Nothing Special   »   [go: up one dir, main page]

JP2004003513A - Self-diagnosis device of air fuel ratio controller for internal combustion engine - Google Patents

Self-diagnosis device of air fuel ratio controller for internal combustion engine Download PDF

Info

Publication number
JP2004003513A
JP2004003513A JP2003282867A JP2003282867A JP2004003513A JP 2004003513 A JP2004003513 A JP 2004003513A JP 2003282867 A JP2003282867 A JP 2003282867A JP 2003282867 A JP2003282867 A JP 2003282867A JP 2004003513 A JP2004003513 A JP 2004003513A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003282867A
Other languages
Japanese (ja)
Other versions
JP4101133B2 (en
Inventor
Yasuo Kosaka
匂坂  康夫
Masaaki Nakayama
中山  昌昭
Yasuo Mukai
向井  弥寿夫
Yukihiro Yamashita
山下  幸宏
Hisashi Iida
飯田  寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003282867A priority Critical patent/JP4101133B2/en
Publication of JP2004003513A publication Critical patent/JP2004003513A/en
Application granted granted Critical
Publication of JP4101133B2 publication Critical patent/JP4101133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To diagnose abnormality without being affected by air-fuel ratio before diagnosis start. <P>SOLUTION: Diagnosis is started by starting cut of fuel (step 101), sensor output I1 when starting fuel cut is read and stored, and a timer is operated to count time elapsed after starting fuel cut (step 102). Next, time T1 from fuel cut start to rise of sensor output to I2 is read from count values of the timer (steps 103, 104), and change rate of sensor output, ΔI=(I2-I1)/T1, is calculated (step 105). Then, the calculated change rate ΔI of sensor output is compared with abnormality judging value Ifc (step 106). If ΔI≥Ifc, the response property of the sensor is normal, but if Δ<Ifc, abnormality (deterioration) is observed in the response property of the sensor. Therefore, sensor abnormality is stored in memory, and an alarm lamp 39 is lit to inform a driver of sensor abnormality (step 107). <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、内燃機関(以下「エンジン」という)に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断する内燃機関の空燃比制御装置の自己診断装置に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-diagnosis device for an air-fuel ratio control device for an internal combustion engine that performs self-diagnosis of an abnormality of an air-fuel ratio control device that feedback-controls an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine (hereinafter referred to as an "engine"). .

 自動車のエンジンに供給する混合気の空燃比をフィードバック制御する空燃比制御装置では、排気管に、排気ガス中の酸素濃度を検出する酸素センサを取り付け、この酸素センサの出力電圧を理論空燃比に相当する基準電圧と比較して、空燃比フィードバック補正係数を増減することで、空燃比を理論空燃比近傍に制御するようにしている。このような空燃比フィードバック制御システムでは、酸素センサの出力が特性劣化や故障により正常値からずれると、空燃比の制御性が悪くなる。そこで、酸素センサの故障を検出するため、燃料カット開始から一定時間経過した後に酸素センサの出力電流を故障判定レベルと比較することで、酸素センサの故障の有無を診断するようにしたものがある(特許文献1参照)。
特開昭60−233343号公報
In the air-fuel ratio control device that performs feedback control of the air-fuel ratio of the air-fuel mixture supplied to the automobile engine, an oxygen sensor that detects the oxygen concentration in the exhaust gas is attached to the exhaust pipe, and the output voltage of this oxygen sensor is set to the stoichiometric air-fuel ratio. The air-fuel ratio is controlled near the stoichiometric air-fuel ratio by increasing or decreasing the air-fuel ratio feedback correction coefficient as compared with the corresponding reference voltage. In such an air-fuel ratio feedback control system, if the output of the oxygen sensor deviates from a normal value due to characteristic deterioration or failure, controllability of the air-fuel ratio deteriorates. Therefore, in order to detect a failure of the oxygen sensor, there is a configuration in which the output current of the oxygen sensor is compared with a failure determination level after a lapse of a predetermined time from the start of the fuel cut to diagnose the presence or absence of the failure of the oxygen sensor. (See Patent Document 1).
JP-A-60-233343

 しかしながら、上記特許文献1の自己診断方法では、燃料カット開始から一定時間経過後のセンサ電流を故障判定レベルと比較するようにしているが、燃料カット直前の空燃比の状態によっては、同じ酸素センサでも燃料カット開始時のセンサ電流が異なり、それによって燃料カット開始からセンサ電流が故障判定レベルに到達するまでの時間も異なる。従って、燃料カット開始から一定時間経過後のセンサ電流で故障を診断したのでは、燃料カット直前の空燃比の状態によって故障診断が大きく影響されてしまい、酸素センサの故障又は劣化を正確に診断できないことがあり、診断精度が低いという欠点がある。 However, in the self-diagnosis method of Patent Document 1, the sensor current after a lapse of a predetermined time from the start of the fuel cut is compared with the failure determination level. However, depending on the state of the air-fuel ratio immediately before the fuel cut, the same oxygen sensor may be used. However, the sensor current at the start of the fuel cut is different, and accordingly, the time from the start of the fuel cut to the time when the sensor current reaches the failure determination level is also different. Therefore, if the failure is diagnosed by the sensor current after a certain time has elapsed from the start of the fuel cut, the failure diagnosis is greatly affected by the state of the air-fuel ratio immediately before the fuel cut, and the failure or deterioration of the oxygen sensor cannot be accurately diagnosed. In some cases, the diagnostic accuracy is low.

