【0001】
【発明の属する技術分野】
本発明は非水電解質二次電池の製造方法に関し、特に、電池の充放電特性および生産性の向上を図ったものに関する。
【0002】
【従来の技術】
例えば、正極と負極との間で一方が放出したリチウムイオンを他方に吸蔵させるという可逆反応によって充放電を行う非水電解質二次電池としては、次のようなものが公知である。例えば金属アルミニウム箔に遷移金属のリチウム含有酸化物を含んだ正極合剤を塗布した正極板と、銅箔に層状構造の炭素材料を含んだ負極合剤を塗布した負極板とを、セパレータを挟んだ状態で巻回し、これを非水電解質とともに電池缶に収容したものがある。この電池は、電池缶の封口前に、所定の電流で初回充電されるようになっている。
【0003】
【発明が解決しようとする課題】
ところで近年では、安全性の見地から、負極合剤としては上述したように炭素材料が多く使用されている。ところが、炭素材料を主体とする負極活物質層を備えた非水電解質電池では、初回充電時に、負極の表面に電解液などとの反応生成物である酸化物やリチウム塩などによる被膜(SEI)が形成され易く、この被膜により電池の高率放電特性等の充放電性能が低下するという問題がある。
【0004】
また、上述したように、初回充電は電池缶の封口前に行うので、できるだけ短い時間で行うことが生産性の面で望ましい。しかしながら、初回充電を短時間で行うために充電電流密度を高くすると、負極表面に金属リチウムデンドライトが析出して微少短絡が起きる等の問題がある。
【0005】
本発明は上記のような事情に基づいて完成されたものであって、充放電特性および生産性に優れる非水電解質二次電池の製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者等は上記課題を解決すべく鋭意研究を重ねた結果、初回充電時の電流密度を経時的に変化させることによって、充放電特性および生産性に優れる非水電解質二次電池が得られることを見いだし、本発明を完成するに至った。
【0007】
すなわち、請求項1の非水電解質二次電池の製造方法は、リチウムイオンを吸蔵・放出する炭素材料を含んだ負極と、正極と、非水電解質とを備える非水電解質二次電池を初回充電するための方法であって、正極および負極間の電流密度を、充電開始から所定時間経過までは3mA/cm2以上とし、所定時間経過後は3mA/cm2未満とするところに特徴を有する。
【0008】
なお、ここでいう所定時間とは、3mA/cm2以上の電流密度で負極の不可逆容量分の電気量を充電するまでの時間と定義する。
【0009】
【発明の作用】
上述した本発明のように、初回充電の電流密度を経時的に変化させることとし、充電開始から所定時間の充電電流密度を3mA/cm2以上とすると、充電電流密度を3mA/cm2未満とした場合と比較して、負極表面に形成される被膜の抵抗が小さくなることがわかった。その機構については未だよくわかっていないが、以下のように推測される。すなわち、初回の充電電流密度が大きいと負極の過電圧が大きくなり、充電電流密度が小さい場合と比較して、負極表面近傍のリチウムイオン濃度が低下する。このため、負極表面には、溶媒の還元分解反応による有機酸化物がリチウム塩よりも優先的に生成され、その結果、形成される被膜の抵抗が小さくなるのではないかと推測される。このように被膜の抵抗が小さくなると、被膜中のリチウムイオン伝導性が向上するから、高率放電容量が増大するのである。
【0010】
充電開始から所定時間の充電電流密度は、特に3〜10mA/cm2の範囲とすることが好ましい。電流密度が大き過ぎる場合には、ジュール損による発熱が起こり、その結果電池内の温度が高くなって負極表面の被膜形成が促進され、不可逆容量が増大する傾向が見られるためである。
【0011】
また、充電開始から所定時間を3mA/cm2以上で充電する際の充電電気量は、負極の不可逆容量に相当する電気量分のみを充電することが好ましい。3mA/cm2以上の電流密度で負極の不可逆容量を上回る充電を行うと、負極上に金属リチウムデンドライトの析出が起こり、微小短絡等が起こる可能性があるためである。
【0012】
また、3mA/cm2以上で所定時間充電した後、3mA/cm2未満の電流密度で充電を行うこととすると、負極の不可逆容量に相当する充電電気量以上の電気量が供給された場合でも、金属リチウムデンドライトの析出を防止することができる。
【0013】
さらに、上述したように、充電開始から所定時間経過まで比較的高い電流密度で充電を行う構成とすると、充電時間を短縮することができるので、生産性が向上する。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照しつつ説明する。図1は、本発明の一実施形態にかかる角形非水電解質二次電池1の概略断面図である。この角形非水電解質二次電池1は、正極3と負極4とがセパレータ5を介して巻回された扁平巻状電極群2と、電解質塩を含有した図示しない非水電解液とを、電池ケース6内に収納してなるものである。
【0015】
電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード11を介して負極4と接続され、正極3は正極リード10を介して電池蓋7と接続される。
【0016】
正極3は、例えばアルミニウム、ニッケル、又はステンレス製の正極集電体に、リチウムイオンを吸蔵・放出する物質を構成要素とする正極活物質層を設けた構造となっている。正極活物質としては、例えば遷移金属酸化物が挙げられ、例えば組成式LixMO2、LiyM2O4、組成式NaxMO2(ただしMは一種以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造又は層状構造の金属カルコゲン化物または金属酸化物等を用いることができる。具体的には、LiCoO2、LiNiO2、LiNi1/2Mn1/2O2、LiNi1/3Mn1/3Co1/3O2、LiCoxNi1−xO2、LiMn2O4、Li2Mn2O4、MnO2、FeO2、V2O5、V6O13、TiO2、TiS2等が挙げられる。
