【0001】
【発明の属する技術分野】
この発明は、非対称ころを用いた複列の自動調心ころ軸受に関し、一般的に自動調心ころ軸受が使用される箇所、例えば製紙機械や鉄鋼設備等に使用されるものに関する。
【0002】
【従来の技術と発明が解決しようとする課題】
現状、複列の自動調心ころ軸受は、ころの形状により非対称ころ軸受と、対称ころ軸受とに大別される。非対称ころ軸受は、図5,図7に示すように、ころ13の最大径の位置Mが、ころ長さの中央から外れている非対称ころを用いたものである。対称ころ軸受では、図6,図8に示すように、ころ13の最大径の位置Mが、ころ長さの中央にある対称ころが用いられる。
【0003】
上記各形式の軸受は、それぞれ特徴があり、図5の非対称ころ軸受では、図7のようにころ13の最大径位置Mと負荷を受ける位置Q(図中に×印で示す)とが異なるので、内輪11に形成した中鍔部11bで負荷分力Fを受けるようにされている。すなわち、軸受に荷重が負荷されたときに、ころ13を内輪11の中鍔部11bに押し付ける力(誘起スラスト荷重)Fが発生し、ころ13は3点接触(外輪軌道面12a、内輪軌道面11a、内輪中鍔面)となって力のバランスが取れる。そのため、確実にころ13を案内してスキュー(ふらつき)を防止することができる。
【0004】
これに対して、図6の対称ころ軸受では、軸受に荷重が負荷されたときに、誘起スラスト荷重は理論上発生しないため、図8のようにころ13は中立位置Nで2点接触(内輪軌道面11a、外輪軌道面12a)となっている。しかし、ころ13が2点接触している状態では不安定であるため、ころ13のスキューを防止するための案内輪19が必要とされる。ただし、案内輪19を設けたとしても、対称ころ軸受では誘起スラスト荷重が発生せず、3点接触とならない。そのため非対称ころ軸受に比べると、ころ13のスキューを確実に防止することはできない。
【0005】
このように、上記両ころ軸受を機能的に比較した場合、非対称ころを用いた自動調心ころ軸受は、対称ころを用いたものに比べてころのスキューが少なく、軸受回転時の摩擦による発熱が小さい。
しかし、非対称ころ軸受ではスキュー防止のために内輪11に中鍔部11bが必要であり、軸受のコストが高くなる要因の一つとなっている。すなわち、中鍔の存在のために、内輪11の製造工程が増大し、これによりコスト高となる。
対称ころ軸受では内輪11の形状と簡素となる分、製造コストが低く抑えられるが、スキュー防止のために案内輪19が必要であり、部品点数が多いため、やはり製造コストが増大する。
【0006】
また、従来の自動調心ころ軸受では、対称ころ、非対称ころに係わらず、ころ13にスキューが生じた場合、ころ13の外径面と端面間の縁部となる面取り部が内輪11の中鍔部11bや案内輪19の側面に押し当てられるので、エッジ応力で局所的に面圧が上昇し、油膜切れが生じてしまう。その結果、案内面にかじりが生じることがある。
自動調心ころ軸受において、ころ13が公転する際に発生する案内面(中鍔部11bや案内輪19の側面)ところ13の大端面との摩擦には、(1) 保持器20と内輪11の公転速度差による周方向の滑りと、(2) 案内面に対するころ13の自転による滑り、との2種類がある。特に(1) の公転速度差による滑りは、ころ13と内・外輪軌道面11a,12aの滑りと比較して格段に発熱量が大きく、軸受寿命に影響を及ぼす。加えて、案内面が全周にわたってリング状に設けられているので、ころ13がスキューした場合に、その面取り部が案内面に必ず当たり、エッジ応力が発生する。
【0007】
この発明の目的は、このような課題を解消し、ころのスキュー防止が可能で、コストも低減できる自動調心ころ軸受を提供することを目的とする。
この発明の他の目的は、スキュー発生時のエッジ応力を防止することである。
【0008】
【課題を解決するための手段】
この発明の自動調心ころ軸受は、非対称ころを用いた複列の自動調心ころ軸受であって、各列のころを保持する保持器を設け、両保持器は、内輪軌道面の大径側となる大径側縁にリング部を有し、上記ころが、外輪軌道面、内輪軌道面、および保持器大径側リング部の3点で接触するものとしている。