 本発明はこのような事情を考慮してなされたものであり、従ってその目的は、診断開始前の空燃比の状態に影響されずに空燃比センサの異常の有無を診断することができて、診断精度を向上することができる内燃機関の空燃比制御装置の自己診断装置を提供することにある。 The present invention has been made in view of such circumstances, and therefore, the object is to be able to diagnose the presence or absence of an abnormality in the air-fuel ratio sensor without being affected by the state of the air-fuel ratio before the start of diagnosis. An object of the present invention is to provide a self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, which can improve diagnosis accuracy.

 上記目的を達成するために、本発明の請求項1の内燃機関の空燃比制御装置の自己診断装置は、内燃機関の排気ガスの空燃比(A/F)に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、前記内燃機関への燃料供給量の変化を検出する検出手段と、この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、この変化率判定手段により求めた前記空燃比センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、前記検出手段は、燃料カット開始又は燃料カット復帰を燃料供給量の変化として検出する。 To achieve the above object, a self-diagnosis device for an air-fuel ratio control device for an internal combustion engine according to claim 1 of the present invention has an output that continuously changes according to an air-fuel ratio (A / F) of exhaust gas of the internal combustion engine. Detecting self-diagnosis of an abnormality of an air-fuel ratio control device that feedback-controls an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine by an output of an air-fuel ratio sensor, and detecting a change in a fuel supply amount to the internal combustion engine; A change rate determining means for determining a change rate of the output of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means; and a change rate of the output of the air-fuel ratio sensor determined by the change rate determining means. Abnormality determination means for determining the presence or absence of an abnormality in the air-fuel ratio sensor on the basis of the above, and the detection means detects the start of fuel cut or the return from fuel cut as a change in the fuel supply amount.

 また、請求項2のように、前記変化率判定手段は、前記空燃比センサの出力の変化率として単位時間当たりの変化量を求めるようにしても良い。 Further, as in claim 2, the change rate determining means may determine a change amount per unit time as a change rate of the output of the air-fuel ratio sensor.

 或は、請求項3のように、前記変化率判定手段は、前記燃料供給量が変化した後に前記センサの出力が所定量変化するまでの時間を計測し、その計測時間の長短によって前記空燃比センサの出力の変化率を判定するようにしても良い。 Alternatively, as in claim 3, the change rate determining means measures a time until the output of the sensor changes by a predetermined amount after the fuel supply amount changes, and determines the air-fuel ratio based on the length of the measurement time. The change rate of the sensor output may be determined.

 或は、請求項4のように、前記変化率判定手段は、前記燃料供給量が変化した後の所定時間内に変化する前記空燃比センサの出力の変化量を求め、その変化量の大小によって前記空燃比センサの出力の変化率を判定するようにしても良い。 Alternatively, as in claim 4, the change rate determining means obtains a change amount of the output of the air-fuel ratio sensor that changes within a predetermined time after the change of the fuel supply amount, and determines the change amount according to the magnitude of the change amount. The change rate of the output of the air-fuel ratio sensor may be determined.

 また、請求項5のように、上述した変化率判定手段に代えて、燃料供給量が変化した後に空燃比センサの出力が変化し始めるまでの応答遅れ時間を計測する計時手段を設け、この計時手段により測定した応答遅れ時間に基づいて前記空燃比センサの異常の有無を判定する異常判定手段を設けた構成としても良い。 According to a fifth aspect of the present invention, in place of the above-described change rate determining means, a time measuring means for measuring a response delay time until the output of the air-fuel ratio sensor starts to change after a change in the fuel supply amount is provided. An abnormality determining means may be provided for determining whether the air-fuel ratio sensor is abnormal based on the response delay time measured by the means.

 また、請求項6のように、異常判定手段による前記空燃比センサの正常/異常の判定に応じて前記空燃比フィードバック制御の空燃比フィードバックゲインを切り換えるようにしても良い。 The air-fuel ratio feedback gain of the air-fuel ratio feedback control may be switched according to the determination of whether the air-fuel ratio sensor is normal / abnormal by the abnormality determining means.

 また、請求項7のように、空燃比センサの出力として出力電流を用いても良い。 (5) The output current may be used as the output of the air-fuel ratio sensor.

 本発明の請求項1の構成によれば、内燃機関(以下「エンジン」という)への燃料供給量の変化を検出手段により検出した時点で、診断処理を開始し、燃料供給量の変化を検出した後の空燃比センサ出力の変化率を変化率判定手段により求める。そして、変化率判定手段により求めた空燃比センサ出力の変化率に基づいて空燃比センサの異常の有無を異常判定手段により判定する。この場合、診断開始前(燃料供給量変化検出前)の空燃比の状態によって診断開始当初(燃料供給量変化検出当初)の空燃比センサ出力が変化するという事情があっても、診断開始後のセンサ出力の変化率は、診断開始前の空燃比の影響をほとんど受けずに済む。従って、空燃比センサ出力の変化率に基づいて空燃比センサの異常の有無を診断することで、診断開始前の空燃比の状態に影響されずに空燃比センサの異常の有無を診断することが可能となる。 According to the configuration of claim 1 of the present invention, at the time when the change in the fuel supply amount to the internal combustion engine (hereinafter referred to as “engine”) is detected by the detecting means, the diagnostic process is started and the change in the fuel supply amount is detected. The change rate of the output of the air-fuel ratio sensor after the calculation is obtained by the change rate determining means. Then, based on the change rate of the output of the air-fuel ratio sensor obtained by the change rate determining means, the presence or absence of an abnormality of the air-fuel ratio sensor is determined by the abnormality determining means. In this case, even if the output of the air-fuel ratio sensor at the beginning of the diagnosis (at the beginning of the detection of the change in the fuel supply amount) changes depending on the state of the air-fuel ratio before the start of the diagnosis (before the change in the fuel supply amount is detected), The rate of change of the sensor output is hardly affected by the air-fuel ratio before the start of diagnosis. Therefore, by diagnosing the presence or absence of an abnormality of the air-fuel ratio sensor based on the change rate of the output of the air-fuel ratio sensor, it is possible to diagnose the presence or absence of the abnormality of the air-fuel ratio sensor without being affected by the state of the air-fuel ratio before the start of the diagnosis. It becomes possible.

 ところで、燃料供給量が変化する原因として、例えば燃料カット開始・燃料カット復帰があり、燃料カット開始により燃料供給が停止され、燃料カット復帰により燃料供給が再開されるため、燃料カット開始・燃料カット復帰により燃料供給量に大きな変化が起こる。 By the way, the cause of the change in the fuel supply amount is, for example, the start of fuel cut and the return of fuel cut. The fuel supply is stopped by the start of fuel cut, and the fuel supply is restarted by the return of fuel cut. The return causes a large change in fuel supply.

 そこで、請求項1では更に、検出手段により燃料カット開始又は燃料カット復帰を検出し、それによって燃料供給量の変化を間接的に検出する。燃料カット開始・燃料カット復帰のタイミングは、エンジン制御装置が制御するものであり、正確に分かる。 Therefore, in claim 1, the detection means detects the start of fuel cut or the return of fuel cut, thereby indirectly detecting a change in the fuel supply amount. The timing of the start of fuel cut and the return of fuel cut are controlled by the engine control device, and can be accurately determined.

 また、請求項2では、変化率判定手段により空燃比センサ出力の変化率として単位時間当たりの変化量を求める。ここで、単位時間当たりの変化量は、所定時間内の変化量を当該所定時間で割り算して求めたり、所定変化量を、その変化に要した時間で割り算して求めたり、或は、空燃比センサ出力の変化率(傾き)をハード的に検出する検出回路を設けるようにしても良い。 According to the second aspect, the change rate per unit time is obtained as the change rate of the air-fuel ratio sensor output by the change rate determining means. Here, the amount of change per unit time is obtained by dividing the amount of change within a predetermined time by the predetermined time, by obtaining the predetermined amount of change by dividing the time required for the change, or A detection circuit for detecting the change rate (slope) of the fuel ratio sensor output in a hardware manner may be provided.

 また、請求項3では、変化率判定手段は、燃料供給量が変化した後に空燃比センサ出力が所定量変化するまでの時間を計測し、その計測時間の長短によって空燃比センサ出力の変化率を間接的に判定する。つまり、計測時間が長ければ、空燃比センサ出力の変化率が小さく、計測時間が短くなるほど、空燃比センサ出力の変化率が大きくなるという関係を利用するものである。この場合には、空燃比センサ出力の変化量を計測時間で割り算する必要はない。 According to the third aspect, the change rate determination means measures a time until the output of the air-fuel ratio sensor changes by a predetermined amount after the fuel supply amount changes, and determines the change rate of the output of the air-fuel ratio sensor based on the length of the measurement time. Judge indirectly. In other words, the relationship that the change rate of the output of the air-fuel ratio sensor is small if the measurement time is long and the change rate of the output of the air-fuel ratio sensor is large as the measurement time is short is used. In this case, it is not necessary to divide the amount of change in the output of the air-fuel ratio sensor by the measurement time.

 一方、請求項4では、変化率判定手段は、燃料供給量が変化した後の所定時間内に変化する空燃比センサ出力の変化量を求め、その変化量の大小によって空燃比センサの出力の変化率を間接的に判定する。つまり、所定時間内の変化量が大きくなれば、空燃比センサ出力の変化率が大きくなり、所定時間内の変化量が小さくなるほど、空燃比センサ出力の変化率が小さくなるという関係を利用するものである。この場合も、請求項3の場合と同じく、変化量を時間で割り算する必要はない。 On the other hand, in claim 4, the change rate determining means obtains a change amount of the air-fuel ratio sensor output that changes within a predetermined time after the fuel supply amount changes, and determines a change in the output of the air-fuel ratio sensor according to the magnitude of the change amount. The rate is determined indirectly. In other words, it utilizes the relationship that the rate of change of the output of the air-fuel ratio sensor increases as the amount of change within the predetermined time increases, and the rate of change of the output of the air-fuel ratio sensor decreases as the amount of change within the predetermined time decreases. It is. Also in this case, it is not necessary to divide the amount of change by time, as in the case of the third aspect.