【0017】
また遷移金属酸化物以外の正極活物質としては、有機化合物として、例えばポリアニリン等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各種活物質を混合して用いることもできる。
【0018】
負極4は、例えば銅、ニッケル、ステンレス製の負極集電体に、リチウムイオンを吸蔵・放出する炭素材料からなる負極活物質層を設けた構造となっている。炭素材料の種類は何ら限定されることはなく、例えばグラファイト、カーボン等、ハードカーボン、低結晶性炭素、黒鉛に非晶質炭素をコートしたもの、カーボンナノチューブ、またはこれらの混合物等を用いることができる。
【0019】
セパレーター5としては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に合成樹脂微多孔膜が好適に用いることができる。中でも、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。
【0020】
さらに、後述する高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。また、固体電解質と上記合成樹脂微多孔膜等とを組み合わせて使用してもよい。
【0021】
非水電解質としては、非水電解液または固体電解質のいずれも使用することができる。非水電解液を用いる場合には特に限定されず、例えば、エチレンカーボネイト、プロピレンカーボネイト、γ−ブチロラクトン、ジメチルカーボネイト、エチルメチルカーボネイト、ビニルエチレンカーボネート、ビニレンカーボネート、ジエチルカーボネイト、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、もしくはこれらの混合物を使用することができる。
【0022】
また、非水電解液の溶質としての電解質塩は、特に限定されず、例えばLiPF6、LiClO4、LiBF4、LiAsF6、LiCF3CO2、LiCF3(CF3)3、LiCF3(C2F5)3、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2CF2CF3)2、LiN(COCF3)2およびLiN(COCF2CF3)2、LiPF3(CF2CF3)3などの塩もしくはこれらの混合物を使用することができる。中でも、伝導度が高いLiPF6が好ましい。
【0023】
さらに、固体電解質に上記電解液を含有させて使用することもできる。 固体電解質としては、公知の固体電解質を用いることができ、例えば無機固体電解質、ポリマー固体電解質を用いることができる。この場合、ゲル状の高分子固体電解質を用いる場合には、ゲルを構成する電解液と細孔中等に含有されている電解液とは、異なっていてもよい。
【0024】
【実施例】
以下、本発明を適用した具体的な実施例について説明するが、本発明は本実施例により何ら限定されるものはなく、その全旨を変更しない範囲において適宜変更して実施することが可能である。
【0025】
実施例1〜6、比較例1〜5では、図1に示す角型非水電解質二次電池1を組み立てた。まず、正極板は、結着剤であるポリフッ化ビニリデン8重量%と導電剤であるアセチレンブラック5重量%とリチウムコバルト複合酸化物である正極活物質87重量%とを混合してなる正極合剤に、N−メチルピロリドンを加えてペースト状に調製した後、これを厚さ20μmのアルミニウム箔集電体両面に塗布・乾燥することによって製作した。
【0026】
負極板は、グラファイト(黒鉛)95重量%とカルボキシメチルセルロース2重量%およびスチレンブタジエンゴム3重量%を適度な水分を加えてペースト状に調製した後、これを厚さ15μmの銅箔集電体両面に塗布・乾燥することによって製作した。
【0027】
セパレータは、ポリエチレンの微多孔膜を用いた。
【0028】
上述した構成要素を用いて、幅30mm、高さ48mm、厚み5mmの角形非水電解質二次電池1を組み立てた。そして、注液孔から、電解液としてLiPF4を1mol/l含むエチレンカーボネイト:メチルエチルカーボネイト=3:7(体積比)の混合液を注液し、その後、注液孔の封口前に初回充電を行った。なお、以下に示す電流密度とは、定格容量(600mAh)を正極および負極の活物質塗布部の対向面積(200cm2)で割ったものとする。
【0029】
<実施例1>
一段目の充電は、定格容量の約5%分に相当する電気量を3mA/cm2の電流密度で3分行い、その後、二段目の充電は、定格容量の約45%分に相当する電気量を1.5mA/cm2の電流密度で54分行った。
【0030】
<実施例2>
実施例1と同様の電気量を、一段目は4mA/cm2の電流密度で2.3分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0031】
<実施例3>
実施例1と同様の電気量を、一段目は5mA/cm2の電流密度で1.8分充電し、、二段目は1.5mA/cm2の電流密度で54分充電した。
【0032】
<実施例4>
実施例1と同様の電気量を、一段目は8mA/cm2の電流密度で1.1分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0033】
<実施例5>
実施例1と同様の電気量を、一段目は10mA/cm2の電流密度で0.9分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0034】
<実施例6>
実施例1と同様の電気量を、一段目は15mA/cm2の電流密度で0.6分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0035】
<比較例1>
実施例1と同様の電気量を、一段目は2mA/cm2の電流密度で4.5分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0036】
<比較例2>
実施例1と同様の電気量を、一段目は1mA/cm2の電流密度で9.0分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0037】
<比較例3>
実施例1と同様の電気量を、一段目は0.5mA/cm2の電流密度で18.0分充電し、二段目は1.5mA/cm2の電流密度で54分充電した。
【0038】
<比較例4>
定格容量の約50%分に相当する電気量を3mA/cm2の電流密度で30分行った。
【0039】
<比較例5>
定格容量の約50%分に相当する電気量を1.5mA/cm2の電流密度で60分行った。
【0040】
上述した各サンプルを充電後、注液孔を密閉封口した。
以上のようにして作製した上記実施例1〜6および比較例1〜5の角形非水電解質二次電池について、充電時間、初期容量、内部抵抗および2C放電時の放電容量を測定した。
【0041】
なお、初期容量は、充電電流600mA、充電電圧4.20Vの定電流定電圧充電で2.5時間充電した後、放電電流600mA、終止電圧2.75Vの条件で放電を行ったときの放電容量とした。また、内部抵抗はこの放電後に1kHzの交流を流し、その抵抗値を測定した。さらに、2Cでの放電容量(高率放電容量)は、初期容量の測定が終わった電池を、25℃の環境下、充電電流600mA、充電電圧4.20Vの定電流定電圧充電で2.5時間充電した後、放電電流1200mA(2Cに相当)で終止電圧3.3Vの条件で放電を行ったときの放電容量とした。
【0042】
上記結果を、表1に示す。
【表1】
【0043】
表1から明らかなように、一段目の充電電流密度が3mA/cm2以上である実施例1〜6の電池においては、一段目の充電電流密度が3mA/cm2よりも小さい比較例1〜3の電池と比べ、初期容量は大差ないものの、電池の内部抵抗が小さくかつ2C放電容量が大きくなった。これは、負極表面に抵抗が小さい被膜が形成され、高率放電時における被膜中のリチウムイオン伝導性が向上したためであると考えられる。また、これら実施例のものは、いずれも充電時間が短かった。
【0044】
また、比較例4からわかるように、充電電流密度を3mA/cm2以上としても電流密度を変化させない場合には、充電時間は短縮されるものの、不可逆な金属リチウムデンドライトが発生するため、初期容量が著しく低下した。また、被膜の内部抵抗が高くなるとともに2C放電容量が低くなった。さらに、比較例5のように、充電電流密度を1.5mA/cm2以下で充電を行う場合にも、比較例1〜3と同様に被膜の内部抵抗が高くなるため、2C放電容量が低くなった。
【0045】
このように、2C放電容量を高く、かつ充電時間を短くするためには、一段目の充電電流密度を3mA/cm2以上、二段目以降の充電電流密度を3mA/cm2未満とすることが好ましい。
【0046】
【発明の効果】
本発明の非水電解質二次電池の製造方法によれば、充放電特性および生産性に優れる非水電解質二次電池を提供することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態の非水電解質電池を示す断面図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery, and more particularly, to a method for improving charge / discharge characteristics and productivity of a battery.
[0002]
[Prior art]
For example, the following is known as a non-aqueous electrolyte secondary battery that performs charging and discharging by a reversible reaction in which lithium ions released from one between a positive electrode and a negative electrode are occluded by the other. For example, a positive electrode plate in which a positive electrode mixture containing a lithium-containing oxide of a transition metal is applied to a metal aluminum foil, and a negative electrode plate in which a negative electrode mixture containing a carbon material having a layered structure is applied to a copper foil, with a separator interposed therebetween. In some cases, the battery is wound in a bent state, and this is housed in a battery can together with a non-aqueous electrolyte. This battery is initially charged with a predetermined current before the battery can is sealed.
[0003]
[Problems to be solved by the invention]
Incidentally, in recent years, from the viewpoint of safety, carbon materials are often used as the negative electrode mixture as described above. However, in a non-aqueous electrolyte battery provided with a negative electrode active material layer mainly composed of a carbon material, a coating (SEI) of an oxide or a lithium salt, which is a reaction product with an electrolytic solution or the like, on the surface of the negative electrode during initial charging. Is easily formed, and there is a problem that the charge-discharge performance such as high-rate discharge characteristics of the battery is deteriorated by the coating.
[0004]
In addition, as described above, since the first charge is performed before the battery can is sealed, it is desirable to perform the charge in a time as short as possible in terms of productivity. However, if the charging current density is increased in order to perform the initial charging in a short time, there is a problem that metallic lithium dendrite is deposited on the surface of the negative electrode and a micro short circuit occurs.
[0005]
The present invention has been completed based on the above circumstances, and has as its object to provide a method for manufacturing a nonaqueous electrolyte secondary battery having excellent charge / discharge characteristics and productivity.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics and productivity can be obtained by changing the current density during initial charging with time. This led to the completion of the present invention.
[0007]
That is, the method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1 first charges a non-aqueous electrolyte secondary battery including a negative electrode containing a carbon material that occludes and releases lithium ions, a positive electrode, and a non-aqueous electrolyte. The method is characterized in that the current density between the positive electrode and the negative electrode is 3 mA / cm 2 or more from the start of charging to a predetermined time, and is less than 3 mA / cm 2 after the predetermined time.
[0008]
Here, the predetermined time is defined as a time required to charge an amount of electricity corresponding to the irreversible capacity of the negative electrode at a current density of 3 mA / cm 2 or more.
[0009]
Effect of the Invention
As in the present invention described above, the current density of the initial charge is changed over time, and when the charge current density for a predetermined time from the start of charging is 3 mA / cm 2 or more, the charge current density is less than 3 mA / cm 2. It was found that the resistance of the film formed on the negative electrode surface was smaller than that in the case where the negative electrode was used. The mechanism is not well understood, but is presumed as follows. That is, when the initial charging current density is high, the overvoltage of the negative electrode increases, and the lithium ion concentration near the negative electrode surface decreases as compared with the case where the charging current density is low. For this reason, it is presumed that an organic oxide is generated on the negative electrode surface by the reductive decomposition reaction of the solvent in preference to the lithium salt, and as a result, the resistance of the formed film is reduced. When the resistance of the coating decreases as described above, the lithium ion conductivity in the coating improves, and the high rate discharge capacity increases.
[0010]
The charging current density for a predetermined time from the start of charging is particularly preferably in the range of 3 to 10 mA / cm 2 . If the current density is too large, heat is generated due to Joule loss, and as a result, the temperature in the battery increases, the formation of a film on the negative electrode surface is promoted, and the irreversible capacity tends to increase.
[0011]
Further, it is preferable to charge only the amount of electricity corresponding to the irreversible capacity of the negative electrode when charging at a predetermined time of 3 mA / cm 2 or more from the start of charging. This is because, when the charge exceeding the irreversible capacity of the negative electrode is performed at a current density of 3 mA / cm 2 or more, precipitation of metallic lithium dendrite occurs on the negative electrode, and a minute short circuit or the like may occur.
[0012]
Further, if the battery is charged at a current density of less than 3 mA / cm 2 after being charged at a current density of 3 mA / cm 2 or more for a predetermined time, even when a charge amount equal to or more than the charge amount corresponding to the irreversible capacity of the negative electrode is supplied. In addition, precipitation of metallic lithium dendrite can be prevented.
[0013]
Furthermore, as described above, when charging is performed at a relatively high current density from the start of charging to the elapse of a predetermined time, the charging time can be shortened, so that productivity is improved.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a prismatic nonaqueous electrolyte secondary battery 1 according to one embodiment of the present invention. The prismatic nonaqueous electrolyte secondary battery 1 includes a flat-wound electrode group 2 in which a positive electrode 3 and a negative electrode 4 are wound via a separator 5, and a nonaqueous electrolyte (not shown) containing an electrolyte salt. It is housed in the case 6.
[0015]
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, a negative electrode terminal 9 is connected to the negative electrode 4 via a negative electrode lead 11, and the positive electrode 3 is connected to the battery lid 7 via a positive electrode lead 10. Connected.
[0016]
The positive electrode 3 has a structure in which, for example, a positive electrode current collector made of aluminum, nickel, or stainless steel is provided with a positive electrode active material layer including a substance that absorbs and releases lithium ions as a constituent element. Examples of the positive electrode active material include transition metal oxides, for example, a composition formula Li x MO 2 , Li y M 2 O 4 , a composition formula Na x MO 2 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), a complex oxide, a metal chalcogenide or a metal oxide having a tunnel structure or a layer structure can be used. Specifically, LiCoO 2 , LiNiO 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiCo x Ni 1-x O 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 and the like.
[0017]
Examples of the positive electrode active material other than the transition metal oxide include, as an organic compound, a conductive polymer such as polyaniline. Furthermore, regardless of the inorganic compound or the organic compound, the above-mentioned various active materials can be mixed and used.
[0018]
The negative electrode 4 has a structure in which a negative electrode active material layer made of a carbon material that absorbs and releases lithium ions is provided on a negative electrode current collector made of, for example, copper, nickel, or stainless steel. The type of carbon material is not limited at all, for example, graphite, carbon, etc., hard carbon, low crystalline carbon, graphite coated with amorphous carbon, carbon nanotube, or a mixture thereof may be used. it can.
[0019]
As the separator 5, a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be particularly preferably used. Above all, a polyolefin-based microporous membrane such as a polyethylene or polypropylene microporous membrane or a composite microporous membrane thereof is suitably used in terms of thickness, membrane strength, membrane resistance and the like.
[0020]
Further, by using a solid electrolyte such as a polymer solid electrolyte described below, the separator can also serve as a separator. Further, a solid electrolyte and the above-mentioned microporous synthetic resin membrane may be used in combination.
[0021]
As the non-aqueous electrolyte, either a non-aqueous electrolyte or a solid electrolyte can be used. When using a non-aqueous electrolyte is not particularly limited, for example, ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, vinyl ethylene carbonate, vinylene carbonate, diethyl carbonate, sulfolane, dimethyl sulfoxide, acetonitrile, A polar solvent such as dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof can be used.
[0022]
The electrolyte salt as a solute of the non-aqueous electrolyte is not particularly limited. For example, LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5) 3, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 CF 2 CF 3) 2, LiN (COCF 3) 2 and LiN (COCF 2 CF 3) 2 , LiPF 3 (CF Salts such as 2 CF 3 ) 3 or mixtures thereof can be used. Among them, LiPF 6 having high conductivity is preferable.
[0023]
Further, the solid electrolyte may be used by incorporating the above electrolyte. As the solid electrolyte, a known solid electrolyte can be used, and for example, an inorganic solid electrolyte and a polymer solid electrolyte can be used. In this case, when a gel-like polymer solid electrolyte is used, the electrolyte constituting the gel may be different from the electrolyte contained in the pores or the like.
[0024]
【Example】
Hereinafter, specific examples to which the present invention is applied will be described. However, the present invention is not limited by the present examples, and can be implemented by appropriately changing the scope without changing the gist of the present invention. is there.
[0025]
In Examples 1 to 6 and Comparative Examples 1 to 5, the prismatic nonaqueous electrolyte secondary batteries 1 shown in FIG. 1 were assembled. First, a positive electrode plate is formed by mixing 8% by weight of polyvinylidene fluoride as a binder, 5% by weight of acetylene black as a conductive agent, and 87% by weight of a positive electrode active material as a lithium-cobalt composite oxide. Was prepared by adding N-methylpyrrolidone to a paste, and applying and drying the paste on both sides of a 20 μm-thick aluminum foil current collector.
[0026]
The negative electrode plate was prepared by adding 95% by weight of graphite (graphite), 2% by weight of carboxymethylcellulose, and 3% by weight of styrene-butadiene rubber into a paste by adding a suitable amount of water, and then preparing a paste having a thickness of 15 μm. It was manufactured by coating and drying.
[0027]
As the separator, a microporous polyethylene film was used.
[0028]
A prismatic nonaqueous electrolyte secondary battery 1 having a width of 30 mm, a height of 48 mm, and a thickness of 5 mm was assembled using the above-described components. Then, a mixed solution of ethylene carbonate: methylethyl carbonate = 3: 7 (volume ratio) containing 1 mol / l of LiPF 4 as an electrolytic solution was injected from the injection hole, and thereafter, the first charge was performed before the injection hole was sealed. Was done. The current density shown below is obtained by dividing the rated capacity (600 mAh) by the facing area (200 cm 2 ) of the active material application portions of the positive electrode and the negative electrode.
[0029]
<Example 1>
The first-stage charging is performed for 3 minutes at a current density of 3 mA / cm 2 for an amount of electricity corresponding to about 5% of the rated capacity, and then the second-stage charging is equivalent to about 45% of the rated capacity. The electricity was supplied at a current density of 1.5 mA / cm 2 for 54 minutes.
[0030]
<Example 2>
Similar electrical quantity as in Example 1, the first stage is charged 2.3 minutes at a current density of 4mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0031]
<Example 3>
Similar electrical quantity as in Example 1, the first stage is charged 1.8 minutes at a current density of 5 mA / cm 2 ,, second stage was charged 54 minutes at a current density of 1.5 mA / cm 2.
[0032]
<Example 4>
Similar electrical quantity as in Example 1, the first stage is charged 1.1 minutes at a current density of 8 mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0033]
<Example 5>
Similar electrical quantity as in Example 1, the first stage is charged 0.9 minutes at a current density of 10 mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0034]
<Example 6>
Similar electrical quantity as in Example 1, the first stage is charged 0.6 minutes at a current density of 15 mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0035]
<Comparative Example 1>
Similar electrical quantity as in Example 1, the first stage is charged 4.5 minutes at a current density of 2 mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0036]
<Comparative Example 2>
Similar electrical quantity as in Example 1, the first stage is charged 9.0 minutes at a current density of 1 mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0037]
<Comparative Example 3>
Similar electrical quantity as in Example 1, the first stage is charged 18.0 minutes at a current density of 0.5 mA / cm 2, the second stage is charged 54 minutes at a current density of 1.5 mA / cm 2.
[0038]
<Comparative Example 4>
An amount of electricity corresponding to about 50% of the rated capacity was performed at a current density of 3 mA / cm 2 for 30 minutes.
[0039]
<Comparative Example 5>
An amount of electricity corresponding to about 50% of the rated capacity was performed at a current density of 1.5 mA / cm 2 for 60 minutes.
[0040]
After charging each of the samples described above, the injection hole was hermetically sealed.
With respect to the prismatic nonaqueous electrolyte secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 manufactured as described above, the charging time, the initial capacity, the internal resistance, and the discharge capacity at the time of 2C discharge were measured.
[0041]
The initial capacity is the discharge capacity when the battery is charged for 2.5 hours at a constant current and constant voltage with a charging current of 600 mA and a charging voltage of 4.20 V, and then discharged under the conditions of a discharging current of 600 mA and a final voltage of 2.75 V. And After the discharge, an internal resistance of 1 kHz was applied to the internal resistance, and the resistance was measured. Further, the discharge capacity at 2 C (high-rate discharge capacity) was determined by measuring the battery whose initial capacity had been measured under a constant-current constant-voltage charge of 500 mA and a charge voltage of 4.20 V in an environment of 25 ° C. After the battery was charged for a period of time, the discharge capacity was defined as the discharge capacity when the battery was discharged at a discharge current of 1200 mA (corresponding to 2 C) and a cut-off voltage of 3.3 V.
[0042]
The results are shown in Table 1.
[Table 1]
[0043]
As apparent from Table 1, in the charging current density of 3mA / cm 2 or more at which the batteries of Examples 1 to 6 of the first stage, a small Comparative Example 1 than the charge current density in the first stage is 3mA / cm 2 Although the initial capacity was not much different from the battery of No. 3, the internal resistance of the battery was small and the 2C discharge capacity was large. This is considered to be because a film having low resistance was formed on the surface of the negative electrode, and the lithium ion conductivity in the film during high-rate discharge was improved. In each of these examples, the charging time was short.
[0044]
Further, as can be seen from Comparative Example 4, when the charging current density is not less than 3 mA / cm 2 and the current density is not changed, the charging time is shortened, but irreversible metallic lithium dendrite is generated. Significantly decreased. In addition, the internal resistance of the coating increased and the 2C discharge capacity decreased. Furthermore, even when charging is performed at a charging current density of 1.5 mA / cm 2 or less as in Comparative Example 5, the internal resistance of the coating increases as in Comparative Examples 1 to 3, so that the 2C discharge capacity is low. became.
[0045]
As described above, in order to increase the 2C discharge capacity and shorten the charging time, the charging current density of the first stage is set to 3 mA / cm 2 or more, and the charging current density of the second and subsequent stages is set to less than 3 mA / cm 2. Is preferred.
[0046]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the manufacturing method of the nonaqueous electrolyte secondary battery of this invention, the outstanding effect that it can provide the nonaqueous electrolyte secondary battery which is excellent in charge / discharge characteristics and productivity is produced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a nonaqueous electrolyte battery according to an embodiment of the present invention.