Nothing Special   »   [go: up one dir, main page]

JP2004159401A - Control device of vehicle - Google Patents

Control device of vehicle Download PDF

Info

Publication number
JP2004159401A
JP2004159401A JP2002321123A JP2002321123A JP2004159401A JP 2004159401 A JP2004159401 A JP 2004159401A JP 2002321123 A JP2002321123 A JP 2002321123A JP 2002321123 A JP2002321123 A JP 2002321123A JP 2004159401 A JP2004159401 A JP 2004159401A
Authority
JP
Japan
Prior art keywords
electric motor
engine
power
vehicle
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321123A
Other languages
Japanese (ja)
Other versions
JP3949047B2 (en
Inventor
Tsutomu Michioka
力 道岡
Minoru Yoshida
稔 吉田
Toshihiro Sumiya
俊弘 炭谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2002321123A priority Critical patent/JP3949047B2/en
Publication of JP2004159401A publication Critical patent/JP2004159401A/en
Application granted granted Critical
Publication of JP3949047B2 publication Critical patent/JP3949047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a vehicle that satisfactorily protects a hybrid system apparatus when an abnormality occurs in an electric motor or in a motor control system. <P>SOLUTION: The control device of the vehicle is provided with an inverter 28 that adjusts and controls the power of the electric motor 2, a contactor 31 that can freely switch a power passage for connecting the inverter 28 and a battery 4 to a connecting state and a disconnecting state, and a control means 8 that controls the drive state of the vehicle. When the control means 8 detects an abnormality in the electric motor 2 or in the motor control system, the contactor 31 is switched to the disconnecting state from the connecting state after a back electromotive voltage generated by the electric motor 2 is lowered to a set voltage or lower. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電動モータの電力を調整制御するインバ−タと、そのインバータと蓄電装置とを接続する電力路を接続状態と遮断状態とに切り換え自在な電力路断続手段と、車両の運転状態を制御する制御手段とが備えられた車両の制御装置に関する。
【0002】
【従来の技術】
上記構成の車両としては、例えば、エンジンと電動モータとを備え、電動モータによる回生電力を利用して蓄電装置に充電を行うハイブリッド車両、燃料電池からの電力により電動モータを駆動するとともに電動モータによる回生電力を利用して蓄電装置に充電を行う燃料電池駆動型の電動車両、あるいは、蓄電装置からの電力により電動モータを駆動するとともに電動モータによる回生電力を利用して前記蓄電装置に充電を行う蓄電装置駆動型の電動車両等がある。
【0003】
そして、従来では、このような車両のうちハイブリッド車両における従来例として、次のように構成されたものがあった。
すなわち、エンジンと電動モータとが並列状態で走行用駆動力を出力するように、且つ、エンジンの回転に伴って電動モータが回転して回生作動させることができるように構成されたパラレル式のハイブリッド車両において、前記電動モータ又はモータ制御系の異常を検出したときに、直ちに前記電力路断続手段としてのコンタクタを遮断状態に切り換えてインバータと蓄電装置とを接続する電力路を遮断するようにして、電動モータ又はモータ制御系の異常に起因して電動モータの回生電力が不必要に供給されて蓄電装置が過充電状態となる等の不利を未然に回避させるように構成し、又、このような処理と併行して、エンジンの回転速度を、電動モータによって発生する回生電圧が前記インバータの耐電圧に相当する電圧となる設定回転速度以下に制限するようにエンジンを制御することによって、電動モータ又はモータ制御系の異常に起因して回生電圧がインバータの耐電圧を越えるような異常に高い電圧になってインバータが損傷することを防止するようにしたものがあった(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001―69607号公報(第1頁―第5頁、図1―図3)
【0005】
【発明が解決しようとする課題】
上記従来構成においては、電動モータ又はモータ制御系の異常を検出したときに、エンジンの回転速度を設定回転速度以下に制限することによってインバータに耐電圧を越えるような高い電圧が印加されないようにしているが、上記従来構成では、電動モータ又はモータ制御系の異常を検出したときに、直ちに電力路断続手段を遮断状態に切り換えるようにしているので蓄電装置を保護することはできるものの、インバータの保護が充分であるとは言えないものであった。
【0006】
例えば、電動モータ又はモータ制御系の異常を検出したときに、エンジンの回転速度が前記設定回転速度よりも高速で回転していることが考えられるが、電動モータ又はモータ制御系の異常を検出して電力路断続手段を遮断状態に切り換えたときから、エンジンの回転速度が実際に設定回転速度以下に低下するまでには電気的な制御に比べて応答遅れがあり時間がかかることがある。しかも、上記構成においては、エンジンの回転速度が高速であればそれに伴って電動モータの回転速度も高速となり、その回転に伴って大きな回生電力を発生させることになる。
そうすると、上記したように電力路断続手段を遮断状態に切り換えたときからエンジンの回転速度が設定回転速度以下に低下する時点までの間において、エンジンの回転速度が高速であれば電動モータにて高い電圧の逆起電圧が発生してインバータに対して高い電圧の回生電圧が印加されるおそれがある。このとき、電力路断続手段が既に遮断状態になっており電動モータにて発生した回生電力は蓄電装置に充電することができず、回生電力は全てインバータの直流平滑コンデンサ等に蓄えられることになり、このとき逆起電圧が高い電圧であればインバータに対して過大な電流が流入して損傷を受けるおそれが大となる。
従って、上記従来構成においては、インバータの保護が充分でないという不利があった。
【0007】
上記したような不利は、上記従来構成におけるハイブリッド車両に限らず、上述したような燃料電池駆動型の電動車両や蓄電装置駆動型の電動車両等の各種の電動車両であっても同様に発生するものである。
説明を加えると、このような電動車両においても、電動モータ又はモータ制御系の異常を検出したときに、直ちに、電力路断続手段を遮断状態に切り換えた場合に、その電力路断続手段を遮断状態に切り換えた後においても何らかの原因により電動モータが高速で回転していることが考えられる。例えば、車両が高速で走行しているときに電動モータ又はモータ制御系の異常を検出したような場合には、電力路断続手段を遮断状態に切り換えても車両が慣性力によって高速走行状態を維持してその慣性力により電動モータが高速での回転を継続してしまうことがある。そうすると、高速で回転する電動モータにて発生した高い逆起電圧がインバータに対して印加されてインバータが損傷を受けるおそれが大となる。従って、このような構成においてもインバータの保護が充分でないという不利があった。
【0008】
本発明はかかる点に着目してなされたものであり、その目的は、電動モータ又はモータ制御系が異常であるときに、インバータの保護を充分に図ることが可能となる車両の制御装置を提供する点にある。
【0009】
【課題を解決するための手段】
請求項1に記載の車両の制御装置は、電動モータの電力を調整制御するインバ−タと、そのインバータと蓄電装置とを接続する電力路を接続状態と遮断状態とに切り換え自在な電力路断続手段と、車両の運転状態を制御する制御手段とが備えられたものであって、前記制御手段が、前記電動モータ又はモータ制御系の異常を検出したときに、前記電動モータによって発生する逆起電圧が設定電圧以下に低下した後に前記電力路断続手段を接続状態から遮断状態に切り換えるように構成されていることを特徴とする。
【0010】
すなわち、電動モータ又はモータ制御系の異常を検出したときに、電動モータによって発生する逆起電圧が設定電圧以下に低下した後に電力路断続手段を接続状態から遮断状態に切り換えるようにしているので、電力路断続手段が遮断状態に切り換えられている状態ではインバータに対して設定電圧以下に低下した逆起電圧だけが印加されることになるので、インバータに対して設定電圧を越えるような高い電圧が印加されて損傷を受けるといった不利がない。