 ところで、空燃比センサの特性が劣化すると、空燃比センサの応答性が悪くなり、燃料供給量が変化した後に空燃比センサの出力が変化し始めるまでの応答遅れ時間が長くなる傾向がある。そこで、請求項5では、上述した空燃比センサ出力の変化率に代えて、燃料供給量が変化した後に空燃比センサの出力が変化し始めるまでの応答遅れ時間を計時手段により測定し、この計時手段により測定した応答遅れ時間に基づいてセンサの異常の有無を異常判定手段により判定する。このように、応答遅れ時間に基づいて診断しても、診断開始前の空燃比の状態に影響されずにセンサの異常の有無を診断することが可能となる。 By the way, if the characteristics of the air-fuel ratio sensor deteriorate, the response of the air-fuel ratio sensor deteriorates, and the response delay time from when the fuel supply amount changes to when the output of the air-fuel ratio sensor starts to change tends to be long. Therefore, in claim 5, instead of the above-described rate of change of the output of the air-fuel ratio sensor, a response delay time until the output of the air-fuel ratio sensor starts to change after the fuel supply amount changes is measured by a timer. The presence / absence of an abnormality in the sensor is determined by the abnormality determination unit based on the response delay time measured by the unit. As described above, even if the diagnosis is performed based on the response delay time, it is possible to diagnose whether or not the sensor is abnormal without being affected by the state of the air-fuel ratio before the start of the diagnosis.

 また、請求項6では、異常判定手段による前記空燃比センサの正常/異常の判定に応じて前記空燃比フィードバック制御の空燃比フィードバックゲインを切り換える。これにより、空燃比センサ異常(劣化)時の空燃比の発散やハンチングを防止することができる。 According to a sixth aspect of the present invention, the air-fuel ratio feedback gain of the air-fuel ratio feedback control is switched in accordance with the normal / abnormal judgment of the air-fuel ratio sensor by the abnormality judgment means. Thus, divergence and hunting of the air-fuel ratio when the air-fuel ratio sensor is abnormal (deteriorated) can be prevented.

 また、請求項7のように、空燃比センサの出力として出力電流を用いても良い。 (5) The output current may be used as the output of the air-fuel ratio sensor.

  [実施例1] [Example 1]

 以下、本発明の実施例1を図1乃至図7に基づいて説明する。まず、図1に基づいてエンジン制御系システム全体の概略構成を説明する。エンジン10(内燃機関)の吸気ポート11に接続された吸気管12の最上流部にはエアクリーナ13が設けられ、このエアクリーナ13の下流に吸気温センサ14が設けられている。また、吸気管12の途中部には、スロットルバルブ15が設けられ、このスロットルバルブ15をバイパスするバイパス路16にはアイドルスピードコントロールバルブ17が設けられている。上記スロットルバルブ15の開度は、スロットル開度センサ18によって検出され、スロットルバルブ15の下流側の吸気管圧力は、吸気管圧力センサ19によって検出される。 Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of an intake pipe 12 connected to an intake port 11 of the engine 10 (internal combustion engine), and an intake air temperature sensor 14 is provided downstream of the air cleaner 13. A throttle valve 15 is provided in the middle of the intake pipe 12, and an idle speed control valve 17 is provided in a bypass 16 that bypasses the throttle valve 15. The opening of the throttle valve 15 is detected by a throttle opening sensor 18, and the intake pipe pressure downstream of the throttle valve 15 is detected by an intake pipe pressure sensor 19.

 また、吸気ポート12の近傍には、燃料タンク21から供給される燃料を噴射する燃料噴射弁20が設けられている。燃料タンク21内の燃料は燃料ポンプ22→燃料フィルタ23→プレッシャレギュレータ24の経路を経て燃料噴射弁20に供給され、プレッシャレギュレータ24により燃料圧力が吸気管圧力に対して一定圧力に保たれると共に、余分な燃料がリターン配管25を通して燃料タンク21内に戻される。 Further, a fuel injection valve 20 that injects fuel supplied from the fuel tank 21 is provided near the intake port 12. The fuel in the fuel tank 21 is supplied to the fuel injection valve 20 through a path of a fuel pump 22 → a fuel filter 23 → a pressure regulator 24, and the pressure regulator 24 keeps the fuel pressure constant with respect to the intake pipe pressure. Then, excess fuel is returned into the fuel tank 21 through the return pipe 25.

 一方、エンジン10の排気ポート26に接続された排気管27には、排出ガス中の空燃比(A/F)に応じて連続的に出力電流が変化する空燃比センサ28や排出ガス浄化用の三元触媒(図示せず)が設けられている。エンジン10を冷却するウォータジャケット29には、冷却水温を検出する水温センサ30が取り付けられている。また、エンジン10の各シリンダの点火プラグ31に高圧電流を配給するディストリビュータ32には、特定気筒のクランク角基準位置を判別するための気筒判別センサ33と、エンジン回転数に応じた周波数のパルス信号を出力するクランク角センサ34とが設けられている。上記ディストリビュータ32にはイグナイタ35の高圧二次電流が供給される。 On the other hand, an exhaust pipe 27 connected to the exhaust port 26 of the engine 10 has an air-fuel ratio sensor 28 whose output current continuously changes according to the air-fuel ratio (A / F) in the exhaust gas, and an exhaust gas purifying device. A three-way catalyst (not shown) is provided. A water temperature sensor 30 for detecting a cooling water temperature is attached to a water jacket 29 for cooling the engine 10. A distributor 32 for supplying a high-voltage current to the ignition plug 31 of each cylinder of the engine 10 includes a cylinder discrimination sensor 33 for discriminating a crank angle reference position of a specific cylinder, and a pulse signal having a frequency corresponding to the engine speed. Is output. The high voltage secondary current of the igniter 35 is supplied to the distributor 32.

 上述した各種センサの出力信号は、エンジン制御回路(以下「ECU」という)36に入力され、エンジン制御データとして用いられる。ECU36は、バッテリ37を電源として動作し、イグニッションスイッチ38のオン信号によりエンジン10を始動させると共に、エンジン10の運転中は、空燃比センサ28の出力信号に基づいて図5に示すように空燃比フィードバック補正係数を増減することで、空燃比を理論空燃比近傍にフィードバック制御する。 The output signals of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 36 and used as engine control data. The ECU 36 operates using the battery 37 as a power source, starts the engine 10 in response to an ON signal of an ignition switch 38, and operates the engine 10 based on the output signal of the air-fuel ratio sensor 28 as shown in FIG. The air-fuel ratio is feedback-controlled near the stoichiometric air-fuel ratio by increasing or decreasing the feedback correction coefficient.

 また、ECU36は、図2に示すセンサ異常診断ルーチンによって空燃比センサ28の異常の有無を診断し、異常時には警告ランプ39(警告手段)を点灯して運転者に知らせる。このセンサ異常診断ルーチンは、メインルーチン実行毎(例えば8ms毎)に処理され、減速時の燃料カット開始後の空燃比センサ28の出力電流の変化率ΔIを求め、その変化率ΔIが異常判定値Ifcより小さいときにセンサ異常と判定する。このセンサ異常診断ルーチンを実行した場合の処理の流れを示すタイムチャートが図3に示されている。 The ECU 36 diagnoses whether the air-fuel ratio sensor 28 is abnormal by the sensor abnormality diagnosis routine shown in FIG. 2 and, when abnormal, turns on a warning lamp 39 (warning means) to notify the driver. This sensor abnormality diagnosis routine is executed every time the main routine is executed (for example, every 8 ms), and a change rate ΔI of the output current of the air-fuel ratio sensor 28 after the start of the fuel cut at the time of deceleration is obtained. When it is smaller than Ifc, it is determined that the sensor is abnormal. FIG. 3 is a time chart showing the flow of processing when this sensor abnormality diagnosis routine is executed.

 このセンサ異常診断ルーチンでは、まず、ステップ101で、燃料カット開始か否かを判定する。ここで、燃料カットの実行時期は、図6に示す燃料カット判定ルーチンによって制御され、その処理の流れを示すタイムチャートが図7に示されている。この燃料カット判定ルーチンも、メインルーチン実行毎(例えば8ms毎)に処理され、処理が開始されると、まず、ステップ121で、減速時の燃料カットによるショックを低減するために、スロットル全閉状態(図示しないスロットル全閉スイッチのオン状態)が所定時間To 経過したか否かを判定し、所定時間To 経過していれば、ステップ122に進んで、エンジン回転数NEが燃料カット開始回転数NFCより高いか否かを判定する。もし、NE>NFCであれば、ステップ126に進んで、燃料カット実行フラグXFCを“1”にセットし、燃料カットを実行する。尚、燃料カット開始回転数NFCは、アイドル状態で燃料カットに入らないように冷却水温が低いほど高く設定される。 In this sensor abnormality diagnosis routine, first, in step 101, it is determined whether or not the fuel cut has started. Here, the execution timing of the fuel cut is controlled by the fuel cut determination routine shown in FIG. 6, and a time chart showing the flow of the process is shown in FIG. This fuel cut determination routine is also executed every time the main routine is executed (for example, every 8 ms). When the process is started, first, in step 121, in order to reduce the shock due to the fuel cut during deceleration, the throttle fully closed state is set. It is determined whether or not (the ON state of the throttle fully closed switch, not shown) has passed a predetermined time ToT. If the predetermined time ToT has passed, the routine proceeds to step 122, where the engine speed NE is reduced to the fuel cut start speed NFC. It is determined whether it is higher. If NE> NFC, the routine proceeds to step 126, where the fuel cut execution flag XFC is set to "1" and the fuel cut is executed. The fuel cut start rotation speed NFC is set higher as the cooling water temperature is lower so that the fuel cut is not started in the idle state.

 一方、ステップ121,122のいずれかで「No」と判定された場合、つまり、スロットル全閉状態が所定時間To 経過していない場合、又は、エンジン回転数NEが燃料カット開始回転数NFC以下の場合には、ステップ123に進んで、前回の処理で燃料カットが実行されたか否かを判定し、前回の処理で燃料カットが実行されていれば、ステップ124に進んで、エンジン回転数NEが燃料カット復帰回転数NRT以下に低下したかか否かを判定し、燃料カット復帰回転数NRT以下に低下していれば、ステップ125に進んで、燃料カット実行フラグXFCを“0”にセットして燃料カットから復帰し、燃料噴射を再開する。上記ステップ124で、エンジン回転数NEが燃料カット復帰回転数NRT以下に低下していないと判定されれば、ステップ126に進み、引き続き燃料カットを継続する。尚、ステップ123で「No」の場合、つまり、前回の処理で燃料カットが実行されていない場合には、ステップ125に済み、引き続き燃料噴射を実行する。 On the other hand, if “No” is determined in either of steps 121 and 122, that is, if the throttle fully closed state has not passed the predetermined time To, or if the engine speed NE is equal to or less than the fuel cut start speed NFC. In this case, the routine proceeds to step 123, where it is determined whether or not the fuel cut has been executed in the previous processing. If the fuel cut has been executed in the previous processing, the routine proceeds to step 124, where the engine speed NE is reduced. It is determined whether or not the fuel cut return rotation speed NRT has fallen below the NRT. If it has fallen below the fuel cut return rotation speed NRT, the routine proceeds to step 125, where the fuel cut execution flag XFC is set to "0". To return from fuel cut and restart fuel injection. If it is determined in step 124 that the engine speed NE has not fallen below the fuel cut return rotation speed NRT, the routine proceeds to step 126, where fuel cut is continued. If "No" in the step 123, that is, if the fuel cut has not been executed in the previous process, the process proceeds to the step 125, and the fuel injection is continuously executed.

 前述したように、図2に示すセンサ異常診断ルーチンでは、まず、ステップ101で、燃料カットを開始したか否かを判定し、燃料カットが開始されていなければ、以降の処理を行わずに、センサ異常診断ルーチンを終了する。このステップ101の処理がエンジン10への燃料供給量の変化を検出する検出手段に相当する。前記燃料カット判定ルーチンの処理により燃料カットが開始された時点でステップ101で「Yes」と判定され、ステップ102に進んで、燃料カット開始時の空燃比センサ28の出力(以下「センサ出力」という)I1 を読み込んで記憶すると共に、タイマを作動させて燃料カット開始後の経過時間をカウントする。次いで、ステップ103で、センサ出力がI2 まで上昇したか否かを判定し、センサ出力がI2 に上昇するまで待機する。 As described above, in the sensor abnormality diagnosis routine shown in FIG. 2, first, in step 101, it is determined whether or not the fuel cut has been started. If the fuel cut has not been started, the subsequent processing is not performed, and The sensor abnormality diagnosis routine ends. The processing in step 101 corresponds to a detecting means for detecting a change in the amount of fuel supplied to the engine 10. When the fuel cut is started by the processing of the fuel cut determination routine, "Yes" is determined in step 101, and the process proceeds to step 102, where the output of the air-fuel ratio sensor 28 at the start of the fuel cut (hereinafter, referred to as "sensor output"). ) I1} is read and stored, and the timer is operated to count the elapsed time after the start of the fuel cut. Next, in step 103, it is determined whether or not the sensor output has risen to I2 、, and the process stands by until the sensor output rises to I2.

 その後、センサ出力がI2 まで上昇すると、ステップ104に進み、燃料カット開始からセンサ出力がI2 に上昇するまでの時間T1 を前述したタイマのカウント値から読み取って記憶した後、ステップ105に進んで、センサ出力の変化率ΔIを次式により算出する。 Thereafter, when the sensor output rises to I2, the process proceeds to step 104, and after reading and storing the time T1 from the start of fuel cut to the sensor output rising to I2 from the count value of the timer, the process proceeds to step 105. The change rate ΔI of the sensor output is calculated by the following equation.

 ΔI=(I2 −I1 )/T1
 このステップ105の処理が特許請求の範囲でいう変化率判定手段として機能する。
ΔI = (I2−I1) / T1
The process of step 105 functions as a change rate determination unit described in the claims.

 続くステップ106で、上式により算出したセンサ出力の変化率ΔIを異常判定値Ifcと比較し、センサ出力の変化率ΔIが異常判定値Ifc以上であれば、空燃比センサ28の応答性は劣化しておらず、センサ出力は正常であるので、本ルーチンを終了する。しかし、空燃比センサ28の応答性が劣化するに従って、センサ出力の変化率ΔIが小さくなることから、センサ出力の変化率ΔIが異常判定値Ifcに満たない場合には、空燃比センサ28の異常(劣化)有りと判定される。この場合には、ステップ107に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。上記ステップ106の処理が特許請求の範囲でいう異常判定手段として機能する。 In the following step 106, the change rate ΔI of the sensor output calculated by the above equation is compared with the abnormality determination value Ifc, and if the change rate ΔI of the sensor output is equal to or more than the abnormality determination value Ifc, the responsiveness of the air-fuel ratio sensor 28 is deteriorated. Since this is not the case and the sensor output is normal, this routine ends. However, since the rate of change ΔI of the sensor output decreases as the response of the air-fuel ratio sensor 28 deteriorates, if the rate of change ΔI of the sensor output is less than the abnormality determination value Ifc, the abnormality of the air-fuel ratio sensor 28 (Deterioration) is determined to be present. In this case, the routine proceeds to step 107, where the sensor abnormality is stored in the memory of the ECU 36, and the warning lamp 39 is turned on to notify the driver. The processing in step 106 functions as an abnormality determination unit described in the claims.

 更に、本実施例では、センサ異常(劣化)時の空燃比の発散やハンチングを防ぐために、図4に空燃比フィードバックゲイン切替ルーチンによりセンサ正常/異常に応じて空燃比フィードバックゲインを切り替える。即ち、ステップ111で、図2のセンサ異常診断ルーチンの診断結果がセンサ異常か否かを判定し、センサ正常時には、ステップ113に進んで、空燃比フィードバックゲイン(積分定数,スキップ値等)を通常値とするが、センサ異常(劣化)時には、ステップ112に進んで、空燃比フィードバックゲインを通常値よりも小さくする。これにより、図5に示すように、センサ異常(劣化)時には空燃比フィードバック補正係数の振幅がセンサ正常時よりも小さくなり、空燃比の発散やハンチングが抑えられる。 Further, in this embodiment, in order to prevent divergence and hunting of the air-fuel ratio when the sensor is abnormal (deteriorated), the air-fuel ratio feedback gain is switched according to the sensor normal / abnormal by the air-fuel ratio feedback gain switching routine in FIG. That is, in step 111, it is determined whether or not the diagnosis result of the sensor abnormality diagnosis routine of FIG. 2 is a sensor abnormality. When the sensor is normal, the process proceeds to step 113, and the air-fuel ratio feedback gain (integration constant, skip value, etc.) is normally set. When the sensor is abnormal (deteriorated), the routine proceeds to step 112, where the air-fuel ratio feedback gain is made smaller than the normal value. As a result, as shown in FIG. 5, when the sensor is abnormal (deteriorated), the amplitude of the air-fuel ratio feedback correction coefficient becomes smaller than when the sensor is normal, and divergence and hunting of the air-fuel ratio are suppressed.

 以上説明した実施例1のように、燃料カット開始後(燃料供給量変化検出後)のセンサ出力の変化率ΔIを求め、その変化率ΔIが異常判定値Ifcより小さいか否かによってセンサ異常の有無を判定するようにすれば、診断開始前(燃料カット開始前)の空燃比の状態によって診断開始当初(燃料カット開始当初)のセンサ出力が変化するという事情があっても、診断開始後のセンサ出力の変化率ΔIは、診断開始前の空燃比の影響をほとんど受けないので、診断開始前の空燃比の状態に影響されずにセンサの異常の有無を診断することができ、診断開始前の空燃比の影響を受けやすい従来の診断方法と比較して、わずかなセンサ異常(特性劣化)も検出することができて、診断精度を向上することができる。これにより、センサ異常(特性劣化)によるドライビリティ低下やエミッション悪化を未然に防ぐことができる。
  [実施例2]
As in the first embodiment described above, the change rate ΔI of the sensor output after the start of the fuel cut (after the detection of the change in the fuel supply amount) is determined, and the sensor abnormality is determined based on whether the change rate ΔI is smaller than the abnormality determination value Ifc. If the presence / absence is determined, even if the sensor output at the beginning of the diagnosis start (the beginning of the fuel cut) changes depending on the air-fuel ratio state before the start of the diagnosis (before the start of the fuel cut), even after the start of the diagnosis, Since the rate of change ΔI of the sensor output is hardly affected by the air-fuel ratio before the start of the diagnosis, it is possible to diagnose whether or not the sensor is abnormal without being affected by the state of the air-fuel ratio before the start of the diagnosis. As compared with the conventional diagnosis method which is easily affected by the air-fuel ratio, a slight sensor abnormality (characteristic deterioration) can be detected, and the diagnosis accuracy can be improved. As a result, it is possible to prevent a decrease in drivability and a decrease in emission due to a sensor abnormality (characteristic deterioration).
[Example 2]

