【0001】
【発明の属する技術分野】
この発明は、日照受光面を常に太陽の方向に向ける太陽追尾装置付き太陽電池発電装置に関する。
【0002】
【従来の技術】
太陽電池すなわちソーラーセルを利用する発電装置と組み合わせる従来の太陽追尾装置のアイデアは、内蔵あるいは外部の電源からエネルギーを得て光センサとコンピュータにより太陽の方位変化に合わせて動くもの、あるいは時計仕掛けにより追従するもの、一定速電動機構により追従するものが多い。公報で見ると「特開平6−45631」は、ソーラーセルの発電力を追尾駆動装置の電源に利用した自立型であるが、ソーラーセルへの太陽光照射が遮蔽板に隠れて発電ゼロになるように追尾する方式であり、外部へ電力を供給すべき発電装置としての効率が低い。また、日没後はソーラーセル全体が西向きのままになってしまい、東から昇る太陽に対して自動的に始動できない。「特開平8−5366」は、同様にソーラーセル発電力を制御駆動の電源とする自立型で、光センサとして働く4面のソーラーセルを発電用セルとは別途に制御駆動用として備えているので、翌朝の始動に対して自動リセットできるが、ソーラーセルが2種類必要、光センサ及び駆動部の制御装置が必要、駆動用モータが2基必要などの重装備となり、発電力に比較してのコストが高い。また夏期には東京近辺で南中高度が78度に達する太陽の動きを水平運動の主モータと迎角調節モータで追従する難しさがある。「特開平8−115609」は、同様にソーラーセルの出力を電源に利用し、翌朝の始動に対して自動リセット機能を備えているが、分割した多数のソーラーセルを受光板の表と裏の両面に貼り付け、同時に制御する必要があり構造が複雑で、得られる発電出力に比べて過剰な重装備になっており、発電効率が低い。また太陽の高度変化への対応がなく、水平面で架台を回転させて太陽を追尾する難しさがある。「特開2000−150934」は、追尾駆動に太陽の照射熱を受けた形状記憶合金の伸縮を利用する電源不要の機械制御、機械駆動型であるが、季節、天候、気温変化による温度変動を補正できない、あるいは当日の天候次第で過剰に反応する恐れがあるので太陽追尾としての正確な動作および良好な発電効率を期待できない。「特開平2000−196126」は、ほぼ前記の「特開平8−5366」と同様な構成で、コンピュータ制御多用とモータ3個装着するなど重装備であり、制御駆動用に外部電源を必要とする。山間僻地、離島、草原、原野、砂漠などの野外あるいは海浜、海上での使用には適さず、太陽光発電のニーズを満たしていない。「特開2001−201187」は、太陽追尾方式は本願と同様の構成であるが、太陽エネルギー吸収にソーラーセルを使用せず、太陽に正対して得る熱エネルギーによって蒸気を発生させ、タービンおよび発電機を駆動する点が異なっている。太陽エネルギーの利用では効率がよいが、装置全体が大型化するので、小型携帯用としての簡便な用途には適さない。以上のごとく、ニーズを満たすには太陽エネルギー利用による電源自立が必須条件であり、これには多数のアイデアおよび技術が対応しているが、太陽電池としての利用はエネルギー供給のない地域で特に期待されていることから、可搬性、携帯性が重要であり、重装備は適さない。またコスト面からも装置全体のシンプルな構成と効率の高い発電が必須であるが、従来の技術でこれを満たすものはまだ出現していない。
【0003】
【発明が解決しようとする課題】
本発明は以上の点に鑑み、制御駆動用の内蔵電池あるいは外部電源を必要とせず、かつ早朝から自動的に作動する、効率の高い太陽追尾発電装置を提供することを目的とする。この発明の課題は、受光するソーラーセルの全面を太陽に常時、正対させてエネルギー吸収効率を最大限に高めることであり、専有面積の最小化と簡潔な追尾駆動装置により低コスト構造の太陽発電装置を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明の差電圧駆動式太陽追尾ソーラー発電装置は、同仕様の太陽電池すなわちソーラーセルモジュール2個を太陽に正対するように、搭載パネルに左右並列に配置し、太陽に正対して追尾するように回動軸で軸支して正逆2方向に回転する駆動モータを連結する。駆動モータの駆動電源として、左右ソーラーセルモジュールの出力が均衡を失った場合の発電出力差、すなわち差電圧を利用する。差電圧は、左右モジュールの中間に垂直に設置した仕切遮光板のために、いずれかのモジュールに日陰が生じることにより発生する。
【0005】
【作 用】
左右セルモジュールの発電差電圧を太陽を追尾する駆動装置の電力源に使用する。左右2個のソーラーセルの中間に仕切遮光板をパネル面に垂直に設置し、太陽が正対位置からずれると左右ソーラーセルの受光面積が遮光板のために均衡を失い、左右セルの出力に電圧差が生じる。この差電圧を追尾駆動モータに導き、均衡が回復するまでセルモジュール搭載パネルを追尾回動させる。差電圧による回動の方向は差電圧の電流方向により正逆2方向となり、左右セルの発電電圧が均衡する方向へ向かうように、すなわちパネルが太陽を追尾するように結線されている。これにより左右のソーラーセルをほぼ常時、太陽に正対させ、この両ソーラーセルが発生した電力を効率よく出力する。日没により西を向いたパネルを早朝始動用に東向きに復帰させる必要があるが、これにはパネルの裏側に追尾駆動モータを逆転させるに必要な程度の小容量の第3ソーラーセルを貼り付けて、追尾駆動モータに導いておき、早朝に背側(裏側)に受光した発電力により原位置に復帰させる。以上により方位角では太陽に正対可能であるが、地軸傾斜に起因する季節での太陽高度すなわち南中高度は、東京近辺で冬至には32度、夏至には78度と変化する。中間の春分、秋分における55度で南北傾斜角すなわち迎角を固定した場合には、ソーラーセルへの太陽光入射角は冬至及び夏至には23度となり、受光エネルギーが92%に低下する。これを補正するには、太陽南中高度に合わせて、月1回程度の手動または自動でモジュール搭載パネルの南北傾斜角度を55度±23度の範囲に調節し、日照の最大限吸収を行う。
【0006】
【発明の実施の形態】
本発明の実施例1について図1の発電モジュールパネル斜視図および図2の全体側面図、図3の回路図により説明する。複数のソーラーセルが直列に配置された一対のモジュール1およびモジュール2が太陽光発電の主体で、パネル3に組み込まれて図3に示すごとく結線されている。パネル3は回動軸4の上端を軸受5で軸支され、回動軸の下端を駆動機構6に連結されており、駆動機構により正逆の2方向に±75度程度、回動する。駆動機構6は小型高速モータと減速ギアで構成されている。パネル裏面には東向き回帰用の電源として小容量のソーラーセルモジュール7が組み付けられている。パネル3は、下端を駆動機構6を組み付けたヒンジ8で架台9に係合しており、上端を軸受5を保持する支柱10にヒンジ係合している。支柱10は、下端を架台9のヒンジ部11にピン係合したレバー12の一端にピン係合している。レバー12の他端は温度感応伸縮ロッド13の先端とピン係合しており、ロッド13の他端はヒンジ14で架台9にアンカーされている。パネル3には、一対のセルモジュール1および2が組み付けられているが、中央部に仕切遮光板15が垂直に設置されており、斜め上方からの太陽光入射に対してソーラーセルの感度を高めるために、光を効率よく反射する鏡のような材料で表面が仕上げられている。モジュールパネル3は架台9に対し傾斜して組み付けられており、伸縮ロッド13の作動により中心値55度±23度の傾斜角変化が行われる。この装置を正常に作動させるには、水平面に設置し、パネルの回動軸を正確に地軸を含む平面の南北方向に一致させる必要がある。電気回路の結線は図3に示すごとく、直列に接続したモジュール1および2の出力は端子16に導かれているが、電流方向により正逆に回転する駆動モータの両極は、一方をモジュール接続の中間点に、他方をバラスト抵抗R1およびR2とダイオードD1およびD2で分流させた経路の中間点に接続している。R1およびR2の抵抗値、D1およびD2の特性はそれぞれ等しい。西方に太陽が移動したために太陽に面して東側にあるモジュール2(北半球)側が遮光板の日陰になって発電電圧が低くなった場合は差電圧が発生し、モジュール2側がより多くの日射を得るように駆動モータは電圧の高いモジュール1側からの電流を受けて西向きに回動し、電圧が均衡した所で停止する。モジュール1側が日陰になった場合は、上記と逆の作動が行われる。日没によりパネル3が西を向いたまま停止していると、日の出と共に、東を向いている裏面のモジュール7に日照が入り、モジュール7で発電した電圧とモジュール1との差電圧により駆動モータがパネル3を東向きに逆転させる。以上のごとく、きわめて簡単な構成で精細な追尾と、効率の良い全面発電を行うことができる。以上に述べた追尾動作と発電均衡は小型の試作品により実験確認を行った。
【0007】
実施例2の追尾駆動機構は実施例1と同様の構造であるが、ソーラーセルモジュールの配列が図4に示すごとく異なり、追尾駆動回路と発電出力回路が図5のごとく分離されている。追尾駆動用のソーラーセルモジュール1aおよび2aは仕切遮光板直近の左右に配置されて感度を高められている。発電出力用のソーラーセルモジュール1Aおよび1Bはその左右外側に配置されており、追尾駆動の作動、不作動に関わらず、安定した出力を行うことができる。
【0008】
【発明の効果】
ソーラーセルを太陽に追尾させる駆動機構の動力はすべてソーラーセル出力の一部でまかなわれるので、外部からの動力供給が不要であり、離島あるいは遠隔僻地、海上でも問題なく発電し、外部へ電力を供給することができる。追尾駆動は差電圧が一定レベルを越えるような場合にのみ間欠的に行われ、所要動力も微少である。太陽の方位を検出、駆動装置を制御するための光センサやコンピュータ、電源も不要である。以上のように他のエネルギーを借りることなくすべての所要エネルギーを自己発電でまかない、ソーラーセルのほぼ全面を常時、太陽に正対させ、発電電力のほとんどすべてを利用することができる。そのため発生電力あたりの所要面積も最小限で済み、低コストのコンパクトな構造で目的を達成することができる。
【図面の簡単な説明】
【図1】発電モジュールパネルの斜視図である。
【図2】全体側面図である。
【図3】実施例1の電気回路図である。
【図4】実施例2の発電モジュールパネル配置図である。
【図5】実施例2の電気回路図である。
【符号の説明】
1.発電モジュール
1A.実施例2の発電出力モジュール
1a.実施例2の追尾駆動用発電モジュール
2.発電モジュール
2A.実施例2の発電出力モジュール
2a.実施例2の追尾駆動用発電モジュール
3.モジュールパネル
4.モジュールパネルの回動軸
5.軸受
6.駆動機構
7.パネル裏面の発電モジュール
8.駆動機構を係合する架台側ヒンジ
9.架台
10.支柱
11.レバーを係合する架台側ヒンジ
12.レバー
13.温度感応伸縮ロッド
14.伸縮ロッドの架台側ヒンジ
15.仕切遮光板
16.出力端子
R1.バラスト抵抗
R2.バラスト抵抗
D1.逆流防止ダイオード
D2.逆流防止ダイオード
D3.逆流防止ダイオード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell power generator with a sun tracking device that always directs a sunshine receiving surface toward the sun.
[0002]
[Prior art]
The idea of a conventional solar tracking device combined with a power generation device that uses a solar cell or a solar cell is to obtain energy from a built-in or external power source and move according to the change in the direction of the sun using an optical sensor and a computer, or a clockwork. There are many that follow, and follow with a constant speed electric mechanism. According to the official gazette, “Japanese Unexamined Patent Application Publication No. 6-45631” is a self-contained type in which the generated power of a solar cell is used as a power source of a tracking driving device. This is a tracking method, and the efficiency as a power generator to supply electric power to the outside is low. Also, after sunset, the entire solar cell remains west-facing and cannot start automatically against the sun rising from the east. Japanese Patent Application Laid-Open No. Hei 8-5366 is also a self-contained type that uses solar cell power as a power source for control driving, and includes four solar cells serving