JP2004157384A - Electrifying member, process cartridge, and electrophotographic device - Google Patents
Electrifying member, process cartridge, and electrophotographic device Download PDFInfo
- Publication number
- JP2004157384A JP2004157384A JP2002324000A JP2002324000A JP2004157384A JP 2004157384 A JP2004157384 A JP 2004157384A JP 2002324000 A JP2002324000 A JP 2002324000A JP 2002324000 A JP2002324000 A JP 2002324000A JP 2004157384 A JP2004157384 A JP 2004157384A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- parts
- conductive
- charging member
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、複写機やプリンター等において、静電潜像プロセスに用いられる電子写真感光体等の潜像保持体を安定に帯電させるのに使用する、最外層の表面状態の安定な帯電部材、該帯電部材を具備するプロセスカートリッジ及び電子写真装置に関する。
【0002】
【従来の技術】
従来、複写機やプリンター等の電子写真プロセスでは、まず、電子写真感光体の表面を一様に帯電させ、この感光体に光学系から映像を投射して、光の当たった部分の帯電を消去することによって潜像を形成し、次いで、トナーを付着させることによってトナー像を形成した後、紙等の記録媒体へトナー像を転写することによって、プリントする方法がとられている。これらをコントロールするための各種のローラが使われ、近年ますますそのローラ素材に対する要求特性は厳しくなっている。
【0003】
電子写真プロセスのうち、感光体の表面を帯電させる工程は、従来コロナ放電方式が一般的に採用されてきた。しかしながら、このコロナ放電方式は6〜10kVもの高電圧印加が必要とされるため、機械の安全保守の観点から好ましくない。また、コロナ放電時に発生するオゾン等が感光体に悪影響を及ぼすことがあった。
【0004】
このため、コロナ放電に比べて低い印加電圧で帯電を行うことができ、かつ、オゾン等の発生を抑制することができる帯電方式への取り組みがなされてきている。かかる帯電方式の試みとして、感光体等の被帯電体に所定の圧力で当接させた帯電用部材に電圧を印加することによって被帯電体を帯電させる接触帯電方式が提案されている。
【0005】
しかしながら、接触帯電方式は、帯電均一性に関しては、コロナ帯電方式と比較してやや不利である。
【0006】
この帯電均一性を改善するために、所望の被帯電体表面電位Vdに相当する直流電圧に帯電開始電圧(Vth)の2倍以上のピーク間電圧を持つ交流電圧成分(AC電圧成分)を重畳した電圧(脈流電圧:時間とともに電圧値が周期的に変化する電圧)を接触帯電部材に印加する「AC帯電方式」が用いられている。これはAC電圧による電位のならし効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央である電位Vdに収束し、環境等の外乱に影響されることなく、接触帯電方法として優れた方法である。
【0007】
しかしながら、直流電圧印加時における放電開始電圧(Vth)の2倍以上のピーク間電圧である高圧の交流電圧を重畳させるために、直流電源とは別に交流電源が必要となり、装置自体のコストアップの要因となる。更には交流電流を多量に消費することにより、帯電部材及び感光体の耐久性が低下し易いという問題があった。
【0008】
これらの問題点は、帯電部材に直流電圧のみを印加した帯電を行うことにより解消されるものの、帯電部材に直流電圧のみを印加すると、以下の問題点があった。
【0009】
即ち、前記従来の帯電部材に直流電圧のみを印加すると、感光体等の被帯電体表面に所望の帯電電位以上に帯電された場合や電位が不足した場合に起因する帯電ムラが発生し易い。特に、一次帯電前に感光体上の電位を消去するための工程である前露光のない電子写真プロセスにおいては、ハーフトーン画像領域の電位部に発生し易い。
【0010】
このような問題の発生する従来の帯電部材を用いて、例えば、反転現像方式を用いた電子写真装置によりハーフトーン画像を出力すると、上記の帯電ムラは画像上、部分的に白スジ、白ポチ、あるいは黒スジ、黒ポチやガサつきが発生し、画像品質が低下し易いという問題があった。この帯電電位ムラの発生は、温度15℃、相対湿度10%RH(以下L/L環境とよぶ)において、特に顕著に生じる傾向にある。
【0011】
また、帯電部材は、様々な外部環境変化に対して、つまり上記L/L環境だけではなく、温度40℃、相対湿度85%RH(以下H/H環境とよぶ)といった環境においても、安定な帯電性を維持できることが望まれる。
【0012】
また、抵抗の環境依存性、硬度及び動摩擦係数を小さくし、更に感光体に対する汚染やトナーの付着を防止するために、表面粗さが0.5〜10μmであるゴム層上にガラス転移温度が30〜80℃のポリウレタン樹脂を被覆することが記載されている(例えば、特許文献1参照。)。
【0013】
【特許文献1】
特開平9−160354号公報
【0014】
【発明が解決しようとする課題】
しかしながら、この方法であっても、H/H環境下での吸湿による膨潤とL/L環境下での水分放出による収縮の差により、帯電部材の表面層にシワが生じることがあった。また、H/H環境下では弾性率が大きく低下してしまい、感光体との当接部分が大きく永久変形してしまうこともあった。
【0015】
従って、本発明の目的は、急激な環境変化による表面性状の変化、つまり表面シワの発生を抑制し、表面性状を制御することで、優れた帯電均一性を確保することができ、画像不良の発生のない帯電部材及び該帯電部材を具備するプロセスカートリッジ及び電子写真装置を提供することにある。
【0016】
【課題を解決するための手段】
即ち、本発明は、導電性支持体上に導電性弾性体層を有し、該導電性弾性体層上に表面層として導電性被覆層を有する帯電部材において、該導電性被覆層の相対湿度80%におけるガラス転移温度(Tg1)が40℃<Tg1<100℃であり、該導電性被覆層の相対湿度55%におけるガラス転移温度(Tg2)と該Tg1との差ΔTg(=Tg2−Tg1)が3℃<ΔTg<15℃であることを特徴とする帯電部材である。
【0017】
また、本発明は、かかる帯電部材を用いたプロセスカートリッジ及び電子写真装置装置である。
【0018】
【発明の実施の形態】
本発明においては、表面層としての導電性被覆層の相対湿度80%におけるガラス転移温度(Tg1)が40℃以下であると、被帯電体への圧接により帯電部材が永久変形し易くなり、逆に、Tg1が100℃以上であると、硬化収縮後の表面層の架橋状態が粗の状態でパッキングされるために、水分透過性が大きくなりすぎる。より好ましくは、50℃〜90℃である。
【0019】
また、該導電性被覆層の相対湿度55%におけるガラス転移温度(Tg2)とTg1との差ΔTg(=Tg2−Tg1)が3℃以下であると、導電性被覆層の水分透過性が小さくなりすぎるため、H/H環境下では水分の吸湿による膨潤は帯電部材の該導電性弾性体層の端部のみとなり、その部分における歪が非常に大きくなるために、端部導電性被覆層のクラックあるいはシワの要因となってしまう。逆に、ΔTgが15℃以上であると、導電性弾性体層と導電性被覆層との水分透過性の差による膨潤/収縮に大きな差ができるために急激な温度変化に対応できない。好ましくは、ΔTg>7℃である。
【0020】
導電性被覆層のガラス転移温度は、用いられる樹脂や架橋剤の種類、構造、配合量、バインダーの反応点、更にはアニール条件等の影響を受ける。本発明においては、Tg1及びΔTgが上記範囲内であることが重要なのであって、その達成手段は特に限定されるものではないが、架橋剤の種類、構造、配合量で調整することが好ましい。
【0021】
更に、本発明においては、導電性被覆層中の樹脂の架橋状態が、より密な状態でパッキングされると、湿度変化によるポリマーの分子運動が拘束され、また、水分透過性も抑制され、表面シワ発生をより効果的に防止することが可能となるので、用いられる樹脂の架橋密度ρが1×104mol/m3未満であることが好ましい。より好ましくは、9.8×103mol/m3以下である。
【0022】
樹脂の架橋状態は、樹脂のモノマーや架橋剤の種類、これらの量比、温度や時間等の硬化条件、アニール条件等の影響を受ける。本発明においては、ρが上記範囲内であることが重要なのであって、その達成手段は特に限定されるものではないが硬化条件で調整することが好ましい。
【0023】
本発明の帯電部材の構造及び形態として、図1に本発明の帯電部材である帯電ローラの断面の一例を示す概略図を示す。図中の帯電ローラは、導電性弾性体層12を導電性支持体(シャフト)11の外周に有し、該導電性弾性体層12の外側に、表面層として導電性被覆層13を有している。
【0024】
上記導電性弾性体層12としては、従来から帯電部材の弾性体層として用いられているゴムや熱可塑性エラストマー等のソリッド体で形成することができる。具体的には、ポリウレタン、シリコーンゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、スチレン−ブタジエンゴム、エチレン−プロピレンゴム、ポリノルボルネンゴム、スチレン−ブタジエン−スチレンゴム及びエピクロルヒドリンゴム等を基材ゴムとするゴム組成物、あるいは熱可塑性エラストマーで、その種類としては特に制限はなく、汎用のスチレン系エラストマー及びオレフィン系エラストマー等から選ばれる1種あるいは複数種の熱可塑性エラストマーを好適に用いることができる。
【0025】
スチレン系エラストマーの市販品としては、例えば、三菱化学(株)製「ラバロン」、クラレ(株)製「セプトンコンパウンド」等が挙げられる。オレフィン系エラストマーの市販品としては、例えば、三菱化学(株)製の「サーモラン」、三井石油化学工業(株)社製の「ミラストマー」、住友化学工業(株)社製の「住友TPE」及びアドバンストエラストマーシステムズ社製の「サントプレーン」等として市場より求めることができる。
【0026】
この導電性弾性体層12には、導電剤を添加することにより、所定の導電性を付与することができる。その導電剤としては、特に制限されず、ラウリルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、オクタドデシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム及び変性脂肪酸・ジメチルエチルアンモニウムの過塩素酸塩、塩素酸塩、ホウフッ化水素酸塩、エトサルフェート塩、臭化ベンジル塩及び塩化ベンジル塩等のハロゲン化ベンジル塩等の第四級アンモニウム塩等の陽イオン性界面活性剤、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキサイド付加硫酸エステル塩、高級アルコール燐酸エステル塩及び高級アルコールエチレンオキサイド付加燐酸エステル塩等の陰イオン界面活性剤、各種ベタイン等の両性イオン界面活性剤、高級アルコールエチレンオキサイド、ポリエチレングリコール脂肪酸エステル及び多価アルコール脂肪酸エステル等の非イオン性帯電防止剤等の帯電防止剤、LiCF3SO3、NaClO4、LiAsF6、LiBF4、NaSCN、KSCN及びNaCl等のLi+、Na+及びK+等の周期律表第1族の金属塩あるいは第四級アンモニウム塩等の電解質、また、Ca(ClO4)2等のCa2+及びBa2+等の周期律表第2族の金属塩及びこれらの帯電防止剤が、少なくとも1個以上の水酸基、カルボキシル基及び一級ないし二級アミン基等のイソシアネートと反応する活性水素を有する基を持ったものが挙げられる。更には、それらと1,4−ブタンジオール、エチレングリコール、ポリエチレングリコール、プロピレングリコール及びポリエチレングリコール等の多価アルコールとその誘導体等の錯体、あるいはエチレングリコールモノメチルエーテル及びエチレングリコールモノエチルエーテル等のモノオールとの錯体等のイオン導電剤、あるいはケッチェンブラックEC及びアセチレンブラック等の導電性カーボン、あるいはSuper Abrasion Furnace(SAF 超耐磨耗性)、Intermediate Super Abrasion Furnace(ISAF 準超耐磨耗性)、High Abrasion Furnace(HAF 高耐磨耗性)、Fast ExtrudingFurnace(FEF 良押出性)、General Purpose Furnace(GPF 汎用性)、Semi Reinforcing Furnace(SRF 中補強性)、Fine Thermal(FT 微粒熱分解)及びMedium Thermal(MT 中粒熱分解)等のゴム用カーボン、酸化処理を施したカラー(インク)用カーボン、熱分解カーボン、天然グラファイト、人造グラファイト、アンチモンドープの酸化錫、酸化チタン、酸化亜鉛、ニッケル、銅、銀及びゲルマニウム等の金属及び金属酸化物、あるいはポリアニリン、ポリピロール及びポリアセチレン等の導電性ポリマー等が挙げられる。
【0027】
これら導電剤の配合量は、組成物の種類に応じて適宜選定され、導電性弾性体層12の電気抵抗が好ましくは102〜108Ω、より好ましくは103〜106Ωとなるように調整される。
【0028】
本発明においては、導電性弾性体層の硬度が、アスカーCで70度以上であることが好ましく、特には73度以上であることが好ましい。また、硬度の上限は95度以下であることが好ましい。硬度が70度未満であると、被帯電体との当接時の変形量が大きくなるために当接部分の永久変形量が大きくなり易い。逆に、硬度が95度を超えると、被帯電体との均一な接触性が得られにくくなる。
【0029】
上記導電性被覆層13が含有する好ましい樹脂としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリル変性ウレタン樹脂、ウレタン変性アクリル樹脂、ナイロン樹脂、エポキシ樹脂、ポリビニルアセタール樹脂、塩化ビニリデン樹脂、フッ素樹脂及びシリコーン樹脂等が挙げられ、有機系及び水系のいずれのものも使用することができる。これらの中では、架橋可能な樹脂である、アクリル樹脂、ウレタン樹脂、アクリル変性ウレタン樹脂、ウレタン変性アクリル樹脂、エポキシ樹脂、フッ素樹脂及びシリコーン樹脂が好ましく、特には、ウレタン変性アクリル樹脂が好ましい。
【0030】
更に、この導電性被覆層は架橋密度を制御するために、架橋剤等の添加剤を必要に応じて適量添加することができる。この場合、架橋剤としては、所望の架橋効果が得られるものであればいずれのものでもよい。例えば、エポキシ系、オキサゾリン系、メラミン系、イソシアネート系及びフェノール系の架橋剤を例示することができる。
【0031】
また、導電性被覆層13には、導電剤を添加して導電性を付与または調整することができ、この場合導電剤としては、特に制限されるものではないが、ケッチェンブラックEC及びアセチレンブラック等の導電性カーボン、SAF、ISAF、HAF、FEF、GPF、SRF、FT及びMT等のゴム用カーボン、酸化処理を施したカラー(インク)用カーボン、熱分解カーボン、天然グラファイト、人造グラファイト、アンチモンドープの酸化錫、酸化チタン、酸化亜鉛、ニッケル、銅、銀、ゲルマニウム等の金属及び金属酸化物等を用いることができる。
【0032】
更に、前記導電剤を有機系溶剤で使用する場合は、分散性を考慮し、導電剤の表面をシランカップリング処理等の表面処理を施すことが好ましい。
【0033】
また、上記導電剤の添加量は、所望とする抵抗が得られるように適宜調整することができる。この場合、導電性被覆層13の抵抗は、電気抵抗101〜1012Ω、特に103〜1011Ωとすることが好ましく、このような体積抵抗率を達成するように導電剤の添加量を調整することができ、導電剤としてシランカップリング剤により表面処理を施されたアンチモンドープの酸化錫を用いた場合の添加量は、導電性被覆層13の全質量の0.01〜30質量%であることが好ましく、特には5〜20質量%程度であることが好ましい。
【0034】
また、帯電部材としての電気抵抗は、103〜1010Ω、特に105〜108Ωとすることが好ましい。
【0035】
本発明においては、帯電均一性の向上という目的で、導電性被覆層13に弾性体粒子を添加することが好ましい。その場合の帯電部材の断面図を図2に示す。かかる弾性体粒子14としては、上記導電剤以外の絶縁性粒子である無機粒子、例えば炭酸カルシウム、クレー、タルク及びシリカ等が挙げられる。また、絶縁性の有機粒子として、アクリル樹脂、アクリル/スチレンの共重合体樹脂、ポリアミド樹脂、シリコーンゴム粒子及びエポキシ樹脂粒子等が挙げられ、このうち有機粒子であるアクリル樹脂あるいはアクリル/スチレンの共重合体樹脂は、表面層の剛性をあまり変化させないので特に好ましい。更に、有機粒子を用いた場合は、使用溶剤との組み合わせで膨潤し、粒子形状が変化することがないように、架橋タイプを用いる方が好ましい。
【0036】
かかる弾性体粒子の平均粒子径は5〜30μmであることが好ましく、特には8〜20μmであることが好ましい。平均粒子径は、以下のようにして測定する。
【0037】
即ち、測定装置としてコールターカウンターのマルチサイザーII型(コールター社製)を用い、個数分布と体積分布を出力するインターフェイス(日科機製)及びCX−1パーソナルコンピューター(キヤノン製)を接続し、電解液は特級または一級塩化ナトリウムを用いて1%NaCl水溶液を調製する。測定法としては前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1〜5ml加え、更に測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記コールターカウンターのマルチサイザーII型により、アパーチャーとして、100μmアパーチャーを用いることによって測定する。平均粒子径が5μmに満たないと、帯電均一性向上しにくく、30μmを超えると耐久後のトナー外添剤等により帯電部材表面が汚れ易くなる。
【0038】
また、弾性体粒子の含有量は、導電性被覆層の全質量に対して5〜30質量%であることが好ましく、特には8〜20質量%であることが好ましい。含有量が5質量%に満たないと、粒子を添加したことによる帯電均一性向上の効果を得にくくなり、30質量%を超えると、画像上の黒ポチの原因となり易い。
【0039】
なお、図2中、12及び13はそれぞれ図1と同じものを示す。
【0040】
また、本発明においては、導電性被覆層13の厚さが10〜50μmであることが好ましく、特には10〜30μmであることが好ましい。厚さが10μm未満であると、導電性弾性体層からブリードしてくる物質を防止することができなくなり易くなり、50μmを超えると、導電性被覆層13が硬くなって柔軟性が損なわれる場合があり、耐久性が低下して、使用に伴ってクラックが発生し易くなる。
【0041】
上記導電性被覆層13の形成方法は、特に制限されるものではないが、各成分を含む塗料を調製し、この塗料をディッピング法やスプレー法により塗布して塗膜を形成する方法が好ましく用いられる。この場合、導電性被覆層を複数層とする場合には、それぞれの層を形成する塗料を用いてディッピングやスプレーを繰り返せばよい。なお、導電性被覆層の形成方法は、上記ディッピング法やスプレー法が好ましい。
【0042】
本発明においては、導電性弾性体層12と導電性支持体11の間、あるいは導電性弾性体層12と導電性被覆層13の間に、接着性を高めること等を目的とする中間層を設けることもできる。
【0043】
図3は、本発明の帯電部材を用いたプロセスカートリッジを電子写真装置に適用した例を示す。21は像担持体としての回転ドラム型の電子写真感光体(感光体)である。この感光体21は、図中の矢印が示す時計回りに所定の周速度(プロセススピード)で回転駆動する。感光体21には、例えばロール状の導電性支持体と該支持体上に無機感光材料または有機感光材料を含有する感光層とを少なくとも有する公知の感光体等を採用すればよい。また、感光体21は、感光体表面を所定の極性及び電位に帯電させるための電荷注入層を更に有していてもよい。
【0044】
22は帯電部材としての帯電ローラ(導電性ローラ)である。帯電ローラ22と帯電ローラ22に帯電バイアスを印加する帯電バイアス印加電源S1とによって帯電手段が構成されている。帯電ローラ22は、感光体21に所定の押圧力で接触させてあり、本例では感光体21の回転に対して順方向に回転駆動する。この帯電ローラ22に対して帯電バイアス印加電源S1から、所定の直流電圧(本例では−1200Vとする)が印加される(DC帯電方式)ことで、感光体21の表面が所定の極性電位(本例では暗部電位−600Vとする)に一様に帯電処理される。
【0045】
23は露光手段である。この露光手段23には公知の手段を利用することができ、例えばレーザービームスキャナー等を好適に例示することができる。Lは露光光である。
【0046】
感光体21の帯電処理面に該露光手段23により目的の画像情報に対応した像露光がなされることにより、感光体帯電面の露光明部の電位(本例では明部電位−350Vとする)が選択的に低下(減衰)して感光体21に静電潜像が形成される。
【0047】
24は反転現像手段である。現像手段24としては公知の手段を利用することができ、例えば本例における現像手段24は、トナーを収容する現像容器の開口部に配設されてトナーを担持搬送するトナー担持体24aと、収容されているトナーを撹拌する撹拌部材24bと、トナー担持体24aのトナーの担持量(トナー層厚)を規制するトナー規制部材24cとを有する構成とされている。現像手段24は、感光体21表面の静電潜像の露光明部に、感光体21の帯電極性と同極性に帯電しているトナー(ネガトナー)を選択的に付着させて静電潜像をトナー像として可視化する(本例では現像バイアス−350Vとする)。現像方式としては特に制限はなく、既存の方法すべてを用いることができる。既存の方法としては、例えば、ジャンピング現像方式、接触現像方式及び磁気ブラシ方式等が存在するが、特にカラー画像を出力する画像形成装置には、トナーの飛散性改善等の目的より、接触現像方式が好ましいといえる。
【0048】
25は転写手段としての転写ローラである。転写ローラ25は公知の手段を利用することができ、例えば金属等の導電性支持体上に中抵抗に調製された弾性樹脂層を被覆してなる転写ローラ等を例示することができる。転写ローラ25は、感光体21に所定の押圧力で接触させてあり、感光体21の回転と順方向に感光体21の回転周速度とほぼ同じ周速度で回転する。また、転写バイアス印加電源S2からトナーの帯電特性とは逆極性の転写電圧が印加される。感光体21と転写ローラの接触部に不図示の給紙機構から転写材Pが所定のタイミングで給紙され、その転写材Pの裏面が転写電圧を印加した転写ローラ25により、トナーの帯電極性とは逆極性に帯電されることにより、感光体21と転写ローラの接触部において感光体21面側のトナー画像が転写材Pの表面側に静電転写される。
【0049】
トナー画像の転写を受けた転写材Pは感光体面から分離して、不図示のトナー画像定着手段へ導入されて、トナー画像の定着を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合は、この画像形成物が不図示の再循環搬送機機構に導入されて転写部へ再導入される。
【0050】
転写残余トナー等の感光体21上の残留物は、ブレード型等のクリーニング手段26により、感光体上より回収される。
【0051】
また、感光体21に残留電荷が残るような場合には、転写後、帯電部材22による一次帯電を行う前に、前露光装置(不図示)によって感光体21の残留電荷を除去した方がよい。
【0052】
本発明のプロセスカートリッジは、少なくとも帯電部材22と感光体21を一体に支持し、電子写真装置本体に着脱自在の構成である。図3では、帯電部材22、感光体21、現像手段24及びクリーニング手段26を一体に支持してプロセスカートリッジ27とした。
【0053】
【実施例】
以下、実施例、比較例を示して、本発明を具体的に説明するが、本発明は下記に限定されるものではない。
【0054】
[実施例1]
(導電性弾性体層の形成)
エピクロルヒドリンゴム(商品名「エピクロマーCG102」:ダイソー(株)製)100質量部、充填剤としての炭酸カルシウム30質量部、研磨性改善のための補強材としての着色グレードカーボン(商品名「シーストSO」:東海カーボン製)2質量部、酸化亜鉛5質量部、可塑剤(DOP:dioctyl phthalate)10質量部、下記構造の過塩素酸4級アンモニウム塩3質量部
【0055】
【化1】
及び老化防止剤(2−メルカプトベンズイミダゾール)1質量部をオープンロールで20分間混練し、更に加硫促進剤(DM:dibenzothiazyl disulfide)1質量部、加硫促進剤(TS:Tetramethylthiuram monosulfide)0.5質量部及び加硫剤としてイオウ1質量部を加えて、更に15分間オープンロールで混練した。
【0056】
得られた混練物をゴム押出機で、外径15mm、内径5.5mmの円筒形に押出し、250mmの長さに裁断し、加硫缶で160℃の水蒸気で40分間1次加硫し、導電性弾性体層1次加硫チューブを得た。
【0057】
次に、直径6mm、長さ256mmの円柱形の導電性支持体(鋼製、表面工業ニッケルメッキ)の円柱面の軸方向中央部231mmに金属とゴムとの熱硬化性接着剤(商品名:メタロックU−20)を塗布し、80℃で30分間乾燥した後、更に120℃で1時間乾燥した。この支持体を前記導電性弾性体層1次加硫チューブに挿入し、その後、電気オーブンを用い、160℃で2時間、2次加硫と接着剤の硬化を行い、未研磨品を得た。この未研磨品のゴム部分の両端を切断し、ゴム部分の長さを231mmとした後、ゴム部分を回転砥石で研磨し、端部直径9.7mm、中央部10.0mmのクラウン形状で表面の十点平均粗さ(Rz)7μm、振れ25μmの導電性弾性体層を有する帯電部材を得た。
【0058】
導電性弾性体層を有する帯電部材をN/N(常温常湿:23℃、55%RH)環境に24時間放置し、図4に示す、円筒電極(金属ローラ)31、固定抵抗器32、記録計(レコーダー)33等から構成された電流値測定装置によって、印加電圧200Vでの導電性弾性体層の抵抗測定を行ったところ、1.9×105Ωであった。また、硬度は74度(アスカーC)であった。
【0059】
(表面層(導電性被覆層)の形成)
導電性酸化錫粉体(商品名「SN−100P」:石原産業(株)製)50質量部にトリフルオロプロピルトリメトキシシランの1%イソプロピルアルコール溶液を500質量部と平均粒子径0.8mmのガラスビーズ300質量部を加え、ペイントシェーカーで70時間分散後、分散液を500メッシュの網でろ過し、次にこの溶液をナウターミキサーで撹拌しながら100℃の湯浴で暖め、アルコールを飛ばして乾燥させ、表面にシランカップリング剤を付与し、表面処理導電性酸化錫を得た。
【0060】
更に、ラクトン変性アクリルポリオール(商品名「プラクセルDC2016(水酸基価 80KOHmg/g)」:ダイセル化学工業(株)製)137質量部をMIBK(メチルイソブチルケトン)463質量部に溶解し、固形分16.0質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を41.6質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を0.96質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を24.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0061】
更に、この分散液330質量部にイソホロンジイソシアネートのブロックタイプのイソシアヌレート型3量体(IPDI)(商品名「ベスタナートB1370」:デグサ・ヒュルス社製)を23.3質量部とヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を14.9質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を39質量%とし、表面層用塗料を得た。
【0062】
前記表面層用塗料をディッピング法により、前記導電性弾性体層を有する帯電部材の表面に塗工した。引き上げ速度400mm/minで塗工し、30分間風乾後、軸方向を反転し、再度引き上げ速度400mm/minで塗工し、30分間風乾後、オーブンを用い、160℃で1時間乾燥した。このとき膜厚は25μmであった。この表面層の電気抵抗は3.9×1010Ωであった。また、帯電部材の電気抵抗を導電性弾性体層と同様にして測定したところ、5.0×106Ωであった。
【0063】
表面層の粘弾性測定は、帯電部材の表面層用塗料と同様の塗料を厚さ75μmのアルミシート上にバーコーターで塗布し、帯電部材の表面層形成時と同様にして乾燥することによって、約50μmのフィルムを形成し、得られたサンプルについてitk DVA−220動的粘弾性性測定装置(アイティー計測制御(株))を用いて測定することによって行った。Tg1の測定は、一定湿度80%RH(窒素雰囲気下)、昇温速度4℃/min、周波数10Hz、引張モードで行った。同様にTg2は、通常雰囲気(湿度55%RH、窒素雰囲気下)、昇温速度4℃/min、周波数10Hz、引張モードで行った。実施例1のサンプルは、Tg1=80.0℃、Tg2=90.3℃、ΔTg=10.3℃であった。
【0064】
また、架橋密度を算出するために、上記通常雰囲気下での粘弾性特性のゴム状領域の貯蔵弾性率E’を用いて下記式を用いた。
【0065】
ρ(E’)=ER’/3RT
(式中、ER’はゴム領域の貯蔵弾性率を示し、Rは気体定数を示し、Tは絶対温度を示す。)
【0066】
ここで、E’はTg+40℃の値を用いた。実施例1の表面層の架橋密度ρは9.8×103mol/m3であった。
【0067】
(帯電部材の表面層の状態観察)
上記のようにして得られた帯電部材をH/H環境下で1週間放置後、直ぐにL/L環境に放置し、その表面状態について、1日ごとに1週間、目視により確認した。表面にシワがないものを○、端部にシワが少し発生したものを△、帯電部材全体にシワの発生したものを×とした。
【0068】
(画像の評価)
上記のようにして得られた帯電部材を用いて、以下に示すようにして画像評価を行った。
【0069】
本試験で使用した電子写真式レーザープリンターは、帯電部材と感光体を一体に有するプロセスカートリッジを具備する反転現像方式のA4縦出力用のマシンで、記録メディアの出力スピードは、94mm/secで、画像解像度は600dpiである。
【0070】
感光体はアルミシリンダーに膜厚18μmのOPC層をコートした感光ドラムであり、最外層は変性ポリカーボネートをバインダー樹脂とする電荷輸送層である。トナーは、ワックスを中心に電荷制御剤と色素等を含有するスチレンとブチルアクリレートのランダムコポリマーを重合させ、更に表面にポリエステル薄層を重合させシリカ微粒子を外添した。このトナーのガラス転移温度は63℃、体積平均粒子径6μmの重合トナーである。
【0071】
画像の評価は全て、低温低湿環境(L/L:15℃、10%RH)で行い、A4ハーフトーン(感光体の回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)画像を出力し、帯電部材の表面シワに起因する帯電ムラが発生してないかどうかを目視により観察した。帯電ムラが発生していないものを◎、少し発生したものを○、中程度に発生したものを△、非常にムラが大きかったものを×とした。
【0072】
実施例1の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置しても表面にシワが発生することも全く無く、その後の画出し評価でも画像ムラの発生も無く、全く問題なかった。
【0073】
[実施例2]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0074】
次に、ラクトン変性アクリルポリオール(商品名「プラクセルDC2209(水酸基価 12KOHmg/g)」:ダイセル化学工業(株)製)144質量部をMIBK(メチルイソブチルケトン)456質量部に溶解し、固形分16.0質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を31.2質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を0.72質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を18.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0075】
更に、この分散液330質量部にイソホロンジイソシアネートのブロックタイプのイソシアヌレート型3量体(IPDI)(商品名「ベスタナートB1370」:デグサ・ヒュルス社製)を4.8質量部とヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を3.1質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を30質量%とし、表面層用塗料を得た。
【0076】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、実施例2の帯電部材を得た。このときの表面層の膜厚は30μmであり、電気抵抗は2.7×1010Ωであった。また、この帯電部材の電気抵抗は3.5×106Ωであった。
【0077】
更に、粘弾性測定の結果、Tg1=50.9℃、Tg2=58.3℃、ΔTg=7.4℃で、架橋密度ρ=9.3×103mol/m3であった。
【0078】
実施例2の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置しても表面にシワが発生することも全く無く、その後の画出し評価でも画像ムラの発生も無く、全く問題なかった。
【0079】
[実施例3]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0080】
次に、ラクトン変性アクリルポリオール(商品名「プラクセルDC2009(水酸基価 90KOHmg/g)」:ダイセル化学工業(株)製)137質量部をMIBK(メチルイソブチルケトン)463質量部に溶解し、固形分16.0質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を31.2質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を0.96質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を24.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0081】
更に、この分散液330質量部にPPG(ポリプロピレンエーテルグリコール)主鎖で両末端がポリメリックMDI(ジフェニルメタンジイソシアネート)でMEK(メチルエチルケトン)オキシムでブロックされたブロックイソシアネート(商品名「コロネート2520」:日本ポリウレタン製)を44.9質量部とヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を15.1質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を41.5質量%とし、表面層用塗料を得た。
【0082】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、実施例3の帯電部材を得た。このときの表面層の膜厚は25μmであり、電気抵抗は3.2×1010Ωであった。また、この帯電部材の電気抵抗は4.6×106Ωであった。
【0083】
更に、粘弾性測定の結果、Tg1=67.9℃、Tg2=76.3℃、ΔTg=8.4℃で、架橋密度ρ=5.6×103mol/m3であった。
【0084】
実施例3の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置しても表面にシワが発生することも全く無く、その後の画出し評価でも画像ムラの発生も無く、全く問題なかった。
【0085】
[実施例4]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0086】
次に、ラクトン変性アクリルポリオール(商品名「プラクセルDC2009(水酸基価 90KOHmg/g)」:ダイセル化学工業(株)製)137質量部をMIBK(メチルイソブチルケトン)463質量部に溶解し、固形分16.0質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を41.6質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を0.96質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を24.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0087】
更に、この分散液330質量部に無変性のポリメリックMDIをMEKオキシムでブロックしたブロックイソシアネート(商品名「コロネート2516」:日本ポリウレタン製)を15.3質量部とヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を16.5質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を40.0質量%とし、表面層用塗料を得た。
【0088】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、実施例4の帯電部材を得た。このときの表面層の膜厚は18μmであり、電気抵抗は4.0×1010Ωであった。また、この帯電部材の電気抵抗は5.1×106Ωであった。
【0089】
更に、粘弾性測定の結果、Tg1=69.8℃、Tg2=82.2℃、ΔTg=12.4℃で、架橋密度ρ=8.8×103mol/m3であった。
【0090】
実施例4の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置すると7日後に若干端部に軽微なシワが確認されたが、その後の画出し評価でもその部分の画像ムラが少し発生した。
【0091】
[実施例5]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0092】
また、ラクトン変性アクリルポリオール(商品名「プラクセルDC2016(水酸基価 80KOHmg/g)」:ダイセル化学工業(株)製)163質量部をMIBK(メチルイソブチルケトン)437質量部に溶解し、固形分19.0質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を49.4質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を1.14質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を28.50質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0093】
更に、この分散液330質量部にイソホロンジイソシアネートのブロックタイプのイソシアヌレート型3量体(IPDI)(商品名「ベスタナートB1370」:デグサ・ヒュルス社製)を26.3質量部とヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を16.9質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を43.8質量%とし、表面層用塗料を得た。
【0094】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、実施例5の帯電部材を得た。このときの表面層の膜厚は55μmであり、電気抵抗は2.9×1010Ωであった。また、この帯電部材の電気抵抗は3.8×106Ωであった。
【0095】
更に、粘弾性測定の結果、Tg1=80.0℃、Tg2=90.3℃、ΔTg=10.3℃で、架橋密度ρ=9.8×103mol/m3であった。
【0096】
実施例5の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置すると6日後に若干端部に軽微なシワが確認され、そのまま7日後までシワの発生は維持されたが、その後の画出し評価でもその部分の画像ムラが少し発生した。
【0097】
[実施例6]
実施例1と同様にして、導電性支持体上に導電性弾性体層を使用形成した。
【0098】
次に、ラクトン変性アクリルポリオール(商品名「プラクセルDC2209(水酸基価 12KOHmg/g)」:ダイセル化学工業(株)製)144質量部をMIBK(メチルイソブチルケトン)456質量部に溶解し、固形分16.0質量%の溶液とした。このアクリルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を31.2質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を0.72質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を18.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0099】
更に、この分散液330質量部にヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を6.2質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を29.8質量%とし、表面層用塗料を得た。
【0100】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、実施例6の帯電部材を得た。このときの表面層の膜厚は20μmであり、電気抵抗は3.0×1010Ωであった。また、この帯電部材の電気抵抗は4.1×106Ωであった。
【0101】
更に、粘弾性測定の結果、Tg1=42.2℃、Tg2=45.4℃、ΔTg=3.2℃で、架橋密度ρ=3.7×106mol/m3であった。
【0102】
実施例6の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置すると4日後に若干端部に軽微なシワが確認され、そのまま7日後までシワの発生は維持されたが、その後の画出し評価でもその部分に相当する箇所に中程度の画像ムラが発生した。
【0103】
[比較例1]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0104】
次に、ポリエステルポリオール(商品名「キョーワポール1000PA(水酸基価 112KOHmg/g)」:協和発酵(株)製)137質量部をMIBK(メチルイソブチルケトン)463質量部に溶解し、固形分16.0質量%の溶液とした。このポリエステルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を41.6質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を1.14質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を24.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0105】
更に、この分散液330質量部にイソホロンジイソシアネートのブロックタイプのイソシアヌレート型3量体(IPDI)(商品名「ベスタナートB1370」:デグサ・ヒュルス社製)を29.1質量部とヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を13.3質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を39.6質量%とし、表面層用塗料を得た。
【0106】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、比較例1の帯電部材を得た。このときの表面層の膜厚は25μmであり、電気抵抗は2.3×1010Ωであった。また、この帯電部材の電気抵抗は2.8×106Ωであった。
【0107】
更に、粘弾性測定の結果、Tg1=90.0℃、Tg2=108.3℃、ΔTg=18.3℃で、架橋密度ρ=1.2×104mol/m3であった。
【0108】
比較例1の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置すると3日後に若干端部に軽微なシワが確認され、4日後には帯電部材全体にシワの発生し、その後の画出し評価でもその部分に相当する箇所に大きな画像ムラが発生した。
【0109】
[比較例2]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0110】
次に、水系ポリウレタン(商品名「スーパーフレックス150」:第一工業製薬(株)製)200質量部に対して、前記表面処理導電性酸化錫粉体を76.0質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を3.00質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を44.00質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、6時間分散した。
【0111】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、比較例2の帯電部材を得た。このときの表面層の膜厚は30μmであり、電気抵抗は3.1×1010Ωであった。また、この帯電部材の電気抵抗は4.5×106Ωであった。
【0112】
更に、粘弾性測定の結果、Tg1=37.9℃、Tg2=40.4℃、ΔTg=2.5℃で、架橋密度ρ=3.4×102mol/m3であった。
【0113】
比較例2の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置すると3日後には帯電部材全体にシワが発生し、その後の画出し評価でもその部分に相当する箇所に大きな画像ムラが発生した。
【0114】
[比較例3]
実施例1と同様にして、導電性支持体上に導電性弾性体層を形成した。
【0115】
次に、ポリエステルポリオール(商品名「FLEXOREZ 188(水酸基価 230KOHmg/g)」:楠本化成(株)製)96質量部をMIBK(メチルイソブチルケトン)504質量部に溶解し、固形分16.0質量%の溶液とした。このポリエステルポリオール溶液200質量部に対して、前記表面処理導電性酸化錫粉体を41.6質量部、シリコーンオイル(商品名「SH−28PA」:東レ・ダウコーニングシリコーン(株)製)を0.01質量部、微粒子シリカ(一次粒子径0.02μm)を0.96質量部、弾性体粒子(商品名「テクポリマー MBX−12」(平均粒径12μm):積水化成品工業(株)製)を16.80質量部、直径0.8mmのガラスビーズを200質量部加えて、450mlのマヨネーズビンに入れ、ペイントシェーカーを使用し、24時間分散した。
【0116】
更に、この分散液330質量部にヘキサメチレンジイソシアネートのイソシアヌレート型3量体(HDI)(商品名「デュラネートTPA−B80E」:旭化成工業(株)製)を27.3質量部混合し、ボールミルで1時間撹拌し、最後に200メッシュの網で溶液をろ過して、固形分を39質量%とし、表面層用塗料を得た。
【0117】
上記塗料を用い、実施例1と同様の条件でディッピング塗布し、乾燥することによって、比較例2の帯電部材を得た。このときの表面層の膜厚は20μmであり、電気抵抗は2.9×1010Ωであった。また、この帯電部材の電気抵抗は3.7×106Ωであった。
【0118】
更に、粘弾性測定の結果、Tg1=106.4℃、Tg2=112.3℃、ΔTg=5.9℃で、架橋密度ρ=2.1×103mol/m3であった。
【0119】
比較例3の帯電部材は、H/H環境下で1週間放置後、直ぐにL/L環境に放置すると3日後には帯電部材全体にシワが発生し、その後の画出し評価でもその部分に相当する箇所に大きな画像ムラが発生した。
【0120】
以上の評価を表1に示す。
【0121】
【表1】
【0122】
以上本発明の実施例について説明したが、本発明の好適な実施の態様を以下のとおり列挙する。
【0123】
[実施態様1]
導電性支持体上に導電性弾性体層を有し、該導電性弾性体層上に表面層として導電性被覆層を有する帯電部材において、該導電性被覆層の相対湿度80%におけるガラス転移温度(Tg1)が40℃<Tg1<100℃であり、該導電性被覆層の相対湿度55%におけるガラス転移温度(Tg2)と該Tg1との差ΔTg(=Tg2−Tg1)が3℃<ΔTg<15℃であることを特徴とする帯電部材。
【0124】
[実施態様2]
前記ΔTgが7℃<ΔTg<15℃である実施態様1に記載の帯電部材。
【0125】
[実施態様3]
前記導電性被覆層の架橋密度ρがρ<1×104mol/m3である実施態様1または2に記載の帯電部材。
【0126】
[実施態様4]
前記導電性被覆層の厚みが10〜50μmである実施態様1〜3のいずれかに記載の帯電部材。
【0127】
[実施態様5]
前記導電性被覆層が、平均粒子径が5〜30μmの絶縁性粒子を該被覆層の全質量に対し、5〜30質量%含有する実施態様1〜4のいずれかに記載の帯電部材。
【0128】
[実施態様6]
前記絶縁性粒子が架橋タイプのアクリル樹脂またはアクリル/スチレンの共重合樹脂である実施態様5に記載の帯電部材。
【0129】
[実施態様7]
前記導電性弾性体層の硬度が、アスカーCで70度以上である実施態様1〜6のいずれかに記載の帯電部材。
【0130】
[実施態様8]
電子写真感光体、該電子写真感光体に接触配置され、電圧を印加されることにより該電子写真感光体を帯電する実施態様1〜7のいずれかに記載の帯電部材を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。
【0131】
[実施態様9]
前記帯電部材に印加される電圧が直流電圧のみである実施態様8に記載のプロセスカートリッジ。
【0132】
[実施態様10]
電子写真感光体、該電子写真感光体に接触配置され、電圧を印加されることにより該電子写真感光体を帯電する実施態様1〜7のいずれかに記載の帯電部材、現像手段及び転写手段を具備することを特徴とする電子写真装置。
【0133】
[実施態様11]
前記帯電部材に印加される電圧が直流電圧のみである実施態様10に記載の電子写真装置。
【0134】
【発明の効果】
以上のように、本発明によれば、急激な環境変化による表面性状の変化、つまり表面シワ発生を抑制し、表面性状を制御することで、直流電圧のみを印加する場合でも優れた帯電均一性を確保することができ、画像不良が発生しない帯電部材、かかる帯電部材を用いたプロセスカートリッジ及び電子写真装置装置を提供することができた。
【図面の簡単な説明】
【図1】本発明の帯電部材である帯電ローラの断面の一例を示す概略図である。
【図2】本発明の帯電部材の断面の拡大図である。
【図3】本発明の帯電装置の一例を示す概略図である。
【図4】本発明の帯電部材である帯電ローラ電流値測定装置を示す概略図である。
【符号の説明】
11 導電性支持体
12 導電性弾性体層
13 表面層
14 弾性体粒子
21 像担持体(電子写真感光体)
22 帯電部材(帯電ローラ)
23 露光手段
24 現像手段
24a トナー担持体
24b 撹拌部分
24c トナー規制部材
25 転写手段
26 クリーニング手段
27 プロセスカートリッジ
31 円筒電極(金属ローラ)
32 固定抵抗器
33 記録計(レコーダー)
L レーザー光
S1、S2、S3 バイアス印加電源
P 転写材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used in a copying machine, a printer, or the like, used to stably charge a latent image holding member such as an electrophotographic photosensitive member used in an electrostatic latent image process, a stable charging member having a surface state of an outermost layer, The present invention relates to a process cartridge and an electrophotographic apparatus having the charging member.
[0002]
[Prior art]
Conventionally, in electrophotographic processes such as copiers and printers, first, the surface of the electrophotographic photosensitive member is uniformly charged, and an image is projected on the photosensitive member from an optical system to erase the charged portion of the light-exposed portion. In this method, a latent image is formed by forming a toner image, a toner image is formed by attaching toner, and then the toner image is transferred to a recording medium such as paper to perform printing. Various rollers for controlling these are used, and in recent years, the required characteristics of the roller material have become increasingly severe.
[0003]
In the electrophotographic process, the step of charging the surface of the photoreceptor has conventionally generally employed a corona discharge method. However, since this corona discharge method requires application of a high voltage of 6 to 10 kV, it is not preferable from the viewpoint of safe maintenance of the machine. Also, ozone and the like generated during corona discharge may adversely affect the photoreceptor.
[0004]
For this reason, charging schemes capable of performing charging with an applied voltage lower than that of corona discharge and suppressing generation of ozone and the like have been undertaken. As an attempt of such a charging method, there has been proposed a contact charging method in which a charged member is charged by applying a voltage to a charging member which is brought into contact with a charged member such as a photoreceptor at a predetermined pressure.
[0005]
However, the contact charging method is somewhat disadvantageous in terms of charging uniformity as compared with the corona charging method.
[0006]
In order to improve the charging uniformity, an AC voltage component (AC voltage component) having a peak-to-peak voltage that is twice or more the charging start voltage (Vth) is superimposed on a DC voltage corresponding to a desired charged body surface potential Vd. An "AC charging method" is used in which a voltage (pulsating voltage: a voltage whose voltage value changes periodically with time) is applied to a contact charging member. This is for the purpose of the effect of leveling the potential by the AC voltage, and the potential of the member to be charged converges to the potential Vd, which is the center of the peak of the AC voltage, and is not affected by disturbances such as the environment. This is an excellent charging method.
[0007]
However, in order to superimpose a high AC voltage which is a peak-to-peak voltage that is twice or more the discharge starting voltage (Vth) when a DC voltage is applied, an AC power supply is required separately from the DC power supply, which increases the cost of the apparatus itself. It becomes a factor. Further, there is a problem that the durability of the charging member and the photoreceptor is easily reduced by consuming a large amount of the alternating current.
[0008]
Although these problems can be solved by performing charging by applying only a DC voltage to the charging member, there are the following problems when only a DC voltage is applied to the charging member.
[0009]
That is, when only a DC voltage is applied to the conventional charging member, uneven charging is likely to occur due to a case where the surface of the member to be charged such as a photosensitive member is charged to a desired charging potential or higher or a potential is insufficient. In particular, in an electrophotographic process without pre-exposure, which is a step for erasing the potential on the photoconductor before primary charging, the potential is likely to occur in the potential portion of the halftone image area.
[0010]
When a halftone image is output by an electrophotographic apparatus using a reversal developing method using a conventional charging member having such a problem, for example, the above-mentioned uneven charging is partially white stripes or white spots on the image. In addition, black streaks, black spots, and roughness occur, and the image quality tends to deteriorate. The occurrence of uneven charging potential tends to occur particularly remarkably at a temperature of 15 ° C. and a relative humidity of 10% RH (hereinafter referred to as an L / L environment).
[0011]
Further, the charging member is stable against various external environment changes, that is, not only in the L / L environment, but also in an environment such as a temperature of 40 ° C. and a relative humidity of 85% RH (hereinafter referred to as an H / H environment). It is desired that the chargeability can be maintained.
[0012]
Further, in order to reduce the environmental dependence of the resistance, the hardness and the coefficient of kinetic friction, and further to prevent contamination and toner adhesion to the photoreceptor, the glass transition temperature is set on a rubber layer having a surface roughness of 0.5 to 10 μm. It describes that a polyurethane resin at 30 to 80 ° C. is coated (for example, see Patent Document 1).
[0013]
[Patent Document 1]
JP-A-9-160354
[0014]
[Problems to be solved by the invention]
However, even in this method, wrinkles may be generated on the surface layer of the charging member due to a difference between swelling due to moisture absorption in an H / H environment and shrinkage due to release of moisture in an L / L environment. Further, in an H / H environment, the elastic modulus is greatly reduced, and the portion in contact with the photoreceptor may be largely permanently deformed.
[0015]
Accordingly, an object of the present invention is to suppress the occurrence of surface wrinkles due to a sudden environmental change, that is, to suppress the occurrence of surface wrinkles, and to control the surface properties, thereby ensuring excellent charging uniformity and preventing image defects. An object of the present invention is to provide a charging member free from generation, a process cartridge provided with the charging member, and an electrophotographic apparatus.
[0016]
[Means for Solving the Problems]
That is, the present invention relates to a charging member having a conductive elastic layer on a conductive support and having a conductive coating layer as a surface layer on the conductive elastic layer, wherein the relative humidity of the conductive coating layer is The glass transition temperature (Tg1) at 80% is 40 ° C. <Tg1 <100 ° C., and the difference ΔTg between the glass transition temperature (Tg2) and the Tg1 at 55% relative humidity of the conductive coating layer (= Tg2−Tg1). Is 3 ° C <ΔTg <15 ° C.
[0017]
Further, the present invention is a process cartridge and an electrophotographic apparatus using such a charging member.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, when the glass transition temperature (Tg1) of the conductive coating layer as the surface layer at a relative humidity of 80% is 40 ° C. or lower, the charging member is easily deformed permanently by pressing against the member to be charged. If the Tg1 is 100 ° C. or higher, the surface layer after curing and shrinking is packed in a rough crosslinked state, so that the moisture permeability becomes too large. More preferably, it is 50 ° C to 90 ° C.
[0019]
When the difference ΔTg (= Tg2−Tg1) between the glass transition temperature (Tg2) and Tg1 at a relative humidity of 55% of the conductive coating layer is 3 ° C. or less, the moisture permeability of the conductive coating layer decreases. In an H / H environment, swelling due to moisture absorption occurs only at the end of the conductive elastic layer of the charging member, and the strain at that portion becomes extremely large. Or it may cause wrinkles. On the other hand, if ΔTg is 15 ° C. or more, a large difference in swelling / shrinkage due to a difference in moisture permeability between the conductive elastic layer and the conductive coating layer is generated, so that it is impossible to cope with a rapid temperature change. Preferably, ΔTg> 7 ° C.
[0020]
The glass transition temperature of the conductive coating layer is affected by the type, structure, compounding amount, reaction point of the binder, and annealing conditions of the resin and the crosslinking agent used. In the present invention, it is important that Tg1 and ΔTg are within the above ranges, and the means for achieving this is not particularly limited, but it is preferable to adjust the type, structure, and amount of the crosslinking agent.
[0021]
Furthermore, in the present invention, when the crosslinked state of the resin in the conductive coating layer is packed in a denser state, the molecular movement of the polymer due to a change in humidity is restricted, and the moisture permeability is also suppressed, and Since the generation of wrinkles can be more effectively prevented, the crosslink density ρ of the resin used is 1 × 10 4 mol / m 3 It is preferably less than. More preferably, 9.8 × 10 3 mol / m 3 It is as follows.
[0022]
The cross-linking state of the resin is affected by the type of the monomer and the cross-linking agent of the resin, their quantitative ratio, curing conditions such as temperature and time, and annealing conditions. In the present invention, it is important that ρ is within the above range, and the means for achieving ρ is not particularly limited, but is preferably adjusted under curing conditions.
[0023]
FIG. 1 is a schematic view showing an example of a cross section of a charging roller as a charging member of the present invention as a structure and a form of the charging member of the present invention. The charging roller in the figure has a conductive
[0024]
The conductive
[0025]
Commercially available styrene elastomers include, for example, "Lavalon" manufactured by Mitsubishi Chemical Corporation and "Septon Compound" manufactured by Kuraray Co., Ltd. Commercially available olefin-based elastomers include, for example, "Thermolan" manufactured by Mitsubishi Chemical Corporation, "Milastomer" manufactured by Mitsui Petrochemical Industry Co., Ltd., "Sumitomo TPE" manufactured by Sumitomo Chemical Co., Ltd., and It can be obtained from the market as "Santoprene" manufactured by Advanced Elastomer Systems.
[0026]
A predetermined conductivity can be imparted to the conductive
[0027]
The amount of these conductive agents is appropriately selected according to the type of the composition, and the electric resistance of the conductive
[0028]
In the present invention, the hardness of the conductive elastic layer is preferably 70 degrees or more, and particularly preferably 73 degrees or more in Asker C. The upper limit of the hardness is preferably 95 degrees or less. If the hardness is less than 70 degrees, the amount of deformation at the time of contact with the member to be charged becomes large, so that the amount of permanent deformation at the contact portion tends to be large. Conversely, when the hardness exceeds 95 degrees, it is difficult to obtain uniform contact with the member to be charged.
[0029]
Preferred resins contained in the
[0030]
Further, an appropriate amount of an additive such as a crosslinking agent can be added to the conductive coating layer as needed in order to control the crosslinking density. In this case, any crosslinking agent may be used as long as the desired crosslinking effect can be obtained. For example, epoxy-based, oxazoline-based, melamine-based, isocyanate-based, and phenol-based crosslinking agents can be exemplified.
[0031]
The
[0032]
Further, when the conductive agent is used in an organic solvent, it is preferable that the surface of the conductive agent is subjected to a surface treatment such as a silane coupling treatment in consideration of dispersibility.
[0033]
Further, the amount of the conductive agent to be added can be appropriately adjusted so as to obtain a desired resistance. In this case, the resistance of the
[0034]
The electric resistance as a charging member is 10 3 -10 10 Ω, especially 10 5 -10 8 Ω is preferred.
[0035]
In the present invention, it is preferable to add elastic particles to the
[0036]
The average particle diameter of such elastic particles is preferably 5 to 30 μm, and particularly preferably 8 to 20 μm. The average particle size is measured as follows.
[0037]
That is, using a Coulter Counter Multisizer II (manufactured by Coulter) as a measuring device, an interface (manufactured by Nikkaki) for outputting a number distribution and a volume distribution and a CX-1 personal computer (manufactured by Canon) were connected, and an electrolytic solution was used. Prepares a 1% NaCl aqueous solution using special grade or primary grade sodium chloride. As a measurement method, 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, is added as a dispersant to 100 to 150 ml of the aqueous electrolytic solution, and 2 to 20 mg of a measurement sample is further added. The electrolyte in which the sample is suspended is subjected to dispersion treatment for about 1 to 3 minutes by an ultrasonic disperser, and the measurement is performed by using a 100 μm aperture as an aperture with the Multisizer II of the Coulter Counter. If the average particle diameter is less than 5 μm, it is difficult to improve the charging uniformity. If the average particle diameter exceeds 30 μm, the surface of the charging member is liable to be stained by a toner external additive after durability.
[0038]
Further, the content of the elastic particles is preferably 5 to 30% by mass, more preferably 8 to 20% by mass, based on the total mass of the conductive coating layer. When the content is less than 5% by mass, it is difficult to obtain the effect of improving the charging uniformity due to the addition of the particles, and when the content exceeds 30% by mass, black spots on an image tend to be caused.
[0039]
In addition, in FIG. 2, 12 and 13 show the same thing as FIG. 1, respectively.
[0040]
Further, in the present invention, the thickness of the
[0041]
The method of forming the
[0042]
In the present invention, an intermediate layer for the purpose of enhancing the adhesiveness between the conductive
[0043]
FIG. 3 shows an example in which a process cartridge using the charging member of the present invention is applied to an electrophotographic apparatus. Reference numeral 21 denotes a rotating drum type electrophotographic photosensitive member (photosensitive member) as an image carrier. The photoconductor 21 is driven to rotate at a predetermined peripheral speed (process speed) clockwise as indicated by an arrow in the drawing. As the photoconductor 21, for example, a known photoconductor having at least a roll-shaped conductive support and a photosensitive layer containing an inorganic photosensitive material or an organic photosensitive material on the support may be adopted. Further, the photoconductor 21 may further include a charge injection layer for charging the photoconductor surface to a predetermined polarity and potential.