この構成によると、非対称ころを用いたため、誘起スラスト荷重が発生し、ころの端面が保持器の内輪軌道面大径側のリング部に接する。そのため、ころは、外輪軌道面、内輪軌道面、および保持器リング部の3点で接触するものとなる。このとき、両列の保持器は、リング部の背面で互いに力を受けて案内輪の代わりとなる。そのため、ころの姿勢が安定してスキューが防止される。このように、保持器でころのスキューを防止するようにしたため、従来のコスト高の一因であった内輪中鍔部や案内輪を省略することが可能となり、コストが低減される。
【0009】
この発明において、上記保持器は、少なくとも上記大径側リング部におけるころとの接触面及び背面が表面硬化処理されたものとし、軟窒化処理やショットピーニング等でその表面硬度をHv370以上とすることが望ましい。
保持器の大径側リング部は、ころの端面に接触し、上記誘起スラスト荷重を受けるため、通常の鋼材ではころとの接触面の摩耗が懸念される。上記接触面を表面硬化処理されたものとすると、この摩耗が抑制される。この場合に、表面硬度がHv370以上であると、摩耗の抑制効果が大きい。なお、両列の保持器は、大径側リング部の背面で互いに押し付け状態に接触するため、この背面の摩耗も懸念される。そのため、大径側リング部の背面も上記の表面効果処理面とし、その表面硬度をHv370以上とすることが望ましい。これにより大径側リング部の背面の摩耗も抑制することができる。
【0010】
この発明の自動調心ころ軸受において、上記保持器のころを保持するポケット間の柱部は、ころ軸心よりも軸受内径側に位置させて良い。
柱部をころ軸心よりも軸受内径側に位置させることにより、ころ径の寸法拡大が図れ、負荷容量の増大が行える。この発明の自動調心ころ軸受では、内輪の中鍔部や案内輪がないため、このように柱部を軸受内径側へ位置させる構成が容易に実現できる。
【0011】
また、この発明の自動調心ころ軸受において、上記保持器の上記リング部は、ころを保持するポケット間の柱部から外径側へ延びたものであって、各ポケットの形成された周方向位置に、内径側へ延びる案内板を有し、この案内板の部分でころの端面に接触するものとしても良い。
このように、リング部に案内板を部分的に設け、この案内板にころ端面を接触させるようにした場合、ころのスキューが生じても、ころの外径面と端面間の縁部がリング部に当たらず、エッジ応力が発生しない。そのため、エッジ応力による摩耗が防止され、より一層摩耗が生じ難くなる。保持器のリング部の外径側へ延びた部分は、両側の保持器が互いに背合わせに接触して上記誘起スラスト荷重を受ける部分となる。
【0012】
【発明の実施の形態】
この発明の一実施形態を図1と共に説明する。図1(A)に示すように、この自動調心ころ軸受は、内輪1と外輪2の間に2列の非対称ころ3,3を組み込んだものであり、各列のころ3,3に対して保持器4,4が各々設けられている。内輪1は、前記各列のころ3に対応する軌道面1a,1aを有するが、中鍔部および外鍔部を有せず、両列の軌道面1a,1a間の外径面部分は、軌道面1aの端部と略同じ外径の円筒面状とされている。外輪2は、軸受中心を中心とする球面状とされた軌道面2aを有する。非対称ころ3は、たる形であり、その最大径位置Mがころ長さの中央から外れたものとされていて、負荷を受ける位置Q(×印で示す)と最大径位置Mとは異なる。非対称ころ3は、最大径位置Mがころ長さの中央から軸受幅の中央側に偏っており、負荷を受ける位置Qは、最大径位置Mよりも軸受端部側に位置する。
【0013】
保持器4は、断面概形を逆L字状とした環状体とされており、例えば鋼板打ち抜き保持器からなる。具体的には、保持器4は、内輪軌道面1aの大径側となる保持器大径側縁に、内径側に向かって延びる大径側リング部4aを有し、このリング部4aから略ころ軸心Sに沿って内輪軌道面1aの小径側へ延びるテーパ状筒部に、ころ3を保持するポケット5が設けられている。ポケット5は、図1(B)のように周方向に並べて複数形成され、隣合うポケット5間の部分が柱部8となる。柱部8は、ころ軸心Sよりも軸受内径側に位置する。この保持器4は、リング部4aで内輪1の外径面に案内される。ポケット5で保持されるころ3の大端面3aは、リング部4aに接触する。すなわち、保持器4で保持されるころ3は、内輪軌道面1a、外輪軌道面2a、および保持器大径側リング部4aの3点で接触するものとされている。
【0014】
各列のころ3,3を保持する左右の保持器4,4は、内輪1の外径面の幅方向中央部で、それらの大径側リング部4a,4aが互いに背中合わせに接するように配置されている。
保持器大径側リング部4aにおけるころ大端面3aとの接触面(図1(A)に×印で示す)4aa、および左右のリング部4a,4aが互いに背中合わせとなる接触面は、摩擦による摩耗を抑制するために表面硬化処理が施されている。この表面硬化処理を施した部分の表面硬度は、Hv370以上とされている。
【0015】
この構成の自動調心ころ軸受によると、非対称ころ3を用いたため、軸受が荷重を受けたときに誘起スラスト荷重が発生し、ころ3の端面が保持器4の大径側のリング部4aに接する。そのため、ころ3は、外輪軌道面2a、内輪軌道面1a、および保持器リング部4aの3点で接触するものとなる。このとき、両列の保持器4,4は、リング部4aの背面で互いに力を受けて案内輪の代わりとなる。そのため、ころ3の姿勢が安定してスキューが防止される。このように、保持器4でころ3のスキューを防止するようにしたため、従来のコスト高の一因であった内輪中鍔部や案内輪を省略することが可能となり、構成が簡素化されてコストが低減される。また、この実施形態の場合、保持器4が鋼板打ち抜き保持器からなるので、量産に適しており、この点でもコストを低減できる。
【0016】
また、保持器4の大径側リング部4aにおけるころ大端面3aと接触する接触面4aa、および左右のリング部4a,4aが背中合わせとなる接触面は、表面硬化処理して表面硬度をHv370以上としているので、上記の誘起スラスト荷重で摩擦が生じても、摩耗を抑制することができる。
さらに、保持器4の柱部8は、ころ軸心Sよりも軸受内径側に位置させてあるため、ころ3の寸法拡大が行え、負荷容量の増大が期待できる。
【0017】
図2〜図4は、この発明の他の実施形態を示す。この自動調心ころ軸受は、図1に示した第1の実施形態において、保持器4の大径側リング部4aが、ころ大端面3aを受けて案内する案内板6を有するものとしている。具体的には、保持器4の大径側縁は、図3(A)に矢印R1で示すように折り曲げ線Gで外径側に折り曲げることで、図2および図3(B)のように外径側に立ち上がる大径側リング部4aとされ、同時に大径側リング部4aからポケット5内に向けて突出する板部6’が図3(A)に矢印R2で示すように内径側に折り曲がることで、図2および図3(B)のように内径側に向かう前記案内板6とされている。左右の保持器4,4の大径側リング部4a,4aは、互いに背中合わせに接するように配置され、軸受に荷重が負荷されたときに発生する誘起スラスト荷重を、両方の大径側リング部4a,4aで互いに受けるようにされている。
また、保持器4の小径側リング部4bは、図2のように内径側に折り曲げることで、内輪1に案内される案内部とされている。さらに、保持器4のポケット5の大径側リング部4aと対向する内縁部には、ポケット内方に突出してころ3の小端面3bを受ける円弧状のころ止め部7が形成されている。ころ3の小端面は、ころ軸心Sと同心の円形凹部31を有し、この凹部31内に上記ころ止め部7が係合することで、ころ3の抜け止めがなされる。図4は、図3(B)において矢印A方向から見た保持器4の側面図を示す。
【0018】
この構成の自動調心ころ軸受の場合、ころ大端面3aが保持器4の案内板6で受け止められて案内されるので、ころ3にスキューが生じても、ころ3の外径面と端面間の縁部となる面取り部3cに他部材が当たらず、エッジ応力が発生しない。また、保持器案内を意図した場合、ころ3の公転に伴う回転トルクは、基本的にころ3の自転による前記案内板6でのころ大端面3aの滑りのみとなる。そのため発熱量も少なく、低トルクで回転性能において優れたものとすることができる。
【0019】
加えて、この実施形態における保持器4の案内板6は、大径側リング部4aからポケット5内に向けて突出する板部6’を内径側に折り曲げて形成しているので、図4のように案内板6によるころ3の拘束位置が高く、接触面積(幅)も広くなり、ころ3の姿勢が安定し易くなる。さらに、案内板6の幅は自由に設定できるので、その幅をころ3の大端面3a内に収まるように設定することで、エッジ応力の影響を無くすことができる。しかも、保持器4は鋼板打ち抜き保持器からなるので、プレス曲げによる「反り」で、案内板6に微妙な曲率が生じて凸面と凸面との接触を期待でき、ころ3がスキューしてもエッジ応力が生じ難い構造を持つことになる。
また、従来例のような内輪中鍔部や案内輪を省略しているだけでなく、図4のように保持器4の柱部8を内径側に押し曲げてころ3の軸心Sよりも軸受内径側のスペースに位置させているので、柱部8と干渉しないようにころ3を寸法アップでき、軸受の負荷容量を格段にアップさせることができる。
【0020】
【発明の効果】
この発明の自動調心ころ軸受は、非対称ころを用い、各列の保持器を大径側縁にリング部を有するものとしたため、保持器が案内輪の代わりとなって、ころが3点接触で支持され、スキューが防止される。そのため、内輪中鍔や案内輪が不要で、簡素な構造でスキューを防止できて、コストも低減される。
保持器の少なくとも大径側リング部におけるころとの接触面を表面硬化処理面とし、その表面硬度をHv370以上とした場合は、保持器の大径側リング部でスキュー防止したことに伴う大径側リング部の摩耗を抑制することができる。
保持器の柱部をころ軸心よりも軸受内径側に位置させた場合、ころの寸法増大が容易で、負荷容量の増大が可能となる。
保持器の上記リング部を、柱部から外径側へ延びたものとし、各ポケットの形成された周方向位置に内径側へ延びる案内板を設け、この案内板の部分でころの端面に接触するものとした場合は、スキューが発生してもエッジ当たりとならず、エッジ応力が発生することが回避される。
【図面の簡単な説明】
【図1】(A)はこの発明の一実施形態にかかる自動調心ころ軸受の断面図、(B)は同軸受における保持器の要部正面図である。
【図2】この発明の他の実施形態にかかる自動調心ころ軸受の断面図である。
【図3】(A)は同軸受における保持器の半加工状態を示す要部正面図、(B)は同保持器の完成品を示す要部正面図である。
【図4】図3(B)における矢印Aの方向から見た保持器の要部側面図である。
【図5】非対称ころを用いた従来の自動調心ころ軸受の断面図である。
【図6】対称ころを用いた従来の自動調心ころ軸受の断面図である。
【図7】従来の非対称ころ軸受における誘起スラスト荷重の作用説明図である。
【図8】従来の対称ころ軸受における誘起スラスト荷重の作用説明図である。
【符号の説明】
1…内輪
1a…内輪軌道面
2…外輪
2a…外輪軌道面
3…非対称ころ
4…保持器
4a…大径側リング部[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-row spherical roller bearing using asymmetric rollers, and generally relates to a part where a spherical roller roller is used, for example, a paper machine or a steel equipment.
[0002]
[Prior Art and Problems to be Solved by the Invention]
At present, double row self-aligning roller bearings are roughly classified into asymmetric roller bearings and symmetric roller bearings according to the shape of the rollers. As shown in FIGS. 5 and 7, the asymmetric roller bearing uses an asymmetric roller in which the position M of the maximum diameter of the roller 13 deviates from the center of the roller length. In the symmetric roller bearing, as shown in FIGS. 6 and 8, a symmetric roller in which the position M of the maximum diameter of the roller 13 is at the center of the roller length is used.
[0003]
Each of the above-mentioned types of bearings has its own characteristic. In the asymmetric roller bearing of FIG. 5, the maximum diameter position M of the roller 13 and the position Q (indicated by a cross in the figure) of the roller 13 are different as shown in FIG. Therefore, the load component F is received by the middle flange portion 11b formed on the inner ring 11. That is, when a load is applied to the bearing, a force (induced thrust load) F for pressing the rollers 13 against the middle flange portion 11b of the inner ring 11 is generated, and the rollers 13 contact at three points (the outer ring raceway surface 12a and the inner ring raceway surface). 11a, inner ring middle collar surface) to balance the forces. Therefore, it is possible to reliably guide the rollers 13 to prevent skew.
[0004]
On the other hand, in the symmetric roller bearing shown in FIG. 6, when a load is applied to the bearing, the induced thrust load does not theoretically occur. Therefore, as shown in FIG. The raceway surface 11a and the outer raceway surface 12a). However, since the rollers 13 are unstable when they are in two-point contact with each other, a guide wheel 19 for preventing skew of the rollers 13 is required. However, even if the guide wheel 19 is provided, the induced thrust load does not occur in the symmetric roller bearing, and three-point contact does not occur. Therefore, skew of the rollers 13 cannot be reliably prevented as compared with the asymmetric roller bearing.
[0005]
As described above, when the above-mentioned double roller bearings are functionally compared, the self-aligning roller bearings using the asymmetrical rollers have less skew of the rollers than those using the symmetrical rollers, and generate heat due to friction during rotation of the bearings. Is small.
However, in the case of the asymmetric roller bearing, the inner flange 11b is required for the inner ring 11 in order to prevent skew, which is one of the factors that increase the cost of the bearing. That is, due to the presence of the middle collar, the number of manufacturing steps of the inner ring 11 increases, which increases the cost.
In the case of the symmetrical roller bearing, the manufacturing cost can be reduced to the extent that the shape of the inner ring 11 is simple, but the guide wheel 19 is required to prevent skew and the number of parts is large, so that the manufacturing cost also increases.
[0006]
Further, in the conventional spherical roller bearing, when skew occurs in the roller 13 irrespective of whether the roller is symmetric or asymmetric, the chamfered portion serving as an edge between the outer diameter surface and the end surface of the roller 13 is formed in the inner ring 11. Since it is pressed against the flange 11b and the side surface of the guide wheel 19, the surface pressure locally increases due to the edge stress, and the oil film breaks. As a result, galling may occur on the guide surface.
In the self-aligning roller bearing, the friction between the guide surface (the middle flange portion 11b and the side surface of the guide wheel 19) generated when the roller 13 revolves and the large end surface 13 is as follows: (1) The cage 20 and the inner ring 11 And (2) slippage caused by the rotation of the rollers 13 with respect to the guide surface. In particular, the slippage caused by the difference in the revolution speed of (1) significantly increases the calorific value as compared with the slippage of the rollers 13 and the inner and outer raceway surfaces 11a and 12a, and affects the bearing life. In addition, since the guide surface is provided in a ring shape over the entire circumference, when the rollers 13 are skewed, the chamfered portion always hits the guide surface, and edge stress is generated.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a self-aligning roller bearing which can solve such problems, can prevent roller skew, and can reduce cost.
Another object of the present invention is to prevent edge stress when skew occurs.
[0008]
[Means for Solving the Problems]
The self-aligning roller bearing of the present invention is a double-row self-aligning roller bearing using an asymmetric roller, provided with retainers for holding the rollers of each row, and both retainers have a large diameter of the inner raceway surface. A ring portion is provided on the large-diameter side edge that is the side, and the rollers contact at three points: the outer ring raceway surface, the inner ring raceway surface, and the retainer large-diameter ring portion.