as optical sensors for control driving separately from power generation cells. Therefore, it can be automatically reset for starting the next morning, but it requires heavy equipment such as two types of solar cells, an optical sensor and a control unit for a drive unit, and two drive motors are required. High cost. In the summer, it is difficult to follow the movement of the sun near Tokyo, where the altitude in the south and south reaches 78 degrees, with the main motor and the angle of attack adjustment motor. Japanese Patent Application Laid-Open No. 8-115609 similarly uses the output of a solar cell as a power supply and has an automatic reset function for starting the next morning. Since it is necessary to attach them on both sides and control them at the same time, the structure is complicated, the equipment is excessively heavy compared to the power generation output obtained, and the power generation efficiency is low. Also, there is no response to changes in the altitude of the sun, and there is difficulty in tracking the sun by rotating the gantry on a horizontal plane. Japanese Patent Application Laid-Open No. 2000-150934 is a mechanically-controlled, mechanically-driven type that uses expansion and contraction of a shape memory alloy that has received irradiation heat from the sun for tracking drive. Accurate operation as solar tracking and good power generation efficiency cannot be expected because they cannot be corrected or may react excessively depending on the weather on the day. "Japanese Patent Application Laid-Open No. 2000-196126" has almost the same configuration as that of the above-mentioned "Japanese Patent Application Laid-Open No. 8-5366", and is heavy equipment such as heavy use of computer control and three motors, and requires an external power supply for control driving. . It is not suitable for outdoor use in mountainous remote areas, remote islands, grasslands, wilderness, deserts, etc. or on the beach or sea, and does not meet the needs of solar power generation. Japanese Patent Application Laid-Open No. 2001-201187 discloses that the solar tracking method has the same configuration as that of the present application, but does not use a solar cell for solar energy absorption, generates steam by heat energy directly facing the sun, and generates a turbine and power. The difference is that the machine is driven. Although the use of solar energy is efficient, it is not suitable for simple use as a small portable device because the entire device becomes large. As described above, independence of power supply by using solar energy is an essential condition to meet the needs, and many ideas and technologies are responding to this, but the use of solar cells is particularly expected in areas where there is no energy supply. Therefore, portability and portability are important, and heavy equipment is not suitable. In addition, from the viewpoint of cost, a simple configuration of the entire apparatus and high-efficiency power generation are essential.