【0011】
説明を加えると、電動モータ又はモータ制御系の異常を検出した場合であっても、直ちに電力路断続手段を接続状態から遮断状態に切り換えるのではなく、電動モータによって発生する逆起電圧が設定電圧以下に低下するまで電力路断続手段は接続状態を維持することになる。このように電動モータ又はモータ制御系の異常を検出した後に電力路断続手段が接続状態を維持している間において、制御系の異常により制御不能となっている電動モータが高い電圧の逆起電圧を発生していることも考えられるが、このとき電力路断続手段は接続状態を維持しているので、電動モータにて発生した回生電力は蓄電装置に充電されるので、インバータにて回生電力が全て消費されることはなく、インバータの直流電圧が高くなりインバータが損傷するおそれは少ないのである。
【0012】
従って、電動モータ又はモータ制御系が異常であるときに、インバータの保護を充分に図ることが可能となる車両の制御装置を提供できるに至った。
【0013】
請求項2に記載の車両の制御装置は、請求項1において、前記電動モータがエンジンの回転に伴って回転するように構成され、前記蓄電装置への回生量を検出する回生量検出手段が備えられ、前記制御手段が、前記電動モータ又はモータ制御系の異常を検出してから前記電力路断続手段を前記遮断状態に切り換えるまでの間において、前記回生量検出手段にて検出される回生量が設定値を越えると、前記エンジンの回転速度を低下させるように前記エンジンの作動を制御するよう構成されていることを特徴とする。
【0014】
すなわち、エンジンの回転に伴って電動モータが回転するように構成されているから、電動モータ又はモータ制御系に異常が発生して電動モータの制御が不能になった場合であっても、エンジンの回転速度に応じた逆起電圧を発生させることになる。このような構成においては、電動モータ又はモータ制御系の異常を検出してから電力路断続手段を遮断状態に切り換えるまでの間においても、エンジンの回転に伴って電動モータが回生電力を発生させることになるが、そのとき蓄電装置への回生量、例えば、蓄電装置に流入する回生電力の電流、電圧又は電力量等の回生量が設定値を越えると、エンジンの作動を制御することによりエンジンの回転速度を低下させるようにしている。
【0015】
説明を加えると、エンジンの回転に伴って電動モータが回生電力を発生させる場合において、エンジンの回転速度が高速であれば電動モータにて発生して蓄電装置に充電される回生電力が大になり、蓄電装置が過充電状態になるおそれがあるが、回生量検出手段にて検出される回生量が設定値を越えると、エンジンの回転速度を低下させて電動モータによる回生電力を小さくさせるのである。
【0016】
従って、電動モータ又はモータ制御系の異常を検出したときに、電動モータによって発生する逆起電圧が設定電圧以下に低下した後に電力路断続手段を遮断状態に切り換えるようにしてインバータの保護を充分に図ることができるようにしながらも、電力路断続手段を遮断状態に切り換えるまでの間において蓄電装置が過充電状態となることを適切に回避させて蓄電装置の保護を図ることが可能となる。
【0017】
【発明の実施の形態】
以下、本発明に係る車両の一例であるハイブリッド車両の制御装置について図面に基づいて説明する。
図1に示すように、このハイブリッド車両では、走行駆動用のエンジン1の出力軸1aに直結される状態で走行駆動用の電動モータ2を備えて、これらの動力により走行装置としての左右の車輪3を駆動して走行するように駆動手段としての駆動ユニットKUが構成されている。前記電動モータ2は、エンジン1の出力軸1aにロータ2aが同一軸芯で一体回動するように連結され、そのロータ2aの外周部を囲うステータ2bが位置固定状態で図示しない車体支持部に支持される構成となっている。
【0018】
そして、この電動モータ2は、エンジン1の作動が停止している状態においてその出力軸1aに対して駆動力を与えてエンジン1を始動させるように構成され、且つ、エンジン1が始動した後は、出力軸1aに対してエンジン回転方向と同方向の駆動力を与えてトルクアシストを行う力行状態と、前記出力軸1aから駆動力が与えられて発電する回生状態とに切り換え可能に構成されている。つまり、電動モータ2がエンジン1にて回転駆動される出力軸1aに対してその回転方向と同一方向にトルクを出力させる力行状態に切り換えることで、所望の走行駆動力を出力しながらエンジン1が低燃費状態となるように、エンジン1の出力に対する動力の補助つまりトルクアシストを行うことができる構成となっている。この作動状態が力行作動に対応する。又、走行速度を減速させているとき等において電動モータ2が回生状態となって、出力軸1aから駆動力が与えられて発電して得られた回生電力を蓄電装置としてのバッテリー4に充電することができる構成となっている。この作動状態が回生作動に対応する。
【0019】
前記駆動ユニットKUの動力は、トルクコンバータ5を介してトランスミッション6に伝えられ、このトランスミッション6内部のギア式の自動変速機構により変速された後に差動機構7を介して左右の車輪3に伝えられる構成となっている。
【0020】
次に、このハイブリッド車両における制御構成について説明する。
図1及び図2に示すように、車両全体の動作を統括管理して車両の運転を制御する制御手段としての車両制御部8、この車両制御部8からの制御情報に基づいて電動モータ2の動作を制御するモータ制御部9、車両制御部8からの制御情報に基づいてエンジン1の出力、具体的には、電子スロットル弁10のスロットル開度及びインジェクタ11による燃料供給量を自動調節するエンジン制御部12夫々が備えられ、アクセル操作具13の操作量を検出するポテンショメータ式のアクセル操作量検出センサS1、ブレーキ操作具14が踏み込み操作されているか否かを検出するスイッチ式のブレーキ操作検出センサS2、電動モータ2の回転速度を検出する回転速度検出手段としての回転速度センサS3、車輪3の車軸の回転速度に基づいて車速を検出する車速センサS4、シフトポジションレバー17の位置を検出するシフトポジションセンサS5、回生作動においてバッテリー4に流入する回生電力の回生量の一例としての電流の大きさを検出する回生量検出手段としての流入電流量検出センサS6、後述するように電動モータ2に流れる電流値を検出する電流検出センサS7等による各種の検出情報が車両制御部8に入力される構成となっている。
【0021】
前記モータ制御部9は、図3に示すように、バッテリー4から供給される直流電力を三相交流電力に変換して電動モータ2に供給する力行用電力を制御したり、回生作動により電動モータ2にて発生してバッテリー4に供給される回生電力を制御するインバータ28と、車両制御部8からの制御情報に基づいてパルス幅変調(PWM)されたパルス駆動信号をインバータ28における各スイッチングトランジスタの各ベース端子に供給するPWM制御回路29等を備えて構成され、電動モータ2に供給される三相交流の各相における夫々の電流値を検出する電流検出センサS7の検出情報に基づいて、電動モータ2に通流する電流の大きさや交流電流の周波数を変更させることにより駆動トルクや回転速度を調整したり、前記バッテリー4に充電される回生電力を調整することができる構成となっている。
【0022】
前記インバータ28とバッテリー4とを接続する電力路30を接続状態と遮断状態とに切り換え自在な電力路断続手段としてのコンタクタ31が備えられている。このコンタクタ31は、車両制御部8からの制御指令に基づいて機械的な接点を断続することで大電流が流れる電力路30を接続状態と遮断状態とに切り換えることができる構成となっている。又、車体操縦部には、後述するように電動モータ2の制御系に異常が発生したときに、操縦者にそのことを報知する異常報知装置32が備えられ、この異常報知装置32は車両制御部8からの制御指令に基づいて報知作動する構成となっている。
【0023】
前記ブレーキ操作具14により機械式制動手段KSを作動させて機械的な制動力を発生させるための構成について説明を加えると、運転者の足踏み操作にてブレーキ操作具14が操作されると、その足踏み操作力に対応させて制動用の油圧操作力を発生させる周知構成のマスターシリンダ15が備えられ、このマスターシリンダ15から作動油供給路15aを通して出力される油圧操作力にて前記車輪3の近傍に設けられた摩擦式の制動装置16を作動させて車体を制動させる構成となっている。このような機械式制動手段KSは、ブレーキ操作具14に対する運転者の操作力が大きくなるほど、その油圧操作力、すなわち、機械的な制動力が大となるように変更調節自在に構成されている。
【0024】
前記シフトポジションレバー17の位置としては、「P」(駐車位置)、「R」(後進走行位置)、「N」(中立位置)、「D」(前進走行位置)があり、運転者により運転状況に応じて適宜切り換え操作されることになる。
【0025】
前記車両制御部8は、シフトポジションセンサS5の検出情報、アクセル操作量検出センサS1の検出情報、車速センサS4の検出情報等の情報に基づいてモータ制御部9およびエンジン制御部12に制御情報を指令するように構成されている。
【0026】
以下、各制御部の具体的な動作について説明する。
先ず、車両制御部8によるエンジン1及び電動モータ2の制御について説明する。例えば、シフトポジションレバー17が、「P」(駐車位置)や「N」(中立位置)にあるときは、基本的にはエンジン1を停止し電動モータ2によるトルクアシストや回生作動は行わない。しかし、バッテリー4の充電状態が設定量以下にまで低下してバッテリー4を充電する必要があるような場合には、車両制御部8は、エンジン1を作動させてエンジン1の動力を電動モータ2の回生作動により発電した電力をバッテリー4に充電するように、エンジン1及び電動モータ2の作動を制御すべく、モータ制御部9およびエンジン制御部12に制御情報を指令するよう構成されている。
【0027】
又、シフトポジションレバー17が「D」(前進走行位置)に操作されて、車体進行方向として前進方向が指令されている場合には、アクセル操作具13が踏み込み操作されて車体を発進させるときは、そのときエンジン1が停止していれば電動モータ2を回転させてエンジン1を始動させ、車体が前進走行すると、アクセル操作量に応じてエンジン1の出力を調整するとともに、電動モータ2が力行作動や回生作動を実行するように、モータ制御部9およびエンジン制御部12に制御情報を指令するよう構成されている。そして、シフトポジションレバー17が「R」(後進走行位置)に操作されて、車体進行方向として後進方向が指令されている場合には、アクセル操作量に応じてエンジン1の出力を調整することになるが、電動モータ2については力行作動及び回生作動のいずれも行わないようになっている。
