic diepoxy compound |
JP2014040534A (en) * | 2012-08-23 | 2014-03-06 | Nippon Zeon Co Ltd | High-purity alicyclic diepoxy compound, curable epoxy resin composition, cured product, transparent encapsulation material, and light emitting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4663893B2 (en) | Method for producing epoxy compound | |
JP2004099467A (en) | Method for producing alicyclic epoxy compound | |
JP2926262B2 (en) | Composition comprising novel alicyclic compound and method for producing the same | |
JP2004182648A (en) | Method for producing alicyclic diepoxy compound | |
JP2011213716A (en) | Method for producing polyallyloxy compound and method for producing polyglycidyloxy compound | |
JP5778684B2 (en) | Method for producing divinylarene dioxide | |
JP4688503B2 (en) | High purity alicyclic diepoxy compound and process for producing the same | |
JP5894144B2 (en) | Production process of divinylarene dioxide | |
US5338879A (en) | Lactone-modified alicyclic composition and an epoxidized composition thereof | |
TWI331144B (en) | Process for production high-purity alicyclic epoxy compound | |
JP2006052187A (en) | Methods for producing alicyclic olefin compound and alicyclic epoxy compound | |
JP2004262874A (en) | Method for producing diepoxycyclooctanes | |
JP2008133223A (en) | Exo type hydroxytetracyclododecane carboxylic acid and preparation process thereof | |
JP2906275B2 (en) | Composition comprising novel alicyclic compound and method for producing the same | |
JP2009209117A (en) | Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof | |
JP3648636B2 (en) | Reactive diluent for active energy ray-curable resin and process for producing the same | |
JP2005343868A (en) | Method for producing dieopoxidized oxalic ester compound | |
JP4716539B2 (en) | Method for producing liquid epoxidized polymer | |
JP2009215173A (en) | Novel alicyclic compound and its manufacturing method | |
JP4004127B2 (en) | Method for producing vinyl group-containing alicyclic acrylate compound and epoxy group-containing alicyclic acrylate compound | |
JP3016428B2 (en) | Composition comprising novel alicyclic compound and method for producing the same | |
CN104583188A (en) | Alicyclic epoxy compound and method for producing same | |
JP2008143849A (en) | New epoxytetracyclododecanecarboxylic acids and method for producing the same | |
JP4993263B2 (en) | A method for producing 2- (meth) acryloyloxy-6-cyano-5-oxo-4-oxatricyclo [4.2.1.03,7] nonane. | |
WO2005080364A1 (en) | Process for producing alicyclic oxetane compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050912 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20050815 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
A621 | Written request for application examination |
Effective date: 20051007 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20051017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051021 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070704 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090602 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090603 |
|
A02 | Decision of refusal |
Effective date: 20091020 Free format text: JAPANESE INTERMEDIATE CODE: A02 |