According to this configuration, since the asymmetric roller is used, an induced thrust load is generated, and the end face of the roller comes into contact with the ring portion on the inner ring raceway surface large diameter side of the cage. Therefore, the rollers come into contact at three points: the outer ring raceway surface, the inner ring raceway surface, and the retainer ring portion. At this time, the retainers in both rows receive forces from each other on the back surface of the ring portion and take the place of the guide wheels. Therefore, the posture of the rollers is stabilized and skew is prevented. As described above, since the rollers are prevented from being skewed by the retainer, it is possible to omit the inner ring middle flange portion and the guide wheels, which are one of the causes of the conventional cost increase, and the cost is reduced.
[0009]
In the present invention, at least the contact surface and the back surface of the cage with the rollers in the large-diameter side ring portion have been subjected to a surface hardening treatment, and the surface hardness thereof is set to Hv370 or more by nitrocarburizing treatment or shot peening. Is desirable.
Since the large-diameter-side ring portion of the retainer comes into contact with the end face of the roller and receives the induced thrust load, abrasion of the contact surface between the roller and the normal steel material is a concern. If the contact surface has been subjected to a surface hardening treatment, this wear is suppressed. In this case, if the surface hardness is Hv370 or more, the effect of suppressing wear is great. Since the retainers in both rows contact each other in a pressed state on the rear surface of the large-diameter-side ring portion, wear on the rear surface is also a concern. Therefore, it is desirable that the back surface of the large-diameter ring portion is also the surface effect treated surface, and that the surface hardness is Hv370 or more. Thereby, the abrasion on the back surface of the large-diameter side ring portion can be suppressed.
[0010]
In the self-aligning roller bearing according to the present invention, the pillar between the pockets holding the rollers of the cage may be located on the bearing inner diameter side of the roller shaft.
By positioning the column portion on the bearing inner diameter side with respect to the roller shaft center, the dimension of the roller diameter can be increased, and the load capacity can be increased. In the self-aligning roller bearing of the present invention, since there is no middle flange portion or guide wheel of the inner ring, such a configuration that the column portion is located on the bearing inner diameter side can be easily realized.
[0011]
In the self-aligning roller bearing according to the present invention, the ring portion of the cage extends outwardly from a column between pockets holding the rollers, and extends in a circumferential direction in which each pocket is formed. A guide plate extending toward the inner diameter side may be provided at the position, and a portion of the guide plate may contact the end face of the roller.
In this way, when the guide plate is partially provided in the ring portion and the roller end surface is brought into contact with the guide plate, even if roller skew occurs, the edge between the outer diameter surface and the end surface of the roller is formed by the ring. No edge stress occurs due to no contact with the part. Therefore, abrasion due to edge stress is prevented, and abrasion is more difficult to occur. The portion of the ring portion of the cage that extends to the outer diameter side is a portion where the cages on both sides contact each other back to back and receive the induced thrust load.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1 (A), this self-aligning roller bearing incorporates two rows of asymmetric rollers 3, 3 between an inner ring 1 and an outer ring 2. And retainers 4 and 4 are provided. The inner ring 1 has the raceway surfaces 1a, 1a corresponding to the rollers 3 in each row, but has no middle flange portion and the outer flange portion, and the outer diameter surface portion between the raceway surfaces 1a, 1a in both rows is It is a cylindrical surface having substantially the same outer diameter as the end of the raceway surface 1a. The outer race 2 has a spherical raceway surface 2a centered on the bearing center. The asymmetric roller 3 has a barrel shape, and its maximum diameter position M is deviated from the center of the roller length, and the load receiving position Q (indicated by a cross) and the maximum diameter position M are different. In the asymmetric roller 3, the maximum diameter position M is deviated from the center of the roller length toward the center of the bearing width, and the load receiving position Q is located closer to the bearing end than the maximum diameter position M.
[0013]
The retainer 4 is an annular body having an inverted L-shape in cross section, and is made of, for example, a steel plate punched retainer. Specifically, the retainer 4 has a large-diameter side ring portion 4a extending toward the inner diameter side on a retainer large-diameter side edge which is a large-diameter side of the inner raceway surface 1a, and is substantially separated from the ring portion 4a. A pocket 5 for holding the roller 3 is provided in a tapered cylindrical portion that extends along the roller axis S toward the smaller diameter side of the inner raceway surface 1a. As shown in FIG. 1B, a plurality of pockets 5 are formed side by side in the circumferential direction, and a portion between adjacent pockets 5 becomes a pillar portion 8. The column portion 8 is located on the bearing inner diameter side of the roller shaft S. The retainer 4 is guided to the outer diameter surface of the inner ring 1 by the ring portion 4a. The large end surface 3a of the roller 3 held by the pocket 5 contacts the ring portion 4a. That is, the rollers 3 held by the retainer 4 come into contact with each other at three points: the inner raceway surface 1a, the outer raceway surface 2a, and the retainer large-diameter ring portion 4a.
[0014]
The left and right retainers 4, 4 for holding the rollers 3, 3 in each row are arranged at the center in the width direction of the outer diameter surface of the inner ring 1 so that their large-diameter side ring portions 4a, 4a come into contact with each other back to back. Have been.
A contact surface (shown by a cross in FIG. 1A) 4aa of the cage large-diameter side ring portion 4a with the roller large end surface 3a and a contact surface where the left and right ring portions 4a, 4a are back-to-back are formed by friction. A surface hardening treatment is applied to suppress abrasion. The surface hardness of the part subjected to the surface hardening treatment is Hv370 or higher.
[0015]
According to the self-aligning roller bearing of this configuration, since the asymmetric roller 3 is used, an induced thrust load is generated when the bearing receives a load, and the end face of the roller 3 is attached to the ring portion 4 a on the large diameter side of the cage 4. Touch Therefore, the rollers 3 come into contact with each other at three points of the outer raceway surface 2a, the inner raceway surface 1a, and the retainer ring portion 4a. At this time, the retainers 4 and 4 in both rows receive forces from each other on the back surface of the ring portion 4a and take the place of the guide wheels. Therefore, the posture of the rollers 3 is stabilized, and skew is prevented. As described above, since the skew of the rollers 3 is prevented by the retainer 4, it is possible to omit the inner ring middle flange portion and the guide wheel, which have contributed to the conventional high cost, and the configuration is simplified. Cost is reduced. Further, in the case of this embodiment, since the retainer 4 is formed of a steel plate punched retainer, it is suitable for mass production, and the cost can be reduced in this respect as well.
[0016]
The contact surface 4aa of the large diameter side ring portion 4a of the retainer 4 that contacts the roller large end surface 3a and the contact surfaces where the left and right ring portions 4a, 4a are back-to-back are subjected to a surface hardening treatment to have a surface hardness of Hv 370 or more. Therefore, even if friction occurs due to the induced thrust load, abrasion can be suppressed.
Further, since the column portion 8 of the retainer 4 is located closer to the bearing inner diameter than the roller shaft S, the dimensions of the roller 3 can be increased, and an increase in load capacity can be expected.
[0017]
2 to 4 show another embodiment of the present invention. This self-aligning roller bearing is different from the first embodiment shown in FIG. 1 in that the large-diameter side ring portion 4a of the retainer 4 has a guide plate 6 that receives and guides the large roller end face 3a. Specifically, the large-diameter side edge of the retainer 4 is bent outward at a bending line G as shown by an arrow R1 in FIG. A large-diameter-side ring portion 4a rising to the outer-diameter side, and a plate portion 6 'projecting from the large-diameter-side ring portion 4a toward the inside of the pocket 5 at the same time is provided on the inner-diameter side as shown by an arrow R2 in FIG. By bending, the guide plate 6 is directed to the inner diameter side as shown in FIGS. 2 and 3B. The large-diameter ring portions 4a, 4a of the left and right cages 4, 4 are arranged so as to be in contact with each other back to back, so that the induced thrust load generated when a load is applied to the bearing is applied to both large-diameter ring portions. 4a, 4a receive each other.
The small-diameter side ring portion 4b of the retainer 4 is a guide portion that is guided to the inner ring 1 by being bent toward the inner diameter side as shown in FIG. Further, an arc-shaped roller stopper 7 projecting inward from the pocket and receiving the small end surface 3b of the roller 3 is formed at an inner edge of the pocket 5 of the retainer 4 facing the large-diameter ring 4a. The small end surface of the roller 3 has a circular concave portion 31 concentric with the roller shaft center S, and the roller 3 is prevented from coming off by engaging the roller stopper 7 in the concave portion 31. FIG. 4 shows a side view of the retainer 4 as viewed from the direction of arrow A in FIG.
[0018]
In the case of the self-aligning roller bearing of this configuration, since the roller large end face 3a is received and guided by the guide plate 6 of the cage 4, even if the roller 3 is skewed, the distance between the outer diameter surface of the roller 3 and the end face is reduced. No other member hits the chamfered portion 3c, which is the edge of the edge, and no edge stress is generated. When the cage is to be guided, the rotational torque associated with the revolution of the roller 3 is basically only the sliding of the roller large end face 3a on the guide plate 6 due to the rotation of the roller 3. Therefore, the calorific value is small, and low torque and excellent rotation performance can be obtained.
[0019]
In addition, since the guide plate 6 of the retainer 4 in this embodiment is formed by bending a plate portion 6 ′ protruding from the large-diameter ring portion 4a toward the inside of the pocket 5 toward the inner diameter side, FIG. As described above, the position where the roller 3 is restrained by the guide plate 6 is high, the contact area (width) is widened, and the posture of the roller 3 is easily stabilized. Further, since the width of the guide plate 6 can be freely set, the influence of edge stress can be eliminated by setting the width to be within the large end surface 3a of the roller 3. In addition, since the cage 4 is formed of a steel plate punched cage, a slight curvature is generated in the guide plate 6 due to "warpage" due to press bending, so that contact between the convex surface and the convex surface can be expected. It has a structure in which stress is hardly generated.
Further, not only the inner ring middle flange portion and the guide ring as in the conventional example are omitted, but also the column portion 8 of the retainer 4 is bent toward the inner diameter side as shown in FIG. Since the roller 3 is located in the space on the inner diameter side of the bearing, the size of the roller 3 can be increased so as not to interfere with the column portion 8, and the load capacity of the bearing can be significantly increased.
[0020]
【The invention's effect】
The self-aligning roller bearing of the present invention uses asymmetric rollers, and the cage in each row has a ring portion on the large-diameter side edge. Therefore, the cage replaces the guide wheel, and the rollers have three-point contact. And skew is prevented. Therefore, the inner ring middle flange and the guide wheel are not required, skew can be prevented with a simple structure, and the cost is reduced.
In the case where at least the contact surface with the rollers in the large-diameter-side ring portion of the retainer is a surface-hardened surface and the surface hardness is Hv370 or more, the large-diameter due to skew prevention by the large-diameter-side ring portion of the retainer Wear of the side ring portion can be suppressed.
When the pillar portion of the cage is located closer to the bearing inner diameter than the roller shaft center, the dimension of the roller can be easily increased, and the load capacity can be increased.
The ring portion of the retainer extends from the pillar portion to the outer diameter side, and a guide plate extending to the inner diameter side is provided at a circumferential position where each pocket is formed, and the guide plate portion contacts the end face of the roller. In this case, even if the skew occurs, the edge is not hit and the occurrence of edge stress is avoided.
[Brief description of the drawings]
FIG. 1A is a sectional view of a self-aligning roller bearing according to an embodiment of the present invention, and FIG. 1B is a front view of a main part of a cage in the bearing.
FIG. 2 is a sectional view of a self-aligning roller bearing according to another embodiment of the present invention.
FIG. 3A is a front view of a main part showing a semi-processed state of a cage in the bearing, and FIG. 3B is a front view of a main part showing a finished product of the cage.
FIG. 4 is a side view of a main part of the retainer as viewed from the direction of arrow A in FIG. 3 (B).
FIG. 5 is a sectional view of a conventional self-aligning roller bearing using asymmetric rollers.
FIG. 6 is a cross-sectional view of a conventional self-aligning roller bearing using symmetric rollers.
FIG. 7 is an explanatory diagram of an action of an induced thrust load in a conventional asymmetric roller bearing.
FIG. 8 is an explanatory diagram of an action of an induced thrust load in a conventional symmetric roller bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inner ring 1a ... Inner ring raceway surface 2 ... Outer ring 2a ... Outer ring raceway surface 3 ... Asymmetric roller 4 ... Cage 4a ... Large diameter side ring part