【0028】
次に、エンジン1の制御について説明を加えると、アクセル操作量に対するエンジン1の目標トルクの変化特性が予め設定されており、車両制御部8は、その変化特性に対応させて目標トルクを出力するように、アクセル操作量検出センサS1の検出情報に基づいて指令情報を求めて、エンジン制御部12に指令するように構成され、エンジン制御部12はその指令情報に基づいて、電子スロットル弁10のスロットル開度及びインジェクタ11による燃料供給量を夫々目標トルクに対応する目標値に自動調節することで、エンジン1の作動を制御する構成となっている。
【0029】
前記電動モータ2の制御について説明を加えると、力行作動および回生作動を実行する場合には、電動モータ2の目標トルクを求めて、その求めた目標トルクを発生させるように電動モータ2の作動を制御することにより行われる。すなわち、電動モータ2の回転速度の変化に対する電動モータ2の目標トルクの変化特性がエンジンの場合と同様に予め設定されている。但し、電動モータ2の場合には、求められる目標トルクとして「正」の場合と「負」の場合とがある。
前記車両制御部8がこの特性に基づいて電動モータ2の目標トルクを求めて、目標トルクが「正」であれば前記力行作動を実行する。つまり、エンジン1の回転方向と同じ方向に電動モータ2が目標トルクを出力するように、その目標トルクに対応する制御情報がPWM制御回路29に与えられる。そうすると、PWM制御回路29がその目標トルクに対応するようにタイミング及びデューティ比が設定された3相交流用のパルス信号が前記インバータ28の各スイッチングトランジスタのベース端子に印加され、電動モータ2が目標トルクにてエンジン1をアシストすることになる。
【0030】
電動モータ2の目標トルクが「正」でなく「負」であれば前記回生作動を実行する。つまり、電動モータ2がエンジン1の回転方向とは反対方向に前記目標トルクを出力するように、その目標トルクに対応する制御情報がPWM制御回路29に与えられる。そうすると、PWM制御回路29がその目標トルクに対応するようにタイミング及びデューティ比が設定された3相交流用のパルス信号がインバータ28の各スイッチングトランジスタのベース端子に印加され、電動モータ2がエンジン1に対して逆向きのトルク、つまり、回生トルクを付与するように作用することになる。そうすると、電動モータ2がエンジン1の動力によって駆動されて発電機として作用して、インバータ28によって回生トルクに対応する回生電力に変更調整され、平滑用コンデンサCにて直流に平滑化されてバッテリー4に充電される。
【0031】
そして、前記車両制御部8は、電動モータ2の制御系の異常を検出したときに、電動モータ2によって発生する逆起電圧が、インバータ28の耐電圧に相当する設定電圧以下に低下した後にコンタクタ31を接続状態から遮断状態に切り換えるように構成されている。又、電動モータ2の制御系の異常を検出したときには電子スロットル弁10によるスロットル開度を制限するようになっており、又、電動モータ2の制御系の異常を検出してからコンタクタ31を遮断状態に切り換えるまでの間において、流入電流量検出センサS6にて検出される電流値が設定値を越えると、エンジン1の出力回転速度を低下させるようにエンジン1の作動を制御するよう構成されている。
【0032】
次に、図4に示すフローチャートに基づいて、電動モータ2の制御系の異常を検出したときにおける車両制御部8による異常用処理動作について説明する。
前記電流検出センサS7にて検出される電動モータ2に流れる電流値が、PWM制御回路29に与えられる制御情報の内容に対応する値と比較して、設定量以上異なっているか否かによって、電動モータ2の制御系に異常が発生しているか否か検出する(ステップ1)。電動モータ2の制御系に異常が発生していることが検出されると、スロットル開度をアクセル操作量検出センサS1の検出情報に基づいて調整される目標値よりも設定量だけ小さい制限用開度になるように開度を制限調整すべく電子スロットル弁10を制御する(ステップ2)。又、異常報知装置32を作動させて操縦者に報知する(ステップ3)。このように、アクセル操作量の情報に基づく目標値とは関係なくスロットル開度を強制的に制限することで、操縦者は体感的に異常が発生したことを感知することができるとともに、異常報知装置32が報知作動することで、電動モータ2の制御系に異常が発生したことを認識できる。尚、そのとき車両が走行中であれば、安全な停車場所に至るまでエンジン1の動力により車両走行を継続することが可能である。
【0033】
次に、電動モータ2の制御系の異常を検出した後に、流入電流量検出センサS6にて検出されるバッテリー4へ流入する電流値が設定値以上になると、エンジン1の回転速度を大幅に低下させるようにエンジン1の作動を制御する。具体的には、スロットル開度を全閉状態にすべく電子スロットル弁10を制御するとともに、エンジン1への燃料供給量が零になるようにインジェクタ11を遮断する(ステップ4、5、6)。つまり、電動モータ2の制御系に異常が発生することに起因してバッテリー4に対して設定量以上の大きな充電電流が流入すると過充電状態になるので、エンジン1の出力回転速度を低下させてこのような過充電状態になるのを防止するようにしている。
【0034】
そして、回転速度センサS3にて検出される電動モータ2の回転速度が設定速度Ns以下になると、コンタクタ31を接続状態から遮断状態に切り換えて、バッテリー4とインバータ28との間の電力路30を遮断する(ステップ7、8)。前記設定速度Nsは、電動モータ2によって発生する逆起電圧がインバータ28の耐電圧より低く設定された設定電圧に等しくなる回転速度である。説明を加えると、電動モータ2が回生作動しているときに電動モータ2によって発生する逆起電圧は、図5に示すように電動モータ2の回転速度に比例するものであるが、図5にも示すように、電動モータ2の回転速度が前記設定速度Nsであるときの逆起電圧Vsが、インバータ28の耐電圧より低く設定された設定電圧と等しくなるように設定されている。
従って、コンタクタ31を遮断するときには、電動モータ2による回生電圧はインバータ28の耐電圧よりも低い値になるので、インバータ28に耐電圧以上の高電圧が印加されることがなくインバータ28を適正に保護できるものとなる。
【0035】
上述したような電動モータ2の制御系に異常が発生していない場合、及び、異常の発生が検出されたときであっても異常状態が継続せず元の状態に復帰したような場合には、電子スロットル弁10のスロットル開度及びインジェクタ11による燃料供給量を夫々上記したような目標トルクに対応する目標値に設定し、且つ、異常報知装置32は停止状態にする(ステップ9、10、11)。このとき、上述したような電動モータ2やエンジン1に対する通常の制御は継続して実行することになる。
【0036】
〔別実施形態〕
以下、別実施形態を列記する。
【0037】
(1)上記実施形態では、電動モータの制御系の異常を検出してから電力路断続手段を遮断状態に切り換えるまでの間において、回生量検出手段にて検出される回生量が設定値を越えると、エンジンの回転速度を低下させるようにエンジンの作動を制御する構成としたが、このような構成に代えて、次のように構成するものでもよい。
つまり、電動モータの制御系の異常を検出してから電力路断続手段を遮断状態に切り換えるまでの間において、上記したような回生量の状態にかかわらず、強制的に、エンジンの回転速度を低下させるようにエンジンの作動を制御して、電動モータによって発生する逆起電圧が設定電圧以下に低下すると電力路断続手段を接続状態から遮断状態に切り換えるように構成してもよい。
そして、電動モータの制御系の異常を検出する構成に代えて、電動モータ自体の異常を検出したときに、前記電動モータによって発生する逆起電圧が設定電圧以下に低下した後に前記電力路断続手段を接続状態から遮断状態に切り換えるように構成するものでもよく、又、電動モータの制御系の異常と電動モータ自体の異常のいずれかを検出したときに、前記電動モータによって発生する逆起電圧が設定電圧以下に低下した後に前記電力路断続手段を接続状態から遮断状態に切り換えるように構成するものでもよい。
【0038】
(2)上記実施形態では、電動モータの制御系の異常を検出したときに、スロットル開度をそのときの目標値よりも設定量だけ小さい制限用開度になるように開度を制限調整するとともに、異常報知装置を作動させて操縦者に報知する構成としたが、スロットル開度の変更調整を行わずに異常報知装置を作動させる処理だけを行うようにしてもよい。
この構成においても、操縦者は異常報知によって電動モータの制御系に異常が発生したことを認識できるから、アクセル操作を停止したりブレーキ操作することで、エンジン回転速度即ち電動モータの回転速度を低減させて逆起電圧を低下させることになる。
【0039】
(3)上記実施形態では、前記回生量検出手段としてバッテリーに流入する回生電力の電流の大きさを検出する流入電流量検出センサを設けて、電動モータの制御系の異常を検出した後、コンタクタが遮断状態に切り換わるまでの間に、流入電流量検出センサにて検出されるバッテリーへ流入する電流値が設定値以上になると、エンジンの出力回転速度を低下させるようにエンジンの作動を制御する構成としたが、このような構成に代えて次のように構成するものでもよい。
すなわち、前記回生量検出手段として、バッテリーの電圧を回生量として検出する電圧検出センサを備えて、電動モータの制御系の異常を検出した後、コンタクタが遮断状態に切り換わるまでの間に、その電圧検出センサにて検出されるバッテリーの電圧が設定値以上になると、エンジンの出力回転速度を低下させるようにエンジンの作動を制御する構成としてもよい。
又、前記回生量検出手段として、回生電力の電力量を回生量として検出する電力検出センサを備えて、電動モータの制御系の異常を検出した後、コンタクタが遮断状態に切り換わるまでの間に、その電力検出センサにて検出される電力量が設定値以上になると、エンジンの出力回転速度を低下させるようにエンジンの作動を制御する構成としてもよい。
【0040】
(4)上記実施形態では、前記回生量検出手段としての流入電流量検出センサにて検出されるバッテリーへ流入する電流値が設定値以上になると、エンジンの出力回転速度を低下させるように、スロットル開度を全閉状態にするとともに、エンジンへの燃料供給量を零にすることにより、エンジンの作動を制御する構成としたが、このような構成に代えて次のように構成するものでもよい。
スロットル開度を現在の値よりも小さめの値、例えば設定量だけ小さい値や予め定めた小側の設定値にするとともに、エンジンへの燃料供給量を現在の値よりも小さめの値、例えば設定量だけ小さい値や予め定めた小側の設定値にすることにより、エンジンの作動を制御する構成としてもよい。
又、スロットル開度と燃料供給量とを両方調整するものに代えて、そのうちのいずれか一方だけを零あるいは小さめの値に変更させるように構成してもよい。
【0041】
(5)上記実施形態では、電動モータに流れる電流値がモータ制御部に与えられる制御情報の内容に対応する値と比較して設定量以上異なっているか否かによって、電動モータの制御系に異常が発生しているか否か検出するものを例示したが、これに限らず、例えば、電動モータの回転速度がモータ制御部に与えられる制御情報の内容に対応していない場合に異常と判定する方法やそれ以外の各種の判定方法を用いることができる。
【0042】
(6)上記実施形態では、蓄電装置としてバッテリーを用いたが、バッテリーに代えてキャパシタ等の他の蓄電装置を用いてもよい。
【0043】
(7)上記実施形態では、電力路断続手段としてコンタクタを用いたが、コンタクタに限らず、半導体式のスイッチング手段等などを用いてもよい。
【0044】
(8)上記実施形態では、前記駆動手段の動力がトルクコンバータ及び自動変速機構内装式のトランスミッションを介して走行装置に伝えられる構成としたが、前記トルクコンバータの代わりに、前記駆動手段の動力が走行クラッチと手動変速式の変速機構を介して走行装置に伝えられる構成としたり、ベルト式無段変速装置を介して走行装置に伝えられる構成としてもよい。
【0045】
(9)上記実施形態では、走行駆動用のエンジンの出力軸と走行駆動用の電動モータとを直結する構成のハイブリッド車両を例示したが、このような構成に代えて、エンジン及び車両走行用の電動モータが遊星歯車機構を介して連結される構成のパラレル方式のハイブリッド車両でもよく、エンジンの動力により駆動されて回生作動する電動モータによりバッテリーを充電し、そのバッテリーからの電力により別の走行駆動用の電動モータを駆動するシリーズ方式のハイブリッド車両、燃料電池を搭載してその燃料電池からの電力により電動モータを駆動するとともに電動モータによる回生電力を利用して蓄電装置に充電を行う燃料電池式の電動車両、蓄電装置からの電力により電動モータを駆動するとともに電動モータによる回生電力を利用して蓄電装置に充電を行う電動車両等でもよい。
【図面の簡単な説明】
【図1】ハイブリッド車両の概略構成を示す図
【図2】制御ブロック図
【図3】電動モータの制御構成を示す図
【図4】制御動作のフローチャート
【図5】電動モータの回転速度と逆起電圧との関係を示す図
【符号の説明】
1 エンジン
2 電動モータ
4 蓄電装置
8 制御手段
28 インバータ
31 電力路断続手段
S6 回生量検出手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inverter for adjusting and controlling the electric power of an electric motor, a power path connecting / disconnecting means for switching a power path connecting an inverter of the electric motor and a power storage device between a connected state and a disconnected state, and an operation state of a vehicle. The present invention relates to a control device for a vehicle, provided with control means for controlling.
[0002]
[Prior art]
As the vehicle having the above configuration, for example, a hybrid vehicle that includes an engine and an electric motor, and charges a power storage device using regenerative electric power from the electric motor, drives the electric motor with electric power from a fuel cell, and uses the electric motor A fuel cell-driven electric vehicle that charges a power storage device using regenerative power, or drives an electric motor with power from a power storage device and charges the power storage device using regenerative power from the electric motor. There is an electric vehicle driven by a power storage device.
[0003]
In the related art, as a conventional example of a hybrid vehicle among such vehicles, there has been one configured as follows.
That is, a parallel type hybrid configured so that the engine and the electric motor output a driving force for driving in a parallel state, and the electric motor rotates to perform a regenerative operation with the rotation of the engine. In the vehicle, when the abnormality of the electric motor or the motor control system is detected, the contactor as the power path connecting / disconnecting means is immediately switched to a cutoff state to cut off a power path connecting the inverter and the power storage device, The regenerative electric power of the electric motor is unnecessarily supplied due to the abnormality of the electric motor or the motor control system, so that a disadvantage such as an overcharged state of the power storage device is avoided. Concurrently with the processing, the engine speed is set to a set value at which the regenerative voltage generated by the electric motor becomes a voltage corresponding to the withstand voltage of the inverter. By controlling the engine to limit the temperature to less than the temperature limit, it is possible to prevent the inverter from being damaged due to abnormally high regenerative voltage exceeding the withstand voltage of the inverter due to abnormality of the electric motor or the motor control system. There has been a device for preventing such a problem (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-69607 A (pages 1 to 5, FIGS. 1 to 3)
[0005]
[Problems to be solved by the invention]
In the above-described conventional configuration, when an abnormality of the electric motor or the motor control system is detected, the rotation speed of the engine is limited to a set rotation speed or less so that a high voltage exceeding the withstand voltage is not applied to the inverter. However, in the above-described conventional configuration, when an abnormality is detected in the electric motor or the motor control system, the power path disconnecting means is immediately switched to the cutoff state, so that the power storage device can be protected. Was not enough.