[0003]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a highly efficient solar tracking power generation device that does not require a built-in battery for control driving or an external power supply and that operates automatically from early morning. An object of the present invention is to always increase the energy absorption efficiency by directly facing the entire surface of a solar cell that receives light to the sun, and to minimize the occupied area and to achieve a low-cost solar system by using a simple tracking drive device. It is to provide a power generating device.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, a differential voltage-driven solar tracking solar power generation device of the present invention is arranged in a left-right parallel manner on a mounting panel so that two solar cells of the same specification, that is, two solar cell modules, face the sun. A drive motor that is pivotally supported by a rotating shaft and rotates in two forward and reverse directions so as to directly track the motor is connected. As a driving power source for the driving motor, a difference in power generation output when the outputs of the left and right solar cell modules are out of balance, that is, a difference voltage is used. The difference voltage is generated when one of the modules is shaded by a partitioning light-shielding plate vertically installed in the middle of the left and right modules.
[0005]
[Operation]
The power generation difference voltage of the left and right cell modules is used as the power source of the driving device that tracks the sun. A partitioning light-shielding plate is installed in the middle of the two left and right solar cells perpendicular to the panel surface, and when the sun deviates from the directly facing position, the light receiving area of the left and right solar cells loses balance because of the light-shielding plate, and the output of the left and right cells becomes A voltage difference occurs. This difference voltage is guided to the tracking drive motor, and the cell module mounting panel is rotated by tracking until the balance is restored. The directions of rotation by the difference voltage are two directions, forward and reverse, depending on the current direction of the difference voltage, and the wires are connected so that the generated voltages of the left and right cells are balanced, that is, the panel tracks the sun. Thereby, the left and right solar cells are almost always facing the sun, and the power generated by both solar cells is efficiently output. It is necessary to return the panel facing west due to sunset to the east for early morning start-up. To do this, attach a third solar cell with the small capacity necessary to reverse the tracking drive motor on the back side of the panel. In addition, the motor is guided to a tracking drive motor, and is returned to the original position by the generated power received on the back side (back side) in the early morning. As described above, the azimuth can directly face the sun, but the solar altitude in the season due to the earth axis tilt, that is, the south-central altitude, changes to 32 degrees at the winter solstice and 78 degrees at the summer solstice near Tokyo. When the north-south inclination angle, that is, the angle of attack, is fixed at 55 degrees in the middle equinox and autumn equinox, the solar incident angle to the solar cell becomes 23 degrees at the winter solstice and the summer solstice, and the received light energy decreases to 92%. To correct this, adjust the north-south tilt angle of the module-mounted panel manually or automatically about once a month in the range of 55 ± 23 degrees according to the south-south altitude to maximize the absorption of sunlight. .
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
First Embodiment A first embodiment of the present invention will be described with reference to a perspective view of a power generation module panel of FIG. 1, a side view of an entirety of FIG. 2, and a circuit diagram of FIG. A pair of modules 1 and 2 in which a plurality of solar cells are arranged in series are mainly used for photovoltaic power generation, and are incorporated in a panel 3 and connected as shown in FIG. The panel 3 has the upper end of the rotating shaft 4 supported by a bearing 5 and the lower end of the rotating shaft connected to a driving mechanism 6. The panel 3 is rotated about ± 75 degrees in two forward and reverse directions by the driving mechanism. The drive mechanism 6 includes a small high-speed motor and a reduction gear. On the back of the panel, a small-capacity solar cell module 7 is mounted as a power supply for eastward return. The lower end of the panel 3 is engaged with a gantry 9 by a hinge 8 to which a driving mechanism 6 is assembled, and the upper end is hingedly engaged with a column 10 holding the bearing 5. The support pillar 10 has a lower end pin-engaged with one end of a lever 12 that is pin-engaged with the hinge portion 11 of the gantry 9. The other end of the lever 12 is pin-engaged with the tip of a temperature-sensitive telescopic rod 13, and the other end of the rod 13 is anchored to the gantry 9 by a hinge 14. The panel 3 has a pair of cell modules 1 and 2 assembled therein, and a partition light-shielding plate 15 is installed vertically at the center to increase the sensitivity of the solar cell to sunlight incident from obliquely above. For this reason, the surface is finished with a material such as a mirror that reflects light efficiently. The module panel 3 is attached to the gantry 9 at an angle, and the operation of the telescopic rod 13 causes a change in the inclination angle of the center value 55 ° ± 23 °. In order for this device to work properly, it must be installed on a horizontal surface, and the rotation axis of the panel must be exactly aligned with the north-south direction of the plane including the ground axis. The connection of the electric circuit is as shown in FIG. 3, and the outputs of the modules 1 and 2 connected in series are led to the terminal 16. The other end is connected to an intermediate point of a path divided by ballast resistors R1 and R2 and diodes D1 and D2. The resistance values of R1 and R2 and the characteristics of D1 and D2 are equal. When the sun moved to the west, the module 2 (northern hemisphere) side facing the sun on the east side was shaded by the light-shielding plate, and when the generated voltage became low, a difference voltage was generated. In order to obtain the same, the drive motor rotates westward by receiving the current from the high voltage module 1 and stops when the voltage is balanced. When the module 1 is shaded, the reverse operation is performed. When the panel 3 is stopped with the west facing due to sunset, the sun is shining on the module 7 on the back facing east with the sunrise, and the driving motor is driven by the voltage difference between the voltage generated by the module 7 and the module 1. Turns panel 3 east. As described above, fine tracking can be performed with an extremely simple configuration, and efficient full-surface power generation can be performed. The tracking operation and power generation balance described above were confirmed by experiments using a small prototype.
[0007]
The tracking drive mechanism of the second embodiment has the same structure as that of the first embodiment, but the arrangement of the solar cell modules is different as shown in FIG. 4, and the tracking drive circuit and the power generation output circuit are separated as shown in FIG. The solar cell modules 1a and 2a for tracking drive are arranged on the right and left in the immediate vicinity of the partition light shielding plate to increase the sensitivity. The solar cell modules 1A and 1B for power generation output are arranged on the left and right outer sides, and can perform stable output regardless of the operation or non-operation of the tracking drive.
[0008]
【The invention's effect】
All the power of the drive mechanism that tracks the solar cell to the sun is provided by a part of the output of the solar cell, so there is no need to supply power from the outside, and power is generated without problems even on remote islands, remote remote areas, or at sea, and power is output to the outside. Can be supplied. The tracking drive is performed intermittently only when the difference voltage exceeds a certain level, and the required power is very small. There is no need for an optical sensor, computer, or power supply for detecting the direction of the sun and controlling the driving device. As described above, all the required energy is supplied by self-generation without borrowing other energy. Almost the entire surface of the solar cell can always face the sun at all times, and almost all of the generated power can be used. Therefore, the required area per generated power is minimized, and the object can be achieved with a low-cost and compact structure.
[Brief description of the drawings]
FIG. 1 is a perspective view of a power generation module panel.
FIG. 2 is an overall side view.
FIG. 3 is an electric circuit diagram of the first embodiment.
FIG. 4 is a layout view of a power generation module panel according to a second embodiment.
FIG. 5 is an electric circuit diagram of a second embodiment.
[Explanation of symbols]
1. Power generation module 1A. The power generation output module 1a. 1. A power generation module for tracking drive according to the second embodiment Power generation module 2A. Power generation output module 2a. 2. The power generation module for tracking drive according to the second embodiment. Module panel 4. 4. Module panel rotation axis Bearing 6. Drive mechanism 7. 7. Power generation module on back of panel 8. The pedestal side hinge that engages the drive mechanism Mount 10. Support 11. 11. A pedestal-side hinge for engaging a lever Lever 13. 13. Temperature-sensitive telescopic rod 14. The hinge on the gantry side of the telescopic rod Partition light shielding plate 16. The output terminals R1. Ballast resistor R2. Ballast resistance D1. Backflow prevention diode D2. Backflow prevention diode D3. Backflow prevention diode