Nothing Special   »   [go: up one dir, main page]

JP2004003655A - Hot and cold water mixing device - Google Patents

Hot and cold water mixing device Download PDF

Info

Publication number
JP2004003655A
JP2004003655A JP2003140119A JP2003140119A JP2004003655A JP 2004003655 A JP2004003655 A JP 2004003655A JP 2003140119 A JP2003140119 A JP 2003140119A JP 2003140119 A JP2003140119 A JP 2003140119A JP 2004003655 A JP2004003655 A JP 2004003655A
Authority
JP
Japan
Prior art keywords
temperature
hot
coil spring
cold water
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140119A
Other languages
Japanese (ja)
Other versions
JP3829821B2 (en
Inventor
Shigeru Shirai
白井 滋
▲よし▼田 博明
Hiroaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003140119A priority Critical patent/JP3829821B2/en
Publication of JP2004003655A publication Critical patent/JP2004003655A/en
Application granted granted Critical
Publication of JP3829821B2 publication Critical patent/JP3829821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot and cold water mixing device having superior temperature control performance during hot and cold water mixture and securing durability. <P>SOLUTION: The hot and cold water mixing device comprises a hot and cold water mixing valve 71 having a valve element 76 for controlling a hot and cold water mixture ratio, a temperature sensitive coil spring 81 formed of a temperature sensitive material having a spring constant changed with a temperature for energizing the valve element 76 in the direction of reducing the rate of hot water with the temperature rise of a hot and cold water mixture flowing out of the mixing valve 71, a bias coil spring 79 for energizing the valve element 76 in the opposite direction, energizing force control means 82 for controlling the energizing force of at least one of the two coil springs, and shearing strain restricting means 87 for restricting the shearing strain of the temperature sensitive coil spring 81 to be 1% or less with the valve element 76 at a position of fully opening hot water or fully closing cold water. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、湯と水の混合比率を調節して適温を得る湯水混合装置に関するものである。
【0002】
【従来の技術】
従来のこの種の湯水混合装置(例えば、特許文献1参照)を図6に示す。同図において、湯水混合装置10のハウジング12は、ほぼ円筒形の本体14と、この本体に螺合などにより液密に締結された出口金具16と、同様に本体14に液密に締結されたキャップ18とで構成されている。
【0003】
ハウジング12には入口20および22が形成してあり、入口20は湯入口として作用し、入口22は水入口として作用する。ハウジング12には中央ボア24が形成してあり、このボア24には受圧ピストン26が摺動自在に嵌合してある。ハウジング12の内部にはこの受圧ピストン26によって湯側一次圧力室28と水側一次圧力室30とに分割されている。湯水入口20および22は、それぞれ一次圧力室28および30に連通しており、一次圧力をもった湯水が一次圧力室28および30にそれぞれ供給されるようになっている。
【0004】
受圧ピストン26は所定の半径方向クリアランスをもってボア24に嵌合され、ボア24内で摺動する。湯側一次圧力室28および水側一次圧力室30は、それぞれ弁座32および34を介して湯側弁室36および水側弁室38と連通している。湯側弁座32と水側弁室34とは同軸的に整列してあり、互いに対称的に配置してある。水側弁室38はキャップ18に形成された複数の開口40と本体14に形成された通路42とを介して湯側弁室36に連通してあり、水側弁座34を通過した水が湯側弁室36内に流入するようになっている。したがって、湯側弁室36は湯水混合室として作用し、その湯水混合室36で形成された湯水混合物は、出口金具16の混合物出口44から吐出される。
【0005】
ハウジング12の内部には可動弁体ユニット46が軸方向に移動可能である。この弁体ユニット46は、弁軸48と、ナットにより弁軸48の両端にそれぞれ固定された湯側弁体50および水側弁体52を有する。弁軸48は受圧ピストン26と一体的に形成してあり、可動弁体ユニット46と受圧ピストン26が連動する。湯側弁体50および水側弁体52は同軸的に整列してあり、湯側弁座32および水側弁座34とそれぞれ協動して湯水の流れが制御される。受圧ピストン26と湯側弁体50と水側弁体52の有効受圧面積は互いに等しくしてあり、湯側一次圧力室28内の一次圧力は湯側弁体50に開弁方向に作用すると共に、受圧ピストン26に反対方向に作用する。
【0006】
受圧ピストン26の有効受圧面積と湯側弁体50の有効受圧面積とは等しいので、湯側一次圧力室28内の一次圧力により湯側弁体50に作用する力はその一次圧力により受圧ピストン26に作用する力と相殺される。同様にして、水側一次圧力室30内の一次圧力により水側弁体52に作用する力とその一次圧力により受圧ピストン26に作用する力とは互いに相殺される。したがって、可動弁体ユニット46には、湯水の一次圧力に起因する偏奇力は作用しない。
【0007】
また、湯水混合室36と水側弁体38とは互いに連通しており、両者内の二次圧力は等しいので、二次圧力に起因する偏奇力が可動弁体ユニット46に作用することもない。したがって、可動弁体ユニット46は、湯水の圧力の過渡的変動の影響を受けることなく、互いに相反する方向に作用する2種の機械的な付勢力の釣り合いによって位置決めされる。すなわち、湯水混合室36内および水側弁室38内には、コイルばね54および56が圧縮状態でそれぞれ配置してある。
【0008】
一方のコイルばね54は感温素子として作用するもので、温度に応じてばね定数が変化する特性を有するニッケル・チタン系の形状記憶合金で形成されている。この形状記憶合金製感温コイルばね54は、混合室36内の湯水混合物の温度に応じて線形(リニア)に変化するばね力を発生し、可動弁体ユニット46に作用させる。感温コイルばね54を形成する形状記憶合金は、温度に応じて弾性係数が変化し、その結果、コイルバネ54のばね定数、ひいてはばね力を温度に応じて変化させる。この形状記憶合金製の感温コイルばね54の一端は湯側弁体50に支承され、他端は出口金具16に支承されている。したがって、形状記憶合金製感温コイルばね54は、可動弁体ユニットを左右に付勢している。
【0009】
他方のコイルばね56は、バイアスばねとして作用するもので、通常のばね材料で形成されており、そのばね定数は温度に関しほぼ一定である。したがって、バイアスばね56が発生する付勢力は、それに加えられた予荷重に比例する。バイアスばね56の一端は水側弁体52に支承され、その他端は、キャップ18に摺動自在に装着された可動ばね受け58に支承されている。この可動ばね受け58には、キャップ18に螺合された調節ねじ60が係合させてあり、調節ねじのハンドル62を回転させることによりバイアスばね56の予荷重を調節できる。バイアスばね56は、可動弁体ユニット46を左右に付勢している。
【0010】
つまり、従来の湯水混合装置においては、感温素子54が温度変化に応じてばね定数が線形(リニア)に変化するような特性領域を備えた形状記憶合金により形成されており、その線形特性領域において形状記憶合金製コイルばね54の付勢力とバイアスばね56の付勢力とを均衡させることにより、可動弁体46を作動させ、オーバーシュートやアンダーシュートを伴うことなく、きめ細かな温度調節を行うことができるという湯水混合装置について提案されている。
【0011】
【特許文献1】
特開平6−159532号公報
【0012】
【発明が解決しようとする課題】
しかしながら上記したような従来の湯水混合装置は、形状記憶合金で心配される耐久性を向上させる構成や、温度変化によって付勢力が変化する形状記憶合金ばねに接触する湯水混合物の温度分布の均一化を向上させる構成などについては特別には示されておらず、耐久性および不均一混合物温度による温度ずれの不安があるという課題があった。
【0013】
本発明は上記課題を解決するものであり、感温コイルばねの繰り返したわみに対する耐久性を確保する湯水混合装置を提供することを第一の目的としている。
【0014】
第二の目的は、感温コイルばねの動作温度および保存温度範囲において、繰り返したわみに対する耐久性の確保と、ヒステリシスが小さい湯水混合装置を提供することにある。
【0015】
第三の目的は、湯と水が撹拌混合されながら感温コイルばねに接触し、的確な湯水混合制御ができる湯水混合装置を提供することにある。
【0016】
第四の目的は、流量変更や水圧変動や設定温度変更などによる温度ズレのない優れた温度制御機能を有する湯水混合装置を提供することにある。
【0017】
【課題を解決するための手段】
上記第一の目的を達成するために本発明の湯水混合装置は、湯と水の混合比を調節する弁体を有する湯水混合弁と、温度に応じてばね定数が変化する感温材料からなり、前記混合弁から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前記弁体を付勢する感温コイルばねと、前記弁体を反対方向に付勢するバイアスコイルばねと、前記二つのコイルばねの少なくとも一方の付勢力を調節する付勢力調節手段と、前記弁体が湯全開または水全閉の位置で前記感温コイルばねのせん断ひずみγを1%以下に規制するせん断ひずみ規制手段を設けたものである。
【0018】
上記第二の目的を達成するために本発明の湯水混合装置は、感温コイルばねが−30℃から+100℃の温度範囲においてR(Rhombohedral)相ないし母相の相変態をする形状記憶合金としたものである。
【0019】
上記第三の目的を達成するために本発明の湯水混合装置は、付勢力調節手段が湯水混合物を旋回混合する旋回混合手段を兼ね備えたものである。
【0020】
上記第四の目的を達成するために本発明の湯水混合装置は、付勢力調整手段を電気的付勢力調整手段とし、湯水混合物の温度を検出する温度検出手段と、湯水混合物温度の目標値を設定する温度設定手段と、前記温度検出手段により検出された温度と前記温度設定手段により設定された目標値とに基づいて前記電気的付勢力調節手段を制御する電子制御手段とを備えたものである。
【0021】
【作用】
本発明の湯水混合装置は上記した構成により、湯水の混合比を調節する弁体に感温コイルばねの付勢力と、その感温コイルばねの付勢方向とは反対方向の付勢力がバイアスコイルばねによってそれぞれ前記弁体に作用して、それら2つのコイルばねの付勢力が釣り合う位置に前記弁体が位置決めされ、湯水混合弁に流入した湯と水は、前記弁体の開度位置に応じた混合比の湯水混合物となって、前記感温コイルばねの周囲を通過して流出する。前記2つのコイルばねの少なくとも一方の付勢力を調節する付勢力調節手段によって、目標の混合温度を設定することになる。
【0022】
ここでその付勢力調節手段の調節範囲を、感温コイルばねのせん断ひずみγが1%を越えない範囲内に規制するせん断ひずみ規制手段が設けられており、感温コイルばねは、せん断ひずみγが1%以内の範囲内での繰り返したわみとなり、感温コイルばねの耐久性を損なうことなく、湯水混合物温度が制御される。
【0023】
また本発明の湯水混合装置は上記した構成により、湯水の混合比を調節する弁体に温度に応じてばね定数が変化し−30℃から+100℃の温度範囲においてR(Rhombohedral)相ないし母相の相変態をする形状記憶合金からなる感温コイルばねの付勢力と、その感温コイルばねの付勢方向とは反対方向の付勢力がバイアスコイルばねによってそれぞれ前記弁体に作用して、それら2つのコイルばねの付勢力が釣り合う位置に前記弁体が位置決めされ、湯水混合弁に流入した湯と水は、前記弁体の開度位置に応じた混合比の湯水混合物となって、前記感温コイルばねの周囲を通過して流出する。前記2つのコイルばねの少なくとも一方の付勢力を調節する付勢力調節手段によって、目標の混合温度を設定することになる。
【0024】
ここで前記感温コイルばねは、−30℃から+100℃の温度範囲においてR(Rhombohedral)相と母相とを繰り返す相変態しかしないように作用する。したがって、感温コイルばねの動作温度および保存温度範囲において、繰り返したわみに対する耐久性が損なわれることがなく、かつヒステリシスが小さく高い応答性で湯水混合物温度が制御される。
【0025】
また本発明の湯水混合装置は上記した構成により、湯水の混合比を調節する弁体に感温コイルばねの付勢力と、その感温コイルばねの付勢方向とは反対方向の付勢力がバイアスコイルばねによってそれぞれ前記弁体に作用して、それら2つのコイルばねの付勢力が釣り合う位置に前記弁体が位置決めされ、湯水混合弁に流入した湯と水は、前記弁体の開度位置に応じた混合比の湯水混合物となって、前記感温コイルばねの周囲を通過して流出する。このとき、付勢力調節手段が湯水混合物を旋回混合する旋回混合手段を兼ねた構成により、湯水混合物は旋回作用により撹拌混合が促進され、温度が混合均一化されながら感温コイルばねに接触しながら通過する。
【0026】
したがって、不均一な温度で混合平均温度から上下にずれた温度が感温コイルばねに作用して、温度制御ずれを生じることなく的確に湯水混合物の温度が制御される。
【0027】
また本発明の湯水混合装置は上記した構成により、感温コイルばねの巻方向と同じ方向に湯水混合物を旋回する旋回混合手段により、湯水混合物は旋回作用により撹拌混合が促進され、温度が混合均一化され感温コイルばねに接触しながら通過し、混合平均温度を的確に感温コイルばねに熱伝達され機械的にフィードバック制御され、電子制御手段は温度検出手段によって検出された混合物温度と、温度設定手段により設定された目標値とに基づいて電気的付勢力調節手段を駆動し、混合物温度を目標値に電気的にフィードバック制御する。したがって、形状記憶合金のヒステリシスや水圧変動および流量変更などによる温度偏差は、電気的フィードバック制御により補正される。
【0028】
このように、湯水混合物の過渡的温度変動は旋回混合手段により撹拌混合された湯水混合物が形状記憶合金製の感温コイルばねに接触しながら、機械的フィードバック制御により迅速に適合され、定常的オフセットは、旋回混合手段で撹拌された混合温度を検知して電気的フィードバック制御されるので、ハンチングを防止でき応答性に優れ、しかも、高精度に温度制御をすることの可能な湯水混合装置が得られる。
【0029】
【実施例】
以下本発明の実施例を図面にもとづいて説明する。
【0030】
図1は本発明の第一の実施例を示す構成図である。図1において70は、温水を供給する給湯管であり、給湯管70は混合弁71に連通している。混合弁71には、給湯管70と、給水管72からそれぞれ湯と水が供給される。混合弁71は、ハウジング73に設けられた湯入口74および水入口75から湯水が供給され、弁体76の可動によって湯側弁座77および水側弁座78とのスキマの距離が反比例的に変わり、湯水の混合比が調節される構成である。弁体76は、湯と水が周囲から内側に流入する筒状形で、バイアスコイルばね79によって図1において右側方向に付勢されているとともに、混合流路80に設けられた温度に応じてばね定数が変化する感温コイルばね81によっても図1において左側方向に付勢されている。感温コイルばね81は温度に応じてばね定数が変化することから、同じ拘束長さであれば付勢力が変化することになり、弁体76は、バイアスコイルばね79と感温コイルばね81の付勢力が釣り合う位置へ押されて移動する。また、バイアスコイルばね79の付勢力および感温コイルばね81の付勢力を加減調節する付勢力調節手段82は、付勢力調節操作部83を回転することにより、付勢力調節軸84および雄ねじ軸85が回転し、雌ねじを有する可動ばね受け84が進退する構成である。さらに、せん断ひずみ規制手段87として、付勢力調節軸83にはピン88が設けられ、その周囲を回転範囲規制部材89が覆った構成で、雄ねじ軸85の回転範囲および可動ばね受け86の進退範囲が規制され、結果的に感温コイルばね81の最大圧縮長さが規制され、感温コイルばね81のせん断ひずみγが1%を越えない範囲に規制される構成である。なお上記の、付勢力調節軸83にはピン88が設けられ、その周囲を回転範囲規制部材89が覆った構成で、雄ねじ軸85の回転範囲および可動ばね受け86の進退範囲が規制されるというのは、図1においてピン88は、付勢力調節軸83および雄ねじ軸85と一体に回転し、回転範囲規制部材89はハウジング73に固定され、その回転範囲規制部材89のピン88を覆った穴はピン88の回転角度範囲を規制する穴形状であるため、雄ねじ軸85の回転範囲および可動ばね受け86の進退範囲が規制され、つまりは、感温コイルばね81の最大圧縮長さが規制されるわけである。コイルばねのせん断ひずみγは、コイルばねの線径dとコイルばねのたわみδの積を、コイルばねの有効巻数nとコイルばね平均径Dの2乗とπとの積でわり算して百分率で表したもので、式で示すと、γ=(d×δ)÷(π×n×D2)×100%となる。
【0031】
また、混合弁71の流出口90は、流調切換弁91の入口92と連通している。流調切換弁91は、球状弁体93を弁軸94を介して流調切換操作部95で回転し、シャワー96またはカラン97の切り換えおよび各々の流量調節ができる構成である。なお、98はバイアスコイルばね79と可動ばね受け86との間に設けたリング状のシート部材で、相互のすべりを良くしバイアスコイルばね79の不自然なねじれが防止できる。また、感温コイルばね81の当接部に設けられたリング状のシート部材99も、同様に感温コイルばね81の不要なねじれ作用を防止でき、湯水混合による良好な温度調節性能の確保のために有効である。
【0032】
以上の構成において本実施例の動作を説明する。付勢力調節手段82の付勢力調節操作部83により、希望する混合温度を設定した状態で、流調切換操作部95を操作して図1のようにシャワー96から出湯すると、給湯管70および給水管72から混合弁71の湯入口74および水入口75から、弁体76と湯側弁座77および水側弁座78とのスキマの距離に応じて湯と水がそれぞれ弁体76の周囲から内側に流入し、混合流路80で混合され湯水混合物が感温コイルばね81に接触しながら通過する。
【0033】
このとき、弁体76は湯水混合物の温度に対応した感温コイルばね81の付勢力と、設定温度に対応したバイアスコイルばね79の付勢力との機械的な付勢力の釣り合いによって位置決めされる。つまり、付勢力調節手段82によって設定された希望温度に見合うバイアスコイルばね79の付勢力に対して実際の湯水混合物温度が低い場合は、感温コイルばね81の付勢力の方が小さく、湯側弁座77と弁体76とのスキマ距離が拡がり、水側弁座78と弁体76とのスキマの距離が狭まる方向に弁体76を移動する。
【0034】
逆に、付勢力調節手段82によって設定された希望温度に見合うバイアスコイルばね79の付勢力に対して実際の湯水混合物温度が高い場合は、感温コイルばね81の付勢力の方が大きく、湯側弁座77と弁体76とのスキマ距離が狭まり、水側弁座78と弁体76とのスキマの距離が拡がる方向に弁体76を移動する。このように、感温コイルばね81の作用によって、付勢力調節手段82で設定された希望温度に常に保持されるように、機械的なフィードバック制御が機能し、弁体76が作動し、自動的に温度調節ができる。
【0035】
図2は上記のような、本実施例における感温コイルばね81とバイアスコイルばね79および弁体76について、変位と力の関係を図に示したものである。感温コイルばね81は、図のように各温度と変位に応じて付勢力が変化する。またバイアスコイルばね79は、温度に関係なく変位に応じて付勢力が直線的に変化する。バイアスコイルばね79と感温コイルばね81の変位は、弁体76の変位移動と共に反比例的に変化する構成なので、図2の各温度における感温コイルばね特性の線とバイアスコイルばね特性の線との各交点が、動作点となる。
【0036】
また、湯全開いいかえれば水全閉の弁体位置で、最高温設定点が、感温コイルばね81のせん断ひずみγが最大となる点であるが、図2にも示したように本実施例では、この位置でせん断ひずみγが1%以下になるように、せん断ひずみ規制手段87を備えた構成なので、感温コイルばね81には、1%をこえるせん断ひずみが作用することはない。このせん断ひずみが1%以下の場合と、2〜3%の場合の湯水混合装置の自動温度調節性能を試作して実験したところ、差が認められ1%以下であれば実用上問題がない性能を得ることができた。
【0037】
以上のように本実施例によれば、感温コイルばね81は、せん断ひずみγが1%以内の範囲内での繰り返したわみとなり、感温コイルばね81の耐久性を損なうことなく、湯水混合物温度が制御され、耐久性のよい自動温調の湯水混合装置が得られる。
【0038】
本発明の第二の実施例は、図3に領域で示したように、−30℃から+100℃の温度範囲においてR(Rhombohedral)相ないし母相の相変態をする形状記憶合金からなる感温コイルばね81を、図1で示した湯水混合装置に装着したもので、湯水の混合比を調節する弁体76に温度に応じてばね定数が変化し−30℃から+100℃の温度範囲においてR(Rhombohedral)相ないし母相の相変態をする形状記憶合金からなる感温コイルばね81の付勢力と、その感温コイルばね81の付勢方向とは反対方向の付勢力がバイアスコイルばね79によってそれぞれ弁体76に作用して、それら2つのコイルばね79,81の付勢力が釣り合う位置に弁体76が位置決めされ、湯水混合弁71に流入した湯と水は、弁体76の開度位置に応じた混合比の湯水混合物となって、感温コイルばね81の周囲を通過して流出する。前記2つのコイルばね79,81の少なくとも一方の付勢力を調節する付勢力調節手段82によって、目標の混合温度を設定することになる。
【0039】
ここで感温コイルばね81は、ニッケル・チタン2元系合金やニッケル・チタン3元系合金で熱処理温度400〜500℃した形状記憶合金のコイルばねで、−30℃から+100℃の温度範囲において、図3のようにR(Rhombohedral)相ないし母相の相変態しかしないように、図1の構成において感温コイルばね81の変位領域が規制されている。
【0040】
つまり、弁体76がバイアスコイルばね79に付勢されて水側弁座78に当接した状態のとき、感温コイルばね81が最も圧縮側に変位した点であり、その反対方向に弁体76が湯側弁座78に当接した状態のとき、感温コイルばね81は最も伸長変位した点である。
【0041】
すなわち、感温コイルばね81はこの2点の間に変位量が規制される構成であり、このような変位領域および−30℃から+100℃の温度範囲においては、図3のようにR(Rhombohedral)相ないし母相の相変態しかしないわけである。このことにより図3でも歴然なように、M(マルテンサイト)相の領域まで相変態させた場合に較べ、ヒステリシスが圧倒的に小さい。第一の実施例で説明した機械的フィードバックによる自動温度調節動作において、温度ヒステリシスがきわめて小さく、きめ細かな温度制御が可能となるほか、マルテンサイト変態が生じないことから、繰り返したわみに対しても耐久寿命が劣化しない効果がある。
【0042】
以上のように本実施例によれば、感温コイルばね81は、R(Rhombohedral)相と母相とを繰り返す相変態しかしないように作用し、感温コイルばね81の動作温度および保存温度範囲において、繰り返したわみに対する耐久性を損なうことなく、かつヒステリシスが小さく高精度で温度調節ができる湯水混合装置が得られる。
【0043】
図4は本発明の第三の実施例を示す湯水混合装置の構成図であり、図1の湯水混合装置の構成との相違は、雄ねじ軸85の先端付近に旋回混合手段100を備えるべく、雄ねじ軸85を長く形成し、その雄ねじ軸85の先端付近の旋回混合手段100が感温コイルばね81の内側に挿入された形態で、その旋回混合手段100は感温コイルばね81の巻方向と同じ方向の螺旋条を有した構成である。図4において、湯水の混合比を調節する弁体76に感温コイルばね81の付勢力と、その感温コイルばね81の付勢方向とは反対方向の付勢力がバイアスコイルばね79によってそれぞれ弁体76に作用して、それら2つのコイルばね79,81の付勢力が釣り合う位置に弁体76が位置決めされ、湯水混合弁71に流入した湯と水は、弁体76の開度位置に応じた混合比の湯水混合物となって、感温コイルばね81の周囲を通過して流出する。このとき、感温コイルばね81の巻方向と同じ方向の螺旋条を有した旋回混合手段100が感温コイルばね81の内側に挿入された構成なので、湯水混合物は、螺旋状の感温コイルばね81と旋回混合手段100の螺旋状の条との間の流路が螺旋状に形成され、湯入口74から入った湯と水入口から入った水とが旋回されながら撹拌混合され温度が均一化が促進され、かつ感温コイルばね81に接触する混合流体がその旋回流れによって流速が速まり境界層剥離等による伝熱促進の作用効果を生じる。このとき感温コイルばね81の巻方向と違う方向に旋回させようとする旋回混合手段では、流体の旋回が阻害され上記効果が弱まる。つまり、本実施例の旋回混合手段100により、湯水混合物は旋回作用により撹拌混合が促進され、温度が混合均一化され、かつ感温コイルばね81への伝熱が促進される。
【0044】
したがって、不均一な温度で混合平均温度から上下にずれた温度が感温コイルばね81に作用して、温度制御ずれを生じるような不具合がなく、的確に湯水混合物の温度を制御することができる。
【0045】
以上のように本実施例によれば、感温コイルばね81の巻方向と同じ方向に湯水混合物を旋回する旋回混合手段100により、不均一温度による温度制御ずれを防止でき、高い応答性で的確に温度調節ができる湯水混合装置が得られる。
【0046】
図5は本発明の第四の実施例を示す湯水混合装置の構成図であり、図4の湯水混合装置の構成との相違は、バイアスコイルばね79の付勢力を調節するステッピングモータにてなる電気的付勢力調節手段101と、湯水混合物の温度を検出するサーミスタにてなる温度検出手段102と、湯水混合物温度の目標値を設定する温度設定手段103と、温度検出手段102により検出された温度と温度設定手段103により設定された目標値とに基づいて電気的付勢力調節手段101を制御する電子制御手段104とを備え、カランまたはシャワーの吐出口選択スイッチ105および流量加減スイッチ106からの指示により電子制御手段104を介して流調切換弁91の球状弁体93を駆動するステッピングモータにてなる電気的弁体駆動手段107が設けられている点である。図5において、感温コイルばね81の巻方向と同じ方向に湯水混合物を旋回する旋回混合手段100により、湯水混合物は旋回作用により撹拌混合が促進され、温度が混合均一化され感温コイルばね81に接触しながら通過し、混合平均温度を的確に感温コイルばね81に熱伝達され機械的にフィードバック制御され、電子制御手段104は温度検出手段102により検出された混合物温度と、温度設定手段103により設定された目標値とに基づいて電気的付勢力調節手段101を駆動し、混合物温度を目標値に電気的にフィードバック制御する。したがって、形状記憶合金のヒステリシスや水圧変動および流量変更などによる温度偏差は、電気的フィードバック制御により補正される。
【0047】
以上のように本実施例によれば、湯水混合物の過渡的温度変動は旋回混合手段100により撹拌混合された湯水混合物が形状記憶合金製の感温コイルばね81に接触しながら、機械的フィードバック制御により迅速に適合され、定常的オフセットは、旋回混合手段100で撹拌された混合温度を温度検出手段102によって検出して電子制御手段104によって電気的フィードバック制御されるので、温度オフセットやハンチングがなく、応答性に優れ、高精度に温度制御できる湯水混合装置を提供できる。
【0048】
【発明の効果】
以上詳述したように本発明の湯水混合装置は、感温コイルばねのせん断ひずみγを1%以下に規制するせん断ひずみ規制手段を備えた構成なので、温度たわみにおける力のヒステリシスが小さくきめ細かな温度調節ができるとともに、せん断ひずみγが1%以内の範囲内での繰り返したわみとなり、湯水中における厳しい環境においても感温コイルばねの耐久性を損なうことなく、長年にわたり変わらない性能で湯水混合による自動温度調節ができる。
【0049】
また本発明の湯水混合装置は、温度に応じてばね定数が変化し−30℃から+100℃の温度範囲においてR(Rhombohedral)相ないし母相の相変態をする形状記憶合金の感温コイルばねを備えた構成なので、動作温度および保存温度範囲において、繰り返したわみに対する耐久性を損なうことなく、かつヒステリシスが小さく高精度で温度調節ができる。
【0050】
また本発明の湯水混合装置は、感温コイルばねの巻方向と同じ方向に湯水混合物を旋回する旋回混合手段を備えた構成により、旋回流れの撹拌効果によって不均一温度による温度制御ずれが防止でき、旋回高速流で境界層剥離等による伝熱促進効果を生じ、高い応答性で的確に温度調節ができる。
【0051】
また本発明の湯水混合装置は、電気的付勢力調節手段と、感温コイルばねの巻方向と同じ方向に湯水混合物を旋回する旋回混合手段と、湯水混合物の温度を検出する温度検出手段と、湯水混合物温度の目標値を設定する温度設定手段と、温度検出手段により検出された温度と温度設定手段により設定された目標値とに基づいて電気的付勢力調節手段を制御する電子制御手段とを備えた構成なので、湯水混合物の過渡的温度変動は旋回混合手段により撹拌混合された湯水混合物が形状記憶合金製の感温コイルばねに接触しながら、機械的フィードバック制御により迅速に適合され、定常的オフセットは、旋回混合手段で撹拌された混合温度を温度検出手段によって検出して電子制御手段によって電気的フィードバック制御されるので、温度オフセットやハンチングがなく、応答性に優れ、高精度に温度制御できる。
【図面の簡単な説明】
【図1】本発明の第一の実施例を示す湯水混合装置の構成図
【図2】同湯水混合装置の感温コイルばねとバイアスコイルばねの各変位と温度における発生付勢力の特性図
【図3】本発明の第二の実施例を示す湯水混合装置の感温コイルばねの特性図
【図4】本発明の第三の実施例を示す湯水混合装置の構成図
【図5】本発明の第四の実施例を示す湯水混合装置の構成図
【図6】従来の湯水混合装置の構成図
【符号の説明】
71 混合弁
76 弁体
79 バイアスコイルばね
81 感温コイルばね
82 付勢力調節手段
87 せん断ひずみ規制手段
100 旋回混合手段
101 電気的付勢力調節手段
102 温度検出手段
103 温度設定手段
104 電子制御手段
[0001]
[Industrial applications]
The present invention relates to a hot and cold water mixing apparatus that obtains an appropriate temperature by adjusting a mixing ratio of hot water and water.
[0002]
[Prior art]
FIG. 6 shows a conventional hot and cold water mixing apparatus of this type (for example, see Patent Document 1). In FIG. 1, a housing 12 of the hot and cold water mixing device 10 is substantially liquid-tightly fastened to the main body 14 with a substantially cylindrical main body 14, an outlet fitting 16 fastened to the main body by screwing or the like. And a cap 18.
[0003]
The housing 12 has inlets 20 and 22 formed therein, the inlet 20 acting as a hot water inlet and the inlet 22 acting as a water inlet. A central bore 24 is formed in the housing 12, and a pressure receiving piston 26 is slidably fitted in the bore 24. The inside of the housing 12 is divided into a hot water side primary pressure chamber 28 and a water side primary pressure chamber 30 by the pressure receiving piston 26. Hot water inlets 20 and 22 communicate with primary pressure chambers 28 and 30, respectively, so that hot water having a primary pressure is supplied to primary pressure chambers 28 and 30, respectively.
[0004]
The pressure receiving piston 26 is fitted into the bore 24 with a predetermined radial clearance, and slides in the bore 24. The hot water side primary pressure chamber 28 and the water side primary pressure chamber 30 communicate with a hot water side valve chamber 36 and a water side valve chamber 38 via valve seats 32 and 34, respectively. The hot water side valve seat 32 and the water side valve chamber 34 are coaxially aligned and symmetrically arranged with each other. The water-side valve chamber 38 communicates with the hot-water-side valve chamber 36 via a plurality of openings 40 formed in the cap 18 and a passage 42 formed in the main body 14, and water that has passed through the water-side valve seat 34 is provided. It flows into the hot water side valve chamber 36. Therefore, the hot water side valve chamber 36 acts as a hot water mixing chamber, and the hot water mixture formed in the hot water mixing chamber 36 is discharged from the mixture outlet 44 of the outlet fitting 16.
[0005]
A movable valve body unit 46 is movable inside the housing 12 in the axial direction. The valve body unit 46 has a valve shaft 48 and a hot water side valve body 50 and a water side valve body 52 fixed to both ends of the valve shaft 48 by nuts, respectively. The valve shaft 48 is formed integrally with the pressure receiving piston 26, and the movable valve body unit 46 and the pressure receiving piston 26 work together. The hot water side valve body 50 and the water side valve body 52 are coaxially aligned, and the flow of hot water is controlled in cooperation with the hot water side valve seat 32 and the water side valve seat 34, respectively. The effective pressure receiving areas of the pressure receiving piston 26, the hot water side valve body 50 and the water side valve body 52 are equal to each other, and the primary pressure in the hot water side primary pressure chamber 28 acts on the hot water side valve body 50 in the valve opening direction. , Acting on the pressure receiving piston 26 in the opposite direction.
[0006]
Since the effective pressure receiving area of the pressure receiving piston 26 is equal to the effective pressure receiving area of the hot water side valve body 50, the force acting on the hot water side valve body 50 due to the primary pressure in the hot water side primary pressure chamber 28 is due to the primary pressure. Offset by the forces acting on the Similarly, the force acting on the water-side valve body 52 due to the primary pressure in the water-side primary pressure chamber 30 and the force acting on the pressure receiving piston 26 due to the primary pressure cancel each other. Therefore, no bias force due to the primary pressure of hot and cold water acts on the movable valve body unit 46.
[0007]
Further, since the hot and cold mixing chamber 36 and the water side valve body 38 communicate with each other, and the secondary pressures in the two are equal, the eccentric force due to the secondary pressure does not act on the movable valve body unit 46. . Therefore, the movable valve body unit 46 is positioned by the balance of two types of mechanical biasing forces acting in opposite directions without being affected by the transient fluctuation of the hot and cold water pressure. That is, the coil springs 54 and 56 are arranged in a compressed state in the hot and cold water mixing chamber 36 and the water side valve chamber 38, respectively.
[0008]
One coil spring 54 functions as a temperature-sensitive element, and is formed of a nickel-titanium-based shape memory alloy having a characteristic that a spring constant changes according to temperature. The shape memory alloy temperature-sensitive coil spring 54 generates a spring force that changes linearly (linearly) according to the temperature of the hot and cold water mixture in the mixing chamber 36, and causes the movable valve body unit 46 to act. The elastic modulus of the shape memory alloy forming the temperature-sensitive coil spring 54 changes in accordance with the temperature. As a result, the spring constant of the coil spring 54 and, consequently, the spring force change in accordance with the temperature. One end of the temperature-sensitive coil spring 54 made of a shape memory alloy is supported by the hot water side valve body 50, and the other end is supported by the outlet fitting 16. Accordingly, the shape memory alloy temperature-sensitive coil spring 54 urges the movable valve body unit to the left and right.
[0009]
The other coil spring 56 acts as a bias spring, and is formed of a normal spring material, and its spring constant is substantially constant with respect to temperature. Therefore, the biasing force generated by the bias spring 56 is proportional to the preload applied thereto. One end of the bias spring 56 is supported by the water-side valve body 52, and the other end is supported by a movable spring receiver 58 slidably mounted on the cap 18. An adjusting screw 60 screwed to the cap 18 is engaged with the movable spring receiver 58, and the preload of the bias spring 56 can be adjusted by rotating a handle 62 of the adjusting screw. The bias spring 56 urges the movable valve unit 46 left and right.
[0010]
That is, in the conventional hot and cold water mixing apparatus, the temperature sensing element 54 is formed of a shape memory alloy having a characteristic region in which the spring constant changes linearly (linearly) according to a temperature change. By balancing the biasing force of the shape memory alloy coil spring 54 and the biasing force of the bias spring 56, the movable valve body 46 is actuated, and fine temperature adjustment is performed without overshoot or undershoot. There is proposed a hot and cold water mixing apparatus that can produce the hot water.
[0011]
[Patent Document 1]
JP-A-6-159532
[0012]
[Problems to be solved by the invention]
However, the conventional hot water mixing apparatus as described above is configured to improve the durability that is concerned about the shape memory alloy, and to equalize the temperature distribution of the hot water mixture in contact with the shape memory alloy spring whose urging force changes due to temperature change. No particular mention is made of a configuration or the like for improving the temperature, and there is a problem that there is a concern about durability and temperature deviation due to the temperature of the non-uniform mixture.
[0013]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its first object to provide a hot and cold water mixing apparatus that ensures durability against repeated bending of a temperature-sensitive coil spring.
[0014]
A second object of the present invention is to provide a hot and cold water mixing device that has a sufficient durability against repeated bending and has a small hysteresis in the operating temperature and the storage temperature ranges of the temperature-sensitive coil spring.
[0015]
A third object of the present invention is to provide a hot and cold water mixing apparatus capable of performing accurate hot and cold water mixing control while contacting a temperature-sensitive coil spring while hot and cold water are being stirred and mixed.
[0016]
A fourth object is to provide a hot and cold water mixing apparatus having an excellent temperature control function without temperature deviation due to a change in flow rate, a change in water pressure, a change in set temperature, and the like.
[0017]
[Means for Solving the Problems]
In order to achieve the first object, the hot water mixing apparatus of the present invention comprises a hot water mixing valve having a valve element for adjusting a mixing ratio of hot water and water, and a temperature-sensitive material whose spring constant changes according to temperature. A temperature-sensitive coil spring that urges the valve body in a direction to decrease the proportion of hot water with a rise in the temperature of the hot water mixture flowing out of the mixing valve, and a bias coil spring that urges the valve body in the opposite direction. An urging force adjusting means for adjusting the urging force of at least one of the two coil springs, and a shear for regulating the shear strain γ of the temperature-sensitive coil spring to 1% or less when the valve element is in a fully opened or completely closed position. It is provided with a strain regulating means.
[0018]
In order to achieve the second object, the hot water mixing apparatus according to the present invention is characterized in that the temperature-sensitive coil spring has a shape memory alloy that undergoes R (Rhombohedral) phase or parent phase transformation in a temperature range of −30 ° C. to + 100 ° C. It was done.
[0019]
In order to achieve the third object, in the hot water mixing apparatus of the present invention, the biasing force adjusting means also has a swirling mixing means for swirling and mixing the hot and cold mixture.
[0020]
In order to achieve the fourth object, the hot and cold water mixing apparatus of the present invention has an urging force adjusting means as an electric urging force adjusting means, a temperature detecting means for detecting a temperature of the hot and cold water mixture, and a target value of the hot and cold water temperature. Temperature setting means for setting, and electronic control means for controlling the electric biasing force adjusting means based on the temperature detected by the temperature detecting means and a target value set by the temperature setting means. is there.
[0021]
[Action]
According to the above configuration, the hot water mixing apparatus of the present invention is configured such that the biasing force of the temperature-sensitive coil spring and the biasing force in the opposite direction to the biasing direction of the temperature-sensitive coil spring are applied to the valve body that adjusts the mixing ratio of hot and cold water. Each of the springs acts on the valve body, and the valve body is positioned at a position where the biasing forces of the two coil springs are balanced. Hot water and water flowing into the hot / water mixing valve depend on the opening position of the valve body. The mixture becomes a hot and cold water mixture having a different mixing ratio, and flows out around the temperature-sensitive coil spring. The target mixing temperature is set by the urging force adjusting means for adjusting the urging force of at least one of the two coil springs.
[0022]
Here, there is provided shear strain regulating means for regulating the adjustment range of the biasing force adjusting means within a range in which the shear strain γ of the temperature-sensitive coil spring does not exceed 1%. Is repeatedly bent within the range of 1%, and the temperature of the hot and cold water mixture is controlled without impairing the durability of the temperature-sensitive coil spring.
[0023]
Further, in the hot water mixing apparatus of the present invention, the spring constant changes according to the temperature of the valve element for adjusting the mixing ratio of hot water and the R (Rhombohedral) phase or the mother phase in the temperature range of -30 ° C to + 100 ° C. The biasing force of a temperature-sensitive coil spring made of a shape memory alloy that undergoes a phase transformation, and the biasing force in the direction opposite to the biasing direction of the temperature-sensitive coil spring act on the valve body by a bias coil spring, and The valve body is positioned at a position where the urging forces of the two coil springs are balanced, and the hot water and the water flowing into the hot / water mixing valve become a hot / water mixture having a mixing ratio corresponding to the opening position of the valve body. It flows out around the periphery of the warm coil spring. The target mixing temperature is set by the urging force adjusting means for adjusting the urging force of at least one of the two coil springs.
[0024]
Here, the temperature-sensitive coil spring acts so that there is only a phase transformation in which a R (Rhombohedral) phase and a mother phase are repeated in a temperature range of -30 ° C to + 100 ° C. Therefore, in the operating temperature and storage temperature range of the temperature-sensitive coil spring, the temperature of the hot and cold water mixture is controlled with high hysteresis and high responsiveness without impairing durability against repeated bending.
[0025]
Further, in the hot water mixing apparatus of the present invention, the biasing force of the temperature-sensitive coil spring and the biasing force in the direction opposite to the biasing direction of the temperature-sensitive coil spring are applied to the valve body for adjusting the mixing ratio of the hot water and the hot water by the above-described configuration. Each of the coil springs acts on the valve body, and the valve body is positioned at a position where the urging forces of the two coil springs are balanced. Hot water and water flowing into the hot / water mixing valve are located at the opening position of the valve body. It becomes a hot and cold water mixture with a suitable mixing ratio and flows out around the temperature-sensitive coil spring. At this time, with the configuration in which the urging force adjusting means also serves as the swirling mixing means for swirling and mixing the hot and cold water mixture, the hot and cold water mixture is agitated and mixed by the swirling action, and the temperature is made uniform while mixing and contacting the temperature-sensitive coil spring. pass.
[0026]
Therefore, the temperature which is shifted up and down from the mixing average temperature at the uneven temperature acts on the temperature-sensitive coil spring, and the temperature of the hot and cold water mixture is accurately controlled without causing a temperature control shift.
[0027]
Further, in the hot water mixing apparatus of the present invention, the hot water mixture is agitated and mixed by the swirling action by the swirling mixing means for swirling the hot water mixture in the same direction as the winding direction of the temperature-sensitive coil spring, and the temperature is uniformly mixed. The mixture is passed while contacting the temperature-sensitive coil spring, the mixed average temperature is accurately transferred to the temperature-sensitive coil spring and mechanically feedback-controlled, and the electronic control means controls the mixture temperature detected by the temperature detection means and the temperature. The electric biasing force adjusting means is driven based on the target value set by the setting means, and the mixture temperature is electrically feedback-controlled to the target value. Therefore, the temperature deviation due to the hysteresis of the shape memory alloy, the water pressure fluctuation, the flow rate change, and the like is corrected by the electric feedback control.
[0028]
In this way, the transient temperature fluctuation of the hot and cold mixture is quickly adjusted by mechanical feedback control while the hot and cold mixture stirred and mixed by the swirling mixing means is in contact with the temperature-sensitive coil spring made of shape memory alloy, and the steady offset Since the electric power is controlled by detecting the mixing temperature agitated by the swirling mixing means, hunting can be prevented, excellent responsiveness can be obtained, and a hot water mixing apparatus capable of controlling the temperature with high accuracy can be obtained. Can be
[0029]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0030]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. In FIG. 1, reference numeral 70 denotes a hot water supply pipe for supplying hot water, and the hot water supply pipe 70 communicates with a mixing valve 71. Hot water and water are supplied to the mixing valve 71 from a hot water supply pipe 70 and a water supply pipe 72, respectively. Hot water is supplied to the mixing valve 71 from a hot water inlet 74 and a water inlet 75 provided in the housing 73, and the distance between the hot water side valve seat 77 and the water side valve seat 78 is inversely proportional to the movement of the valve body 76. Instead, the mixing ratio of hot and cold water is adjusted. The valve body 76 has a cylindrical shape into which hot water and water flow inward from the surroundings. The valve body 76 is urged rightward in FIG. 1 by a bias coil spring 79, and according to the temperature provided in the mixing channel 80. The temperature-sensitive coil spring 81 whose spring constant changes is also urged leftward in FIG. Since the spring constant of the temperature-sensitive coil spring 81 changes in accordance with the temperature, the urging force changes if the length is the same, and the valve body 76 is connected to the bias coil spring 79 and the temperature-sensitive coil spring 81. It is pushed and moved to the position where the biasing force is balanced. The biasing force adjusting means 82 for adjusting the biasing force of the bias coil spring 79 and the biasing force of the temperature-sensitive coil spring 81 is rotated by rotating the biasing force adjusting operation section 83 to thereby adjust the biasing force adjusting shaft 84 and the male screw shaft 85. Are rotated, and the movable spring receiver 84 having a female screw is advanced and retracted. Further, a pin 88 is provided on the biasing force adjusting shaft 83 as a shear strain restricting means 87, and the periphery thereof is covered by a rotation range restricting member 89, so that the rotation range of the male screw shaft 85 and the advance / retreat range of the movable spring receiver 86 are provided. As a result, the maximum compression length of the temperature-sensitive coil spring 81 is restricted, and the shear strain γ of the temperature-sensitive coil spring 81 is restricted to a range not exceeding 1%. It is to be noted that a pin 88 is provided on the urging force adjusting shaft 83, and the periphery thereof is covered by a rotation range regulating member 89, so that the rotation range of the male screw shaft 85 and the advance / retreat range of the movable spring receiver 86 are regulated. In FIG. 1, the pin 88 rotates integrally with the biasing force adjusting shaft 83 and the male screw shaft 85, the rotation range regulating member 89 is fixed to the housing 73, and the hole covering the pin 88 of the rotation range regulating member 89 is provided. Is a hole shape that regulates the rotation angle range of the pin 88, so that the rotation range of the male screw shaft 85 and the advance / retreat range of the movable spring receiver 86 are restricted, that is, the maximum compression length of the temperature-sensitive coil spring 81 is restricted. That is. The shear strain γ of the coil spring is calculated as a percentage by dividing the product of the wire diameter d of the coil spring and the deflection δ of the coil spring by the product of π and the square of the effective number of turns n of the coil spring and the average diameter D of the coil spring. When expressed by an equation, γ = (d × δ) ÷ (π × n × D2) × 100%.
[0031]
The outlet 90 of the mixing valve 71 is in communication with the inlet 92 of the flow control switching valve 91. The flow control switching valve 91 has a configuration in which the spherical valve element 93 is rotated by a flow control switching operation unit 95 via a valve shaft 94, so that the shower 96 or the curran 97 can be switched and the respective flow rates can be adjusted. Reference numeral 98 denotes a ring-shaped sheet member provided between the bias coil spring 79 and the movable spring receiver 86 to improve the mutual slip and prevent the bias coil spring 79 from being unnaturally twisted. Further, the ring-shaped sheet member 99 provided at the abutting portion of the temperature-sensitive coil spring 81 can also prevent unnecessary twisting of the temperature-sensitive coil spring 81 and ensure good temperature control performance by mixing hot and cold water. It is effective for.
[0032]
The operation of the present embodiment in the above configuration will be described. When a desired mixing temperature is set by the urging force adjusting operation unit 83 of the urging force adjusting means 82 and the flow control switching operation unit 95 is operated to discharge water from the shower 96 as shown in FIG. 1, the hot water supply pipe 70 and the water supply From the pipe 72 to the hot water inlet 74 and the water inlet 75 of the mixing valve 71, hot water and water are respectively supplied from the periphery of the valve body 76 according to the clearance between the valve body 76 and the hot water side valve seat 77 and the water side valve seat 78. The water flows into the inside, and is mixed in the mixing channel 80, and the hot and cold water mixture passes while contacting the temperature-sensitive coil spring 81.
[0033]
At this time, the valve body 76 is positioned by the balance between the urging force of the temperature-sensitive coil spring 81 corresponding to the temperature of the hot and cold water mixture and the urging force of the bias coil spring 79 corresponding to the set temperature. That is, when the actual temperature of the hot and cold water mixture is lower than the biasing force of the bias coil spring 79 corresponding to the desired temperature set by the biasing force adjusting means 82, the biasing force of the temperature-sensitive coil spring 81 is smaller than the hot side. The clearance between the valve seat 77 and the valve body 76 is increased, and the valve body 76 is moved in a direction in which the clearance between the water-side valve seat 78 and the valve body 76 is reduced.
[0034]
Conversely, when the actual temperature of the hot and cold water mixture is higher than the biasing force of the bias coil spring 79 corresponding to the desired temperature set by the biasing force adjusting means 82, the biasing force of the temperature-sensitive coil spring 81 is larger, The clearance between the side valve seat 77 and the valve body 76 is reduced, and the valve body 76 is moved in a direction in which the clearance between the water-side valve seat 78 and the valve body 76 is increased. As described above, the mechanical feedback control functions so that the desired temperature set by the urging force adjusting means 82 is always maintained by the action of the temperature-sensitive coil spring 81, and the valve body 76 operates to automatically operate. The temperature can be adjusted.
[0035]
FIG. 2 shows the relationship between displacement and force for the temperature-sensitive coil spring 81, the bias coil spring 79, and the valve body 76 in this embodiment as described above. The urging force of the temperature-sensitive coil spring 81 changes according to each temperature and displacement as shown in the figure. Further, the biasing force of the bias coil spring 79 changes linearly according to the displacement regardless of the temperature. Since the displacements of the bias coil spring 79 and the temperature-sensitive coil spring 81 change in inverse proportion to the displacement movement of the valve body 76, the temperature-sensitive coil spring characteristic line and the bias coil spring characteristic line at each temperature in FIG. Are the operating points.
[0036]
The maximum temperature set point is the point where the shear strain γ of the temperature-sensitive coil spring 81 becomes maximum at the valve body position where the hot water is fully opened or the water is completely closed, as shown in FIG. In this configuration, since the shear strain restricting means 87 is provided so that the shear strain γ is 1% or less at this position, the shear strain exceeding 1% does not act on the temperature-sensitive coil spring 81. When the automatic temperature control performance of the hot and cold water mixing device when the shear strain is 1% or less and that when the shear strain is 2 to 3% are experimentally produced, a difference is recognized. Could be obtained.
[0037]
As described above, according to the present embodiment, the temperature-sensitive coil spring 81 is repeatedly bent within the range where the shear strain γ is within 1%, and without impairing the durability of the temperature-sensitive coil spring 81, the temperature of the hot-water mixture can be reduced. Is controlled, and a hot and cold water mixing apparatus with good durability and automatic temperature control is obtained.
[0038]
In the second embodiment of the present invention, as shown by a region in FIG. 3, a temperature-sensitive alloy made of a shape memory alloy that undergoes a phase transformation of a R (Rhombohedral) phase or a parent phase in a temperature range of -30 ° C. to + 100 ° C. The coil spring 81 is mounted on the hot and cold water mixing apparatus shown in FIG. 1, and the spring constant of the valve body 76 for adjusting the hot and cold water mixing ratio changes according to the temperature. (Rhombohedral) The biasing force of the temperature-sensitive coil spring 81 made of a shape memory alloy that undergoes a phase transformation of a phase or a parent phase and the biasing force in the direction opposite to the biasing direction of the temperature-sensitive coil spring 81 are generated by the bias coil spring 79. Acting on the valve body 76, the valve body 76 is positioned at a position where the urging forces of the two coil springs 79 and 81 are balanced. It becomes hot and cold water mixing of the mixing ratio corresponding to the 6 opening position of, flowing out through the periphery of the temperature-sensitive spring 81. The target mixing temperature is set by the urging force adjusting means 82 for adjusting the urging force of at least one of the two coil springs 79, 81.
[0039]
Here, the temperature-sensitive coil spring 81 is a coil spring made of a nickel-titanium binary alloy or a nickel-titanium ternary alloy and heat-treated at a temperature of 400 to 500 ° C., in a temperature range of −30 ° C. to + 100 ° C. 3, the displacement region of the temperature-sensitive coil spring 81 is restricted in the configuration of FIG. 1 so that only the R (Rhombohedral) phase or the parent phase is transformed as shown in FIG.
[0040]
That is, when the valve body 76 is urged by the bias coil spring 79 and is in contact with the water-side valve seat 78, the temperature-sensitive coil spring 81 is displaced to the most compression side, and the valve body 76 moves in the opposite direction. When the valve 76 is in contact with the hot water side valve seat 78, the temperature-sensitive coil spring 81 is at the point where the temperature-sensitive coil spring 81 is displaced most.
[0041]
That is, the temperature-sensitive coil spring 81 has a configuration in which the amount of displacement is regulated between these two points. In such a displacement region and a temperature range from -30 ° C. to + 100 ° C., as shown in FIG. There is only a phase transformation of the phase or parent phase. Thus, as is apparent from FIG. 3, the hysteresis is overwhelmingly small as compared with the case where the phase transformation is performed up to the M (martensite) phase region. In the automatic temperature control operation by mechanical feedback explained in the first embodiment, the temperature hysteresis is extremely small, fine temperature control is possible, and since martensitic transformation does not occur, it is resistant to repeated bending. There is an effect that the life is not deteriorated.
[0042]
As described above, according to the present embodiment, the temperature-sensitive coil spring 81 acts so as to perform only the phase transformation in which the R (Rhombohedral) phase and the parent phase are repeated, and the operating temperature and the storage temperature range of the temperature-sensitive coil spring 81 are maintained. In this case, a hot and cold water mixing apparatus capable of adjusting the temperature with high accuracy and small hysteresis without impairing the durability against repeated bending can be obtained.
[0043]
FIG. 4 is a configuration diagram of a hot water mixing apparatus showing a third embodiment of the present invention. The difference from the configuration of the hot water mixing apparatus of FIG. The male screw shaft 85 is formed long, and the swirling mixing means 100 near the tip of the male screw shaft 85 is inserted inside the temperature-sensitive coil spring 81. It is a configuration having spiral strips in the same direction. 4, the biasing force of the temperature-sensitive coil spring 81 and the biasing force in the direction opposite to the biasing direction of the temperature-sensitive coil spring 81 are applied to the valve body 76 for adjusting the mixing ratio of hot and cold water by the bias coil spring 79, respectively. Acting on the body 76, the valve body 76 is positioned at a position where the urging forces of the two coil springs 79 and 81 are balanced, and the hot water and water flowing into the hot / water mixing valve 71 depend on the opening position of the valve body 76. It becomes a hot and cold water mixture having a different mixing ratio and flows out around the temperature-sensitive coil spring 81. At this time, since the swirling / mixing means 100 having a spiral strip in the same direction as the winding direction of the temperature-sensitive coil spring 81 is inserted inside the temperature-sensitive coil spring 81, the hot and cold water mixture is supplied to the spiral temperature-sensitive coil spring. The flow path between 81 and the spiral strip of the swirling mixing means 100 is formed in a spiral shape, and the hot water entered through the hot water inlet 74 and the water entered through the water inlet are stirred and mixed while being swirled to equalize the temperature. And the swirling flow of the mixed fluid in contact with the temperature-sensitive coil spring 81 increases the flow velocity, thereby producing the effect of promoting heat transfer by boundary layer separation or the like. At this time, in the swirling mixing unit that attempts to swirl in a direction different from the winding direction of the temperature-sensitive coil spring 81, the swirling of the fluid is hindered, and the above effect is weakened. In other words, the swirling operation of the hot and cold mixture is promoted by the swirling and mixing means 100 of the present embodiment, the temperature is made uniform and the heat transfer to the temperature-sensitive coil spring 81 is promoted.
[0044]
Therefore, the temperature which is shifted up and down from the mixed average temperature at the uneven temperature acts on the temperature-sensitive coil spring 81, so that there is no problem that a temperature control shift occurs, and the temperature of the hot and cold water mixture can be accurately controlled. .
[0045]
As described above, according to the present embodiment, temperature control deviation due to non-uniform temperature can be prevented by the swirling mixing means 100 that swirls the hot and cold water mixture in the same direction as the winding direction of the temperature-sensitive coil spring 81, and high responsiveness and accuracy can be achieved. A hot and cold water mixing device capable of adjusting the temperature can be obtained.
[0046]
FIG. 5 is a configuration diagram of a hot water mixing apparatus showing a fourth embodiment of the present invention. The difference from the configuration of the hot water mixing apparatus of FIG. 4 is that a stepping motor for adjusting the biasing force of the bias coil spring 79 is provided. An electric urging force adjusting means 101, a temperature detecting means 102 comprising a thermistor for detecting the temperature of the hot and cold water mixture, a temperature setting means 103 for setting a target value of the hot and cold water temperature, and a temperature detected by the temperature detecting means 102. And an electronic control means 104 for controlling the electric urging force adjusting means 101 based on the target value set by the temperature setting means 103. Valve driving means comprising a stepping motor for driving the spherical valve body 93 of the flow control switching valve 91 via the electronic control means 104 07 is a point that is provided. In FIG. 5, the swirling and mixing means 100 swirls the hot and cold water mixture in the same direction as the winding direction of the temperature-sensitive coil spring 81, whereby the hot and cold water mixture is stirred and mixed by the swirling action, so that the temperature is uniformly mixed and the temperature-sensitive coil spring 81 is rotated. The temperature of the mixture detected by the temperature detecting means 102 and the temperature setting means 103 are controlled by the electronic control means 104. The electric biasing force adjusting means 101 is driven on the basis of the target value set by (1), and the mixture temperature is electrically feedback-controlled to the target value. Therefore, the temperature deviation due to the hysteresis of the shape memory alloy, the water pressure fluctuation, the flow rate change, and the like is corrected by the electric feedback control.
[0047]
As described above, according to the present embodiment, the transient temperature fluctuation of the hot and cold water mixture is controlled by mechanical feedback control while the hot and cold water mixture stirred and mixed by the swirling mixing means 100 contacts the temperature-sensitive coil spring 81 made of a shape memory alloy. Since the steady offset is detected by the temperature detecting means 102 and electrically controlled by the electronic control means 104, the mixing temperature stirred by the swirling mixing means 100 is free from temperature offset and hunting. It is possible to provide a hot and cold water mixing apparatus which has excellent responsiveness and can control the temperature with high accuracy.
[0048]
【The invention's effect】
As described in detail above, the hot and cold water mixing apparatus of the present invention is provided with the shear strain regulating means for regulating the shear strain γ of the temperature-sensitive coil spring to 1% or less, so that the hysteresis of the force in the temperature deflection is small and the temperature is fine. It can be adjusted, and the bending becomes a repetitive deflection within the shear strain γ of 1% or less. Even in severe environments in hot and cold water, the durability of the temperature-sensitive coil spring will not be impaired. Temperature can be adjusted.
[0049]
Further, the hot and cold water mixing apparatus of the present invention provides a temperature-sensitive coil spring made of a shape memory alloy whose spring constant changes according to temperature and undergoes R (Rhombohedral) phase or parent phase transformation in a temperature range of −30 ° C. to + 100 ° C. With the configuration provided, the temperature can be adjusted with high accuracy and small hysteresis without impairing the durability against repeated bending in the operating temperature and storage temperature ranges.
[0050]
In addition, the hot water mixing apparatus of the present invention is provided with the swirling mixing means for swirling the hot water mixture in the same direction as the winding direction of the temperature-sensitive coil spring, so that the temperature control deviation due to non-uniform temperature can be prevented by the stirring effect of the swirling flow. In addition, the effect of heat transfer promotion due to boundary layer separation or the like is generated by the swirling high-speed flow, and the temperature can be accurately adjusted with high responsiveness.
[0051]
Further, the hot water mixing device of the present invention is an electric biasing force adjusting means, a turning mixing means for turning the hot water mixture in the same direction as the winding direction of the temperature-sensitive coil spring, a temperature detecting means for detecting the temperature of the hot water mixture, Temperature setting means for setting a target value of the hot and cold water mixture temperature, and electronic control means for controlling the electric urging force adjusting means based on the temperature detected by the temperature detecting means and the target value set by the temperature setting means. With the configuration, the transient temperature fluctuation of the hot and cold mixture can be quickly adjusted by mechanical feedback control while the hot and cold mixture stirred and mixed by the swirling mixing means comes into contact with the temperature-sensitive coil spring made of shape memory alloy. Since the offset is detected by the temperature detection means and the electric feedback control by the electronic control means, the temperature of the mixture stirred by the swirling mixing means is turned off. Tsu with or hunting without excellent response can be temperature controlled with high accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hot water mixing apparatus showing a first embodiment of the present invention.
FIG. 2 is a characteristic diagram of the generated urging force at each displacement and temperature of a temperature-sensitive coil spring and a bias coil spring of the hot and cold water mixing device.
FIG. 3 is a characteristic diagram of a temperature-sensitive coil spring of a hot water mixing apparatus showing a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a hot water mixing apparatus showing a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a hot and cold water mixing apparatus showing a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a conventional hot water mixing apparatus.
[Explanation of symbols]
71 Mixing valve
76 valve body
79 Bias coil spring
81 Temperature Sensitive Coil Spring
82 biasing force adjusting means
87 Shear strain control means
100 swirling mixing means
101 Electric biasing force adjusting means
102 Temperature detection means
103 Temperature setting means
104 Electronic control means

Claims (4)

湯と水の混合比を調節する弁体を有する湯水混合弁と、温度に応じてばね定数が変化する感温材料からなり、前記混合弁から流出する湯水混合物の温度上昇に伴い湯の割合を減少させる方向に前記弁体を付勢する感温コイルばねと、前記弁体を反対方向に付勢するバイアスコイルばねと、前記二つのコイルばねの少なくとも一方の付勢力を調節する付勢力調節手段と、前記弁体が湯全開または水全閉の位置で前記感温コイルばねのせん断ひずみγを1%以下に規制するせん断ひずみ規制手段とを備えてなる湯水混合装置。A hot-water mixing valve having a valve body that adjusts the mixing ratio of hot water and water, and a temperature-sensitive material whose spring constant changes according to the temperature, and the rate of hot water is increased with a rise in the temperature of the hot-water mixture flowing out of the mixing valve. A temperature-sensitive coil spring for urging the valve element in a decreasing direction, a bias coil spring for urging the valve element in an opposite direction, and an urging force adjusting means for adjusting the urging force of at least one of the two coil springs And a shear strain regulating means for regulating the shear strain γ of the temperature-sensitive coil spring to 1% or less at a position where the valve element is fully opened or completely closed. 感温コイルばねは、−30℃から+100℃の温度範囲においてR(Rhombohedral)相ないし母相の相変態をする形状記憶合金からなる請求項1記載の湯水混合装置。The hot and cold water mixing device according to claim 1, wherein the temperature-sensitive coil spring is made of a shape memory alloy that undergoes a phase transformation of a R (Rhombohedral) phase or a parent phase in a temperature range of -30 ° C to + 100 ° C. 付勢力調節手段は、湯水混合物を旋回する旋回混合手段を兼ねてなる請求項1または2に記載の湯水混合装置。3. The hot and cold water mixing apparatus according to claim 1, wherein the urging force adjusting means also serves as a swirling mixing means for swirling the hot and cold water mixture. 付勢力調節手段は、電気的付勢力調節手段とし、湯水混合物の温度を検出する温度検出手段と、前記湯水混合物温度の目標値を設定する温度設定手段と、前記温度検出手段により検出された温度と前記温度設定手段により設定された目標値とに基づいて前記電気的付勢力調節手段を制御する電子制御手段とを備えてなる請求項1〜3のいずれか1項に記載の湯水混合装置。The urging force adjusting means is an electric urging force adjusting means, and a temperature detecting means for detecting a temperature of the hot and cold water mixture, a temperature setting means for setting a target value of the hot and cold water temperature, and a temperature detected by the temperature detecting means. The hot and cold water mixing apparatus according to any one of claims 1 to 3, further comprising electronic control means for controlling the electric biasing force adjusting means based on a target value set by the temperature setting means.
JP2003140119A 2003-05-19 2003-05-19 Hot water mixing device Expired - Fee Related JP3829821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140119A JP3829821B2 (en) 2003-05-19 2003-05-19 Hot water mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140119A JP3829821B2 (en) 2003-05-19 2003-05-19 Hot water mixing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06983895A Division JP3852965B2 (en) 1995-03-28 1995-03-28 Hot water mixing device

Publications (2)

Publication Number Publication Date
JP2004003655A true JP2004003655A (en) 2004-01-08
JP3829821B2 JP3829821B2 (en) 2006-10-04

Family

ID=30438116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140119A Expired - Fee Related JP3829821B2 (en) 2003-05-19 2003-05-19 Hot water mixing device

Country Status (1)

Country Link
JP (1) JP3829821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664269A (en) * 2019-03-05 2020-09-15 宁波方太厨具有限公司 Thermostatic valve core and thermostatic faucet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664269A (en) * 2019-03-05 2020-09-15 宁波方太厨具有限公司 Thermostatic valve core and thermostatic faucet
CN111664269B (en) * 2019-03-05 2021-04-16 宁波方太厨具有限公司 Thermostatic valve core and thermostatic faucet

Also Published As

Publication number Publication date
JP3829821B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
US8517282B2 (en) Thermostatic mixing valve responsive to pressure changes
EP1118049B1 (en) Improved thermostatic mixing valve
US7240850B2 (en) Thermostatic mixing valve
US5400961A (en) Electromechanical thermostatic mixing valve
US10088851B2 (en) Thermostatic mixing valve
JP2985723B2 (en) Mixing temperature control device
JP3852965B2 (en) Hot water mixing device
EP1542110B1 (en) Hot and cold water mixing device
WO2008147841A1 (en) Variable orifice gas flow modulating valve
JP2004003655A (en) Hot and cold water mixing device
JP3018945B2 (en) Hot water mixing equipment
JP2001254868A (en) Water and hot water mixing device
JPH0520635B2 (en)
WO2004109421A1 (en) Thermostatic mixing valve
JP2003042335A (en) Combination faucet
JPH04341675A (en) Hot/cold water combination system
JPH06159536A (en) Rotary disk type hot water and cold water combination device
JPH0960760A (en) Water/hot-water mixing faucet
JPH10160037A (en) Thermostat mixing valve
JP2002221283A (en) Hot water/cold water mixing device
JPH0828729A (en) Hot water and water mixing cock
JP2000266227A (en) Hot and cold water mix valve
JP2712587B2 (en) Hot water mixing equipment
JPH0653875U (en) Thermostat mixing valve
JPH06159532A (en) Hot water and cold water combination device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110721

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120721

LAPS Cancellation because of no payment of annual fees