[0006]
For example, when the abnormality of the electric motor or the motor control system is detected, it is conceivable that the rotation speed of the engine is rotating at a speed higher than the set rotation speed, but the abnormality of the electric motor or the motor control system is detected. From the time when the power path disconnecting means is switched to the cutoff state to the time when the rotation speed of the engine actually falls below the set rotation speed, there may be a delay in response compared to the electric control and it may take time. In addition, in the above configuration, if the rotation speed of the engine is high, the rotation speed of the electric motor is also high, and a large regenerative electric power is generated with the rotation.
Then, between the time when the power path disconnecting means is switched to the cutoff state and the time when the engine speed falls below the set speed as described above, if the engine speed is high, the electric motor is high. There is a possibility that a counter electromotive voltage of the voltage is generated and a high regenerative voltage is applied to the inverter. At this time, the power path connecting / disconnecting means is already in the cutoff state, and the regenerative power generated by the electric motor cannot be charged in the power storage device, and all the regenerative power is stored in the DC smoothing capacitor or the like of the inverter. At this time, if the back electromotive voltage is high, an excessive current flows into the inverter, and the inverter is likely to be damaged.
Therefore, the conventional configuration has a disadvantage that the protection of the inverter is not sufficient.
[0007]
The disadvantage described above occurs not only in the hybrid vehicle in the conventional configuration described above but also in various electric vehicles such as the electric vehicle driven by the fuel cell and the electric vehicle driven by the power storage device as described above. Things.
In addition, even in such an electric vehicle, when an abnormality of the electric motor or the motor control system is detected and the power path disconnecting means is immediately switched to the interrupted state, the power path disconnecting means is switched to the interrupted state. It is conceivable that the electric motor is rotating at a high speed for some reason even after switching to. For example, if an abnormality is detected in the electric motor or the motor control system while the vehicle is running at high speed, the vehicle maintains the high-speed running state due to the inertial force even if the power path disconnecting means is switched to the cut-off state. In some cases, the inertia force causes the electric motor to continue rotating at high speed. Then, a high counter electromotive voltage generated by the electric motor rotating at a high speed is applied to the inverter, and the inverter is likely to be damaged. Therefore, even in such a configuration, there is a disadvantage that protection of the inverter is not sufficient.
[0008]
The present invention has been made in view of such a point, and an object of the present invention is to provide a vehicle control device that can sufficiently protect an inverter when an electric motor or a motor control system is abnormal. Is to do.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a vehicle control apparatus for controlling an electric motor to adjust and control electric power of an electric motor, and for intermittently connecting and disconnecting a power path connecting an inverter and a power storage device between a connected state and a disconnected state. Means, and control means for controlling a driving state of the vehicle, wherein the control means detects a back electromotive force generated by the electric motor when detecting an abnormality in the electric motor or the motor control system. It is characterized in that the power path disconnecting means is switched from the connected state to the cut-off state after the voltage drops below the set voltage.
[0010]
That is, when the abnormality of the electric motor or the motor control system is detected, the power path disconnecting means is switched from the connected state to the cut-off state after the back electromotive voltage generated by the electric motor drops below the set voltage. When the power path disconnecting means is switched to the cut-off state, only the back electromotive voltage lower than the set voltage is applied to the inverter, so that a high voltage exceeding the set voltage is applied to the inverter. There is no disadvantage of being damaged by being applied.
[0011]
In addition, even if an abnormality is detected in the electric motor or the motor control system, the back electromotive force generated by the electric motor is not set to the set voltage without immediately switching the power path disconnection means from the connected state to the cutoff state. The power path connecting / disconnecting means will maintain the connected state until the voltage drops below. While the electric path disconnecting means maintains the connected state after detecting the abnormality of the electric motor or the motor control system, the electric motor which cannot be controlled due to the abnormality of the control system has a high back electromotive voltage. However, at this time, since the power path disconnecting means maintains the connected state, the regenerative power generated by the electric motor is charged to the power storage device. All of them are not consumed, and the DC voltage of the inverter becomes high, and there is little possibility that the inverter is damaged.
[0012]
Therefore, a control device for a vehicle that can sufficiently protect the inverter when the electric motor or the motor control system is abnormal can be provided.
[0013]
According to a second aspect of the present invention, in the vehicle control device according to the first aspect, the electric motor is configured to rotate with the rotation of an engine, and a regenerative amount detection unit that detects a regenerative amount to the power storage device is provided. The regenerative amount detected by the regenerative amount detecting means between the time when the control means detects an abnormality of the electric motor or the motor control system and the time when the electric power path intermittent means is switched to the cutoff state is changed. When the set value is exceeded, the operation of the engine is controlled so as to decrease the rotation speed of the engine.
[0014]
That is, since the electric motor is configured to rotate with the rotation of the engine, even if an abnormality occurs in the electric motor or the motor control system and the control of the electric motor becomes impossible, the engine can be controlled. A back electromotive voltage is generated according to the rotation speed. In such a configuration, the electric motor generates regenerative electric power with the rotation of the engine even after the abnormality of the electric motor or the motor control system is detected and before the power path disconnecting means is switched to the cutoff state. However, at that time, when the regenerative amount to the power storage device, for example, the regenerative amount such as the current, voltage or power amount of the regenerative power flowing into the power storage device exceeds a set value, the operation of the engine is controlled by controlling the operation of the engine. The rotation speed is reduced.
[0015]
In addition, when the electric motor generates regenerative electric power with the rotation of the engine, if the rotational speed of the engine is high, the regenerative electric power generated by the electric motor and charged to the power storage device increases. However, when the regenerative amount detected by the regenerative amount detecting means exceeds a set value, the power storage device may be overcharged, and the rotational speed of the engine is reduced to reduce the regenerative electric power by the electric motor. .
[0016]
Therefore, when the abnormality of the electric motor or the motor control system is detected, the power path disconnecting means is switched to the cutoff state after the back electromotive voltage generated by the electric motor falls below the set voltage, thereby sufficiently protecting the inverter. In this way, it is possible to appropriately prevent the power storage device from being in an overcharged state until the power path connecting / disconnecting device is switched to the cutoff state, thereby protecting the power storage device.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a control device for a hybrid vehicle, which is an example of a vehicle according to the present invention, will be described with reference to the drawings.
As shown in FIG. 1, this hybrid vehicle includes an electric motor 2 for driving the vehicle in a state directly connected to an output shaft 1a of an engine 1 for driving the vehicle, and the left and right wheels as a traveling device are driven by these powers. The drive unit KU is configured as a drive unit so as to drive the vehicle 3 to travel. The electric motor 2 is connected to an output shaft 1a of the engine 1 so that a rotor 2a rotates integrally with the same axis, and a stator 2b surrounding an outer peripheral portion of the rotor 2a is fixed to a vehicle body supporting portion (not shown) in a fixed state. The configuration is supported.
[0018]
The electric motor 2 is configured to start the engine 1 by applying a driving force to its output shaft 1a in a state where the operation of the engine 1 is stopped, and after the engine 1 starts. It is configured to be switchable between a powering state in which a driving force is applied to the output shaft 1a in the same direction as the engine rotation direction to perform torque assist, and a regenerative state in which a driving force is applied from the output shaft 1a to generate power. I have. In other words, by switching to a powering state in which the electric motor 2 outputs torque in the same direction as the rotation direction of the output shaft 1a that is rotationally driven by the engine 1, the engine 1 can output a desired traveling driving force and The configuration is such that power assist, that is, torque assist for the output of the engine 1 can be performed so as to achieve a low fuel consumption state. This operation state corresponds to the power running operation. When the traveling speed is reduced, the electric motor 2 is in a regenerative state, and a regenerative electric power obtained by generating electric power by applying a driving force from the output shaft 1a is charged in the battery 4 as a power storage device. It has a configuration that can be used. This operation state corresponds to the regenerative operation.
[0019]
The power of the drive unit KU is transmitted to the transmission 6 via the torque converter 5, and is transmitted to the left and right wheels 3 via the differential mechanism 7 after being shifted by a gear-type automatic transmission mechanism inside the transmission 6. It has a configuration.
[0020]
Next, a control configuration of the hybrid vehicle will be described.
As shown in FIGS. 1 and 2, a vehicle control unit 8 as a control unit that controls the operation of the vehicle by controlling the operation of the entire vehicle as a whole, and controls the electric motor 2 based on control information from the vehicle control unit 8. An engine for automatically adjusting the output of the engine 1 based on control information from the motor control unit 9 and the vehicle control unit 8 for controlling the operation, specifically, the throttle opening of the electronic throttle valve 10 and the fuel supply amount by the injector 11. A potentiometer-type accelerator operation amount detection sensor S1 for detecting an operation amount of an accelerator operation device 13, a switch-type brake operation detection sensor for detecting whether or not a brake operation device 14 is depressed. S2, a rotation speed sensor S3 as rotation speed detecting means for detecting the rotation speed of the electric motor 2, based on the rotation speed of the axle of the wheel 3 Vehicle speed sensor S4 for detecting the speed, shift position sensor S5 for detecting the position of shift position lever 17, regenerative amount detecting means for detecting the magnitude of the current as an example of the regenerative amount of the regenerative electric power flowing into battery 4 in the regenerative operation. Various kinds of detection information by an inflow current amount detection sensor S6 as described below, a current detection sensor S7 that detects a current value flowing through the electric motor 2 as described later, and the like are input to the vehicle control unit 8.
[0021]
As shown in FIG. 3, the motor control unit 9 converts the DC power supplied from the battery 4 into three-phase AC power to control the powering power supplied to the electric motor 2, or controls the electric motor by a regenerative operation. And an inverter 28 for controlling the regenerative electric power generated in the battery 2 and supplied to the battery 4, and a pulse drive signal subjected to pulse width modulation (PWM) based on control information from the vehicle control unit 8 to each switching transistor in the inverter 28. Based on the detection information of the current detection sensor S7 for detecting each current value in each phase of the three-phase alternating current supplied to the electric motor 2, By changing the magnitude of the current flowing through the electric motor 2 and the frequency of the AC current, the driving torque and the rotation speed can be adjusted. And it has a configuration capable of adjusting the regenerative power electricity.
[0022]
A contactor 31 is provided as a power path connecting / disconnecting means capable of switching a power path 30 connecting the inverter 28 and the battery 4 between a connected state and a cutoff state. The contactor 31 is configured to switch between a connected state and a cut-off state of the electric power path 30 through which a large current flows by interrupting a mechanical contact based on a control command from the vehicle control unit 8. Further, the vehicle body control section is provided with an abnormality notification device 32 for notifying the operator when an abnormality occurs in the control system of the electric motor 2 as will be described later. The notification operation is performed based on a control command from the unit 8.
[0023]
The structure for generating a mechanical braking force by operating the mechanical braking means KS by the brake operation tool 14 will be described. When the brake operation tool 14 is operated by the driver's foot operation, the A well-known master cylinder 15 that generates a hydraulic operating force for braking in accordance with a stepping operating force is provided, and a hydraulic operating force output from the master cylinder 15 through a hydraulic oil supply path 15 a is used to generate a hydraulic operating force near the wheel 3. Is operated to operate the friction type braking device 16 to brake the vehicle body. Such a mechanical braking means KS is configured to be changeable and adjustable so that the hydraulic operating force, that is, the mechanical braking force, increases as the driver's operating force on the brake operating tool 14 increases. .
[0024]
The position of the shift position lever 17 includes "P" (parking position), "R" (reverse traveling position), "N" (neutral position), and "D" (forward traveling position). The switching operation is appropriately performed according to the situation.
[0025]
The vehicle control unit 8 sends control information to the motor control unit 9 and the engine control unit 12 based on information such as detection information of the shift position sensor S5, detection information of the accelerator operation amount detection sensor S1, detection information of the vehicle speed sensor S4, and the like. It is configured to command.
[0026]
Hereinafter, a specific operation of each control unit will be described.
First, control of the engine 1 and the electric motor 2 by the vehicle control unit 8 will be described. For example, when the shift position lever 17 is at “P” (parking position) or “N” (neutral position), basically, the engine 1 is stopped and the electric motor 2 does not perform torque assist or regenerative operation. However, if the state of charge of the battery 4 drops below the set amount and the battery 4 needs to be charged, the vehicle control unit 8 operates the engine 1 and changes the power of the engine 1 to the electric motor 2. In order to control the operation of the engine 1 and the electric motor 2 so as to charge the battery 4 with the electric power generated by the regenerative operation, the control information is instructed to the motor control unit 9 and the engine control unit 12.
[0027]
When the shift position lever 17 is operated to "D" (forward traveling position) and the forward direction is commanded as the vehicle traveling direction, when the accelerator operating tool 13 is depressed to start the vehicle, If the engine 1 is stopped at that time, the electric motor 2 is rotated to start the engine 1, and when the vehicle body moves forward, the output of the engine 1 is adjusted according to the accelerator operation amount, and the electric motor 2 is driven by power. It is configured to instruct control information to the motor control unit 9 and the engine control unit 12 to execute the operation and the regenerative operation. When the shift position lever 17 is operated to “R” (reverse travel position) and the reverse direction is commanded as the vehicle traveling direction, the output of the engine 1 is adjusted according to the accelerator operation amount. However, the electric motor 2 does not perform any of the powering operation and the regenerative operation.
[0028]
Next, the control of the engine 1 will be described. The change characteristic of the target torque of the engine 1 with respect to the accelerator operation amount is set in advance, and the vehicle control unit 8 outputs the target torque in accordance with the change characteristic. In this manner, command information is obtained based on the detection information of the accelerator operation amount detection sensor S1 and is instructed to the engine control unit 12. The engine control unit 12 controls the electronic throttle valve 10 based on the command information. The operation of the engine 1 is controlled by automatically adjusting the throttle opening and the fuel supply amount by the injector 11 to respective target values corresponding to the target torque.
[0029]
When the power running operation and the regenerative operation are performed, the target torque of the electric motor 2 is obtained, and the operation of the electric motor 2 is generated so as to generate the obtained target torque. This is done by controlling. That is, the change characteristic of the target torque of the electric motor 2 with respect to the change of the rotation speed of the electric motor 2 is set in advance similarly to the case of the engine. However, in the case of the electric motor 2, the required target torque may be “positive” or “negative”.
The vehicle control unit 8 obtains a target torque of the electric motor 2 based on this characteristic, and executes the powering operation if the target torque is “positive”. That is, control information corresponding to the target torque is provided to the PWM control circuit 29 so that the electric motor 2 outputs the target torque in the same direction as the rotation direction of the engine 1. Then, the PWM control circuit 29 applies a three-phase AC pulse signal whose timing and duty ratio are set to correspond to the target torque to the base terminal of each switching transistor of the inverter 28, and the electric motor 2 The engine 1 is assisted by the torque.
[0030]
If the target torque of the electric motor 2 is not “positive” but “negative”, the regenerative operation is executed. That is, control information corresponding to the target torque is provided to the PWM control circuit 29 so that the electric motor 2 outputs the target torque in a direction opposite to the rotation direction of the engine 1. Then, the PWM control circuit 29 applies a pulse signal for three-phase alternating current whose timing and duty ratio are set so as to correspond to the target torque to the base terminal of each switching transistor of the inverter 28, and the electric motor 2 In the opposite direction, that is, a regenerative torque. Then, the electric motor 2 is driven by the power of the engine 1 to act as a generator, and is changed and adjusted to regenerative power corresponding to the regenerative torque by the inverter 28, smoothed to DC by the smoothing capacitor C, and Is charged.
[0031]
When the vehicle control unit 8 detects an abnormality in the control system of the electric motor 2, the back electromotive voltage generated by the electric motor 2 decreases to a voltage equal to or lower than a set voltage corresponding to the withstand voltage of the inverter 28 and then contacts the contactor. 31 is configured to be switched from the connected state to the cutoff state. Further, when an abnormality of the control system of the electric motor 2 is detected, the throttle opening by the electronic throttle valve 10 is limited, and after detecting the abnormality of the control system of the electric motor 2, the contactor 31 is shut off. Until switching to the state, if the current value detected by the inflow current amount detection sensor S6 exceeds a set value, the operation of the engine 1 is controlled so as to reduce the output rotation speed of the engine 1. I have.