[0044]
[0045]
23 is an exposure means. A known means can be used as the exposure means 23, and a laser beam scanner or the like can be preferably exemplified. L is exposure light.
[0046]
Image exposure corresponding to the target image information is performed on the charged surface of the photoreceptor 21 by the exposing
[0047]
24 is a reversal developing means. As the developing
[0048]
Reference numeral 25 denotes a transfer roller as transfer means. As the transfer roller 25, known means can be used, and examples thereof include a transfer roller formed by coating a conductive support such as a metal with an elastic resin layer adjusted to have a medium resistance. The transfer roller 25 is brought into contact with the photoconductor 21 with a predetermined pressing force, and rotates at a peripheral speed substantially equal to the rotation peripheral speed of the photoconductor 21 in a forward direction with the rotation of the photoconductor 21. Further, a transfer voltage having a polarity opposite to the charging characteristic of the toner is applied from the transfer bias applying power source S2. A transfer material P is fed from a paper feed mechanism (not shown) to a contact portion between the photoconductor 21 and the transfer roller at a predetermined timing, and the back surface of the transfer material P is charged by a transfer roller 25 to which a transfer voltage is applied. The toner image on the surface of the photoconductor 21 is electrostatically transferred to the surface of the transfer material P at the contact portion between the photoconductor 21 and the transfer roller.
[0049]
The transfer material P to which the toner image has been transferred is separated from the photoreceptor surface, introduced to a toner image fixing unit (not shown), and fixed to the toner image to be output as an image formed product. In the case of the double-sided image forming mode or the multiple image forming mode, this image-formed product is introduced into a recirculating transport mechanism (not shown) and is re-introduced into the transfer section.
[0050]
Residues on the photoreceptor 21 such as transfer residual toner are collected from the photoreceptor by cleaning means 26 such as a blade type.
[0051]
If residual charges remain on the photoconductor 21, it is better to remove the residual charges on the photoconductor 21 by a pre-exposure device (not shown) after the transfer and before performing the primary charging by the charging
[0052]
The process cartridge of the present invention has a structure in which at least the charging
[0053]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following.
[0054]
[Example 1]
(Formation of conductive elastic layer)
100 parts by mass of epichlorohydrin rubber (trade name “Epichromer CG102”: manufactured by Daiso Co., Ltd.), 30 parts by mass of calcium carbonate as a filler, colored grade carbon as a reinforcing material for improving abrasiveness (trade name “SEIST SO”) : Tokai Carbon) 2 parts by mass, zinc oxide 5 parts by mass, plasticizer (DOP: dioctyl phthalate) 10 parts by mass, perchloric acid quaternary ammonium salt having the following
[0055]
Embedded image
And 1 part by mass of an antioxidant (2-mercaptobenzimidazole) are kneaded with an open roll for 20 minutes, further 1 part by mass of a vulcanization accelerator (DM) and 1 part by mass of a vulcanization accelerator (TS: Tetramethylthiurammonosulfide). 5 parts by mass and 1 part by mass of sulfur as a vulcanizing agent were added, and the mixture was further kneaded with an open roll for 15 minutes.
[0056]
The obtained kneaded material was extruded into a cylindrical shape having an outer diameter of 15 mm and an inner diameter of 5.5 mm by a rubber extruder, cut into a length of 250 mm, and subjected to primary vulcanization with steam at 160 ° C. for 40 minutes in a vulcanizer, A conductive elastic layer primary vulcanized tube was obtained.
[0057]
Next, a thermosetting adhesive of metal and rubber (trade name: 231 mm) was applied to the center 231 mm in the axial direction of the cylindrical surface of the cylindrical conductive support (steel, industrial nickel plating) having a diameter of 6 mm and a length of 256 mm. Metallok U-20) was applied, dried at 80 ° C. for 30 minutes, and further dried at 120 ° C. for 1 hour. This support was inserted into the primary vulcanization tube of the conductive elastic layer, and then subjected to secondary vulcanization and curing of the adhesive at 160 ° C. for 2 hours using an electric oven to obtain an unpolished product. . After cutting both ends of the rubber portion of this unpolished product to make the length of the rubber portion 231 mm, the rubber portion is polished with a rotary grindstone, and the surface is formed in a crown shape having an end diameter of 9.7 mm and a central portion of 10.0 mm. A charging member having a conductive elastic layer having a ten-point average roughness (Rz) of 7 μm and a run-out of 25 μm was obtained.
[0058]
The charging member having the conductive elastic layer was left in an N / N (normal temperature and normal humidity: 23 ° C., 55% RH) environment for 24 hours, and a cylindrical electrode (metal roller) 31, a fixed
[0059]
(Formation of surface layer (conductive coating layer))
500 parts by mass of a 1% isopropyl alcohol solution of trifluoropropyltrimethoxysilane was added to 50 parts by mass of conductive tin oxide powder (trade name “SN-100P”: manufactured by Ishihara Sangyo Co., Ltd.) and the average particle diameter was 0.8 mm. After adding 300 parts by mass of glass beads and dispersing with a paint shaker for 70 hours, the dispersion was filtered through a 500-mesh net, and then the solution was warmed in a hot water bath at 100 ° C. while stirring with a Nauta mixer to remove alcohol. And dried to give a silane coupling agent on the surface to obtain a surface-treated conductive tin oxide.
[0060]
Further, 137 parts by mass of a lactone-modified acrylic polyol (trade name “Placcel DC2016 (hydroxyl value: 80 KOH mg / g)”: manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 463 parts by mass of MIBK (methyl isobutyl ketone) to obtain a solid content of 16.3 parts. The solution was 0% by mass. 41.6 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA” manufactured by Dow Corning Toray Silicone Co., Ltd.) were added to 200 parts by mass of this acrylic polyol solution. 0.01 parts by mass, 0.96 parts by mass of fine-particle silica (primary particle size 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (
[0061]
Further, 23.3 parts by mass of a block type isocyanurate-type trimer (IPDI) (trade name “Vestanat B1370”, manufactured by Degussa Hüls) and 330 parts by mass of the isocyanate of hexamethylene diisocyanate were added to 330 parts by mass of the dispersion. 14.9 parts by mass of a nurate type trimer (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.) was mixed, stirred for 1 hour by a ball mill, and finally, the solution was passed through a 200 mesh net. After filtration, the solid content was adjusted to 39% by mass to obtain a coating material for a surface layer.
[0062]
The paint for the surface layer was applied to the surface of the charging member having the conductive elastic layer by a dipping method. Coating was performed at a lifting speed of 400 mm / min, air-dried for 30 minutes, the axis direction was reversed, coating was performed again at a lifting speed of 400 mm / min, air-dried for 30 minutes, and dried at 160 ° C. for 1 hour using an oven. At this time, the film thickness was 25 μm. The electric resistance of this surface layer is 3.9 × 10 10 Ω. When the electric resistance of the charging member was measured in the same manner as in the case of the conductive elastic layer, it was 5.0 × 10 6 Ω.
[0063]
The viscoelasticity measurement of the surface layer is performed by applying a paint similar to the paint for the surface layer of the charging member on a 75 μm-thick aluminum sheet with a bar coater and drying in the same manner as when the surface layer of the charging member is formed. A film having a thickness of about 50 μm was formed, and the obtained sample was measured by using an itk DVA-220 dynamic viscoelasticity measurement device (IT Measurement Control Co., Ltd.). The measurement of Tg1 was performed at a constant humidity of 80% RH (under a nitrogen atmosphere), a temperature rising rate of 4 ° C./min, a frequency of 10 Hz, and a tensile mode. Similarly, Tg2 was carried out in a normal atmosphere (humidity 55% RH, under a nitrogen atmosphere), at a heating rate of 4 ° C./min, at a frequency of 10 Hz, and in a tensile mode. The sample of Example 1 had Tg1 = 80.0 ° C., Tg2 = 90.3 ° C., and ΔTg = 10.3 ° C.
[0064]
Further, in order to calculate the crosslink density, the following equation was used by using the storage elastic modulus E ′ of the rubbery region of the viscoelastic property under the above-mentioned normal atmosphere.
[0065]
ρ (E ') = E R '/ 3RT
(Where E R 'Indicates the storage modulus in the rubber region, R indicates the gas constant, and T indicates the absolute temperature. )
[0066]
Here, the value of Tg + 40 ° C. was used for E ′. The crosslink density ρ of the surface layer of Example 1 was 9.8 × 10 3 mol / m 3 Met.
[0067]
(Observation of the surface layer of the charging member)
The charging member obtained as described above was allowed to stand in an H / H environment for one week and then immediately left in an L / L environment, and its surface condition was visually checked every day for one week. A sample having no wrinkles on the surface was evaluated as ○, a sample slightly wrinkled at the end was evaluated as Δ, and a sample wrinkled on the entire charging member was evaluated as ×.
[0068]
(Evaluation of image)
Using the charging member obtained as described above, image evaluation was performed as described below.
[0069]
The electrophotographic laser printer used in this test was a reversal development type A4 vertical output machine equipped with a process cartridge having a charging member and a photoreceptor integrally. The output speed of the recording medium was 94 mm / sec. The image resolution is 600 dpi.
[0070]
The photosensitive member is a photosensitive drum in which an OPC layer having a thickness of 18 μm is coated on an aluminum cylinder, and the outermost layer is a charge transport layer using modified polycarbonate as a binder resin. The toner was prepared by polymerizing a random copolymer of styrene and butyl acrylate containing a charge control agent, a dye and the like mainly with wax, further polymerizing a thin polyester layer on the surface, and externally adding silica fine particles. The toner has a glass transition temperature of 63 ° C. and a volume average particle diameter of 6 μm.
[0071]
All image evaluations were performed in a low-temperature and low-humidity environment (L / L: 15 ° C., 10% RH), and A4 halftone (an image in which a horizontal line with a width of 1 dot and a spacing of 2 dots was drawn in the direction perpendicular to the rotation direction of the photoconductor) An image was output, and whether or not charging unevenness caused by surface wrinkles of the charging member occurred was visually observed. ◎ indicates that no charging unevenness occurred, ○ indicates that slight occurrence occurred, Δ indicates medium occurrence, and X indicates extremely unevenness.
[0072]
The charging member of Example 1 has no wrinkles on its surface even if left immediately in an L / L environment after being left for one week in an H / H environment. There was no occurrence and there was no problem at all.
[0073]
[Example 2]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0074]
Next, 144 parts by mass of a lactone-modified acrylic polyol (trade name “Placcel DC2209 (hydroxyl value: 12 KOH mg / g)”: manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 456 parts by mass of MIBK (methyl isobutyl ketone) to obtain a solid content of 16%. A solution of 0.0% by mass was obtained. 31.2 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA”: Dow Corning Toray Silicone Co., Ltd.) were added to 200 parts by mass of this acrylic polyol solution. 0.01 parts by mass, 0.72 parts by mass of fine-particle silica (primary particle size 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (
[0075]
Further, 4.8 parts by mass of a block type isocyanurate-type trimer (IPDI) (trade name “Vestanat B1370”, manufactured by Degussa Huls Co.) and 330 parts by mass of the isocyanate of hexamethylene diisocyanate were added to 330 parts by mass of this dispersion. 3.1 parts by mass of a nurate-type trimer (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.) is mixed, stirred by a ball mill for 1 hour, and finally, the solution is passed through a 200 mesh net. After filtration, the solid content was adjusted to 30% by mass to obtain a surface layer paint.
[0076]
The above-mentioned paint was dipped and applied under the same conditions as in Example 1 and dried to obtain a charging member of Example 2. At this time, the thickness of the surface layer was 30 μm, and the electric resistance was 2.7 × 10 10 Ω. The electric resistance of the charging member was 3.5 × 10 6 Ω.
[0077]
Furthermore, as a result of viscoelasticity measurement, Tg1 = 50.9 ° C., Tg2 = 58.3 ° C., ΔTg = 7.4 ° C., and the crosslink density ρ = 9.3 × 10 3 mol / m 3 Met.
[0078]
The charging member of Example 2 had no wrinkles on its surface even if left immediately in an L / L environment after being left for one week in an H / H environment, and even after image evaluation, image unevenness was observed. There was no occurrence and there was no problem at all.
[0079]
[Example 3]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0080]
Next, 137 parts by mass of a lactone-modified acrylic polyol (trade name “Placcel DC2009 (hydroxyl value: 90 KOHmg / g)”: manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 463 parts by mass of MIBK (methyl isobutyl ketone) to obtain a solid content of 16%. A solution of 0.0% by mass was obtained. 31.2 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA”: Dow Corning Toray Silicone Co., Ltd.) were added to 200 parts by mass of this acrylic polyol solution. 0.01 parts by mass, 0.96 parts by mass of fine-particle silica (primary particle size 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (
[0081]
Furthermore, a blocked isocyanate (trade name "Coronate 2520", manufactured by Nippon Polyurethane Co., Ltd.) in which 330 parts by mass of this dispersion is a PPG (polypropylene ether glycol) main chain and both ends are blocked with polymeric MDI (diphenylmethane diisocyanate) with MEK (methyl ethyl ketone) oxime ) And 15.1 parts by mass of an isocyanurate-type trimer of hexamethylene diisocyanate (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.), and 14.1 parts by mass of the mixture were mixed with a ball mill. The mixture was stirred for an hour, and finally, the solution was filtered through a 200-mesh net to make the solid content 41.5% by mass to obtain a coating for a surface layer.
[0082]
Using the above-mentioned paint, dipping was applied under the same conditions as in Example 1 and dried to obtain a charging member of Example 3. At this time, the thickness of the surface layer was 25 μm, and the electric resistance was 3.2 × 10 10 Ω. The electrical resistance of this charging member was 4.6 × 10 6 Ω.
[0083]
Further, as a result of viscoelasticity measurement, Tg1 = 67.9 ° C., Tg2 = 76.3 ° C., ΔTg = 8.4 ° C., and crosslink density ρ = 5.6 × 10 3 mol / m 3 Met.
[0084]
The charging member of Example 3 was left in an H / H environment for one week and then immediately left in an L / L environment without any wrinkles on its surface. There was no occurrence and there was no problem at all.
[0085]
[Example 4]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0086]
Next, 137 parts by mass of a lactone-modified acrylic polyol (trade name “Placcel DC2009 (hydroxyl value: 90 KOHmg / g)”: manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 463 parts by mass of MIBK (methyl isobutyl ketone) to obtain a solid content of 16%. A solution of 0.0% by mass was obtained. 41.6 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA” manufactured by Dow Corning Toray Silicone Co., Ltd.) were added to 200 parts by mass of this acrylic polyol solution. 0.01 parts by mass, 0.96 parts by mass of fine-particle silica (primary particle size 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (
[0087]
In addition, 15.3 parts by mass of a blocked isocyanate (trade name "Coronate 2516", manufactured by Nippon Polyurethane Co., Ltd.) obtained by blocking unmodified polymeric MDI with MEK oxime was added to 330 parts by mass of this dispersion, and isocyanurate-type triammonium hexamethylene diisocyanate was used. 16.5 parts by mass of a solid (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.), stirred for 1 hour with a ball mill, and finally filtered the solution with a 200 mesh net. The solid content was set to 40.0% by mass to obtain a paint for a surface layer.
[0088]
The charging member of Example 4 was obtained by dipping and drying the same coating material as in Example 1 under the same conditions as in Example 1. At this time, the thickness of the surface layer was 18 μm, and the electric resistance was 4.0 × 10 4. 10 Ω. The electric resistance of this charging member is 5.1 × 10 6 Ω.
[0089]
Further, as a result of viscoelasticity measurement, Tg1 = 69.8 ° C., Tg2 = 82.2 ° C., ΔTg = 12.4 ° C., and crosslink density ρ = 8.8 × 10 3 mol / m 3 Met.
[0090]
When the charging member of Example 4 was left under the H / H environment for one week and immediately left in the L / L environment, slight wrinkles were slightly observed at the end after 7 days. Some image unevenness occurred in that part.
[0091]
[Example 5]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0092]
Also, 163 parts by mass of a lactone-modified acrylic polyol (trade name “Placcel DC2016 (hydroxyl value: 80 KOH mg / g)”: manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 437 parts by mass of MIBK (methyl isobutyl ketone), and the solid content was 19. The solution was 0% by mass. For 200 parts by mass of this acrylic polyol solution, 49.4 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA”: manufactured by Dow Corning Toray Silicone Co., Ltd.) were added. 0.01 parts by mass, 1.14 parts by mass of fine-particle silica (primary particle size: 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (average particle size: 12 μm): manufactured by Sekisui Plastics Co., Ltd.) ) Was added, and 200 parts by mass of glass beads having a diameter of 0.8 mm were added. The mixture was placed in a 450 ml mayonnaise bottle, and dispersed using a paint shaker for 6 hours.
[0093]
Further, 23.3 parts by mass of a block type isocyanurate-type trimer (IPDI) (trade name “Vestanat B1370”, manufactured by Degussa Hüls) and 330 mass parts of isocyanate of hexamethylene diisocyanate were added to 330 parts by mass of this dispersion. 16.9 parts by mass of a nurate type trimer (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.) was mixed, stirred for 1 hour by a ball mill, and finally, the solution was passed through a 200 mesh net. After filtration, the solid content was adjusted to 43.8% by mass to obtain a surface layer paint.
[0094]
The charging member of Example 5 was obtained by dipping and drying under the same conditions as in Example 1 using the above paint. At this time, the thickness of the surface layer was 55 μm, and the electrical resistance was 2.9 × 10 10 Ω. The electric resistance of this charging member is 3.8 × 10 6 Ω.
[0095]
Further, as a result of viscoelasticity measurement, Tg1 = 80.0 ° C., Tg2 = 90.3 ° C., ΔTg = 10.3 ° C., and crosslink density ρ = 9.8 × 10 3 mol / m 3 Met.
[0096]
When the charging member of Example 5 was left in an H / H environment for one week and then immediately left in an L / L environment, a slight wrinkle was confirmed at the end after 6 days, and the generation of wrinkles was maintained until 7 days after that. However, in the subsequent image evaluation, a little image unevenness of the portion occurred.
[0097]
[Example 6]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0098]
Next, 144 parts by mass of a lactone-modified acrylic polyol (trade name “Placcel DC2209 (hydroxyl value: 12 KOH mg / g)”: manufactured by Daicel Chemical Industries, Ltd.) was dissolved in 456 parts by mass of MIBK (methyl isobutyl ketone) to obtain a solid content of 16%. A solution of 0.0% by mass was obtained. 31.2 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA”: Dow Corning Toray Silicone Co., Ltd.) were added to 200 parts by mass of this acrylic polyol solution. 0.01 parts by mass, 0.72 parts by mass of fine-particle silica (primary particle size 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (
[0099]
Further, to 330 parts by mass of this dispersion, 6.2 parts by mass of isocyanurate-type trimer of hexamethylene diisocyanate (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.) was mixed, and the mixture was mixed with a ball mill. The mixture was stirred for 1 hour, and finally, the solution was filtered through a 200-mesh net to make the solid content 29.8% by mass, to obtain a surface layer coating material.
[0100]
The charging member of Example 6 was obtained by using the above-mentioned paint and dipping and drying it under the same conditions as in Example 1. At this time, the thickness of the surface layer was 20 μm, and the electric resistance was 3.0 × 10 3 10 Ω. The electrical resistance of this charging member was 4.1 × 10 6 Ω.
[0101]
Further, as a result of viscoelasticity measurement, Tg1 = 42.2 ° C., Tg2 = 45.4 ° C., ΔTg = 3.2 ° C., and crosslink density ρ = 3.7 × 10 6 mol / m 3 Met.
[0102]
When the charging member of Example 6 was left in an H / H environment for one week and then immediately left in an L / L environment, a slight wrinkle was observed at the end after 4 days, and the generation of wrinkles was maintained as it was until 7 days later However, in the subsequent image evaluation, moderate image unevenness occurred in a portion corresponding to the portion.
[0103]
[Comparative Example 1]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0104]
Next, 137 parts by mass of a polyester polyol (trade name “Kyowapol 1000PA (hydroxyl value 112 KOHmg / g)”: manufactured by Kyowa Hakko Co., Ltd.) was dissolved in 463 parts by mass of MIBK (methyl isobutyl ketone), and the solid content was 16.0. % Solution. To 200 parts by mass of this polyester polyol solution, 41.6 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA” manufactured by Dow Corning Toray Silicone Co., Ltd.) were added. 0.01 parts by mass, 1.14 parts by mass of fine-particle silica (primary particle size: 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (average particle size: 12 μm): manufactured by Sekisui Plastics Co., Ltd.) ) Was added to 200 parts by mass of glass beads having a diameter of 0.8 mm and placed in a 450 ml mayonnaise bottle, and dispersed using a paint shaker for 6 hours.
[0105]
Further, 29.1 parts by mass of a block type isocyanurate-type trimer (IPDI) of isophorone diisocyanate (trade name “Vestanat B1370”, manufactured by Degussa Huls Co.) was added to 330 parts by mass of this dispersion, and isocyanate of hexamethylene diisocyanate was added. 13.3 parts by mass of a nurate-type trimer (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.) was mixed, stirred for 1 hour by a ball mill, and finally, the solution was passed through a 200 mesh net. After filtration, the solid content was adjusted to 39.6% by mass to obtain a coating material for a surface layer.
[0106]
The charging member of Comparative Example 1 was obtained by dipping and drying the same coating material under the same conditions as in Example 1. At this time, the thickness of the surface layer was 25 μm, and the electric resistance was 2.3 × 10 10 Ω. The electric resistance of this charging member is 2.8 × 10 6 Ω.
[0107]
Further, as a result of viscoelasticity measurement, Tg1 = 90.0 ° C., Tg2 = 108.3 ° C., ΔTg = 18.3 ° C., and crosslink density ρ = 1.2 × 10 4 mol / m 3 Met.
[0108]
When the charging member of Comparative Example 1 was left in an H / H environment for one week and then immediately left in an L / L environment, a slight wrinkle was confirmed at the end three days later, and after four days, the entire charging member was wrinkled. Occurred, and in the subsequent image evaluation, large image unevenness occurred at a portion corresponding to that portion.
[0109]
[Comparative Example 2]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0110]
Next, 76.0 parts by mass of the surface-treated conductive tin oxide powder were added to 200 parts by mass of an aqueous polyurethane (trade name “Superflex 150”: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and silicone oil (product) Name “SH-28PA”: 0.01 parts by mass of Dow Corning Toray Silicone Co., Ltd., 3.00 parts by mass of fine particle silica (primary particle diameter 0.02 μm), elastic particles (trade name “Techpolymer”) MBX-12 "(average particle diameter: 12 µm): 44.00 parts by mass of Sekisui Chemical Co., Ltd. and 200 parts by mass of glass beads having a diameter of 0.8 mm are added, and the mixture is placed in a 450 ml mayonnaise bottle and placed in a paint shaker. And dispersed for 6 hours.
[0111]
Using the above-mentioned paint, dipping was applied under the same conditions as in Example 1 and dried, whereby a charging member of Comparative Example 2 was obtained. At this time, the thickness of the surface layer was 30 μm, and the electric resistance was 3.1 × 10 3 10 Ω. The electrical resistance of this charging member was 4.5 × 10 6 Ω.
[0112]
Further, as a result of viscoelasticity measurement, Tg1 = 37.9 ° C., Tg2 = 40.4 ° C., ΔTg = 2.5 ° C., and the crosslink density ρ = 3.4 × 10 2 mol / m 3 Met.
[0113]
When the charging member of Comparative Example 2 was left in an H / H environment for one week and then immediately left in an L / L environment, wrinkles occurred on the entire charging member after three days, and the wrinkles appeared in that portion even in the subsequent image evaluation. Significant image unevenness occurred at the corresponding location.
[0114]
[Comparative Example 3]
In the same manner as in Example 1, a conductive elastic layer was formed on a conductive support.
[0115]
Next, 96 parts by mass of a polyester polyol (trade name “FLEXOREZ 188 (hydroxyl value 230 KOH mg / g)”: manufactured by Kusumoto Kasei Co., Ltd.) was dissolved in 504 parts by mass of MIBK (methyl isobutyl ketone), and the solid content was 16.0 parts by mass. % Solution. To 200 parts by mass of this polyester polyol solution, 41.6 parts by mass of the surface-treated conductive tin oxide powder and 0 parts of silicone oil (trade name “SH-28PA” manufactured by Dow Corning Toray Silicone Co., Ltd.) were added. 0.01 parts by mass, 0.96 parts by mass of fine-particle silica (primary particle size 0.02 μm), elastic particles (trade name “Techpolymer MBX-12” (
[0116]
Further, 27.3 parts by mass of isocyanurate-type trimer of hexamethylene diisocyanate (HDI) (trade name “Duranate TPA-B80E”: manufactured by Asahi Kasei Kogyo Co., Ltd.) was mixed with 330 parts by mass of the dispersion, and the mixture was mixed with a ball mill. The mixture was stirred for 1 hour, and finally, the solution was filtered through a 200-mesh net to reduce the solid content to 39% by mass to obtain a coating for a surface layer.
[0117]
Using the above-mentioned paint, dipping was applied under the same conditions as in Example 1 and dried, whereby a charging member of Comparative Example 2 was obtained. At this time, the thickness of the surface layer was 20 μm, and the electric resistance was 2.9 × 10 10 Ω. The electrical resistance of this charging member was 3.7 × 10 6 Ω.
[0118]
Further, as a result of the viscoelasticity measurement, Tg1 = 106.4 ° C., Tg2 = 112.3 ° C., ΔTg = 5.9 ° C., and the crosslink density ρ = 2.1 × 10 3 mol / m 3 Met.
[0119]
When the charging member of Comparative Example 3 was left under the H / H environment for one week and immediately left in the L / L environment, wrinkles were generated on the entire charging member after three days, and the wrinkle appeared in that portion in the subsequent image evaluation. Significant image unevenness occurred at corresponding locations.
[0120]
The above evaluation is shown in Table 1.
[0121]
[Table 1]
[0122]
The embodiments of the present invention have been described above. Preferred embodiments of the present invention are listed below.
[0123]
[Embodiment 1]
In a charging member having a conductive elastic layer on a conductive support and having a conductive coating layer as a surface layer on the conductive elastic layer, a glass transition temperature of the conductive coating layer at a relative humidity of 80% is obtained. (Tg1) is 40 ° C. <Tg1 <100 ° C., and the difference ΔTg (= Tg2-Tg1) between the glass transition temperature (Tg2) and the Tg1 of the conductive coating layer at 55% relative humidity is 3 ° C. <ΔTg < A charging member having a temperature of 15 ° C.
[0124]
[Embodiment 2]
The charging member according to
[0125]
[Embodiment 3]
The crosslink density ρ of the conductive coating layer is ρ <1 × 10 4 mol /
[0126]
[Embodiment 4]
The charging member according to any one of
[0127]
[Embodiment 5]
The charging member according to any one of
[0128]
[Embodiment 6]
The charging member according to embodiment 5, wherein the insulating particles are a cross-linkable acrylic resin or an acrylic / styrene copolymer resin.
[0129]
[Embodiment 7]
The charging member according to any one of
[0130]
[Embodiment 8]
An electrophotographic photoreceptor, the charging member according to any one of
[0131]
[Embodiment 9]
The process cartridge according to claim 8, wherein the voltage applied to the charging member is only a DC voltage.
[0132]
[Embodiment 10]
The electrophotographic photoreceptor, the charging member, the developing unit and the transfer unit according to any one of
[0133]
[Embodiment 11]
The electrophotographic apparatus according to embodiment 10, wherein the voltage applied to the charging member is only a DC voltage.
[0134]
【The invention's effect】
As described above, according to the present invention, a change in surface properties due to a sudden environmental change, that is, by suppressing surface wrinkles and controlling the surface properties, excellent charging uniformity even when only a DC voltage is applied. Thus, a charging member that does not cause image defects, a process cartridge using the charging member, and an electrophotographic apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a cross section of a charging roller as a charging member of the present invention.
FIG. 2 is an enlarged view of a cross section of the charging member of the present invention.
FIG. 3 is a schematic view showing an example of the charging device of the present invention.
FIG. 4 is a schematic view showing a charging roller current value measuring device which is a charging member of the present invention.
[Explanation of symbols]
11 conductive support
12 conductive elastic layer
13 Surface layer
14 Elastic particles
21 Image carrier (electrophotographic photoreceptor)
22 Charging member (charging roller)
23 Exposure means
24 Developing means
24a toner carrier
24b Stirring part
24c Toner regulating member
25 transfer means
26 Cleaning means
27 Process cartridge
31 Cylindrical electrode (metal roller)
32 fixed resistor
33 Recorder (Recorder)
L laser light
S1, S2, S3 bias application power supply
P transfer material
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002324000A JP4154214B2 (en) | 2002-11-07 | 2002-11-07 | Charging member, process cartridge, and electrophotographic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002324000A JP4154214B2 (en) | 2002-11-07 | 2002-11-07 | Charging member, process cartridge, and electrophotographic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004157384A true JP2004157384A (en) | 2004-06-03 |
JP4154214B2 JP4154214B2 (en) | 2008-09-24 |
Family
ID=32803721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002324000A Expired - Fee Related JP4154214B2 (en) | 2002-11-07 | 2002-11-07 | Charging member, process cartridge, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4154214B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006011072A (en) * | 2004-06-25 | 2006-01-12 | Ricoh Co Ltd | Charging device, image forming apparatus, and process cartridge |
JP2006091497A (en) * | 2004-09-24 | 2006-04-06 | Fuji Xerox Co Ltd | Semiconductive belt and image forming apparatus using the same |
JP2008058466A (en) * | 2006-08-30 | 2008-03-13 | Canon Chemicals Inc | Method for manufacturing electrifying roller |
JP2009175427A (en) * | 2008-01-24 | 2009-08-06 | Tokai Rubber Ind Ltd | Charging roll |
WO2010050372A1 (en) | 2008-10-27 | 2010-05-06 | キヤノン株式会社 | Electrificating member, method for manufacturing the electrificating member, process cartridge, and electrophotographic device |
JP2016110125A (en) * | 2014-11-28 | 2016-06-20 | キヤノン株式会社 | Electronic photography member and image formation device |
-
2002
- 2002-11-07 JP JP2002324000A patent/JP4154214B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006011072A (en) * | 2004-06-25 | 2006-01-12 | Ricoh Co Ltd | Charging device, image forming apparatus, and process cartridge |
JP4542379B2 (en) * | 2004-06-25 | 2010-09-15 | 株式会社リコー | Image forming apparatus and process cartridge |
JP2006091497A (en) * | 2004-09-24 | 2006-04-06 | Fuji Xerox Co Ltd | Semiconductive belt and image forming apparatus using the same |
JP2008058466A (en) * | 2006-08-30 | 2008-03-13 | Canon Chemicals Inc | Method for manufacturing electrifying roller |
JP2009175427A (en) * | 2008-01-24 | 2009-08-06 | Tokai Rubber Ind Ltd | Charging roll |
WO2010050372A1 (en) | 2008-10-27 | 2010-05-06 | キヤノン株式会社 | Electrificating member, method for manufacturing the electrificating member, process cartridge, and electrophotographic device |
US8980423B2 (en) | 2008-10-27 | 2015-03-17 | Canon Kabushiki Kaisha | Charging member, process for its production, process cartridge |
JP2016110125A (en) * | 2014-11-28 | 2016-06-20 | キヤノン株式会社 | Electronic photography member and image formation device |
Also Published As
Publication number | Publication date |
---|---|
JP4154214B2 (en) | 2008-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4047057B2 (en) | Method for manufacturing charging member | |
US8538287B2 (en) | Cleaning member for image forming apparatus, charging device, unit for image forming apparatus, process cartridge, and image forming apparatus | |
US10268132B2 (en) | Charging roller, cartridge, image forming apparatus and manufacturing method of the charging roller | |
JP7034813B2 (en) | Image forming device, charging member, cartridge, manufacturing method of charging member | |
JP5025983B2 (en) | Developing roller and image forming apparatus having the same | |
JP4154214B2 (en) | Charging member, process cartridge, and electrophotographic apparatus | |
US10871726B2 (en) | Image forming apparatus | |
JP2003207966A (en) | Member for electrophotography and image forming apparatus | |
JP4969730B2 (en) | Charging member and charging device | |
JP5609034B2 (en) | Charging device, method for manufacturing charging device, process cartridge, and image forming apparatus | |
JP3745278B2 (en) | Charging member and charging device and electrophotographic apparatus using the same | |
JP4966581B2 (en) | Developing roller and image forming apparatus having the same | |
JP2007101864A (en) | Charging component and electrophotographic system | |
JP2004294849A (en) | Electrifying member | |
JP2005157194A (en) | Electrifying member, process cartridge, and electrophotographic device | |
JP2002214880A (en) | Charging member and charging device | |
JP2004245933A (en) | Electrifying roller and electrifying device using the same | |
JP5768401B2 (en) | Conductive member, charging device, process cartridge, and image forming apparatus | |
JP4713900B2 (en) | Manufacturing method of conductive member and conductive member for electrophotography | |
JP2019028268A (en) | Image forming apparatus | |
JPH1145015A (en) | Intermediate transfer member | |
JP5776245B2 (en) | Conductive member, charging device, process cartridge, and image forming apparatus | |
JP2003207993A (en) | Charging member, image forming device, electrostatic charging method and process cartridge | |
JPH1173038A (en) | Intermediate transfer member and intermediate transfer device | |
JP4807985B2 (en) | Manufacturing method of charging roller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080707 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4154214 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |