【0001】
【発明の属する技術分野】
本発明は、磁束の変化を電圧に変換するホール素子を用いて、直線変位を非接触で検出するリニアポジションセンサに関するものである。
【0002】
【従来の技術】
【特許文献1】「特表平7−500421号公報」
従来のこの種のリニアポジションセンサとして特表平7−500421号がある。図5にその長手方向の断面図を示す。このセンサは強磁性材料の固定子4と5の間に設けられた薄い主エアギャップ2の中で厚み方向にNS極着磁された永久磁石3が直線的に移動するもので、固定子4には主エアギャップ2に対して垂直な副エアギャップ6を有し、その中に感磁探子であるホール素子7が配置されている。
【0003】
可動磁石3はスライダ12に取り付けられ、スライダ12がその長手方向に移動する。可動磁石7が図5のように副エアギャップ6に対向して中央の位置にあると、2つの磁気回路A,Bが対照的に形成され、中心に位置するホール素子7を通過する磁束は0となる。可動磁石3が図6に示すように右に移動すると、磁気回路A,Bのバランスが崩れ、ホール素子7は磁気回路Aに含まれるので、この間の磁束の変化が検出され、スライダ12の移動長さを知ることができる。可動磁石12が図7に示すように左に移動すると、ホール素子7は磁気回路Bに含まれ、この間の磁束の変化からスライダの位置を検知できることになる。
【0004】
【発明が解決しようとする課題】
図5のリニアセンサは、直線性と感度を確保するために、狭い主エアギャップ2の中に、可動磁石3として厚さの薄い高性能磁石を使用する必要がある。例えば、特表平7−500421号では主エアギャップの3mmに対して、厚さ1mmの高性能磁石であるサマリウム・コバルト材の可動磁石3を使用している。可動磁石3と固定子4あるいは5の間には、磁気的な吸引力が発生するので、薄い可動磁石3を狭いエアギャップ2の中心で移動することは機構的に難しいものになる。
【0005】
本発明は、上記の問題点の解決を図ったもので、厚さの厚い磁石を用いることのでき、漏洩磁束の少ない可動子構造により、高価な高性能磁石を用いなくても、感度と直線性に優れたリニアポジションセンサを提供することにある。
【0006】
【課題を解決するための手段】
本発明に成る磁気式リニアポジションセンサは、軟質磁性体材料の固定子の中央部にセンサを挿入するセンサギャップを設け、その中にホール素子を配置した固定子部に対向して、センサギャップに垂直な方向にエアギャップを介して、厚み方向にNS極着磁した永久磁石と、二つの脚部が永久磁石のエアギャップとほぼ等しいエアギャップで固定子に対向する形状の軟質磁性体材料の継鉄とを一体化した可動子を、直線的に移動自在とした構成を特徴としている。
【0007】
【実施例】
以下図面によって本発明の実施例を説明する。図1は本発明の磁気式リニアポジションセンサの基本構成を示す断面図である。本発明のセンサは、軟質磁性材料のステータ101と102の間にセンサを挿入するセンサギャップ103を設け、その中にホール素子104を配置した固定子部に対向して、センサギャップ103に垂直な方向に主エアギャップ105を介して、厚み方向にNS極着磁した永久磁石106と、二つの脚部107が永久磁石の主エアギャップ105とほぼ等しいエアギャップで固定子101,102に対向する形状の軟質磁性体材料の継鉄108とを一体化した可動子部を、直線的に移動自在として構成される。可動子は直線運動機構の一部であるスライダ109に結合され、図の矢印で示すように移動可能で、この移動量がセンサによって検知される。
【0008】
図1に示すように、固定子部に対して可動子部が中央にある場合、永久磁石106と継鉄108及びその脚部107と固定子101,102によって、磁気回路A,Bが形成され、ホール素子104を通過する磁束は0となる。
【0009】
図2に示すように可動子が右端にくると、磁気回路A,Bのバランスがくずれ、ホール素子104には磁気回路Aの磁束が通過する。ホール素子104を通過する磁束は図1の0から可動子が右に移動するにつれて徐々に増加し、図2で最大になる。そしてホール素子104は磁束の変化に応じた電圧を出力し、可動子の位置すなわちスライダ109の位置を検知できることになる。
【0010】
図3に示すように可動子が左端にくると、ホール素子104には磁気回路Bの磁束が通過する。このとき磁束の方向は磁気回路Aとは逆向きになるので、スライダ109の右方向の移動量をプラスとすれば、この図3の左方向への移動はマイナスとして検知される。ホール素子104を通過する磁束は図1の0から可動子が左に移動するにつれて徐々に増加し、図3で最大になる。
【0011】
図4は図1の磁気式リニアポジションセンサの具体的実施例について、可動子部の移動にともなうセンサギャップ内の、ホール素子部の磁束の変化を示す特性図である。この特性は、永久磁石106の厚さ×長さを5mm×24mm、エアギャップ105に対向する継鉄脚部107の幅を3mm、センサギャップ103を2mm、固定子の厚さを7mm、永久磁石・継鉄・固定子の奥行き寸法を5mmとし、永久磁石材料としてBHmax=40〜50kJ/m3のものを用いたときの、可動子の移動に対するホール素子部の磁束密度の変化で、ストローク約20mmの範囲に対して、優れた直線性を示している。
図5は、センサギャップ103のみ2mmから1.6mmに小さくしたときの、可動子の移動に対するホール素子部の磁束の変化を示す特性図で、直線性はほとんど変わらないが磁束密度の値を大きくできる効果がある。
図6は、センサギャップ103は2mmのまま、すなわち図4の条件から主エアギャップ105を2mmから3mmに増やしたときの、可動子の移動に対するホール素子部の磁束密度の変化を示す特性図で、図4と比べると磁束密度の値が小さくなり、かつ直線性も若干悪くなることが分かる。いずれの場合も磁束密度の変化幅は、一般的なホール素子に必要な最大磁束密度30〜150mTに対して、高級な永久磁石を用いずに、充分達成している。以上の結果は、センサギャップ103の値は、主エアギャップ105と同じ値か小さくすることが望ましく、主エアギャップ105は継鉄脚部107の幅より小さくすることが望ましいことを示している。
【0012】
図7は、図4の条件から、永久磁石の長さのみ24mmから29mmに伸ばしたときの、可動子の移動に対するホール素子部の磁束の変化を示す特性図で、磁束密度は少し小さくなるが、直線的に変化する範囲を約20mmから25mm以上に拡大することができる。
図8は、ここで図5の効果を適用するために、センサギャップ103を2mmから1.6mmに変えたときの可動子の移動に対するホール素子部の磁束の変化を示す特性図で、直線性はほとんど変わらないで磁束密度の値を大きくできる効果があることを示している。
【0013】
上記図1の磁気式リニアポジションセンサは、次の特徴を有する。
1.可動子部の継鉄108は、エアギャップ105に対向した二つの脚部107によって磁気回路が閉じているので、磁束の漏れが少ない。
2.永久磁石106の厚さを厚くできるので、永久磁石材料の選定の自由度が大きく、強いて高性能材料の永久磁石を使う必要がない。
3.可動部と固定子部間には吸引力が働いているので、可動子部が移動動作時に直角方向にはずれにくいため、振動を受けたりしてもセンサの出力変動が少ない。
【0014】
【発明の効果】
本発明に成る磁気式リニアポジションセンサは、可動子部の継鉄108にあるエアギャップ105に対向した二つの脚部107によって磁気回路が閉じているので、磁束の漏れが少なく、永久磁石106の厚さを厚くできるので、永久磁石材料選定の自由度が大きく、強いて高価な高性能材料の永久磁石を使用しなくても高感度で直線性のよいリニアセンサを得ることができる。
可動子部と固定子部間には吸引力が働いているので、可動子部が移動動作時に直角方向にはずれにくいため、振動の影響を受けにくいリニアポジションセンサを得ることができる。
【図面の簡単な説明】
【図1】本発明に成る例の磁気式リニアポジションセンサの基本構成を示す断面図である。
【図2】本発明に成る例の磁気式リニアポジションセンサの基本構成を示す断面図である。
【図3】本発明に成る例の磁気式リニアポジションセンサの基本構成を示す断面図である。
【図4】本発明に成る例の磁気式リニアポジションセンサの具体的一実施例の、可動子の移動に対するセンサギャップ内ホール素子部の磁束の変化を示す特性図である。
【図5】本発明に成る例の磁気式リニアポジションセンサの具体的一実施例の、可動子の移動に対するセンサギャップ内ホール素子部の磁束の変化を示す特性図である。
【図6】本発明に成る例の磁気式リニアポジションセンサの具体的一実施例の、可動子の移動に対するセンサギャップ内ホール素子部の磁束の変化を示す特性図である。
【図7】本発明に成る例の磁気式リニアポジションセンサの具体的一実施例の、可動子の移動に対するセンサギャップ内ホール素子部の磁束の変化を示す特性図である。
【図8】本発明に成る例の磁気式リニアポジションセンサの具体的一実施例の、可動子の移動に対するセンサギャップ内ホール素子部の磁束の変化を示す特性図である。
【図9】従来の磁気式リニアポジションセンサの構成を示す断面図である。
【図10】従来の磁気式リニアポジションセンサの構成を示す断面図である。
【図11】従来の磁気式リニアポジションセンサの構成を示す断面図である。
【符号の説明】
2 主エアギャップ
3 可動磁石
4,5 固定子
6 副エアギャップ
7 ホール素子
12 スライダ
101,102 固定子
103 センサギャップ
104 ホール素子
105 主エアギャップ
106 永久磁石
107 継鉄脚部
108 継鉄
109 スライダ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a linear position sensor that detects a linear displacement in a non-contact manner using a Hall element that converts a change in magnetic flux into a voltage.
[0002]
[Prior art]
[Patent Document 1] "JP-T7-500421"
As a conventional linear position sensor of this type, there is Japanese Patent Publication No. Hei 7-500421. FIG. 5 shows a sectional view in the longitudinal direction. In this sensor, an NS magnetized permanent magnet 3 moves linearly in the thickness direction in a thin main air gap 2 provided between stators 4 and 5 made of a ferromagnetic material. Has a sub air gap 6 perpendicular to the main air gap 2, in which a Hall element 7 as a magneto-sensitive probe is arranged.
[0003]
The movable magnet 3 is attached to a slider 12, and the slider 12 moves in the longitudinal direction. When the movable magnet 7 is located at the center position facing the sub air gap 6 as shown in FIG. 5, two magnetic circuits A and B are formed in contrast, and the magnetic flux passing through the Hall element 7 located at the center is It becomes 0. When the movable magnet 3 moves to the right as shown in FIG. 6, the balance between the magnetic circuits A and B is lost, and the Hall element 7 is included in the magnetic circuit A. You can know the length. When the movable magnet 12 moves to the left as shown in FIG. 7, the Hall element 7 is included in the magnetic circuit B, and the position of the slider can be detected from a change in magnetic flux during this time.
[0004]
[Problems to be solved by the invention]
In the linear sensor of FIG. 5, it is necessary to use a thin high-performance magnet as the movable magnet 3 in the narrow main air gap 2 in order to secure linearity and sensitivity. For example, Japanese Patent Publication No. Hei 7-500421 uses a movable magnet 3 made of a samarium-cobalt material which is a high-performance magnet having a thickness of 1 mm with respect to a main air gap of 3 mm. Since a magnetic attractive force is generated between the movable magnet 3 and the stator 4 or 5, it is mechanically difficult to move the thin movable magnet 3 at the center of the narrow air gap 2.
[0005]
The present invention has been made to solve the above-mentioned problems, and a thick magnet can be used.The mover structure having a small leakage magnetic flux allows the sensitivity and the linearity to be increased without using an expensive high-performance magnet. An object of the present invention is to provide a linear position sensor excellent in performance.
[0006]
[Means for Solving the Problems]
In the magnetic linear position sensor according to the present invention, a sensor gap for inserting the sensor is provided at the center of the stator made of a soft magnetic material, and the sensor gap faces the stator where the Hall element is disposed. A permanent magnet magnetized by NS poles in the thickness direction via an air gap in a vertical direction, and a soft magnetic material having a shape in which two legs face the stator with an air gap substantially equal to the air gap of the permanent magnet. It is characterized by a configuration in which the mover integrated with the yoke is movable linearly.
[0007]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a basic configuration of a magnetic linear position sensor according to the present invention. The sensor of the present invention is provided with a sensor gap 103 for inserting the sensor between stators 101 and 102 made of a soft magnetic material. The sensor gap 103 is opposed to a stator portion in which a Hall element 104 is disposed, and is perpendicular to the sensor gap 103. A permanent magnet 106 which is NS-polarized in the thickness direction and two legs 107 face the stators 101 and 102 with an air gap substantially equal to the main air gap 105 of the permanent magnet via a main air gap 105 in the direction. The mover unit in which the yoke 108 made of a soft magnetic material having a shape is integrated is configured to be linearly movable. The mover is coupled to a slider 109 which is a part of a linear motion mechanism, and can move as indicated by an arrow in the figure, and the amount of movement is detected by a sensor.
[0008]
As shown in FIG. 1, when the mover portion is located at the center with respect to the stator portion, magnetic circuits A and B are formed by the permanent magnet 106 and the yoke 108 and their legs 107 and the stators 101 and 102. , The magnetic flux passing through the Hall element 104 becomes zero.
[0009]
As shown in FIG. 2, when the mover comes to the right end, the magnetic circuits A and B lose their balance, and the magnetic flux of the magnetic circuit A passes through the Hall element 104. The magnetic flux passing through the Hall element 104 gradually increases from 0 in FIG. 1 as the mover moves to the right, and reaches a maximum in FIG. Then, the Hall element 104 outputs a voltage corresponding to the change of the magnetic flux, so that the position of the mover, that is, the position of the slider 109 can be detected.
[0010]
When the mover comes to the left end as shown in FIG. 3, the magnetic flux of the magnetic circuit B passes through the Hall element 104. At this time, since the direction of the magnetic flux is opposite to that of the magnetic circuit A, if the rightward movement amount of the slider 109 is plus, the leftward movement in FIG. 3 is detected as minus. The magnetic flux passing through the Hall element 104 gradually increases from 0 in FIG. 1 as the mover moves to the left, and reaches a maximum in FIG.
[0011]
FIG. 4 is a characteristic diagram showing a change in magnetic flux of a Hall element portion in a sensor gap due to movement of a mover portion in a specific example of the magnetic linear position sensor of FIG. The characteristics are as follows. The thickness x length of the permanent magnet 106 is 5 mm x 24 mm, the width of the yoke leg 107 facing the air gap 105 is 3 mm, the sensor gap 103 is 2 mm, and the thickness of the stator is 7 mm. When the depth of the yoke and the stator is 5 mm and the permanent magnet material is BH max = 40 to 50 kJ / m 3 , the stroke is the change in the magnetic flux density of the Hall element with respect to the movement of the mover. It shows excellent linearity over a range of about 20 mm.
FIG. 5 is a characteristic diagram showing a change in magnetic flux of the Hall element portion with respect to the movement of the mover when only the sensor gap 103 is reduced from 2 mm to 1.6 mm. The linearity hardly changes, but the value of the magnetic flux density increases. There is an effect that can be done.
FIG. 6 is a characteristic diagram showing a change in magnetic flux density of the Hall element portion with respect to the movement of the mover when the sensor gap 103 is kept at 2 mm, that is, when the main air gap 105 is increased from 2 mm to 3 mm from the condition of FIG. 4 that the value of the magnetic flux density is smaller and the linearity is slightly deteriorated. In each case, the variation range of the magnetic flux density is sufficiently achieved without using a high-grade permanent magnet for the maximum magnetic flux density of 30 to 150 mT required for a general Hall element. The above results indicate that the value of the sensor gap 103 is preferably equal to or smaller than the value of the main air gap 105, and the main air gap 105 is preferably smaller than the width of the yoke leg 107.
[0012]
FIG. 7 is a characteristic diagram showing a change in the magnetic flux of the Hall element portion with respect to the movement of the mover when only the length of the permanent magnet is increased from 24 mm to 29 mm from the condition of FIG. The range that changes linearly can be expanded from about 20 mm to 25 mm or more.
FIG. 8 is a characteristic diagram showing a change in magnetic flux of the Hall element portion with respect to the movement of the mover when the sensor gap 103 is changed from 2 mm to 1.6 mm in order to apply the effect of FIG. Indicates that there is an effect that the value of the magnetic flux density can be increased with almost no change.
[0013]
The magnetic linear position sensor of FIG. 1 has the following features.
1. Since the magnetic circuit of the yoke 108 of the mover section is closed by the two legs 107 facing the air gap 105, leakage of magnetic flux is small.
2. Since the thickness of the permanent magnet 106 can be increased, the degree of freedom in selecting the permanent magnet material is large, and there is no need to use a permanent magnet made of a high-performance material.
3. Since a suction force acts between the movable part and the stator part, the movable part is unlikely to be displaced in the direction perpendicular to the moving operation, so that the output fluctuation of the sensor is small even if it receives vibration.
[0014]
【The invention's effect】
In the magnetic linear position sensor according to the present invention, since the magnetic circuit is closed by the two legs 107 facing the air gap 105 in the yoke 108 of the mover, the leakage of magnetic flux is small, and the permanent magnet 106 Since the thickness can be increased, the degree of freedom in selecting the permanent magnet material is large, and a linear sensor with high sensitivity and good linearity can be obtained without using a permanent magnet made of a strong and expensive high-performance material.
Since a suction force acts between the mover portion and the stator portion, the mover portion is unlikely to be displaced in the direction perpendicular to the moving operation, so that a linear position sensor which is less affected by vibration can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a basic configuration of a magnetic linear position sensor of an example according to the present invention.
FIG. 2 is a sectional view showing a basic configuration of a magnetic linear position sensor of an example according to the present invention.
FIG. 3 is a sectional view showing a basic configuration of a magnetic linear position sensor of an example according to the present invention.
FIG. 4 is a characteristic diagram showing a change in magnetic flux of a Hall element portion in a sensor gap with respect to movement of a mover in a specific example of a magnetic linear position sensor according to an example of the present invention.
FIG. 5 is a characteristic diagram showing a change in magnetic flux of a Hall element portion in a sensor gap with respect to movement of a mover in a specific embodiment of the magnetic linear position sensor according to the embodiment of the present invention.
FIG. 6 is a characteristic diagram showing a change in magnetic flux of a Hall element in a sensor gap with respect to movement of a mover in a specific example of a magnetic linear position sensor according to an example of the present invention.
FIG. 7 is a characteristic diagram showing a change in magnetic flux of a Hall element in a sensor gap with respect to movement of a mover in a specific example of a magnetic linear position sensor according to an example of the present invention.
FIG. 8 is a characteristic diagram showing a change in magnetic flux of the Hall element in the sensor gap with respect to the movement of the mover in a specific embodiment of the magnetic linear position sensor according to the embodiment of the present invention.
FIG. 9 is a sectional view showing a configuration of a conventional magnetic linear position sensor.
FIG. 10 is a cross-sectional view showing a configuration of a conventional magnetic linear position sensor.
FIG. 11 is a cross-sectional view showing a configuration of a conventional magnetic linear position sensor.
[Explanation of symbols]
2 Main air gap 3 Moving magnets 4, 5 Stator 6 Sub air gap 7 Hall element 12 Slider 101, 102 Stator 103 Sensor gap 104 Hall element 105 Main air gap 106 Permanent magnet 107 Yoke leg 108 Yoke 109 Slider