[0032]
Next, an abnormality processing operation by the vehicle control unit 8 when an abnormality of the control system of the electric motor 2 is detected will be described based on a flowchart shown in FIG.
The electric current flowing through the electric motor 2 detected by the electric current detection sensor S7 is compared with a value corresponding to the content of the control information given to the PWM control circuit 29, and is determined by whether or not the electric current is different by a set amount or more. It is detected whether an abnormality has occurred in the control system of the motor 2 (step 1). When it is detected that an abnormality has occurred in the control system of the electric motor 2, the throttle opening is set to a limit opening smaller than the target value adjusted based on the detection information of the accelerator operation amount detection sensor S1 by a set amount. The electronic throttle valve 10 is controlled so as to limit and adjust the opening so that the opening degree becomes smaller (step 2). Further, the abnormality notification device 32 is operated to notify the operator (step 3). As described above, by forcibly restricting the throttle opening regardless of the target value based on the information of the accelerator operation amount, the operator can sense that the abnormality has occurred physically, and can be notified of the abnormality. When the device 32 performs the notification operation, it is possible to recognize that an abnormality has occurred in the control system of the electric motor 2. If the vehicle is running at that time, it is possible to continue running the vehicle with the power of the engine 1 until reaching a safe stop.
[0033]
Next, after detecting an abnormality in the control system of the electric motor 2, if the current value flowing into the battery 4 detected by the inflow current amount detection sensor S6 becomes equal to or greater than a set value, the rotation speed of the engine 1 is significantly reduced. The operation of the engine 1 is controlled so as to cause the operation. Specifically, the electronic throttle valve 10 is controlled so that the throttle opening is fully closed, and the injector 11 is shut off so that the fuel supply amount to the engine 1 becomes zero (steps 4, 5, and 6). . In other words, when a large charge current of a set amount or more flows into the battery 4 due to the occurrence of an abnormality in the control system of the electric motor 2, an overcharged state occurs, and the output rotation speed of the engine 1 is reduced. Such an overcharged state is prevented.
[0034]
When the rotation speed of the electric motor 2 detected by the rotation speed sensor S3 becomes equal to or lower than the set speed Ns, the contactor 31 is switched from the connected state to the cutoff state, and the power path 30 between the battery 4 and the inverter 28 is switched. Cut off (steps 7 and 8). The set speed Ns is a rotation speed at which the back electromotive voltage generated by the electric motor 2 becomes equal to a set voltage set lower than the withstand voltage of the inverter 28. In addition, the counter electromotive voltage generated by the electric motor 2 when the electric motor 2 is performing the regenerative operation is proportional to the rotation speed of the electric motor 2 as shown in FIG. As shown in FIG. 3, the back electromotive voltage Vs when the rotation speed of the electric motor 2 is the set speed Ns is set to be equal to the set voltage set lower than the withstand voltage of the inverter 28.
Therefore, when the contactor 31 is cut off, the regenerative voltage by the electric motor 2 has a lower value than the withstand voltage of the inverter 28, so that the inverter 28 is properly applied without applying a high voltage higher than the withstand voltage to the inverter 28. It can be protected.
[0035]
In the case where no abnormality has occurred in the control system of the electric motor 2 as described above, and in a case where the abnormal state has not been continued and returned to the original state even when the abnormality has been detected, , The throttle opening of the electronic throttle valve 10 and the fuel supply amount by the injector 11 are respectively set to the target values corresponding to the target torque as described above, and the abnormality notification device 32 is stopped (steps 9, 10, 11). At this time, the normal control for the electric motor 2 and the engine 1 as described above is continuously executed.
[0036]
[Another embodiment]
Hereinafter, other embodiments will be listed.
[0037]
(1) In the above embodiment, the regenerative amount detected by the regenerative amount detecting means exceeds the set value between the time when the control system of the electric motor is detected abnormal and the time when the power path interrupting means is switched to the cutoff state. And the operation of the engine is controlled so as to reduce the rotation speed of the engine. However, instead of such a configuration, the following configuration may be employed.
In other words, during the period from the detection of the abnormality of the control system of the electric motor to the switching of the power path connecting / disconnecting means to the cutoff state, the rotation speed of the engine is forcibly reduced regardless of the state of the regeneration amount as described above. The operation of the engine may be controlled so that the back electromotive force generated by the electric motor falls below the set voltage, and the power path disconnecting means is switched from the connected state to the cutoff state.
Then, instead of the configuration for detecting an abnormality in the control system of the electric motor, when an abnormality in the electric motor itself is detected, the power path intermittent means is provided after the back electromotive voltage generated by the electric motor falls below a set voltage. May be configured to switch from the connected state to the disconnected state, and when detecting either an abnormality in the control system of the electric motor or an abnormality in the electric motor itself, the back electromotive voltage generated by the electric motor is reduced. The power path connecting / disconnecting means may be switched from the connected state to the cut-off state after the voltage drops below the set voltage.
[0038]
(2) In the above embodiment, when an abnormality is detected in the control system of the electric motor, the throttle opening is limited and adjusted so that the throttle opening becomes a limiting opening smaller by a set amount than the target value at that time. At the same time, the configuration is such that the abnormality notification device is operated to notify the operator, but only the process of operating the abnormality notification device may be performed without changing the throttle opening.
Also in this configuration, the operator can recognize from the abnormality notification that an abnormality has occurred in the control system of the electric motor. Therefore, by stopping the accelerator operation or performing the brake operation, the engine rotation speed, that is, the rotation speed of the electric motor is reduced. As a result, the back electromotive voltage is reduced.
[0039]
(3) In the above embodiment, an inflow current detection sensor for detecting the magnitude of the current of the regenerative power flowing into the battery is provided as the regenerative amount detection means, and after detecting an abnormality in the control system of the electric motor, the contactor If the value of the current flowing into the battery detected by the inflow current amount detection sensor becomes equal to or more than a set value before the switch to the cutoff state, the operation of the engine is controlled so as to reduce the output rotation speed of the engine. Although the configuration is adopted, the following configuration may be used instead of the above configuration.
That is, as the regenerative amount detection means, a voltage detection sensor for detecting the voltage of the battery as the regenerative amount is provided, and after detecting an abnormality in the control system of the electric motor, before the contactor is switched to the cutoff state, When the voltage of the battery detected by the voltage detection sensor becomes equal to or higher than a set value, the operation of the engine may be controlled so as to reduce the output rotation speed of the engine.
Also, as the regenerative amount detection means, a power detection sensor for detecting the amount of regenerative electric power as the regenerative amount is provided, and after detecting an abnormality in the control system of the electric motor, until the contactor switches to the cutoff state. Alternatively, the configuration may be such that the operation of the engine is controlled so that the output rotation speed of the engine is reduced when the amount of power detected by the power detection sensor exceeds a set value.
[0040]
(4) In the above embodiment, when the current value flowing into the battery detected by the inflow current detection sensor as the regeneration amount detection means becomes equal to or greater than a set value, the throttle speed is reduced so that the output rotation speed of the engine is reduced. Although the operation of the engine is controlled by setting the opening degree to the fully closed state and setting the fuel supply amount to the engine to zero, the following structure may be used instead of such a structure. .
The throttle opening is set to a value smaller than the current value, for example, a value smaller by the set amount or a predetermined small set value, and the fuel supply amount to the engine is set to a value smaller than the current value, for example, the set value. The operation of the engine may be controlled by setting a value smaller by the amount or a predetermined smaller set value.
Further, instead of adjusting both the throttle opening and the fuel supply amount, only one of them may be changed to zero or a smaller value.
[0041]
(5) In the above-described embodiment, an abnormality occurs in the control system of the electric motor depending on whether or not the current value flowing through the electric motor differs from the value corresponding to the content of the control information given to the motor control unit by a set amount or more. Although the method for detecting whether or not the motor has occurred has been described as an example, the method is not limited to this. For example, a method of determining an abnormality when the rotation speed of the electric motor does not correspond to the content of the control information given to the motor control unit And various other determination methods can be used.
[0042]
(6) In the above embodiment, a battery is used as the power storage device, but another power storage device such as a capacitor may be used instead of the battery.
[0043]
(7) In the above-described embodiment, the contactor is used as the power path connecting / disconnecting means. However, the present invention is not limited to the contactor.
[0044]
(8) In the above embodiment, the power of the driving means is transmitted to the traveling device via the torque converter and the transmission equipped with the automatic transmission mechanism, but instead of the torque converter, the power of the driving means is transmitted. The configuration may be such that the transmission is transmitted to the traveling device via a traveling clutch and a manual transmission type transmission mechanism, or the configuration is transmitted to the traveling device via a belt-type continuously variable transmission.
[0045]
(9) In the above embodiment, the hybrid vehicle having the configuration in which the output shaft of the driving engine and the electric motor for driving are directly connected has been described as an example. A parallel type hybrid vehicle in which an electric motor is connected via a planetary gear mechanism may be used, and a battery is charged by an electric motor that is driven by the power of an engine and that performs a regenerative operation, and another traveling drive is performed by the electric power from the battery. Series-type hybrid vehicle that drives an electric motor for use, a fuel cell type that mounts a fuel cell, drives the electric motor with electric power from the fuel cell, and charges a power storage device using regenerative electric power from the electric motor The electric motor is driven by electric power from the electric vehicle and the power storage device, and the regenerative electric power by the electric motor is used. It may be an electric vehicle or the like for charging power storage device and.
[Brief description of the drawings]
FIG. 1 shows a schematic configuration of a hybrid vehicle.
FIG. 2 is a control block diagram.
FIG. 3 is a diagram showing a control configuration of an electric motor.
FIG. 4 is a flowchart of a control operation.
FIG. 5 is a diagram showing the relationship between the rotation speed of the electric motor and the back electromotive voltage.
[Explanation of symbols]
1 engine
2 Electric motor
4 Power storage device
8 control means
28 Inverter
31 Power path intermittent means
S6 Regeneration amount detection means

Claims (2)

電動モータの電力を調整制御するインバ−タと、そのインバータと蓄電装置とを接続する電力路を接続状態と遮断状態とに切り換え自在な電力路断続手段と、車両の運転状態を制御する制御手段とが備えられた車両の制御装置であって、
前記制御手段が、
前記電動モータ又はモータ制御系の異常を検出したときに、前記電動モータによって発生する逆起電圧が設定電圧以下に低下した後に前記電力路断続手段を接続状態から遮断状態に切り換えるように構成されている車両の制御装置。
An inverter for adjusting and controlling the power of the electric motor; a power path connecting / disconnecting means for switching a power path connecting the inverter and the power storage device between a connected state and a disconnected state; and a control means for controlling a driving state of the vehicle. And a control device for a vehicle comprising:
The control means,
When the abnormality of the electric motor or the motor control system is detected, the power path disconnecting means is switched from a connected state to a cut-off state after a back electromotive voltage generated by the electric motor falls below a set voltage. Vehicle control device.
前記電動モータがエンジンの回転に伴って回転するように構成され、
前記蓄電装置への回生量を検出する回生量検出手段が備えられ、
前記制御手段が、
前記電動モータ又はモータ制御系の異常を検出してから前記電力路断続手段を前記遮断状態に切り換えるまでの間において、前記回生量検出手段にて検出される回生量が設定値を越えると、前記エンジンの回転速度を低下させるように前記エンジンの作動を制御するよう構成されている請求項1記載の車両の制御装置。
The electric motor is configured to rotate with the rotation of the engine,
Regenerative amount detection means for detecting a regenerative amount to the power storage device is provided,
The control means,
When the regeneration amount detected by the regeneration amount detection unit exceeds a set value during a period from when the abnormality of the electric motor or the motor control system is detected to when the power path disconnection unit is switched to the cutoff state, The control device for a vehicle according to claim 1, wherein the control device is configured to control an operation of the engine so as to reduce a rotation speed of the engine.
JP2002321123A 2002-11-05 2002-11-05 Vehicle control device Expired - Fee Related JP3949047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321123A JP3949047B2 (en) 2002-11-05 2002-11-05 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321123A JP3949047B2 (en) 2002-11-05 2002-11-05 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2004159401A true JP2004159401A (en) 2004-06-03
JP3949047B2 JP3949047B2 (en) 2007-07-25

Family

ID=32801775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321123A Expired - Fee Related JP3949047B2 (en) 2002-11-05 2002-11-05 Vehicle control device

Country Status (1)

Country Link
JP (1) JP3949047B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036194A (en) * 2004-07-24 2006-02-09 Ford Motor Co System and method for sound reporting for vehicle
JP2007028694A (en) * 2005-07-12 2007-02-01 Hitachi Ltd Rotary electric machine controller
KR100911523B1 (en) 2007-12-12 2009-08-10 현대자동차주식회사 Circuit breaking method from over counter electromotive force of driving moter for fuel cell vehicle
US7757796B2 (en) 2005-06-29 2010-07-20 Toyota Jidosha Kabushiki Kaisha Electric vehicle
JP2011015588A (en) * 2009-07-06 2011-01-20 Toshiba Corp Vehicle
JP2012116464A (en) * 2010-12-03 2012-06-21 Hyundai Motor Co Ltd High voltage battery protection method for hybrid vehicle
WO2013115098A1 (en) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 Vehicle velocity control device and vehicle equipped with same
JP2017052485A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Hybrid vehicle
EP2716501B1 (en) * 2011-05-27 2020-06-17 Nissan Motor Co., Ltd Deceleration information transmission device and deceleration information transmission method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104228819B (en) * 2014-09-30 2016-08-24 重庆长安汽车股份有限公司 The DCDC control system of a kind of automobile 48V system and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036194A (en) * 2004-07-24 2006-02-09 Ford Motor Co System and method for sound reporting for vehicle
US7757796B2 (en) 2005-06-29 2010-07-20 Toyota Jidosha Kabushiki Kaisha Electric vehicle
JP2007028694A (en) * 2005-07-12 2007-02-01 Hitachi Ltd Rotary electric machine controller
KR100911523B1 (en) 2007-12-12 2009-08-10 현대자동차주식회사 Circuit breaking method from over counter electromotive force of driving moter for fuel cell vehicle
JP2011015588A (en) * 2009-07-06 2011-01-20 Toshiba Corp Vehicle
JP2012116464A (en) * 2010-12-03 2012-06-21 Hyundai Motor Co Ltd High voltage battery protection method for hybrid vehicle
EP2716501B1 (en) * 2011-05-27 2020-06-17 Nissan Motor Co., Ltd Deceleration information transmission device and deceleration information transmission method
WO2013115098A1 (en) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 Vehicle velocity control device and vehicle equipped with same
JP2013158174A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Vehicle speed control device and vehicle equipped with same
CN104080641A (en) * 2012-01-31 2014-10-01 丰田自动车株式会社 Vehicle velocity control device and vehicle equipped with same
JP2017052485A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Hybrid vehicle
US10214198B2 (en) 2015-09-11 2019-02-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle

Also Published As

Publication number Publication date
JP3949047B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
EP1101649B1 (en) Vehicular engine starting control apparatus
JP2013055822A (en) Vehicle
JP3949047B2 (en) Vehicle control device
JP2004208368A (en) Hybrid vehicle
KR100623745B1 (en) An invertor control system of 4 wheel drive hybrid electric vehicle and method thereof
JP5076530B2 (en) Power supply device and vehicle driving force control device
JP3558913B2 (en) Hybrid vehicle
JP2008001301A (en) Controller of hybrid vehicle
JP2000152419A (en) Power controller for electric vehicle
JP4067506B2 (en) Hybrid vehicle
JP3568448B2 (en) Electric vehicle power system
JP4541736B2 (en) Drive control apparatus for hybrid vehicle
JP4155962B2 (en) Hybrid vehicle
JP3704996B2 (en) Control device for hybrid vehicle
JP4285638B2 (en) Vehicle charging control device
JP4439310B2 (en) Hybrid vehicle
JP4163072B2 (en) Vehicle charging control device
JP4102633B2 (en) Travel drive control device for hybrid vehicle
JP4155961B2 (en) Hybrid vehicle
JP2000115906A (en) Motor control equipment of electric vehicle
JP2005022561A (en) Electric charge controlling device of vehicle
JP2005065392A (en) Charge controller of vehicle
US11548395B2 (en) Electric drive stall torque enhancement based on vehicle level inputs
JP3808019B2 (en) Hybrid vehicle
JP4179999B2 (en) Hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees