JP2004149861A - Ag ALLOY FILM, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION - Google Patents
Ag ALLOY FILM, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION Download PDFInfo
- Publication number
- JP2004149861A JP2004149861A JP2002316973A JP2002316973A JP2004149861A JP 2004149861 A JP2004149861 A JP 2004149861A JP 2002316973 A JP2002316973 A JP 2002316973A JP 2002316973 A JP2002316973 A JP 2002316973A JP 2004149861 A JP2004149861 A JP 2004149861A
- Authority
- JP
- Japan
- Prior art keywords
- alloy film
- film
- atomic
- resistance
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Liquid Crystal (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、平面表示装置(フラットパネルディスプレイ、以下、FPDという)に加え、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品において、低い電気抵抗と耐食性、耐熱性、密着性を要求される電子部品に使用されるAg合金膜、Ag合金膜を有する表示装置およびAg合金膜形成用スパッタリングターゲット材に関するものである。FPDとしては例えば液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンス(以下、ELという)、電子ペーパー等利用される電気泳動型ディスプレイ等に用いることが好適である。
【0002】
【従来の技術】
ガラス基板上に薄膜デバイスを作成するFPD、薄膜センサ−、セラミック基板上に素子を形成する磁気ヘッド等に用いる電気配線膜、電極等には、低電気抵抗で、耐食性、耐熱性、基板との密着性に優れる金属であるAl合金膜、特にAl−Nd合金膜が用いられているが、近年、上記のような薄膜デバイス用金属膜では、より低電気抵抗の金属膜が要求されている。特に、FPDの分野においては、大型化、高精細化、高速応答が可能な薄膜トランジスタ(TFT)方式が広く採用されているが、その配線膜には信号遅延を防止するために低電気抵抗化の要求がある。たとえば、ノートパソコン等に用いられる12インチ以上の大型カラーLCDに用いられる配線では比抵抗を30μΩcm以下に、より大型の15インチのデスクトップパソコン用には10μΩcm以下とすることが要求されており、今後さらに高精細、高速応答が要求される20インチ以上の液晶テレビや小型の携帯情報端末等ではさらなる低電気抵抗の金属膜が要求されている。
【0003】
このため、Al−Nd合金膜にかえてさらに低電気抵抗であるAg膜の適用が検討されている。特に液晶ディスプレイにおいては、現在主流のアモルファスシリコンTFT駆動方式より高速応答が可能なポリシリコンTFT駆動方式を利用した液晶TV等の開発が進められている。ポリシリコンTFTの製造プロセスではアモルファスシリコンTFTよりもさらに高いプロセス温度となるために、配線材料にさらに高い耐熱性が要求される。このため、融点の低いAl合金であるAl−Nd合金では十分な耐熱性が確保できない。また、ポリシリコンTFTを駆動素子として用いて自発光な平面表示装置として有機ELディスプレイが注目されているが、有機ELディスプレイでは液晶ディスプレイと異なり電流駆動となるためさらに低い電気抵抗の配線が求められている。
【0004】
また、特に小型の携帯情報端末においては、耐衝撃性や軽量化のためにガラス基板等に替えて、樹脂基板や樹脂フィルム等を用いた平面表示装置が要求されている。既述のようにAl−Nd合金により低電気抵抗の配線膜を得るには加熱処理が必要であり、樹脂基板や樹脂フィルム等の場合に十分な加熱処理を行えないため、低電気抵抗を得難いという欠点も有している。このため、加熱処理を行わないプロセスにおいてもAl−Nd合金より低電気抵抗のAgの適応が検討されている。
【0005】
AgはAlより融点が高く、低電気抵抗であるために今後の配線材料として有望であるが、電子部品用の薄膜として用いる場合、基板に対する密着性が低く、さらに耐熱性、耐食性が低いという欠点を有する。
例えば、AgをFPDの配線膜として用いた場合、基板(例えばガラスやSiウェハ−、樹脂基板、樹脂フィルム、ステンレス箔等の耐食性の高い金属箔)に対する膜の密着性が低く、プロセス中に剥がれが生じるという問題を生じる。また、薄膜デバイスを製造する際の薄膜の応力緩和に伴う原子移動であるヒロックの発生と、平面表示装置製造時に基板材質や加熱雰囲気の影響により膜粒子が凝集し、膜表面の平滑性が低下したり、膜の連続性が失われることにより大幅に電気抵抗が増大することがある。また、耐食性が低いことに起因して、基板上に成膜した後、数日大気に放置しただけで変色したり、ディスプレイの製造時に使用する薬液により腐食され、大幅に電気抵抗が上昇したり、膜が剥離する等の問題があった。
【0006】
そこで、上記の問題を解決するために、AgにCuを0.1%原子以上添加したAg合金タ−ゲットを用いることで導電率と光学特性に優れたAg系薄膜を成膜できることが記載されているものがあり(例えば、特許文献1参照)、接着層上にPt、Pd、Au、Cu、Niを添加するAg合金を用いた反射型導電膜を用いることが記載されているものがある(例えば、特許文献2参照)。その他に、AgにPdを0.1〜3.0重量%、Al、Au、Pt、Cu、Ta、Cr、Ti,Ni,Co,Si等を合計で0.1〜3.0重量%添加する合金を用いた電子部品用金属材料等を提案しているものもある(例えば、特許文献3参照)。また、AgにRuを25重量%以下、CuまたはAuを25重量%以下添加する低抵抗なAg合金膜を開示するものある(例えば、特許文献4、特許文献5参照)。
【0007】
【特許文献1】
特開平8−260135号公報
【特許文献2】
特開平11−119664号公報
【特許文献3】
特開2001―192752号公報
【特許文献4】
特開2001−102325号公報
【特許文献5】
特開2002―266068号公報
【0008】
【発明が解決しようとする課題】
しかし、これらに開示される元素を添加した場合、電気抵抗の増加が大きく、低電気抵抗、密着性、耐食性、耐熱性およびパタニング性の全てを満足できるAg合金膜を得ることは出来ない。具体的には、例えば遷移金属であるTa、Cr、Ti,Ni、Co等や半金属であるAl等の元素は添加すると電気抵抗が増加し、含有量が1原子%を越えると現在要求されてる比抵抗である5μΩcmを越えてしまう。また貴金属元素であるPd、Pt、Auと同族元素であるCuを添加した場合は電気抵抗の増加は少ないが耐熱性に問題がある。
【0009】
本発明の目的は、低い電気抵抗と耐熱性、耐食性、そして基板への密着性およびパタニング性を兼ね備えたAg合金膜とそのAg合金膜を形成するためのスパッタリングターゲット材および低消費電力な平面表示装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するべく、鋭意検討を行った結果、Agに、選択した元素を複合添加してAg合金膜とすることにより、本来Agの持つ低い電気抵抗を大きく損なうことなく耐熱性および耐食性を向上し、さらに基板への密着性、パタニング性も改善できることを見いだし、本発明に到達した。
【0011】
すなわち、本発明は添加元素としてSiを0.1〜1.0原子%、(Cu、Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%、前記添加元素の総和が1.5原子%以下であり、残部実質的にAgからなるAg合金膜である。
【0012】
また、添加元素としてSiを0.1〜1.0原子%、(Cu、Ni、Ti、Ge)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%、前記添加元素の総和が1.5原子%以下であり、残部実質的にAgからなるAg合金膜である。
【0013】
また、本発明は、平面表示装置用ポリシリコン薄膜トランジスタ用の配線膜である上記組成のAg合金膜である。
また、本発明は、ガラス基板またはSiウェハー上に形成された上記組成のAg合金膜である。
また、本発明は、有機エレクトロルミネッセンスディスプレイ用の配線膜である上記組成のAg合金膜である。
また、本発明は比抵抗が5μΩcm以下の上記組成のAg合金膜である。
また、上記組成のAg合金膜を配線膜として有する平面表示装置である。
【0014】
また、本発明は添加元素としてSiを0.1〜1.0原子%、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%、前記添加元素の総和が1.5原子%以下であり、残部実質的にAgからなるAg合金膜形成用スパッタリングターゲット材である。
【0015】
また、本発明は添加元素としてSiを0.1〜1.0原子%、(Cu,Ni、Ti、Ge)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%、前記添加元素の総和が1.5原子%以下であり、残部実質的にAgからなるAg合金膜形成用スパッタリングターゲット材である。
【0016】
【発明の実施の形態】
本発明の特徴は、Ag自体の低電気抵抗をできる限り維持しながら、Agの有する欠点である密着性や耐食性、耐熱性を補うのに最適な合金構成を見いだしたところにある。
【0017】
通常、Ag膜を作製すると、膜としての電気抵抗は低いが、電子部品である平面表示装置(例えば液晶ディスプレイなど)を製造する際のプロセス上において種々の問題が発生することは上述の通りである。つまり、加熱により膜成長や凝集等が起こり、膜表面はより凹凸のある形状となったり、ボイドが発生したりする。そして、大気中で加熱すると膜表面が変色し、電気抵抗の増大の原因となる。そこで、本発明ではAgにSiを0.1〜1.0原子%、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)からなる群から選択される1種または2種以上の元素を合計で0.1〜0.7原子%、前記添加元素の総和が1.5原子%以下を複合添加することで、膜自体の変質を抑制しAgの欠点である耐熱性、耐食性、さらに平面表示装置用のガラス基板やSiウェハー等上での密着性、フォトエッチングによるパタニング性を改善することが可能となる。このために、優れた特性を有するAg合金膜やAg合金膜を用いた有機ELディスプレイ等の平面表示装置を得ることができる。
【0018】
以下に、本発明のAg合金膜において、添加元素としてSiおよび(Cu、Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)からなる群から選択される1種または2種以上の元素を選択した理由、ならびにその添加量に関して説明する。Agに添加元素を加えると電気抵抗は増加してしまうが、添加元素による耐熱性、耐食性の改善効果は添加量の増加とともに向上する。このため、低い電気抵抗を維持しながら上述のAgの欠点を改善するには添加元素は必要最少量でありながら十分な効果が得られるように調整する必要がある。
【0019】
先ず、各々の元素を単独で添加した際の効果について述べる。Siを含有することによる効果はAg合金膜の耐食性と耐熱性が改善できる点である。Siの含有量は0.1原子%からその改善効果があらわれるが、一方、1.0原子%を超えると耐食性や耐熱性には優れるものの電気抵抗が増加してしまう。そして、より低い電気抵抗を得るためには、Si添加量を0.7原子%以下とすることが望ましい。また、Siを単独で添加しただけでは基板との密着性が低く、例えば平面表示装置を製造する洗浄工程等で膜剥れを生じ、密着性の改善には不充分である。
【0020】
(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の群から選択される1種または2種以上の元素を含有することによる効果は、密着性と耐熱性を改善できる点である。これらの元素の含有量は0.1原子%からその効果があらわれるが、一方、Cuでは1.0原子%、その他の元素では0.7原子%を越えると電気抵抗の増加が大きくなってしまとともに耐食性が低下する。このため、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の群から選ばれる元素のみを添加したのでは電子部品用薄膜として、例えば平面表示装置を製造する際のプロセス中での環境に対する耐食性の改善には不充分であった。
【0021】
上述の通り、低電気抵抗、耐食性、耐熱性、密着性、パタニング性を兼ね備えたAg合金膜を得るために種々の元素を単独で添加するのでは不十分である。そのため、耐食性と耐熱性の改善に効果のあるSiと、密着性、耐熱性の改善に効果のある(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の群から選ばれる元素を複合添加した。
【0022】
その際の各々の最少添加量は0.1原子%以上であり、0.1原子%の添加量から膜特性の改善効果があらわれる点は上述のとおりである。このため、添加量の最少量は0.2原子%である。本発明において、Agに各種元素を各々単独で添加するよりも、微量に複合添加することによって、膜の粒成長をさらに抑制し、緻密で平滑な表面形態のAg合金膜とすることができる。このため膜中のボイドが減少し、電気抵抗の増加の抑制と、粒界腐食の抑制による耐食性の向上、さらに膜応力の低減により密着性を改善したAg合金膜とすることができる。
【0023】
さらに、複合添加する場合の各添加元素の上限量をSiが1.0原子%以下、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の群から選ばれる元素において0.7原子%以下とし、前記添加元素の総和が1.5原子%以下とした。この添加量を超えると低電気抵抗と耐食性、耐熱性、密着性およびパタニング性を兼ね備えたAg合金膜が得づらくなるためである。
【0024】
このため、その含有量はSiを0.1〜1.0原子%、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の群から選ばれる元素において0.1〜0.7原子%、添加元素の総和が1.5原子%以下とすることで優れた特性を有するAg合金膜を実現でき、平面表示装置用配線膜として最適な膜を得ることが可能となる。さらに低い電気抵抗のAg合金膜を得るためには、Siを0.1〜0.7原子%、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の群から選ばれる元素は合計で0.1〜0.4原子%、添加元素の総和が0.8原子%以下とすることがより望ましい。また、(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の中では(Cu、Ni、Ti、Ge)が望ましく、Siと複合添加した場合、密着性、耐熱性、さらに耐食性の改善効果が優れ、低い抵抗値が得やすい。
【0025】
本発明の上記添加元素による膜特性の改善効果の理由は明確ではないが次のように推測される。通常、スパッタリング等で形成される膜においては、その添加される元素は、マトリクス中に過飽和で固溶し、原子の移動を抑制することで微細な結晶粒を有する膜にすることが可能となる。半金属であるSiはAgに添加した場合に電気抵抗の増加が少なく、結晶粒の成長を抑制することで耐熱性を向上させている。(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)の元素はAgに対して固溶域を有するか、分離する元素であり、また、Siに対しては固溶域を有するか、化合物を形成する元素である。このため、Agに対して両者を添加することにより、AgやSiとの化合物や両者との複合化合物として粒界に偏析することで、Agの凝集を抑制して基板への密着性を向上させている。さらに、加熱工程においては複合添加した元素によりAgの原子移動抑制と粒界腐食を抑制し、耐熱性と耐食性を向上させていると考えられる。また、複合添加により、添加量を1.5原子%以下と最少量添加することで耐食性、耐熱性、密着性、パタニング性に優れると同時に、低電気抵抗なAg合金膜が得られると考えられる。
【0026】
また、AgにSiと貴金属であるAu、Pd、Pt、Ruを添加すると抵抗値の増加が少なく、しかも耐食性を向上させることができる。このため、上記元素と組み合わせて、これらの貴金属元素を添加することも有効である。しかし、これらの元素は高価であるため、工業的にはコスト面で問題がある。また、Auの場合0.5原子%を超えるとエッチング時に残さが発生しやすくなり、そして、1.0原子%を超えると残さが多くなりパタニング性が低下する問題がある。それに対して、本発明のAg合金はパタニング性にも優れ、低コストな材料である。
【0027】
本発明のAg合金膜を形成する際に用いる基板として、ガラス基板、Siウェハーを用いることが好適である。これらの基板は平面表示装置を製造する上でプロセス安定性に優れるとともに、本発明のAg合金膜を形成する際に基板を加熱することで、室温で成膜する場合より低い電気抵抗と高い密着性を有するAg合金膜を得ることが可能となるためである。
【0028】
また、本発明のAg合金膜はスパッタリング等により形成しただけの状態でも5μΩcm以下の低い比抵抗値を得ることが可能であるが、基板を加熱処理することでさらに低い比抵抗値の膜とすることが可能となる。特に添加元素量を調整し、250℃以上の温度で加熱処理することで3μΩcm以下の低電気抵抗なAg合金膜とすることも可能となる。このため、ガラス基板、Siウェハーを用いて加熱工程を有するポリシリコンTFTを形成するプロセスを有する有機ELディスプレイや液晶ディスプレイ等の配線膜に好適である。
また、本発明のAg合金膜は、反射特性も優れるため、反射膜としても好適である。
【0029】
これまでのAg−Cu合金、Ag−Pd合金やAg−Ru合金でも加熱処理を行うと電気抵抗は低下するが電気抵抗の低い場合は密着性や耐熱性が十分でなく、本発明のように多くの特性を満足できる合金膜はなかった。
【0030】
また、本発明のAg合金膜を形成する場合、ターゲット材を用いたスパッタリングが最適である。スパッタリング法ではターゲット材とほぼ同組成の膜が形成できるためであり、本発明のAg合金膜を安定に形成することが可能となる。このため本発明は、Ag合金膜と同じ組成を有するAg合金膜形成用スパッタリングターゲット材である。
【0031】
ターゲット材の製造方法については種々あるが、一般にターゲット材に要求される高純度、均一組織、高密度等を達成できるものであれば良い。例えば、真空溶解法により所定の組成に調整した溶湯を金属製の鋳型に鋳込み、さらにその後、鍛造、圧延等により板状に加工し、機械加工により所定の形状のターゲットに仕上げることで製造できる。また、さらに均一な組織を得るために粉末焼結法、またはスプレーフォーミング法(液滴堆積法)等の急冷凝固したインゴットを用いても良い。
【0032】
なお、本発明のAg合金膜形成用スパッタリングターゲット材は、上述したSiおよび(Cu,Ni、Al、Ti、Zr、Mn、Fe、Co、Ge)から選択した元素以外の成分元素は実質的にAgとしているが、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素、炭素やアルカリ金属、アルカリ土類元素、遷移金属、半金属を不可避的不純物として含んでもよい。
例えば、ガス成分の酸素、炭素、窒素は各々50ppm以下、Cr、Mo、Wは100ppm以下、Zn、Snは500ppm以下等であり、ガス成分を除いた純度として99.9%以上であれば良い。
【0033】
また、平面表示素子を製造する場合に用いる基板は、上述のようにガラス基板、Siウェハー等が好適であるが、スパッタリングで薄膜を形成できるものであればよく、例えば樹脂基板、金属基板、その他樹脂箔、金属箔等でもよい。
【0034】
本発明の電子部品用Ag合金膜は、安定した電気抵抗を得るために膜厚としては100〜300nmとすることが好ましい。膜厚が100nm未満であると、膜が薄いために電子の表面散乱影響で電気抵抗が上昇してしまうとともに、膜の表面形態が変化し易くなる。一方、膜厚が300nmを超えると、電気抵抗値は低いが、膜応力によって膜が剥がれ易くなったり、膜を形成する際に時間が掛かり、生産性が低下するためである。
【0035】
【実施例】
(実施例1)
Agに各種の添加元素を加えたAg合金膜の目標組成と実質的に同一となるように原料を配合し真空溶解炉にて溶解した後、鋳造することでAg合金インゴットを作製した。次に塑性加工により板状に加工した後、機械加工により直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。そのターゲット材を用いてスパッタリング法により平滑なガラス基板またはSiウェハー上に膜厚200nmの純Ag膜およびAg合金膜を形成し、4探針法により比抵抗を測定した。
【0036】
さらに、表示装置等の電子部品としての所定の製造工程を経た後での膜特性の変化を評価するために、上記で作製した純Ag膜およびAg合金膜を以下の条件で評価した。耐熱性評価として、純Ag膜およびAg合金膜を真空中で温度250℃、2時間の加熱処理をした後の比抵抗を測定した。また、耐食試験として純AgおよびAg合金膜を温度85℃、湿度90%の環境に24時間放置した後の比抵抗を測定した。また、膜の密着性を評価するために、加熱処理を行った純Ag膜、Ag合金膜に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にテープを貼り、引き剥がした。その際に基板上に残った桝目を面積率で表わし、密着性として評価した。また、パタニング性の評価として上記耐熱性評価を施した金属膜に、東京応化製のOFPR−800レジストをスピンコートにより塗布し、フォトマスクを用いて紫外線でレジストを露光後、東京応化製の有機アルカリ現像液NMD−3で現像してレジストパターンを作製し、リン酸、硝酸、酢酸、水の混合液でエッチングを行い、Ag合金膜パターンを形成した。その金属膜のパターンの剥れ、エッジの形状およびその周囲の残さ等について光学顕微鏡で観察し、膜剥れがなく残さがないものを良好と評価した。以上の測定した結果を表1に示す。
【0037】
【表1】
【0038】
純Ag膜(No.1)は、成膜時には3.0μΩcm以下の低い比抵抗を有し、加熱処理を行うとさらに電気抵抗は低下する。しかし、その密着性が低く、膜剥れが生じてパタニング性が劣ることがわかる。また、従来提案されているAgにPd、Cuを添加したAg合金膜(No.12)では、本発明のAg合金膜と同等の比抵抗を有しているが、耐食性が低く耐食性試験後に電気抵抗が増大するとともに密着性が低く、エッチング時に残さが生じることがわかる。
さらに、AgにCuを添加したAg−Cu合金(No.13)では耐熱性、密着性が低いことがわかる。また、Cu、Au、Ruを加えたAg合金膜(No.14)では抵抗値が高くエッチング時に残さが生じる。
【0039】
一方、本発明のAgにSiとCu、Ni、Ti、Zr、Al、Mn、Geを複合添加したAg合金膜(No.4〜9およびNo.15〜16)は、成膜時の比抵抗が5μΩcm以下と低く、熱処理後および耐食試験後でも低い比抵抗を維持し、密着性も大幅に改善される上に、パタニング性に優れていることがわかる。そして、その改善効果は上記添加量の増加により向上し、各元素の効果が0.1原子%以上で明確となる。ただし、Siの添加量が1.0原子%超、Cu、Ni、Ti、Zr、Al、Mn、Geの添加量が0.7原子%超、添加量の総和が1.5原子%を越えると5μΩcm以下の低抵抗が得られない。また、Si以外に添加する元素の中ではCu、Ni、Ti、Geが抵抗値の増加が少なく、3μΩcm以下の抵抗値を得るには、Siの添加量は0.5原子%以下、Cu、Ni、Ti、Geの添加量は0.4原子%以下で添加量の総和が0.8原子%以下が望ましいことがわかる。
【0040】
なお、No.15および16は、Siウエハー上にAg合金膜を形成した試料であるが、表1からも明らかな通り、ガラス基板上にAg合金膜を形成した場合と同様の結果が得られた。
【0041】
【発明の効果】
以上のように本発明であれば、低い電気抵抗と耐熱性、耐食性、そして基板との密着性およびパタニング性を改善したAg合金膜を得ることが可能である。よって、高精細、高速応答が要求される平面表示装置、高い耐熱性が要求されるポリシリコンTFTを用いる有機ELディスプレイ等の配線膜に有用であり、産業上の利用価値は高い。[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, in addition to a flat panel display (flat panel display, hereinafter, referred to as FPD), various semiconductor devices, thin film sensors, thin film electronic components such as magnetic heads are required to have low electric resistance, corrosion resistance, heat resistance, and adhesion. The present invention relates to an Ag alloy film used for an electronic component, a display device having the Ag alloy film, and a sputtering target material for forming an Ag alloy film. Examples of the FPD include a liquid crystal display (hereinafter, referred to as LCD), a plasma display panel (hereinafter, referred to as PDP), a field emission display (hereinafter, referred to as FED), electroluminescence (hereinafter, referred to as EL), and electrophoresis used for electronic paper. It is preferably used for a type display or the like.
[0002]
[Prior art]
Low electric resistance, corrosion resistance, heat resistance, and electrical wiring films used for FPDs and thin film sensors for forming thin film devices on glass substrates, magnetic heads for forming elements on ceramic substrates, etc. An Al alloy film, which is a metal having excellent adhesion, particularly an Al-Nd alloy film is used. In recent years, a metal film having a lower electric resistance has been required for the above-mentioned metal film for a thin film device. In particular, in the field of FPD, a thin film transistor (TFT) system capable of increasing the size, increasing the definition, and responding at a high speed has been widely adopted, but the wiring film has a low electric resistance in order to prevent signal delay. There is a request. For example, the wiring used for a large color LCD of 12 inches or more used for a notebook personal computer or the like is required to have a specific resistance of 30 μΩcm or less, and for a larger 15-inch desktop personal computer, it is required to have a specific resistance of 10 μΩcm or less. Further, a liquid crystal television having a size of 20 inches or more and a small portable information terminal, etc., which require high definition and high speed response, require a metal film having a further lower electric resistance.
[0003]
For this reason, application of an Ag film having lower electric resistance in place of the Al-Nd alloy film is being studied. In particular, in the case of liquid crystal displays, the development of liquid crystal TVs and the like using a polysilicon TFT driving method capable of responding at a higher speed than the current mainstream amorphous silicon TFT driving method is underway. In the manufacturing process of the polysilicon TFT, the process temperature is higher than that of the amorphous silicon TFT, so that the wiring material is required to have higher heat resistance. Therefore, sufficient heat resistance cannot be ensured with an Al-Nd alloy that is an Al alloy having a low melting point. Also, an organic EL display has been attracting attention as a self-luminous flat display device using a polysilicon TFT as a driving element. However, unlike the liquid crystal display, the organic EL display is driven by current, so wiring with even lower electric resistance is required. ing.
[0004]
In particular, particularly in a small portable information terminal, a flat display device using a resin substrate, a resin film, or the like instead of a glass substrate or the like is required for impact resistance and weight reduction. As described above, a heat treatment is necessary to obtain a wiring film having a low electric resistance by using an Al-Nd alloy, and a sufficient heat treatment cannot be performed in the case of a resin substrate, a resin film, or the like, so that it is difficult to obtain a low electric resistance. It also has the disadvantage. Therefore, application of Ag having lower electric resistance than Al-Nd alloy is being studied even in a process in which heat treatment is not performed.
[0005]
Ag has a higher melting point than Al and is promising as a wiring material in the future because of its low electrical resistance. However, when used as a thin film for electronic components, it has low adhesion to a substrate and low heat resistance and corrosion resistance. Having.
For example, when Ag is used as a wiring film of an FPD, the film has low adhesion to a substrate (for example, a glass or Si wafer, a resin substrate, a resin film, or a highly corrosion-resistant metal foil such as a stainless steel foil), and peels off during the process. Is caused. In addition, hillocks, which are atomic movements caused by stress relaxation of the thin film when manufacturing a thin film device, and film particles aggregate due to the influence of the substrate material and the heating atmosphere during the manufacture of a flat display device, and the smoothness of the film surface decreases. Or the loss of continuity of the film can significantly increase electrical resistance. In addition, due to the low corrosion resistance, after film formation on a substrate, discoloration occurs only by leaving it in the air for a few days, or it is corroded by chemicals used in display manufacturing, causing a significant increase in electrical resistance. There was a problem that the film was peeled off.
[0006]
Therefore, in order to solve the above problem, it is described that an Ag-based thin film having excellent conductivity and optical characteristics can be formed by using an Ag alloy target in which Cu is added with 0.1% or more atoms of Ag. (For example, see Patent Document 1), and there is a description that a reflective conductive film using an Ag alloy to which Pt, Pd, Au, Cu, and Ni are added is used on an adhesive layer. (For example, see Patent Document 2). In addition, 0.1 to 3.0% by weight of Pd and 0.1 to 3.0% by weight of Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, Si, etc. are added to Ag. There has been proposed a metal material for an electronic component or the like using an alloy (for example, see Patent Document 3). Further, there is a disclosure of a low-resistance Ag alloy film in which 25% by weight or less of Ru and 25% by weight or less of Cu or Au are added to Ag (for example, see Patent Documents 4 and 5).
[0007]
[Patent Document 1]
JP-A-8-260135 [Patent Document 2]
JP-A-11-119664 [Patent Document 3]
JP 2001-192752 A [Patent Document 4]
JP 2001-102325 A [Patent Document 5]
JP, 2002-266068, A
[Problems to be solved by the invention]
However, when the elements disclosed therein are added, the electrical resistance is greatly increased, and it is not possible to obtain an Ag alloy film which satisfies all of low electrical resistance, adhesion, corrosion resistance, heat resistance and patterning properties. Specifically, for example, the addition of elements such as transition metals such as Ta, Cr, Ti, Ni, and Co and semimetals such as Al increases the electric resistance, and is required at present when the content exceeds 1 atomic%. Exceeds the specific resistance of 5 μΩcm. In addition, when Cu, which is a homologous element to Pd, Pt, and Au, which are noble metal elements, is added, the increase in electric resistance is small, but there is a problem in heat resistance.
[0009]
An object of the present invention is to provide an Ag alloy film having low electric resistance, heat resistance, corrosion resistance, adhesion to a substrate and patterning properties, a sputtering target material for forming the Ag alloy film, and a flat display with low power consumption. It is to provide a device.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by adding a selected element to Ag to form an Ag alloy film, the low electric resistance inherent to Ag is greatly impaired. It has been found that the heat resistance and the corrosion resistance can be improved without any problem, and that the adhesion to the substrate and the patterning property can be improved.
[0011]
That is, the present invention provides one or two elements selected from the group consisting of 0.1 to 1.0 atomic% of Si as an additive element and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge). The Ag alloy film is composed of a total of 0.1 to 0.7 atomic% of at least one kind of element and a total of 1.5 atomic% or less of the additional elements, and the balance is substantially made of Ag.
[0012]
Further, as an additive element, 0.1 to 1.0 atomic% of Si and one or two or more elements selected from the group consisting of (Cu, Ni, Ti, Ge) are used in a total of 0.1 to 0. The Ag alloy film is 7 atomic%, the total sum of the additional elements is 1.5 atomic% or less, and the balance is substantially made of Ag.
[0013]
Further, the present invention is an Ag alloy film having the above composition, which is a wiring film for a polysilicon thin film transistor for a flat display device.
Further, the present invention is an Ag alloy film having the above composition formed on a glass substrate or a Si wafer.
Further, the present invention is an Ag alloy film having the above composition, which is a wiring film for an organic electroluminescence display.
Further, the present invention is an Ag alloy film having the above composition having a specific resistance of 5 μΩcm or less.
Further, the flat display device has an Ag alloy film having the above composition as a wiring film.
[0014]
Further, the present invention provides one or two elements selected from the group consisting of 0.1 to 1.0 atomic% of Si as an additional element and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge). This is a sputtering target material for forming an Ag alloy film, which comprises at least 0.1 to 0.7 atomic% in total of at least one kind of element and the total of the additional elements is 1.5 atomic% or less, and the balance substantially consists of Ag.
[0015]
Further, the present invention includes 0.1 to 1.0 atomic% of Si as an additive element and one or two or more elements selected from the group consisting of (Cu, Ni, Ti, Ge) in a total amount of 0.1%. This is a sputtering target material for forming an Ag alloy film, which is composed of at most 0.7 atomic% and a total of 1.5 atomic% or less of the additional elements, and the balance is substantially made of Ag.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
A feature of the present invention is to find an alloy composition that is most suitable for compensating for the adhesion, corrosion resistance, and heat resistance, which are disadvantages of Ag, while maintaining the low electrical resistance of Ag as much as possible.
[0017]
Normally, when an Ag film is manufactured, the electrical resistance as a film is low, but various problems occur in the process of manufacturing a flat display device (for example, a liquid crystal display) as an electronic component as described above. is there. That is, film growth, aggregation, and the like occur due to heating, and the film surface becomes more uneven, and voids are generated. Then, when heated in the air, the film surface is discolored, which causes an increase in electric resistance. Therefore, in the present invention, one or two selected from the group consisting of 0.1 to 1.0 atomic% of Si and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge) in Ag. The combined addition of the above elements in a total amount of 0.1 to 0.7 atomic% and a total of the added elements of 1.5 atomic% or less suppresses the deterioration of the film itself, and has the heat resistance, which is a disadvantage of Ag, It is possible to improve corrosion resistance, adhesion on a glass substrate for a flat panel display, a Si wafer, or the like, and patterning by photoetching. For this reason, a flat display device such as an organic EL display using an Ag alloy film or an Ag alloy film having excellent characteristics can be obtained.
[0018]
Hereinafter, in the Ag alloy film of the present invention, one or more elements selected from the group consisting of Si and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge) as additional elements The reason why was selected and the amount of addition are described. When an additive element is added to Ag, the electric resistance increases, but the effect of improving the heat resistance and corrosion resistance by the additive element increases with an increase in the additive amount. Therefore, in order to improve the above-mentioned disadvantage of Ag while maintaining a low electric resistance, it is necessary to adjust the additive element so that a sufficient effect can be obtained although the necessary amount of the additive element is minimum.
[0019]
First, the effect of adding each element alone will be described. The effect of containing Si is that the corrosion resistance and heat resistance of the Ag alloy film can be improved. The effect of improving the Si content is 0.1% by atom. On the other hand, if it exceeds 1.0% by atom, the electrical resistance increases although the corrosion resistance and heat resistance are excellent. Then, in order to obtain a lower electric resistance, it is desirable that the amount of Si added be 0.7 atomic% or less. Further, if Si alone is added, the adhesion to the substrate is low, and the film is peeled off in, for example, a cleaning process for manufacturing a flat panel display device, which is insufficient for improving the adhesion.
[0020]
The effect of containing one or more elements selected from the group of (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge) is that the adhesion and heat resistance can be improved. It is. The effect is apparent from the content of 0.1 atomic% of these elements. On the other hand, when the content exceeds 1.0 atomic% for Cu and 0.7 atomic% for other elements, the increase in electric resistance increases. At the same time, the corrosion resistance decreases. Therefore, if only an element selected from the group of (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, and Ge) is added, a process for manufacturing a flat display device, for example, as a thin film for an electronic component. It was not enough to improve the corrosion resistance to the environment inside.
[0021]
As described above, it is not sufficient to add various elements alone to obtain an Ag alloy film having low electric resistance, corrosion resistance, heat resistance, adhesion, and patterning properties. Therefore, it is selected from the group of Si, which is effective in improving corrosion resistance and heat resistance, and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge), which is effective in improving adhesion and heat resistance. Elements were added in combination.
[0022]
At this time, the minimum addition amount of each is 0.1 atomic% or more, and the point that the effect of improving the film characteristics appears from the addition amount of 0.1 atomic% is as described above. For this reason, the minimum amount of addition is 0.2 atomic%. In the present invention, by adding a trace amount of each of the various elements to Ag rather than adding each element alone, it is possible to further suppress the grain growth of the film and obtain an Ag alloy film having a dense and smooth surface morphology. For this reason, voids in the film are reduced, and an Ag alloy film in which the increase in electric resistance, the improvement in corrosion resistance by suppressing intergranular corrosion, and the improvement in adhesion due to the reduction in film stress can be obtained.
[0023]
Further, the upper limit of each additive element in the case of complex addition is set to 0 atomic% or less in an element selected from the group of (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge). 0.7 atomic% or less, and the total sum of the additional elements is 1.5 atomic% or less. If the amount exceeds the above range, it becomes difficult to obtain an Ag alloy film having both low electric resistance and corrosion resistance, heat resistance, adhesion and patterning properties.
[0024]
For this reason, the content is 0.1 to 1.0 atomic% of Si and 0.1 to 0 in an element selected from the group of (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge). An Ag alloy film having excellent properties can be realized by setting the atomic ratio of 0.7 atomic% and the total sum of the added elements to 1.5 atomic% or less, and it is possible to obtain an optimal film as a wiring film for a flat display device. In order to obtain an Ag alloy film having a lower electric resistance, Si is selected from the group of 0.1 to 0.7 atomic% and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge). More preferably, the total amount of the elements is 0.1 to 0.4 atomic%, and the sum of the added elements is 0.8 atomic% or less. Further, among (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge), (Cu, Ni, Ti, Ge) is desirable, and when combined with Si, adhesion, heat resistance, The effect of improving corrosion resistance is excellent, and a low resistance value is easily obtained.
[0025]
The reason for the effect of improving the film properties by the above-mentioned additional element of the present invention is not clear, but is presumed as follows. Usually, in a film formed by sputtering or the like, the added element dissolves in the matrix due to supersaturation, and it becomes possible to form a film having fine crystal grains by suppressing the movement of atoms. . Si, which is a metalloid, has a small increase in electric resistance when added to Ag, and improves heat resistance by suppressing the growth of crystal grains. The elements (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, and Ge) have a solid solution region with respect to Ag or separate from Ag, and have a solid solution region with respect to Si. Element that has or forms a compound. For this reason, by adding both to Ag, it segregates at the grain boundary as a compound with Ag or Si or a compound with both, thereby suppressing aggregation of Ag and improving adhesion to the substrate. ing. Further, it is considered that in the heating step, the atom addition of Ag and the intergranular corrosion are suppressed by the compositely added element, and the heat resistance and the corrosion resistance are improved. Further, it is considered that by adding the compound in a minimum amount of 1.5 atomic% or less, an Ag alloy film having excellent corrosion resistance, heat resistance, adhesion, and patterning properties and low electric resistance can be obtained. .
[0026]
When Si and the noble metals Au, Pd, Pt, and Ru are added to Ag, the increase in resistance value is small and the corrosion resistance can be improved. For this reason, it is also effective to add these noble metal elements in combination with the above elements. However, since these elements are expensive, there is an industrial problem in terms of cost. Further, in the case of Au, if it exceeds 0.5 atomic%, residues tend to be generated during etching, and if it exceeds 1.0 atomic%, there is a problem that the residual increases and the patterning property deteriorates. In contrast, the Ag alloy of the present invention has excellent patterning properties and is a low-cost material.
[0027]
It is preferable to use a glass substrate or a Si wafer as the substrate used when forming the Ag alloy film of the present invention. These substrates have excellent process stability in manufacturing a flat panel display, and have a lower electric resistance and a higher adhesion than a film formed at room temperature by heating the substrate when forming the Ag alloy film of the present invention. This is because it becomes possible to obtain an Ag alloy film having properties.
[0028]
Although the Ag alloy film of the present invention can obtain a low specific resistance value of 5 μΩcm or less even in a state where it is formed only by sputtering or the like, a film having a lower specific resistance value can be obtained by heating the substrate. It becomes possible. In particular, by adjusting the amount of the added element and performing a heat treatment at a temperature of 250 ° C. or more, it becomes possible to form an Ag alloy film having a low electric resistance of 3 μΩcm or less. Therefore, it is suitable for a wiring film such as an organic EL display or a liquid crystal display having a process of forming a polysilicon TFT having a heating step using a glass substrate or a Si wafer.
Further, the Ag alloy film of the present invention has excellent reflection characteristics, and is therefore suitable as a reflection film.
[0029]
Even if a conventional Ag-Cu alloy, Ag-Pd alloy or Ag-Ru alloy is subjected to heat treatment, the electric resistance is reduced, but when the electric resistance is low, the adhesion and heat resistance are not sufficient, as in the present invention. No alloy film could satisfy many properties.
[0030]
When forming the Ag alloy film of the present invention, sputtering using a target material is optimal. This is because a film having substantially the same composition as the target material can be formed by the sputtering method, so that the Ag alloy film of the present invention can be formed stably. Therefore, the present invention is a sputtering target material for forming an Ag alloy film having the same composition as the Ag alloy film.
[0031]
Although there are various methods for manufacturing the target material, any method can be used as long as it can achieve high purity, uniform structure, high density, and the like generally required for the target material. For example, it can be manufactured by pouring a molten metal adjusted to a predetermined composition by a vacuum melting method into a metal mold, further processing it into a plate shape by forging, rolling, or the like, and finishing it into a target having a predetermined shape by machining. Further, in order to obtain a more uniform structure, an ingot obtained by rapid solidification such as a powder sintering method or a spray forming method (droplet deposition method) may be used.
[0032]
In addition, the sputtering target material for forming an Ag alloy film of the present invention is characterized in that component elements other than the above-mentioned elements selected from Si and (Cu, Ni, Al, Ti, Zr, Mn, Fe, Co, Ge) are substantially included. Although Ag is used, gas components such as oxygen, nitrogen, carbon, an alkali metal, an alkaline earth element, a transition metal, and a metalloid may be contained as inevitable impurities as long as the function of the present invention is not impaired.
For example, oxygen, carbon, and nitrogen of the gas components are each 50 ppm or less, Cr, Mo, and W are 100 ppm or less, Zn and Sn are 500 ppm or less, and the purity excluding the gas components may be 99.9% or more. .
[0033]
In addition, the substrate used for manufacturing the flat display element is preferably a glass substrate, a Si wafer, or the like as described above, but may be any as long as it can form a thin film by sputtering, such as a resin substrate, a metal substrate, and the like. A resin foil, a metal foil or the like may be used.
[0034]
The Ag alloy film for electronic parts of the present invention preferably has a thickness of 100 to 300 nm in order to obtain stable electric resistance. When the film thickness is less than 100 nm, the electric resistance increases due to the surface scattering effect of electrons because the film is thin, and the surface morphology of the film tends to change. On the other hand, when the film thickness exceeds 300 nm, the electric resistance value is low, but the film is easily peeled off due to film stress, and it takes time to form the film, and the productivity is reduced.
[0035]
【Example】
(Example 1)
Raw materials were blended so as to be substantially the same as the target composition of the Ag alloy film in which Ag was added with various additive elements, melted in a vacuum melting furnace, and then cast to produce an Ag alloy ingot. Next, after forming into a plate shape by plastic working, a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining. Using the target material, a 200-nm-thick pure Ag film and an Ag alloy film were formed on a smooth glass substrate or a Si wafer by a sputtering method, and the specific resistance was measured by a four-probe method.
[0036]
Further, in order to evaluate a change in film characteristics after a predetermined manufacturing process as an electronic component such as a display device, the pure Ag film and the Ag alloy film produced above were evaluated under the following conditions. As the heat resistance evaluation, the specific resistance of the pure Ag film and the Ag alloy film after the heat treatment at 250 ° C. for 2 hours in a vacuum was measured. Further, as a corrosion resistance test, the specific resistance of the pure Ag and Ag alloy films after being left in an environment of a temperature of 85 ° C. and a humidity of 90% for 24 hours was measured. Further, in order to evaluate the adhesion of the film, a cut was made in a grid pattern at intervals of 2 mm in the heat-treated pure Ag film and Ag alloy film, and then a tape was attached to the film surface and peeled off. At that time, the cells remaining on the substrate were expressed by area ratio and evaluated as adhesion. In addition, OFPR-800 resist manufactured by Tokyo Ohka Co., Ltd. is applied to the metal film subjected to the heat resistance evaluation as an evaluation of the patterning property by spin coating, and the resist is exposed to ultraviolet light using a photomask. A resist pattern was prepared by developing with an alkali developing solution NMD-3, and etching was performed with a mixed solution of phosphoric acid, nitric acid, acetic acid, and water to form an Ag alloy film pattern. The pattern of the metal film was peeled off, the shape of the edge and the residue around the metal film were observed with an optical microscope, and a film having no film peeling and no residue was evaluated as good. Table 1 shows the results of the above measurements.
[0037]
[Table 1]
[0038]
The pure Ag film (No. 1) has a low specific resistance of 3.0 μΩcm or less at the time of film formation, and the electric resistance further decreases when heat treatment is performed. However, it can be seen that the adhesion is low, the film is peeled off, and the patterning property is inferior. The Ag alloy film (No. 12) obtained by adding Pd and Cu to Ag, which has been conventionally proposed, has the same specific resistance as the Ag alloy film of the present invention, but has a low corrosion resistance and an electric resistance after the corrosion resistance test. It can be seen that the resistance is increased, the adhesion is low, and a residue is generated during etching.
Further, it can be seen that the Ag-Cu alloy (No. 13) obtained by adding Cu to Ag has low heat resistance and low adhesion. Further, the Ag alloy film (No. 14) to which Cu, Au, and Ru are added has a high resistance value, and a residue occurs during etching.
[0039]
On the other hand, Ag alloy films (Nos. 4 to 9 and Nos. 15 to 16) in which Ag and Si, Cu, Ni, Ti, Zr, Al, Mn, and Ge are added to Ag in the present invention have specific resistances during film formation. It can be seen that the low specific resistance is maintained at 5 μΩcm or less, the low specific resistance is maintained even after the heat treatment and the corrosion resistance test, the adhesion is largely improved, and the patterning property is excellent. The improvement effect is improved by increasing the amount of addition, and the effect of each element becomes clear at 0.1 atomic% or more. However, the addition amount of Si exceeds 1.0 at%, the addition amount of Cu, Ni, Ti, Zr, Al, Mn, and Ge exceeds 0.7 at%, and the total amount of addition exceeds 1.5 at%. And a low resistance of 5 μΩcm or less cannot be obtained. Among elements to be added other than Si, Cu, Ni, Ti, and Ge have a small increase in the resistance value, and in order to obtain a resistance value of 3 μΩcm or less, the addition amount of Si is 0.5 atomic% or less, Cu, It is understood that the addition amounts of Ni, Ti, and Ge are preferably 0.4 atomic% or less, and the total amount of the addition is preferably 0.8 atomic% or less.
[0040]
In addition, No. Samples 15 and 16 were samples in which an Ag alloy film was formed on a Si wafer. As is clear from Table 1, the same results were obtained as when the Ag alloy film was formed on a glass substrate.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an Ag alloy film having improved low electric resistance, heat resistance, corrosion resistance, adhesion to a substrate, and patterning properties. Therefore, it is useful for a wiring film such as a flat display device that requires high definition and high-speed response and an organic EL display using a polysilicon TFT that requires high heat resistance, and has high industrial utility value.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316973A JP3778443B2 (en) | 2002-10-31 | 2002-10-31 | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316973A JP3778443B2 (en) | 2002-10-31 | 2002-10-31 | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004149861A true JP2004149861A (en) | 2004-05-27 |
JP3778443B2 JP3778443B2 (en) | 2006-05-24 |
Family
ID=32460482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002316973A Expired - Fee Related JP3778443B2 (en) | 2002-10-31 | 2002-10-31 | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3778443B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006106720A (en) * | 2004-09-09 | 2006-04-20 | Hitachi Metals Ltd | Reflecting film |
WO2010101904A2 (en) * | 2009-03-05 | 2010-09-10 | Applied Materials, Inc. | Improve adhesion between azo and ag for the back contact in tandem junction cell by metal alloy |
WO2015008540A1 (en) * | 2013-07-19 | 2015-01-22 | 三菱マテリアル株式会社 | Ag ALLOY SPUTTERING TARGET |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61133350A (en) * | 1984-12-03 | 1986-06-20 | Hitachi Ltd | Alloy capable of varying spectral reflectance and recording material |
JPH06279992A (en) * | 1993-03-25 | 1994-10-04 | Tanaka Kikinzoku Kogyo Kk | High purity ag for vapor deposition |
JP2003155559A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
JP2003155558A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
JP2003155560A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
JP2004002929A (en) * | 2001-08-03 | 2004-01-08 | Furuya Kinzoku:Kk | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material |
-
2002
- 2002-10-31 JP JP2002316973A patent/JP3778443B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61133350A (en) * | 1984-12-03 | 1986-06-20 | Hitachi Ltd | Alloy capable of varying spectral reflectance and recording material |
JPH06279992A (en) * | 1993-03-25 | 1994-10-04 | Tanaka Kikinzoku Kogyo Kk | High purity ag for vapor deposition |
JP2004002929A (en) * | 2001-08-03 | 2004-01-08 | Furuya Kinzoku:Kk | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material |
JP2003155559A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
JP2003155558A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
JP2003155560A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006106720A (en) * | 2004-09-09 | 2006-04-20 | Hitachi Metals Ltd | Reflecting film |
WO2010101904A2 (en) * | 2009-03-05 | 2010-09-10 | Applied Materials, Inc. | Improve adhesion between azo and ag for the back contact in tandem junction cell by metal alloy |
WO2010101904A3 (en) * | 2009-03-05 | 2011-01-13 | Applied Materials, Inc. | Improve adhesion between azo and ag for the back contact in tandem junction cell by metal alloy |
WO2015008540A1 (en) * | 2013-07-19 | 2015-01-22 | 三菱マテリアル株式会社 | Ag ALLOY SPUTTERING TARGET |
JP2015038238A (en) * | 2013-07-19 | 2015-02-26 | 三菱マテリアル株式会社 | Ag ALLOY SPUTTERING TARGET |
TWI613305B (en) * | 2013-07-19 | 2018-02-01 | 三菱綜合材料股份有限公司 | Ag alloy sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JP3778443B2 (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4496518B2 (en) | Thin film wiring | |
KR100638977B1 (en) | Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY | |
JP4305809B2 (en) | Ag alloy-based sputtering target material | |
KR100506474B1 (en) | Ag FILM AND SPUTTERING-TARGET FOR FORMING THE Ag FILM | |
WO2011102396A1 (en) | Al alloy film for display device | |
JP4022891B2 (en) | Al alloy film for wiring film and sputtering target material for forming wiring film | |
JP4655281B2 (en) | Thin film wiring layer | |
TWI247812B (en) | Aluminum alloy film for wiring and sputter target material for forming the film | |
JP3778443B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP2004061844A (en) | Ag ALLOY FILM FOR DISPLAY DEVICE, Ag ALLOY REFLECTING FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION | |
JP4103067B2 (en) | Ag alloy reflective film for flat panel display | |
JP3778425B2 (en) | Ag alloy film for electronic parts used for display device and sputtering target material for forming Ag alloy film for electronic parts used for display device | |
JP3994386B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP2003293054A (en) | Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM | |
JP4062599B2 (en) | Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film | |
JP4009165B2 (en) | Al alloy thin film for flat panel display and sputtering target for forming Al alloy thin film | |
EP3064603B1 (en) | Silver alloy film, and sputtering target for forming silver alloy film | |
JP4001823B2 (en) | Sputtering target material for thin film formation, thin film, electrode wiring layer, optical recording medium, electronic component, electro-optical component, and electronic equipment | |
JP3982793B2 (en) | Ag alloy reflective film for display device | |
JP2006210033A (en) | Laminated circuit board having al wiring and coated with transparent conductive film, and manufacturing method thereof | |
JP2004238648A (en) | Ag-ALLOY FILM FOR ELECTRONIC PART, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR DEPOSITING Ag-ALLOY FILM FOR ELECTRONIC PART | |
JP2005091543A (en) | Thin film wiring layer | |
JP2004204254A (en) | Ag ALLOY FILM, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION | |
JP5099504B2 (en) | Wiring and electrodes for liquid crystal display devices with excellent adhesion | |
JP6033493B1 (en) | Copper-based alloy sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060223 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110310 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110310 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130310 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130310 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140310 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |