JP2004006247A - Lithium secondary battery - Google Patents
Lithium secondary battery Download PDFInfo
- Publication number
- JP2004006247A JP2004006247A JP2003019262A JP2003019262A JP2004006247A JP 2004006247 A JP2004006247 A JP 2004006247A JP 2003019262 A JP2003019262 A JP 2003019262A JP 2003019262 A JP2003019262 A JP 2003019262A JP 2004006247 A JP2004006247 A JP 2004006247A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- secondary battery
- ppm
- content
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明はリチウム二次電池に係り、特に、正極活物質に放充電によりリチウムを吸蔵・放出が可能なリチウムマンガン複酸化物を用いた正極と、負極活物質に炭素材料を用いた負極とをセパレータを介して電解液に浸潤させたリチウム二次電池に関する。
【0002】
【従来の技術】
リチウム二次電池を代表するリチウムイオン二次電池は、高エネルギー密度であるメリットを活かして、VTRカメラ、ノートパソコンや携帯電話等のポータブル機器や自動車の電源に使用されている。このようなリチウムイオン二次電池の内部構造は、通常以下に示されるような捲回式構造とされている。電極は正極、負極共に活物質が金属箔に塗着された帯状であり、セパレータを挟んで正極、負極が直接接触しないように断面が渦巻状に捲回され、捲回群が形成されている。この捲回群が電池容器となる円筒状の電池缶に収納され、電解液注液後、封口されている。
【0003】
一般的な円筒型リチウムイオン二次電池の外径寸法は、18650型と呼ばれる、直径18mm、高さ65mmであり、小形民生用リチウムイオン二次電池として広く普及している。近年、マンガン酸リチウム等の、リチウムと豊富で低コストのマンガンを含む複酸化物を正極活物質とするリチウムイオン二次電池の研究が盛んに行われ、リチウムマンガン複酸化物を18650型リチウムイオン二次電池に用いる技術開発もなされている。
【0004】
しかしながら、マンガン酸リチウムは、充電、放電によりリチウムイオンの挿入、脱離に伴い結晶が膨張・収縮し、膨張・収縮を伴う充放電を繰り返すと、正極としての電子伝導性が低下し、放電容量が低下する、という問題がある。また、マンガン酸リチウムを活物質に用いた正極は、放電状態又は充電状態にかかわらず、電解液中にマンガン成分が溶解し、マンガン成分の溶解が、充放電サイクル寿命特性の低下や、保存特性の低下の大きな原因となる、という問題がある。
【0005】
これらの問題に対処するために、マンガン酸リチウムの合成条件の改良や添加剤などによって結晶性の高いマンガン酸リチウムを作製する技術や、マンガン酸リチウムの結晶構造中に異種元素をドープする技術が開示されている(例えば、特許文献1及び特許文献2参照)。
【0006】
【特許文献1】
特開平10−182160号公報(段落番号「0011」「0021」)
【特許文献2】
特開平10−182157号公報(段落番号「0011」「0020」)
【0007】
【発明が解決しようとする課題】
しかしながら、これら公報の技術でも、現在のところ充分な充放電サイクル寿命特性が得られていないのが現状である。本発明は、上記事案に鑑み、リチウムマンガン複酸化物を正極活物質に用いたリチウム二次電池の寿命特性を改善することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は、正極活物質に放充電によりリチウムを吸蔵・放出が可能なリチウムマンガン複酸化物を用いた正極と、負極活物質に炭素材料を用いた負極とをセパレータを介して電解液に浸潤させたリチウム二次電池において、前記リチウムマンガン複酸化物中の硫黄含有量が2%以下、かつ、金属含有量が80ppm以下である。
【0009】
本発明では、正極活物質に放充電によりリチウムを吸蔵・放出が可能なリチウムマンガン複酸化物、負極活物質に炭素材料が用いられ、これらの活物質が塗着された正負極がセパレータを介して電解液に浸潤されている。リチウムマンガン複酸化物を作製するには、二酸化マンガンが材料の一部として使用されるが、二酸化マンガン製造時に硫酸根や金属が残り、二酸化マンガンには若干の硫黄や金属成分が含有されているので、結果的に、リチウムマンガン複酸化物は硫黄や金属成分を含有している。一定量以上の硫黄や金属成分を含有するリチウムマンガン複酸化物が電解液に浸潤されると、電解液に影響を与え電極の劣化を助長する。従って、リチウムマンガン複酸化物中の硫黄や金属含有量を一定量以下に制限すれば、硫黄や金属成分による電極の劣化を抑制することが可能となる。本発明によれば、リチウムマンガン複酸化物中の硫黄含有量を2%以下、かつ、金属含有量を80ppm以下としたので、硫黄や金属成分がリチウムマンガン複酸化物中に含まれていても、電極劣化を助長することなく、寿命特性に優れたリチウム二次電池を実現することができる。
【0010】
この場合において、リチウムマンガン複酸化物のマンガンに対するリチウムの比Li/Mnを0.55≦Li/Mn≦0.60の範囲となるようにすれば、初期容量及び容量維持率に優れるリチウム二次電池とすることができる。また、リチウムマンガン複酸化物に、スピネル型結晶構造を有するマンガン酸リチウムを用いるようにすれば、スピネル型は熱的安定性が高いので、リチウム二次電池の安全を向上させることができる。更に、リチウムマンガン複酸化物中に鉄が含有していると、初期の充放電や充放電サイクル中にFeイオンが溶解析出を繰り返し、デンドライトとなって析出し電池内部で微小短絡を起こすので、リチウムマンガン複酸化物中の鉄の含有量を80ppm以下とすることがより好ましい。また、リチウムマンガン複酸化物中の硫黄含有量をS(%)、セパレータの厚さをT(μm)としたときに、式(1)を満たすようにすることで、微少短絡を更に減少させることができる。
【0011】
【数3】
【0012】
また、鉄の含有量をF(ppm)、セパレータの厚さをT(μm)としたときに、式(2)を満たすようにすることで、微少短絡を更に減少させることができる。また、リチウムマンガン複酸化物に、層状結晶構造を有するマンガン酸リチウムを用いるようにしてもよい。
【0013】
【数4】
【0014】
【発明の実施の形態】
以下、本発明を18650型リチウムイオン二次電池に適用した実施の形態について説明する。
【0015】
(正極)
正極活物質にリチウムマンガン複酸化物としてのスピネル型結晶構造を有するマンガン酸リチウム(LiMn2O4)を使用した。このマンガン酸リチウムは、電解二酸化マンガンと、例えば、炭酸リチウム等のリチウム塩と、を混合して焼成することにより合成したものである。このとき、マンガンに対するリチウムの比(以下、Li/Mn比という。)を、電解二酸化マンガンとリチウム塩との比率を調整して、焼成後0.55≦Li/Mn≦0.60の範囲に入るようにした。Li/Mn比は合成後、分析により確認することができる。また、電解二酸化マンガンに含まれる硫黄量と鉄量とを予め検査してLiMn2O4に含まれる硫黄の含有量(以下、硫黄含有量S、という。)が2%以下、かつ、鉄の含有量(以下、鉄の含有量F、という。)が80ppm以下となるように、電解二酸化マンガンを選別して使用した。
【0016】
次に、合成したLiMn2O4粉末86wt%と、導電剤として炭素粉末9wt%と、ポリフッ化ビニリデン(PVDF、バインダ)をN−メチル−2−ピロリドン(以下、NMPと略称する。)で溶解した液を固形分濃度で5wt%として、これらを混練してスラリを得る。このとき使用されるLiMn2O4は、原料である電解二酸化マンガンを選別してLiMn2O4に含まれる硫黄含有量Sが所定%(2%以下)、かつ、鉄の含有量Fが所定%(80ppm以下)であることを確認して使用した。得られた合剤溶液を、コンマロールを用いてアルミニウム箔に塗布、乾燥させ活物質層とした。この活物質層を、80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧(線圧)0.2〜0.7kg/cmで、合剤かさ密度が2.8g/m3となるまで圧縮して、50mm×450mmの帯状に裁断して正極とした。
【0017】
(負極)
負極にリチウムイオンを挿入、脱挿入可能な炭素粉末を用い、炭素粉末90wt%とPVDF10wt%との混合物に、NMPを加え、混練してスラリを得た。このスラリを負極集電体となる銅箔に塗布、乾燥させた。この活物質層を、80°C〜120°Cに加熱したロールを有するロールプレス機にて、プレス圧0.2〜0.7kg/cmで、かさ密度が1.04g/m3となるまで圧縮して、プレスの工程後、50mm×480mmの帯状に裁断して負極とした。
【0018】
(電池の作製)
得られた帯状の正極と負極とを、下記条件を満たす帯状のポリエチレン製セパレータを介して重ねて、捲回し捲回電極体を作製した。
【0019】
セパレータの厚さをT(μm)としたときに、マンガン酸リチウム中の硫黄含有量S(%)に対するセパレータの厚さT(μm)の比T/S(μm/%)が式(1)を満たすようにした。
【0020】
【数5】
【0021】
又は、マンガン酸リチウム中の鉄の含有量F(ppm)に対するセパレータの厚さT(μm)の比T/F(μm/ppm)が式(2)を満たすようにした。
【0022】
【数6】
【0023】
次に、捲回電極体を円筒状の電池缶に入れ、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを体積比で1:1に混合した溶液に6フッ化リン酸リチウム(LiPF6)を1モル/リットルの濃度で溶解した非水電解液を5m注入後、上蓋を取り付け、封口して18650型リチウムイオン二次電池を得た。
【0024】
なお、本実施形態では、スピネル構造を有するマンガン酸リチウムをリチウムマンガン複酸化物として使用した例を示したが、本発明による効果はリチウムマンガン複酸化物の結晶構造を、層状岩塩型構造を含む層状構造を有するように変えても同様な効果が得られる。また、マンガン酸リチウムのほかにLi、V、Cr、Fe、Co、Ni、Mo、W、Zn、B、Mgから選ばれる少なくとも一種類以上の金属でマンガンサイト又はリチウムサイトを置換したリチウムマンガン複合酸化物を用いるようにしてもよい。また、本実施形態では、プレス工程で加熱処理を行う処理方法についてロールを用いて加熱する例を示したが、活物質のバインダを溶融固化することができれば他の方法により加熱するようにしてもよい。
【0025】
更に、本実施形態では、電解液にECとDMCとを混合した溶液にLiPF6で溶解したものを例示したが、他に、電解液の有機溶媒としては、プロピレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエタルカーボネート、γ−ブチルラクトン、テトラヒドロフラン、ジエチルエーテル、スルホラン、アセトニトリル等の単独もしくはこれらのうち二種類以上の混合溶媒を使用することができ、電解質も、LiClO4、LiBF4、LiCl、LiBr、CH3SO3Li、LiAsF6等を使用することができる。
【0026】
また、炭素材料としては、ピッチコークス、石油コークス、黒鉛、炭素繊維、活性炭等や又はこれらの混合物を使用してもよい。更に、バインダとしては、他にイソブチルアクリルレート、オクチルアクリレート、ノニルアクリレート、ブチルメタクリレート及び2−エチルヘキシルメタクリレート等のアクリル酸及び/又はメタクリル酸のC4〜C12アルキルエステルとメタクリル酸、イタコン酸、マレイン酸、フマル酸やアクリルアミド及びメタクリルアミド等のポリアクリル酸等のカルホギシル基又はアミド基の官能基を有する不飽和単量体との共重合体やポリアミドやポリアミドイミドやポリアミドビスマレイミドやポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステルなどを挙げることができ、これら単独のほか併用して使用することができる。
【0027】
【実施例】
以下、上記実施形態に従って、LiMn2O4のLi/Mn比を0.55とし、硫黄含有量S及び鉄の含有量Fを変更して作製した実施例の電池について説明する。なお、比較のために作製した比較例の電池についても併記する。
【0028】
(実施例1)
下表1に示すように、実施例1では、セパレータの厚さT(μm)を40μmとし、LiMn2O4中に含まれる硫黄含有量Sを原料の電解二酸化マンガンを選別して1%とし、セパレータの厚さT/硫黄含有量Sが40(μm/%)の電池を作製した。
【0029】
【表1】
【0030】
(実施例2)
表1に示すように、実施例2では、LiMn2O4中に含まれる硫黄含有量Sを原料の電解二酸化マンガンを選別して2%とし、セパレータの厚さT/硫黄含有量Sを20(μm/%)とした以外は実施例1と同様に電池を作製した。
【0031】
(実施例3)
表1に示すように、実施例3では、LiMn2O4中に含まれる鉄の含有量Fを原料の電解二酸化マンガンを選別して20ppmとし、セパレータの厚さT/鉄の含有量Fが2(μm/ppm)の電池を作製した。
【0032】
(実施例4)
表1に示すように、実施例4では、LiMn2O4中に含まれる鉄の含有量Fを原料の電解二酸化マンガンを選別して80ppmとし、セパレータの厚さT/鉄の含有量Fが0.5(μm/ppm)の電池を作製した。
【0033】
(比較例1)
表1に示すように、比較例1では、LiMn2O4中に含まれる硫黄含有量Sを原料の電解二酸化マンガンを選別して3%とし、セパレータの厚さT/硫黄含有量Sを13.3(μm/%)とした以外は実施例1と同様に電池を作製した。
【0034】
(比較例2)
表1に示すように、比較例2では、セパレータの厚さT(μm)を30μmとし、LiMn2O4中に含まれる硫黄含有量Sを原料の電解二酸化マンガンを選別して2%とし、セパレータの厚さT/硫黄含有量Sを15(μm/%)とした以外は実施例1と同様に電池を作製した。
【0035】
(比較例3)
表1に示すように、比較例3では、LiMn2O4中に含まれる鉄の含有量Fを原料の電解二酸化マンガンを選別して100ppmとし、セパレータの厚さT/鉄の含有量Fが0.5(μm/ppm)の電池を作製した。
【0036】
(試験)
次に、以上のように作製した実施例及び比較例の各電池について、高温(50°C)雰囲気下で充放電サイクル試験を実施した。充放電サイクル試験の内容は以下の通りである。
1)充電条件:定電圧充電4.2V、制限電流1000mA、3h、50°C2)放電条件:定電流放電1000mA、24分、50°C
3)休止条件:充電、放電の間に、休止時間を10分間設けた。
4)放電容量の確認:25サイクル毎に50°Cの雰囲気で充電は電流1000mA、4.2Vの定電圧で3時間とし、放電は電流1000mA、放電終止電圧2.7Vとして放電容量を確認した。
5)容量維持率の算出:200サイクル目の放電容量(以下、200サイクル目容量という。)を測定し、初期の放電容量に対する200サイクル目容量を容量維持率として算出した。
【0037】
充放電サイクル試験の試験結果を下表2に示す。
【0038】
【表2】
【0039】
表2から明らかなように、Li/Mn比が0.55のスピネル型結晶構造のLiMn2O4を使用し、硫黄含有量Sに対するセパレータの厚さTの比T/Sが式1の範囲内にある実施例1及び実施例2の電池では、容量維持率に大きな変化はないが、20(μm/%)を下回る比較例1及び比較例2の電池では、200サイクル目容量維持率が低下することが判明した。
【0040】
この原因は、LiMn2O4の原料である電解二酸化マンガンに残存している硫酸イオンSO4 −がLiMn2O4に残留することにより充放電又は放置(休止)中に溶解し、これが電解液中のわずかな水分を酸性にし電極を劣化させることにあると推測される。
【0041】
また、鉄の含有量Fの充放電サイクル試験の試験結果から明らかなように、セパレータの厚さTに対する鉄の含有量Fの比が式(2)の0.5(μm/ppm)以上の範囲にある実施例3及び実施例4の電池では、鉄の影響はほとんどなく、0.5(μm/ppm)を下回る比較例3の電池では、容量維持率、すなわち、寿命特性に影響してくるものと考えられる。
【0042】
鉄の含有量Fが多くなるとLiMn2O4中にも多くのFe分が残留し、初期の充放電やサイクル中にFeイオンが溶解析出を繰り返し、デンドライトとなって析出し電池内部で微小短絡を起こし容量減少を起こしているものと考えられる。これより、セパレータの厚さTに対する鉄の含有量Fの比が0.5(μm/ppm)を下回ると寿命特性に影響すると考えられる。
【0043】
【発明の効果】
以上説明したように、本発明によれば、リチウムマンガン複酸化物中の硫黄含有量を2%以下、かつ、金属含有量を80ppm以下としたので、硫黄や金属成分がリチウムマンガン複酸化物中に含まれていても、電極劣化を助長することなく、寿命特性に優れたリチウム二次電池を実現することができる、という効果を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium secondary battery, in particular, a positive electrode using a lithium manganese double oxide capable of inserting and extracting lithium by discharging and charging a positive electrode active material, and a negative electrode using a carbon material as a negative electrode active material The present invention relates to a lithium secondary battery infiltrated with an electrolyte through a separator.
[0002]
[Prior art]
Lithium-ion secondary batteries, which are representative of lithium secondary batteries, have been used for power sources of portable devices such as VTR cameras, notebook computers, mobile phones, and automobiles, taking advantage of their high energy density. The internal structure of such a lithium ion secondary battery is usually a wound structure as shown below. Each of the electrodes has a band shape in which the active material is coated on a metal foil for both the positive electrode and the negative electrode. The cross section is spirally wound so that the positive electrode and the negative electrode do not come into direct contact with each other with a separator interposed therebetween, and a wound group is formed. . The wound group is housed in a cylindrical battery can serving as a battery container, and is sealed after the electrolyte is injected.
[0003]
The outer diameter of a general cylindrical lithium ion secondary battery is 18650 type, which has a diameter of 18 mm and a height of 65 mm, and is widely used as a small consumer lithium ion secondary battery. In recent years, studies on lithium ion secondary batteries using a lithium-manganese oxide or other composite oxide containing manganese rich and inexpensive as a positive electrode active material have been actively conducted. Technology for secondary batteries has also been developed.
[0004]
However, in lithium manganate, the crystal expands and contracts as lithium ions are inserted and desorbed by charging and discharging, and when charging and discharging with expansion and contraction are repeated, the electron conductivity as a positive electrode decreases and the discharge capacity decreases. Is reduced. In addition, the positive electrode using lithium manganate as the active material dissolves the manganese component in the electrolytic solution regardless of the discharged or charged state, and the dissolution of the manganese component decreases the charge / discharge cycle life characteristics and the storage characteristics. This is a major cause of the decrease in the number.
[0005]
In order to address these problems, technologies for producing highly crystalline lithium manganate by improving the conditions for synthesizing lithium manganate and additives, and technology for doping different elements in the crystal structure of lithium manganate have been developed. It is disclosed (for example, see Patent Documents 1 and 2).
[0006]
[Patent Document 1]
JP-A-10-182160 (paragraph numbers "0011" and "0021")
[Patent Document 2]
JP-A-10-182157 (paragraph numbers "0011" and "0020")
[0007]
[Problems to be solved by the invention]
However, at the present time, even with the techniques disclosed in these publications, sufficient charge / discharge cycle life characteristics have not been obtained. An object of the present invention is to improve the life characteristics of a lithium secondary battery using a lithium manganese double oxide as a positive electrode active material in view of the above proposal.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a positive electrode using a lithium manganese double oxide capable of inserting and extracting lithium by discharging and charging a positive electrode active material, and a negative electrode using a carbon material as a negative electrode active material. In a lithium secondary battery impregnated with an electrolyte through a separator, the lithium content of the lithium manganese double oxide is 2% or less and the metal content is 80 ppm or less.
[0009]
In the present invention, a lithium manganese double oxide capable of inserting and extracting lithium by discharging and charging the positive electrode active material, a carbon material is used for the negative electrode active material, and the positive and negative electrodes coated with these active materials are interposed through a separator. Is soaked in the electrolyte. Manganese dioxide is used as part of the material to make a lithium manganese double oxide, but sulphate and metals remain during manganese dioxide production, and manganese dioxide contains some sulfur and metal components As a result, as a result, the lithium manganese double oxide contains sulfur and metal components. When the lithium manganese double oxide containing a certain amount or more of sulfur and a metal component is infiltrated into the electrolytic solution, it affects the electrolytic solution and promotes deterioration of the electrode. Therefore, if the content of sulfur or metal in the lithium manganese double oxide is limited to a certain amount or less, deterioration of the electrode due to sulfur or metal component can be suppressed. According to the present invention, since the sulfur content in the lithium manganese composite oxide is 2% or less and the metal content is 80 ppm or less, even if sulfur or a metal component is contained in the lithium manganese composite oxide. In addition, a lithium secondary battery having excellent life characteristics can be realized without promoting electrode deterioration.
[0010]
In this case, if the ratio Li / Mn of lithium to manganese in the lithium-manganese composite oxide is set to be in the range of 0.55 ≦ Li / Mn ≦ 0.60, the lithium secondary having excellent initial capacity and capacity retention rate is obtained. It can be a battery. Further, if lithium manganate having a spinel-type crystal structure is used as the lithium-manganese double oxide, the spinel-type has high thermal stability, so that the safety of the lithium secondary battery can be improved. Furthermore, if iron is contained in the lithium manganese double oxide, Fe ions repeatedly dissolve and precipitate during the initial charge / discharge or charge / discharge cycle, precipitate as dendrites and cause a micro short circuit inside the battery, It is more preferable that the content of iron in the lithium manganese double oxide be 80 ppm or less. Further, when the sulfur content in the lithium manganese double oxide is S (%) and the thickness of the separator is T (μm), by satisfying the expression (1), micro short circuit is further reduced. be able to.
[0011]
[Equation 3]
[0012]
Further, when the content of iron is F (ppm) and the thickness of the separator is T (μm), by satisfying the expression (2), it is possible to further reduce the minute short circuit. Further, lithium manganate having a layered crystal structure may be used as the lithium manganese double oxide.
[0013]
(Equation 4)
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a 18650 type lithium ion secondary battery will be described.
[0015]
(Positive electrode)
As the positive electrode active material, lithium manganate (LiMn 2 O 4 ) having a spinel-type crystal structure as a lithium manganese double oxide was used. This lithium manganate is synthesized by mixing electrolytic manganese dioxide and a lithium salt such as lithium carbonate and baking the mixture. At this time, the ratio of lithium to manganese (hereinafter referred to as Li / Mn ratio) is adjusted to a range of 0.55 ≦ Li / Mn ≦ 0.60 after firing by adjusting the ratio of electrolytic manganese dioxide and lithium salt. I tried to enter. After synthesis, the Li / Mn ratio can be confirmed by analysis. In addition, the amount of sulfur and the amount of iron contained in the electrolytic manganese dioxide are inspected in advance, and the content of sulfur contained in LiMn 2 O 4 (hereinafter, referred to as sulfur content S) is 2% or less, and Electrolytic manganese dioxide was selected and used so that the content (hereinafter, referred to as iron content F) was 80 ppm or less.
[0016]
Next, 86 wt% of the synthesized LiMn 2 O 4 powder, 9 wt% of carbon powder as a conductive agent, and polyvinylidene fluoride (PVDF, binder) are dissolved in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The obtained liquid is adjusted to a solid concentration of 5 wt%, and these are kneaded to obtain a slurry. The LiMn 2 O 4 used at this time is selected from electrolytic manganese dioxide as a raw material, and the sulfur content S contained in the LiMn 2 O 4 is a predetermined percentage (2% or less) and the iron content F is a predetermined percentage. % (80 ppm or less) before use. The obtained mixture solution was applied to an aluminum foil using a comma roll and dried to form an active material layer. The active material layer was pressed by a roll press having a roll heated to 80 ° C. to 120 ° C. at a pressing pressure (linear pressure) of 0.2 to 0.7 kg / cm and a mixture bulk density of 2.8 g. and compressed to a / m 3, and by cutting a strip of 50 mm × 450 mm and the positive electrode.
[0017]
(Negative electrode)
NMP was added to a mixture of 90% by weight of carbon powder and 10% by weight of PVDF, and a kneaded mixture was obtained by using carbon powder capable of inserting and removing lithium ions in the negative electrode. This slurry was applied to a copper foil serving as a negative electrode current collector and dried. This active material layer is rolled with a roll press having a roll heated to 80 ° C. to 120 ° C. under a pressing pressure of 0.2 to 0.7 kg / cm until the bulk density becomes 1.04 g / m 3. After compressing and pressing, it was cut into a 50 mm x 480 mm strip to obtain a negative electrode.
[0018]
(Production of battery)
The obtained strip-shaped positive electrode and the obtained strip-shaped negative electrode were overlapped with each other via a strip-shaped polyethylene separator satisfying the following conditions, and wound to produce a wound electrode body.
[0019]
Assuming that the thickness of the separator is T (μm), the ratio T / S (μm /%) of the thickness T (μm) of the separator to the sulfur content S (%) in lithium manganate is represented by the formula (1). To meet.
[0020]
(Equation 5)
[0021]
Alternatively, the ratio T / F (μm / ppm) of the separator thickness T (μm) to the iron content F (ppm) in lithium manganate was set to satisfy the expression (2).
[0022]
(Equation 6)
[0023]
Next, the wound electrode body is placed in a cylindrical battery can, and a solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixed at a volume ratio of 1: 1 is prepared by adding lithium hexafluorophosphate (LiPF 6 ). Was dissolved at a concentration of 1 mol / liter, 5 m of the non-aqueous electrolyte was injected, the upper lid was attached, and the container was sealed to obtain a 18650 type lithium ion secondary battery.
[0024]
In the present embodiment, an example in which lithium manganate having a spinel structure is used as the lithium manganese double oxide has been described, but the effects of the present invention include the crystal structure of the lithium manganese double oxide, including the layered rock salt type structure. The same effect can be obtained even if the structure is changed to have a layered structure. Further, in addition to lithium manganate, a lithium manganese composite in which a manganese site or a lithium site is substituted with at least one or more metals selected from Li, V, Cr, Fe, Co, Ni, Mo, W, Zn, B, and Mg. An oxide may be used. Further, in the present embodiment, an example in which heating is performed using a roll for the processing method of performing the heat treatment in the pressing step has been described. However, if the binder of the active material can be melted and solidified, heating may be performed by another method. Good.
[0025]
Furthermore, in the present embodiment, an example in which LiPF 6 is dissolved in a solution in which EC and DMC are mixed in an electrolytic solution is exemplified. However, propylene carbonate, 1,2-dimethoxyethane is also used as an organic solvent in the electrolytic solution. , 1,2-diethoxyethane, diethal carbonate, γ-butyl lactone, tetrahydrofuran, diethyl ether, sulfolane, acetonitrile, etc., or a mixed solvent of two or more of these can be used. 4 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, LiAsF 6 and the like can be used.
[0026]
As the carbon material, pitch coke, petroleum coke, graphite, carbon fiber, activated carbon, or a mixture thereof may be used. Further, as the binder, C4-C12 alkyl esters of acrylic acid and / or methacrylic acid such as isobutyl acrylate, octyl acrylate, nonyl acrylate, butyl methacrylate and 2-ethylhexyl methacrylate, and methacrylic acid, itaconic acid, maleic acid, Copolymers with unsaturated monomers having a functional group of carphogicyl group or amide group such as polyacrylic acid such as fumaric acid, acrylamide and methacrylamide, polyamide, polyamideimide, polyamidebismaleimide, polybutylene terephthalate, polyethylene terephthalate And the like, and these can be used alone or in combination.
[0027]
【Example】
Hereinafter, a description will be given of a battery of an example manufactured by changing the Li / Mn ratio of LiMn 2 O 4 to 0.55 and changing the sulfur content S and the iron content F according to the above embodiment. Note that a battery of a comparative example manufactured for comparison is also described.
[0028]
(Example 1)
As shown in Table 1 below, in Example 1, the thickness T (μm) of the separator was set to 40 μm, and the sulfur content S contained in LiMn 2 O 4 was set to 1% by selecting electrolytic manganese dioxide as a raw material. A battery having a separator thickness T / sulfur content S of 40 (μm /%) was produced.
[0029]
[Table 1]
[0030]
(Example 2)
As shown in Table 1, in Example 2, the sulfur content S contained in LiMn 2 O 4 was selected to be 2% by selecting the raw material electrolytic manganese dioxide, and the separator thickness T / sulfur content S was 20%. (Μm /%), and a battery was fabricated in the same manner as in Example 1.
[0031]
(Example 3)
As shown in Table 1, in Example 3, the content F of iron contained in LiMn 2 O 4 was set to 20 ppm by selecting electrolytic manganese dioxide as a raw material, and the thickness T of the separator / the content F of iron was 2 (μm / ppm) batteries were produced.
[0032]
(Example 4)
As shown in Table 1, in Example 4, the content F of iron contained in LiMn 2 O 4 was adjusted to 80 ppm by selecting electrolytic manganese dioxide as a raw material, and the thickness T of the separator / the content F of iron was A battery of 0.5 (μm / ppm) was produced.
[0033]
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, the sulfur content S contained in LiMn 2 O 4 was 3% by selecting electrolytic manganese dioxide as a raw material, and the separator thickness T / sulfur content S was 13%. A battery was fabricated in the same manner as in Example 1, except that the battery was changed to 0.3 (μm /%).
[0034]
(Comparative Example 2)
As shown in Table 1, in Comparative Example 2, the thickness T (μm) of the separator was 30 μm, the sulfur content S contained in LiMn 2 O 4 was 2% by selecting the raw material electrolytic manganese dioxide, A battery was fabricated in the same manner as in Example 1, except that the thickness T / sulfur content S of the separator was 15 (μm /%).
[0035]
(Comparative Example 3)
As shown in Table 1, in Comparative Example 3, the content F of iron contained in LiMn 2 O 4 was set to 100 ppm by selecting electrolytic manganese dioxide as a raw material, and the thickness T / iron content F of the separator was 100 ppm. A battery of 0.5 (μm / ppm) was produced.
[0036]
(test)
Next, a charge / discharge cycle test was performed in a high-temperature (50 ° C.) atmosphere for each of the batteries of Examples and Comparative Examples manufactured as described above. The contents of the charge / discharge cycle test are as follows.
1) Charge condition: constant voltage charge 4.2V, limited current 1000mA, 3h, 50 ° C 2) Discharge condition: constant current discharge 1000mA, 24 minutes, 50 ° C
3) Pause condition: A pause time of 10 minutes was provided between charging and discharging.
4) Confirmation of discharge capacity: charge was performed at a constant current of 1000 mA and 4.2 V for 3 hours in an atmosphere of 50 ° C. every 25 cycles, and discharge capacity was confirmed at a current of 1000 mA and a discharge end voltage of 2.7 V. .
5) Calculation of capacity retention ratio: The discharge capacity at the 200th cycle (hereinafter referred to as the 200th cycle capacity) was measured, and the capacity at the 200th cycle with respect to the initial discharge capacity was calculated as the capacity retention rate.
[0037]
The test results of the charge / discharge cycle test are shown in Table 2 below.
[0038]
[Table 2]
[0039]
As is clear from Table 2, LiMn 2 O 4 having a spinel crystal structure with a Li / Mn ratio of 0.55 was used, and the ratio T / S of the separator thickness T to the sulfur content S was in the range of the formula 1. In the batteries of Example 1 and Example 2 which are within the above, there is no significant change in the capacity retention ratio, but in the batteries of Comparative Example 1 and Comparative Example 2 below 20 (μm /%), the capacity retention ratio at the 200th cycle is lower. It was found to be lower.
[0040]
This cause, LiMn 2 O 4 of sulfate ions is a starting material remaining in the electrolytic manganese dioxide SO 4 - are dissolved by remaining in LiMn 2 O 4 during charging and discharging or left (pause), which electrolyte It is presumed that the slight moisture in the inside is acidified to deteriorate the electrode.
[0041]
Further, as is clear from the test results of the charge / discharge cycle test of the iron content F, the ratio of the iron content F to the separator thickness T is 0.5 (μm / ppm) or more in the formula (2). In the batteries of Example 3 and Example 4 in the range, the influence of iron was almost negligible, and in the battery of Comparative Example 3 less than 0.5 (μm / ppm), the capacity retention rate, that is, the life characteristic was affected. It is thought to come.
[0042]
When the iron content F increases, a large amount of Fe remains in LiMn 2 O 4 , and Fe ions repeatedly dissolve and precipitate during the initial charge / discharge or cycle, and precipitate as a dendrite to cause a short circuit inside the battery. It is considered that the capacity was reduced and the capacity was reduced. From this, it is considered that when the ratio of the iron content F to the separator thickness T is less than 0.5 (μm / ppm), the life characteristics are affected.
[0043]
【The invention's effect】
As described above, according to the present invention, since the sulfur content in the lithium manganese composite oxide is 2% or less and the metal content is 80 ppm or less, the sulfur and the metal component are contained in the lithium manganese composite oxide. , It is possible to obtain an effect that a lithium secondary battery having excellent life characteristics can be realized without promoting electrode deterioration.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019262A JP2004006247A (en) | 2002-03-26 | 2003-01-28 | Lithium secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002084994 | 2002-03-26 | ||
JP2003019262A JP2004006247A (en) | 2002-03-26 | 2003-01-28 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004006247A true JP2004006247A (en) | 2004-01-08 |
Family
ID=30445963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003019262A Abandoned JP2004006247A (en) | 2002-03-26 | 2003-01-28 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004006247A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010108926A (en) * | 2008-10-01 | 2010-05-13 | Toda Kogyo Corp | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
-
2003
- 2003-01-28 JP JP2003019262A patent/JP2004006247A/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010108926A (en) * | 2008-10-01 | 2010-05-13 | Toda Kogyo Corp | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5153135B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2009277597A (en) | Nonaqueous electrolyte secondary battery | |
WO2006082719A1 (en) | Positive electrode and nonaqueous electrolyte secondary battery | |
JP5279567B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2001273899A (en) | Positive electrode material for lithium secondary battery | |
JP2000012030A (en) | Nonaqueous electrolyte secondary battery | |
JP2001160395A (en) | Material for positive electrode of lithium secondary battery | |
JP3468098B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP2010140737A (en) | Nonaqueous electrolyte secondary battery | |
JPH11111291A (en) | Positive electrode material for nonaqueous secondary battery and battery using this | |
JP2002170566A (en) | Lithium secondary cell | |
JP2004071159A (en) | Nonaqueous electrolyte secondary battery | |
JP7122653B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2000012029A (en) | Nonaqueous electrolyte secondary battery | |
JP2002203606A (en) | Nonaqueous electrolyte solution battery | |
JP4278321B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP3921836B2 (en) | Organic electrolyte secondary battery | |
JP2004186035A (en) | Nonaqueous electrolytic solution battery | |
JP2002110251A (en) | Lithium ion secondary battery | |
JP2010218855A (en) | Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery | |
JPH11185822A (en) | Nonaqueous electrolyte secondary battery | |
JP2004006247A (en) | Lithium secondary battery | |
JP2002198047A (en) | Lithium secondary battery | |
JP2003217568A (en) | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20070426 |