【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品を搭載するために用いられる配線基板に関する。
【0002】
【従来の技術】
一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高信頼性が要求されてきており、このような電子機器に搭載される電子装置も小型・高密度化が要求されるようになってきている。そのため、電子装置を構成する配線基板にも小型・薄型・多端子化が求められてきており、それを実現するために信号導体等を含む配線導体層の幅を細くするとともにその間隔を狭くし、さらに配線導体層の多層化により高密度配線化が図られている。
【0003】
このような高密度配線が可能な配線基板として、ビルドアップ法を採用して製作された配線基板が知られている。このビルドアップ配線基板は、例えば、次に述べる方法により製作される。
【0004】
まず、ガラスクロスやアラミド不布織等の補強材に耐熱性や耐薬品性を有するエポキシ樹脂やビスマレイミドトリアジン樹脂に代表される熱硬化性樹脂を含浸させた絶縁シートを積層・熱硬化して絶縁基板を製作する。次に、絶縁基板の表面に転写法等を採用して所定パターンの配線導体を被着形成する。次に、マイクロドリルを用いて絶縁基板を貫通する貫通孔を所定の位置に形成し、その後貫通孔の内面にめっき膜を被着して、貫通孔の内面に配線導体と電気的に接続した筒状の貫通導体を形成し、しかる後、貫通導体が被着された貫通孔の内部に穴埋め樹脂を充填してコア基板を得る。
【0005】
次に、このコア基板上にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂前駆体に無機絶縁性フィラーを分散させた樹脂フィルムを貼着した後に加熱硬化して、コア基板上に厚みが20〜200μmの絶縁層を形成する。次に、配線導体上に位置する絶縁層に直径が50〜200μmの貫通孔をレーザで穿設し、さらに絶縁層の表面および貫通孔の内面を過マンガン酸カリウム溶液等の粗化液で化学粗化した後に、セミアディティブ法を用いて絶縁層の表面および貫通孔の内面にめっき膜から成る配線導体層を形成する。そしてさらに、この上に絶縁層や配線導体層の形成を複数回繰り返すことによって、ビルドアップ配線基板が製作される。
【0006】
【特許文献1】
特開2002−261451号公報
【0007】
【発明が解決しようとする課題】
しかしながら、このようなビルドアップ配線基板は、コア基板の穴埋め樹脂の熱膨張係数が20×10−6〜50×10−6/℃、めっき膜から成る貫通導体の熱膨張係数が15×10−6〜20×10−6/℃、さらに熱硬化性樹脂に無機絶縁性フィラーを分散し、加熱硬化させた絶縁層の熱膨張係数が40×10−6〜110×10−6/℃であることから、穴埋め樹脂の熱膨張係数と貫通導体の熱膨張係数と絶縁層の熱膨張係数とが異なることから、配線基板に電子部品を搭載した後に長期の熱履歴が繰り返し印加されると、穴埋め樹脂と貫通導体と絶縁層との熱膨張差により発生する熱応力が3者の境界に集中して穴埋め樹脂と貫通導体との間に隙間が発生し、その隙間を起点として絶縁層にクラックが生じるとともに絶縁層上に形成された配線導体層を切断して断線不良を発生させてしまうことがあるという問題点があった。
【0008】
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、電子部品を搭載した配線基板において、長期の熱履歴を繰り返し印加しても、熱応力に充分耐え、絶縁層上の配線導体層に断線等が生じない接続信頼性の高い配線基板を提供することにある。
【0009】
【課題を解決するための手段】
本発明の配線基板は、貫通孔を有する絶縁基板の前記貫通孔の内面にめっき膜から成る貫通導体を被着させるとともにこの貫通導体が被着された前記貫通孔の内部を穴埋め樹脂で充填して成るコア基板と、このコア基板の表面に形成された絶縁層と、この絶縁層の表面に被着された配線導体層とを具備して成る配線基板において、前記絶縁層は、耐熱性繊維基材に熱硬化性樹脂および無機絶縁フィラーを含浸させて成る、前記コア基板側に位置する第一の絶縁層に、熱硬化性樹脂に無機絶縁フィラーを分散させて成る第二の絶縁層を積層して成ることを特徴とするものである。
【0010】
本発明の配線基板によれば、コア基板の表面に形成する絶縁層を、耐熱性繊維基材に熱硬化性樹脂および無機絶縁フィラーを含浸させて成る、コア基板側に位置する第一の絶縁層に、熱硬化性樹脂に無機絶縁フィラーを分散させて成る第二の絶縁層を積層して成るものとしたことから、配線基板に電子部品を搭載した後に、配線基板に長期の熱履歴が繰り返し印加され、穴埋め樹脂と貫通導体と絶縁層との熱膨張差により発生する熱応力が3者の境界に集中して穴埋め樹脂と貫通導体との間に隙間が発生して、この隙間を起点とするクラックが発生したとしても、絶縁層を構成する第一の絶縁層の耐熱性繊維基材がクラックの伝播を防止し、絶縁層上の配線導体層を切断して断線不良を発生させてしまうことはなく、その結果、接続信頼性に優れた配線基板とすることができる。
【0011】
【発明の実施の形態】
次に、本発明の配線基板を添付の図面に基づいて詳細に説明する。図1は、本発明の配線基板の実施の形態の一例を示す断面図であり、図2は、図1の要部拡大断面図である。
これらの図において、1は絶縁基板、2は配線導体、3は貫通導体、4は穴埋め樹脂、5はコア基板、6は絶縁層、7は配線導体層であり、主に絶縁基板1と、貫通導体3と、穴埋め樹脂4とでコア基板5が構成され、また、主にコア基板5と、絶縁層6と、配線導体層7とで本発明の配線基板が構成されている。
なお、本実施例では、コア基板5が絶縁基板1の上下面に貫通導体3と電気的に接続する配線導体2が被着されて成る場合の例を示している。
【0012】
絶縁基板1は、例えばガラス繊維を縦横に織り込んだガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成り、絶縁層6および配線導体層7の支持体としての機能を有する。絶縁基板1は、その厚みが0.1〜1.5mm程度であり、上面から下面にかけて直径が0.1〜1.0mm程度の複数の貫通孔1aを有している。また、各貫通孔1aの内面には銅等のめっき膜から成る貫通導体3が形成されており、さらに上下面には貫通導体3と電気的に接続する配線導体2が被着形成されている。
【0013】
このような絶縁基板1は、ガラスクロスに未硬化の熱硬化性樹脂を含浸させることにより未硬化シートを製作するとともに、このシートを180〜200℃の温度で数分〜数時間かけて熱硬化させることにより製作され、また、貫通孔1aは、絶縁基板1の上面から下面にかけてドリル加工やレーザ加工を施すことにより形成される。
【0014】
また、配線導体2は、例えば銅や銀・アルミニウム・ニッケル等の金属箔上に銅等のめっき膜を被着させて成り、その幅が20〜200μm、厚みが5〜50μmであり、後述する配線導体層7とともに搭載する半導体素子等の電子部品(図示せず)の各電極を外部電気回路基板(図示せず)に電気的に接続する導電路の一部としての機能をする。
【0015】
配線導体2は、その幅が20μm未満となると配線導体2の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体2の厚みが5μm未満になると配線導体2の強度が低下して変形や断線が発生しやすくなる傾向があり、50μmを超えるとコア基板5に積層する、後述する絶縁層6の表面の凹凸が大きくなり、配線基板表面の平坦度が低下し、搭載する電子部品を実装することが困難となる傾向がある。従って、配線導体2は、その幅を20〜200μm、厚みを5〜50μmの範囲とすることが好ましい。なお、金属箔やめっき膜の材料としては、安価および導電性の観点からは銅を用いることが好ましい。
【0016】
なお、配線導体2は、絶縁基板1用の未硬化シートの上下全面に厚みが3〜50μmの銅箔等の金属箔を被着しておくとともに、シートの硬化後にエッチング加工することにより、絶縁基板1の上下面に所定のパターンに形成される。また、貫通孔1a内面の貫通導体3は、絶縁基板1に貫通孔1aを設けた後に、この貫通孔1aにめっき法により例えば厚みが3〜50μm程度の銅等から成るめっき膜を析出させることにより形成される。
【0017】
さらに、絶縁基板1は、貫通導体3が被着された貫通孔1aの内部にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂と無機絶縁性フィラーから成る穴埋め樹脂4が充填されている。穴埋め樹脂4は、貫通孔1aを塞ぐことにより貫通孔1aの直上および直下に絶縁層6を形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂を内面に貫通導体3が被着された貫通孔1aの内部にスクリーン印刷法により充填し、これを熱硬化させた後、上下面を略平坦に研磨することにより形成される。
【0018】
そしてコア基板5の表面には、絶縁層6が積層されている。絶縁層6は、それぞれの厚みが10〜80μm程度であり、各層の上面から下面にかけて直径が20〜100μm程度のビア孔8を有している。また、各絶縁層6の表面には配線導体層7aが、ビア孔8内にはビア導体8a被着形成されており、配線導体2と配線導体層7とを、あるいは上下に位置する配線導体層7同士をビア孔8内に被着したビア導体8aを介して接続することにより立体的な高密度配線が形成可能となっている。
【0019】
また、本発明の配線基板においては、絶縁層6が耐熱性繊維基材に熱硬化性樹脂および無機絶縁フィラーを含浸させて成る、コア基板5側に位置する第一の絶縁層6aに、熱硬化性樹脂に無機絶縁フィラーを分散させて成る第二の絶縁層6bを積層することにより形成されている。そして、本発明の配線基板においては、このことが重要である。
【0020】
本発明の配線基板によれば、コア基板5の表面に形成する絶縁層6を、耐熱性繊維基材に熱硬化性樹脂および無機絶縁フィラーを含浸させて成る第一の絶縁層6aに熱硬化性樹脂に無機絶縁フィラーを分散させて成る第二の絶縁層6bを積層して成るものとしたことから、配線基板に電子部品を搭載した後に、配線基板に長期の熱履歴が繰り返し印加され、穴埋め樹脂4と貫通導体3と絶縁層6との熱膨張差により発生する熱応力が3者の境界に集中して穴埋め樹脂4と貫通導体3との間に隙間が発生してこの隙間を起点とするクラックが発生したとしても、絶縁層6を構成する第一の絶縁層6aを構成する耐熱性繊維基材がクラックの伝播を防止し、絶縁層6表面の配線導体層7を切断して断線不良を発生させてしまうことはなく、その結果、接続信頼性に優れた配線基板とすることができる。
【0021】
なお、第一の絶縁層6aは、その厚みが5〜75μmであり、耐熱性繊維基材であるガラスクロスやアラミド不織布にシリカ等の無機絶縁フィラーを含有したエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成り、絶縁層6に強度を付与する機能を有する。このガラスクロスは、その織り方により平織、綾織、朱子織の種類があり、熱硬化性樹脂との密着性を向上するために、シランカップリング処理がなされている。
【0022】
このような第一の絶縁層6aは、例えばガラスクロスにシリカを含有したエポキシ樹脂を含浸させた後、熱プレス機を用いて温度が100〜200℃、圧力が0.5〜5MPaの条件で数分間加圧することにより製作される。
【0023】
また、第二の絶縁層6bは、その厚みが5〜75μmであり、エポキシ樹脂等の熱硬化性樹脂に平均粒径が0.01〜2μmで含有量が10〜50重量%のシリカやアルミナ・窒化アルミニウム等の無機絶縁フィラーを分散して成り、配線導体層7との密着性を向上させるためにその表面が粗化されている。このような無機絶縁フィラーは、第二の絶縁層6bの熱膨張係数を調整し配線導体層7の熱膨脹係数と整合させるとともに、第二の絶縁層6bの表面に適度な凹凸を形成し、配線導体層7と第二の絶縁層6bとの密着性を良好となす機能を有する。
【0024】
このような第二の絶縁層6bは、例えばエポキシ樹脂に10〜50重量%のシリカを添加してペーストを作成するとともに、このペーストをフィルム状に成形し、熱硬化することにより形成される。
【0025】
なお、無機絶縁フィラーは、その平均粒径が0.01μm未満であると、無機絶縁フィラー同士が凝集して均一な厚みの第二の絶縁層6bを形成することが困難となる傾向があり、2μmを超えると第二の絶縁層6bの表面の凹凸が大きなものとなり過ぎて配線導体層7と第二の絶縁層6bとの密着性を低下させてしまう傾向がある。従って、無機絶縁フィラーの平均粒径は、0.01〜2μmの範囲が好ましい。また、無機絶縁フィラーの含有量が10重量%未満であると、第二の絶縁層6bの熱膨張係数を調整する作用が小さくなる傾向があり、50重量%を超えると樹脂量が減少し絶縁層6を成形することが困難となる傾向がある。従って、無機絶縁フィラーの含有量は、10〜50重量%の範囲が好ましい。
【0026】
そして、絶縁層6は第一の絶縁層6a上に第二の絶縁層6bの絶縁層を積層した後、減圧しながら温度が100〜200℃の条件で数分間保持し、しかる後、圧力が0.5〜5MPaの条件で数分間加圧・加熱し、さらに温度が100〜200℃の条件下で30分〜2時間熱処理が行なうことによって製作される。
【0027】
さらに、絶縁層6の一方の最外層表面に形成された配線導体層7の一部は、電子部品の各電極に半田バンプ10aを介して接合される電子部品接続用の実装用電極7aを形成し、絶縁層6の他方の最外層表面に形成された配線導体層7の一部は、外部電気回路基板の各電極に導体バンプ10bを介して接続される外部接続用の実装用電極7bを形成している。
【0028】
このような配線導体層7およびビア導体8bは、次ぎに述べる方法によって形成される。まず、絶縁層6にレーザでビア孔8を形成した後、絶縁層6表面およびビア孔8内面を過マンガン酸塩類水溶液等の粗化液に浸漬し粗化した後、無電解めっき用パラジウム触媒の水溶液中に浸漬し絶縁層6表面およびビア孔8内面にパラジウム触媒を付着させ、さらに、硫酸銅・ロッセル塩・ホルマリン・EDTAナトリウム塩・安定剤等から成る無電解めっき液に約30分間浸漬して1〜2μm程度の無電解銅めっき層を析出させる。
【0029】
次に、絶縁層6表面の無電解銅めっき層上に耐めっき樹脂層を被着し露光・現像により配線導体層7のパターン形状に、電解銅めっき層を被着させるための開口部を形成し、さらに、硫酸・硫酸銅5水和物・塩素・光沢剤等から成る電解銅めっき液に数A/dm2の電流を印加しながら数時間浸漬することにより、ビア孔8の内面および開口部に電解銅めっき層を被着させる。その後、耐めっき樹脂層を水酸化ナトリウムで剥離し、さらに、耐めっき樹脂層を剥離したことにより露出する無電解銅めっき層を硫酸・過酸化水素水等の硫酸系水溶液によりエッチング除去し、しかる後、水酸化ナトリウムで耐めっき樹脂層を剥離することにより、絶縁層6の表面に配線導体層7が、ビア孔8の内部にビア導体8bが形成される。
【0030】
なお、実装用電極7a・7bの表面には、その酸化腐蝕を防止するとともに半田バンプ10a・10bとの接続を良好とするために、半田との濡れ性が良好で耐腐蝕性に優れたニッケル−金等のめっき層が被着されている。
【0031】
また、最外層の絶縁層6および実装用電極7a・7bには、必要に応じて実装用電極7a・7bの中央部を露出させる開口を有する耐半田樹脂層11が被着されている。耐半田樹脂層11は、その厚みが10〜50μmであり、例えばアクリル変性エポキシ樹脂等の感光性樹脂と光開始剤等とから成る混合物に30〜70重量%のシリカやタルク等の無機粉末フィラーを含有させた絶縁材料から成り、隣接する実装用電極7a・7b同士が半田バンプ10a・10bにより電気的に短絡することを防止するとともに、実装用電極7a・7bと絶縁層6との接合強度を向上させる機能を有する。
【0032】
このような耐半田樹脂層11は、感光性樹脂と光開始剤と無機粉末フィラーとから成る未硬化樹脂フィルムを最外層の絶縁層6表面に被着させる、あるいは、熱硬化性樹脂と無機粉末フィラーとから成る未硬化樹脂ワニスを最外層の絶縁層6表面に塗布するとともに乾燥し、しかる後、露光・現像により開口部を形成し、これをUV硬化および熱硬化させることにより形成される。
【0033】
かくして本発明の配線基板によれば、配線基板の上面に半導体素子等の電子部品を搭載するとともに電子部品の電極を半田バンプ10aを介して実装用電極7aに電気的に接続し、さらに下面に形成した実装用電極7aを半田バンプ10bを介して外部電気回路基板の配線導体に電気的に接続することにより、電子部品がが外部電気回路基板の配線導体と電気的に接続されることとなる。
【0034】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、変更・改良を施すことは何ら差し支えない。
【0035】
【発明の効果】
本発明の配線基板によれば、コア基板の表面に形成する絶縁層を、耐熱性繊維基材に熱硬化性樹脂および無機絶縁フィラーを含浸させて成る、コア基板側に位置する第一の絶縁層に、熱硬化性樹脂に無機絶縁フィラーを分散させて成る第二の絶縁層を積層して成るものとしたことから、配線基板に電子部品を搭載した後に、配線基板に長期の熱履歴が繰り返し印加され、穴埋め樹脂と貫通導体と絶縁層との熱膨張差により発生する熱応力が3者の境界に集中して穴埋め樹脂と貫通導体との間に隙間が発生して、この隙間を起点とするクラックが発生したとしても、絶縁層を構成する第一の絶縁層の耐熱性繊維基材がクラックの伝播を防止し、絶縁層上の配線導体層を切断して断線不良を発生させてしまうことはなく、その結果、接続信頼性に優れた配線基板とすることができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す断面図である。
【図2】図1の要部拡大断面図である。
【符号の説明】
1・・・・・・・・・・絶縁基板
1a・・・・・・・・・貫通孔
2・・・・・・・・・・配線導体
3・・・・・・・・・・貫通導体
4・・・・・・・・・・穴埋め樹脂
5・・・・・・・・・・コア基板
6・・・・・・・・・・絶縁層
6a・・・・・・・・・第一の絶縁層
6b・・・・・・・・・第二の絶縁層
7・・・・・・・・・・配線導体層
8・・・・・・・・・・ビア孔
8a・・・・・・・・・ビア導体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board used for mounting an electronic component such as a semiconductor element.
[0002]
[Prior art]
In general, modern electronic devices are required to be small, thin, light, and highly reliable as typified by mobile communication devices, and electronic devices mounted on such electronic devices are also small and dense. Is required. For this reason, there is a demand for smaller, thinner, and more multi-terminal wiring boards for electronic devices. To achieve this, the width of wiring conductor layers including signal conductors and the like must be reduced and the spacing between them must be reduced. Further, high-density wiring has been achieved by increasing the number of wiring conductor layers.
[0003]
As a wiring board capable of such high-density wiring, a wiring board manufactured by employing a build-up method is known. This build-up wiring board is manufactured, for example, by the method described below.
[0004]
First, an insulating sheet in which a thermosetting resin typified by a heat-resistant or chemical-resistant epoxy resin or bismaleimide triazine resin is impregnated with a reinforcing material such as a glass cloth or aramid non-woven fabric is laminated and thermally cured. Fabricate an insulating substrate. Next, a wiring conductor having a predetermined pattern is formed on the surface of the insulating substrate by using a transfer method or the like. Next, a through hole penetrating the insulating substrate was formed at a predetermined position using a microdrill, and then a plating film was applied to the inner surface of the through hole, and the inner surface of the through hole was electrically connected to a wiring conductor. A cylindrical through conductor is formed, and thereafter, a filling resin is filled in the through hole to which the through conductor is attached to obtain a core substrate.
[0005]
Next, a resin film in which an inorganic insulating filler is dispersed in a thermosetting resin precursor such as an epoxy resin or a bismaleimide triazine resin is adhered on the core substrate, and then heated and cured, and the thickness is reduced on the core substrate. An insulating layer having a thickness of 20 to 200 μm is formed. Next, a through hole having a diameter of 50 to 200 μm is formed in the insulating layer located on the wiring conductor with a laser, and the surface of the insulating layer and the inner surface of the through hole are chemically formed with a roughening solution such as a potassium permanganate solution. After the roughening, a wiring conductor layer made of a plating film is formed on the surface of the insulating layer and the inner surface of the through hole by using a semi-additive method. Further, a build-up wiring board is manufactured by repeating the formation of the insulating layer and the wiring conductor layer a plurality of times thereon.
[0006]
[Patent Document 1]
JP 2002-261451 A
[Problems to be solved by the invention]
However, in such a build-up wiring board, the thermal expansion coefficient of the resin filling the core substrate is 20 × 10 −6 to 50 × 10 −6 / ° C., and the thermal expansion coefficient of the through conductor formed of the plated film is 15 × 10 − 6 to 20 × 10 −6 / ° C. Further, the thermal expansion coefficient of the insulating layer obtained by dispersing an inorganic insulating filler in a thermosetting resin and heating and curing is 40 × 10 −6 to 110 × 10 −6 / ° C. Therefore, since the thermal expansion coefficient of the filling resin, the thermal expansion coefficient of the through conductor, and the thermal expansion coefficient of the insulating layer are different, when a long-term thermal history is repeatedly applied after mounting the electronic component on the wiring board, the filling is not performed. Thermal stress generated due to a difference in thermal expansion between the resin, the through conductor, and the insulating layer concentrates on the boundary between the three members, and a gap is generated between the filling resin and the through conductor, and cracks are formed in the insulating layer starting from the gap. Occurs and on the insulating layer Cutting the formed wiring conductor layer has a problem that may sometimes by generating a disconnection failure.
[0008]
The present invention has been completed in view of the problems of the related art, and an object of the present invention is to provide a wiring board on which electronic components are mounted, which can sufficiently withstand thermal stress even when a long-term heat history is repeatedly applied, and that the insulating board can be insulated. It is an object of the present invention to provide a wiring board having high connection reliability in which no disconnection or the like occurs in a wiring conductor layer on a layer.
[0009]
[Means for Solving the Problems]
The wiring board of the present invention is configured such that a through conductor made of a plating film is applied to an inner surface of the through hole of an insulating substrate having a through hole, and the inside of the through hole to which the through conductor is applied is filled with a filling resin. A wiring substrate comprising: a core substrate comprising: a core substrate; an insulating layer formed on the surface of the core substrate; and a wiring conductor layer adhered to the surface of the insulating layer. A base material impregnated with a thermosetting resin and an inorganic insulating filler, a first insulating layer located on the core substrate side, a second insulating layer formed by dispersing an inorganic insulating filler in a thermosetting resin. It is characterized by being laminated.
[0010]
According to the wiring board of the present invention, the insulating layer formed on the surface of the core substrate is formed by impregnating a thermosetting resin and an inorganic insulating filler in a heat-resistant fiber base material, and the first insulating layer located on the core substrate side Since the layer is formed by laminating a second insulating layer formed by dispersing an inorganic insulating filler in a thermosetting resin, after the electronic components are mounted on the wiring board, the wiring board has a long-term heat history. Thermal stress generated by the difference in thermal expansion between the filling resin, the penetrating conductor and the insulating layer is repeatedly applied, and a gap is generated between the filling resin and the penetrating conductor due to concentration on the boundary between the three members. Even if a crack occurs, the heat-resistant fiber base material of the first insulating layer constituting the insulating layer prevents the propagation of the crack, and cuts the wiring conductor layer on the insulating layer to cause a disconnection failure. Will not be lost, and as a result, The may be a wiring board.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention, and FIG. 2 is an enlarged sectional view of a main part of FIG.
In these figures, 1 is an insulating substrate, 2 is a wiring conductor, 3 is a through conductor, 4 is a filling resin, 5 is a core substrate, 6 is an insulating layer, and 7 is a wiring conductor layer. The core substrate 5 is constituted by the through conductors 3 and the filling resin 4, and the wiring substrate of the present invention is mainly constituted by the core substrate 5, the insulating layer 6 and the wiring conductor layer 7.
In this embodiment, an example is shown in which the core substrate 5 is formed by attaching the wiring conductors 2 electrically connected to the through conductors 3 to the upper and lower surfaces of the insulating substrate 1.
[0012]
The insulating substrate 1 is formed by impregnating a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin into a glass cloth in which glass fibers are woven vertically and horizontally, and functions as a support for the insulating layer 6 and the wiring conductor layer 7. Have. The insulating substrate 1 has a thickness of about 0.1 to 1.5 mm, and has a plurality of through holes 1a having a diameter of about 0.1 to 1.0 mm from the upper surface to the lower surface. A through conductor 3 made of a plating film such as copper is formed on the inner surface of each through hole 1a, and a wiring conductor 2 electrically connected to the through conductor 3 is formed on the upper and lower surfaces. .
[0013]
Such an insulating substrate 1 produces an uncured sheet by impregnating a glass cloth with an uncured thermosetting resin, and thermally cures the sheet at a temperature of 180 to 200 ° C. for several minutes to several hours. The through hole 1 a is formed by performing drilling or laser processing from the upper surface to the lower surface of the insulating substrate 1.
[0014]
The wiring conductor 2 is formed by depositing a plating film of copper or the like on a metal foil of copper, silver, aluminum, nickel, or the like, and has a width of 20 to 200 μm and a thickness of 5 to 50 μm, which will be described later. Each electrode of an electronic component (not shown) such as a semiconductor element mounted together with the wiring conductor layer 7 functions as a part of a conductive path for electrically connecting the electrode to an external electric circuit board (not shown).
[0015]
When the width of the wiring conductor 2 is less than 20 μm, deformation and disconnection of the wiring conductor 2 tend to occur, and when the width exceeds 200 μm, high-density wiring tends not to be formed. Further, if the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to decrease and deformation or disconnection tends to occur. If the thickness exceeds 50 μm, the insulation layer 6 to be laminated on the core substrate 5 will be described. There is a tendency that the unevenness of the surface becomes large, the flatness of the surface of the wiring board is reduced, and it becomes difficult to mount electronic components to be mounted. Therefore, the wiring conductor 2 preferably has a width of 20 to 200 μm and a thickness of 5 to 50 μm. As a material for the metal foil and the plating film, it is preferable to use copper from the viewpoint of low cost and conductivity.
[0016]
The wiring conductor 2 is coated with a metal foil such as a copper foil having a thickness of 3 to 50 μm on the entire upper and lower surfaces of the uncured sheet for the insulating substrate 1, and is etched after the sheet is cured. A predetermined pattern is formed on the upper and lower surfaces of the substrate 1. Further, as for the through conductor 3 on the inner surface of the through hole 1a, after providing the through hole 1a in the insulating substrate 1, a plating film made of, for example, copper having a thickness of about 3 to 50 μm is deposited on the through hole 1a by plating. Formed by
[0017]
Further, the insulating substrate 1 is filled with a hole filling resin 4 made of a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin and an inorganic insulating filler in a through hole 1a on which the through conductor 3 is attached. The filling resin 4 is used to form an insulating layer 6 directly above and directly below the through hole 1a by closing the through hole 1a. Is filled by a screen printing method into the through hole 1a to which is adhered, and is thermally cured, and then the upper and lower surfaces are polished to be substantially flat.
[0018]
On the surface of the core substrate 5, an insulating layer 6 is laminated. The insulating layer 6 has a thickness of about 10 to 80 μm and a via hole 8 with a diameter of about 20 to 100 μm from the upper surface to the lower surface of each layer. A wiring conductor layer 7a is formed on the surface of each insulating layer 6, and a via conductor 8a is formed in the via hole 8 so as to cover the wiring conductor 2 and the wiring conductor layer 7 or the wiring conductors located above and below. By connecting the layers 7 via the via conductors 8a provided in the via holes 8, a three-dimensional high-density wiring can be formed.
[0019]
Further, in the wiring board of the present invention, the insulating layer 6 is formed by impregnating a heat-resistant fiber base material with a thermosetting resin and an inorganic insulating filler. It is formed by laminating a second insulating layer 6b formed by dispersing an inorganic insulating filler in a curable resin. This is important for the wiring board of the present invention.
[0020]
According to the wiring board of the present invention, the insulating layer 6 formed on the surface of the core substrate 5 is thermoset to the first insulating layer 6a formed by impregnating a heat-resistant fiber base material with a thermosetting resin and an inorganic insulating filler. Since the second insulating layer 6b formed by dispersing the inorganic insulating filler in the conductive resin is laminated, after the electronic components are mounted on the wiring board, a long-term heat history is repeatedly applied to the wiring board, Thermal stress generated due to a difference in thermal expansion between the filling resin 4, the through conductor 3, and the insulating layer 6 concentrates on the boundary between the three, and a gap is generated between the filling resin 4 and the through conductor 3. Even if a crack occurs, the heat-resistant fiber base material constituting the first insulating layer 6a constituting the insulating layer 6 prevents the propagation of the crack and cuts the wiring conductor layer 7 on the surface of the insulating layer 6. There is no risk of disconnection failure. It can be a good wiring board connection reliability.
[0021]
The first insulating layer 6a has a thickness of 5 to 75 μm and is made of a heat-resistant fiber base such as epoxy resin or bismaleimide triazine resin containing an inorganic insulating filler such as silica in glass cloth or aramid nonwoven fabric. It has a function of imparting strength to the insulating layer 6 by being impregnated with a thermosetting resin. The glass cloth has a plain weave, a twill weave, or a satin weave depending on the weaving method, and is subjected to a silane coupling treatment in order to improve the adhesion to the thermosetting resin.
[0022]
Such a first insulating layer 6a is formed, for example, by impregnating glass cloth with an epoxy resin containing silica and then using a hot press at a temperature of 100 to 200 ° C. and a pressure of 0.5 to 5 MPa. Produced by pressing for several minutes.
[0023]
The second insulating layer 6b has a thickness of 5 to 75 μm and is made of a thermosetting resin such as an epoxy resin having an average particle size of 0.01 to 2 μm and a content of 10 to 50% by weight of silica or alumina. -An inorganic insulating filler such as aluminum nitride is dispersed, and the surface is roughened to improve the adhesion to the wiring conductor layer 7. Such an inorganic insulating filler adjusts the coefficient of thermal expansion of the second insulating layer 6b to match the coefficient of thermal expansion of the wiring conductor layer 7 and forms appropriate irregularities on the surface of the second insulating layer 6b, It has a function of improving the adhesion between the conductor layer 7 and the second insulating layer 6b.
[0024]
Such a second insulating layer 6b is formed, for example, by adding 10 to 50% by weight of silica to an epoxy resin to form a paste, forming the paste into a film, and thermosetting the paste.
[0025]
If the average particle size of the inorganic insulating filler is less than 0.01 μm, the inorganic insulating fillers tend to aggregate to form a second insulating layer 6b having a uniform thickness, which tends to be difficult. If it exceeds 2 μm, the irregularities on the surface of the second insulating layer 6b become too large, and the adhesion between the wiring conductor layer 7 and the second insulating layer 6b tends to be reduced. Therefore, the average particle size of the inorganic insulating filler is preferably in the range of 0.01 to 2 μm. When the content of the inorganic insulating filler is less than 10% by weight, the effect of adjusting the coefficient of thermal expansion of the second insulating layer 6b tends to be small. Forming layer 6 tends to be difficult. Therefore, the content of the inorganic insulating filler is preferably in the range of 10 to 50% by weight.
[0026]
After the insulating layer 6 is formed by laminating the insulating layer of the second insulating layer 6b on the first insulating layer 6a, the temperature is kept for several minutes at a temperature of 100 to 200 ° C. while reducing the pressure. It is manufactured by pressurizing and heating for several minutes under the conditions of 0.5 to 5 MPa, and further performing heat treatment for 30 minutes to 2 hours at a temperature of 100 to 200 ° C.
[0027]
Further, a part of the wiring conductor layer 7 formed on one outermost layer surface of the insulating layer 6 forms a mounting electrode 7a for connecting an electronic component, which is joined to each electrode of the electronic component via a solder bump 10a. A part of the wiring conductor layer 7 formed on the surface of the other outermost layer of the insulating layer 6 has a mounting electrode 7b for external connection connected to each electrode of the external electric circuit board via the conductor bump 10b. Has formed.
[0028]
Such wiring conductor layers 7 and via conductors 8b are formed by a method described below. First, after a via hole 8 is formed in the insulating layer 6 by a laser, the surface of the insulating layer 6 and the inner surface of the via hole 8 are immersed in a roughening solution such as an aqueous solution of permanganate to roughen the surface, and then a palladium catalyst for electroless plating is used. Immersed in an aqueous solution of an aluminum alloy to deposit a palladium catalyst on the surface of the insulating layer 6 and the inner surface of the via hole 8, and further immersed for about 30 minutes in an electroless plating solution comprising copper sulfate, Rossell salt, formalin, sodium EDTA, a stabilizer, etc. Then, an electroless copper plating layer of about 1 to 2 μm is deposited.
[0029]
Next, an anti-plating resin layer is deposited on the electroless copper plating layer on the surface of the insulating layer 6, and an opening for depositing the electrolytic copper plating layer is formed in the pattern shape of the wiring conductor layer 7 by exposure and development. Further, the inner surface and the opening of the via hole 8 are immersed in an electrolytic copper plating solution comprising sulfuric acid / copper sulfate pentahydrate / chlorine / brightener for several hours while applying a current of several A / dm 2. An electrolytic copper plating layer is applied to the part. Thereafter, the plating-resistant resin layer is peeled off with sodium hydroxide, and further, the electroless copper plating layer exposed by peeling the plating-resistant resin layer is removed by etching with a sulfuric acid-based aqueous solution such as sulfuric acid / hydrogen peroxide solution. Thereafter, the plating resin layer is peeled off with sodium hydroxide, whereby wiring conductor layer 7 is formed on the surface of insulating layer 6 and via conductor 8 b is formed inside via hole 8.
[0030]
The surface of the mounting electrodes 7a and 7b is coated with nickel having good wettability with solder and excellent corrosion resistance in order to prevent the oxidative corrosion and to improve the connection with the solder bumps 10a and 10b. A plating layer of gold or the like is applied;
[0031]
Further, the outermost insulating layer 6 and the mounting electrodes 7a and 7b are covered with a solder-resistant resin layer 11 having an opening for exposing the central portion of the mounting electrodes 7a and 7b as necessary. The solder-resistant resin layer 11 has a thickness of 10 to 50 μm. For example, 30 to 70% by weight of an inorganic powder filler such as silica or talc is added to a mixture of a photosensitive resin such as an acrylic-modified epoxy resin and a photoinitiator. To prevent the adjacent mounting electrodes 7a and 7b from being electrically short-circuited by the solder bumps 10a and 10b, as well as the bonding strength between the mounting electrodes 7a and 7b and the insulating layer 6. Has the function of improving
[0032]
Such a solder-resistant resin layer 11 is formed by applying an uncured resin film composed of a photosensitive resin, a photoinitiator, and an inorganic powder filler on the surface of the outermost insulating layer 6 or by forming a thermosetting resin and an inorganic powder. An uncured resin varnish consisting of a filler is applied to the surface of the outermost insulating layer 6 and dried, and thereafter, an opening is formed by exposure and development, and this is formed by UV curing and heat curing.
[0033]
Thus, according to the wiring board of the present invention, an electronic component such as a semiconductor element is mounted on the upper surface of the wiring substrate, and the electrodes of the electronic component are electrically connected to the mounting electrodes 7a via the solder bumps 10a. By electrically connecting the formed mounting electrode 7a to the wiring conductor of the external electric circuit board via the solder bump 10b, the electronic component is electrically connected to the wiring conductor of the external electric circuit board. .
[0034]
It should be noted that the present invention is not limited to the above-described example of the embodiment, and changes and improvements can be made without departing from the scope of the present invention.
[0035]
【The invention's effect】
According to the wiring board of the present invention, the insulating layer formed on the surface of the core substrate is formed by impregnating a thermosetting resin and an inorganic insulating filler in a heat-resistant fiber base material, and the first insulating layer located on the core substrate side Since the layer is formed by laminating a second insulating layer formed by dispersing an inorganic insulating filler in a thermosetting resin, after the electronic components are mounted on the wiring board, the wiring board has a long-term heat history. Thermal stress generated by the difference in thermal expansion between the filling resin, the penetrating conductor and the insulating layer is repeatedly applied, and a gap is generated between the filling resin and the penetrating conductor due to concentration on the boundary between the three members. Even if a crack occurs, the heat-resistant fiber base material of the first insulating layer constituting the insulating layer prevents the propagation of the crack, and cuts the wiring conductor layer on the insulating layer to cause a disconnection failure. Will not be lost, and as a result, The may be a wiring board.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of FIG.
[Explanation of symbols]
1 Insulating substrate 1a Through-hole 2 Wiring conductor 3 Through Conductor 4 Filling resin 5 Core substrate 6 Insulating layer 6a First insulating layer 6b Second insulating layer 7 Wiring conductor layer 8 Via hole 8a ..... via conductor