 上記実施例1では、診断開始条件となる燃料供給量の変化として燃料カット開始を検出したが、これとは反対に、燃料カット復帰を条件に診断処理(センサ出力の変化率の判定)を開始するようにしても良い。以下、これを具体化した本発明の実施例2を図8及び図9に基づいて説明する。図8に示すセンサ異常診断ルーチンは、メインルーチン実行毎(例えば8ms毎)に処理され、燃料カット復帰後のセンサ出力の変化率ΔIを求め、その変化率ΔIを異常判定値Ifrと比較してセンサ異常の有無を判定する。このセンサ異常診断ルーチンを実行した場合の処理の流れを示すタイムチャートが図9に示されている。 In the first embodiment, the fuel cut start is detected as a change in the fuel supply amount serving as the diagnosis start condition. On the contrary, the diagnosis process (judgment of the rate of change of the sensor output) is started on the condition of the fuel cut return. You may do it. Hereinafter, a second embodiment of the present invention that embodies this will be described with reference to FIGS. The sensor abnormality diagnosis routine shown in FIG. 8 is processed every time the main routine is executed (for example, every 8 ms), and a change rate ΔI of the sensor output after returning from the fuel cut is obtained, and the change rate ΔI is compared with an abnormality determination value Ifr. The presence or absence of a sensor abnormality is determined. FIG. 9 is a time chart showing the flow of processing when this sensor abnormality diagnosis routine is executed.

 この実施例2のセンサ異常診断ルーチンでは、まず、ステップ201で、燃料カット復帰(燃料噴射再開)か否かを判定し、燃料カット復帰でなければ、以降の処理を行わずに、センサ異常診断ルーチンを終了する。その後、燃料カット復帰が行われた時点で、ステップ101で「Yes」と判定され、ステップ202に進んで、燃料カット復帰時のセンサ出力I3 を読み込んで記憶すると共に、タイマを作動させて燃料カット復帰後の経過時間をカウントする。続くステップ203で、センサ出力がI4 まで低下したか否かを判定し、センサ出力がI4 に低下するまで待機する。 In the sensor abnormality diagnosis routine of the second embodiment, first, in step 201, it is determined whether or not fuel cut recovery (restart of fuel injection) has been performed. If not fuel cut recovery, the subsequent processing is not performed and the sensor abnormality diagnosis is performed. End the routine. Thereafter, when the fuel cut is restored, "Yes" is determined in step 101, and the routine proceeds to step 202, where the sensor output I3 # at the time of returning from the fuel cut is read and stored, and the timer is operated to operate the fuel cut. The elapsed time after return is counted. In the following step 203, it is determined whether or not the sensor output has dropped to I4 #, and the process waits until the sensor output drops to I4 #.

 その後、センサ出力がI4 まで低下すると、ステップ204に進み、燃料カット開始からセンサ出力がI4 に低下するまでの時間T2 を前述したタイマのカウント値から読み取って記憶した後、ステップ205に進んで、センサ出力の変化率ΔIを次式により算出する。 Thereafter, when the sensor output decreases to I4 #, the process proceeds to step 204. After reading and storing the time T2 # from the start of fuel cut to the sensor output decreasing to I4 # from the count value of the timer described above, the process proceeds to step 205. The change rate ΔI of the sensor output is calculated by the following equation.

 ΔI=(I4 −I3 )/T2
 続くステップ206で、上式により算出したセンサ出力の変化率ΔIを異常判定値Ifrと比較し、センサ出力の変化率ΔIが異常判定値Ifr以下の場合(絶対値の比較では|ΔI|≧|Ifr|の場合)には、空燃比センサ28の応答性は劣化しておらず、センサ出力は正常であるので、本ルーチンを終了する。しかし、空燃比センサ28の応答性が劣化するに従って、センサ出力の変化率ΔIの絶対値が小さくなることから、センサ出力の変化率ΔIが異常判定値Ifcより大きくなった場合(絶対値の比較では|ΔI|<|Ifr|となった場合)には、空燃比センサ28の異常(劣化)有りと判定される。この場合には、ステップ107に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。
ΔI = (I4-I3) / T2
In step 206, the sensor output change rate ΔI calculated by the above equation is compared with the abnormality determination value Ifr, and when the sensor output change rate ΔI is equal to or smaller than the abnormality determination value Ifr (| ΔI | ≧ | Ifr |), the responsiveness of the air-fuel ratio sensor 28 has not deteriorated and the sensor output is normal, so this routine ends. However, as the responsiveness of the air-fuel ratio sensor 28 deteriorates, the absolute value of the rate of change ΔI of the sensor output becomes smaller. Therefore, when the rate of change ΔI of the sensor output becomes larger than the abnormality determination value Ifc (comparison of the absolute values). If | ΔI | <| Ifr |), it is determined that the air-fuel ratio sensor 28 is abnormal (deteriorated). In this case, the routine proceeds to step 107, where the sensor abnormality is stored in the memory of the ECU 36, and the warning lamp 39 is turned on to notify the driver.

 以上説明した実施例1及び実施例2では、診断開始条件となる燃料供給量の変化として燃料カット開始又は燃料カット復帰を検出するようにしたが、燃料供給量の変化をもたらす目標空燃比の変化又は燃料増量値・燃料減量値の変化を診断開始条件とするようにしても良い。 In the first and second embodiments described above, the start of fuel cut or the return of fuel cut is detected as the change of the fuel supply amount serving as the diagnosis start condition. However, the change of the target air-fuel ratio causing the change of the fuel supply amount is detected. Alternatively, a change in the fuel increase value / fuel decrease value may be used as the diagnosis start condition.

 また、実施例1及び実施例2では、センサ出力が所定値I2 ,I4 に変化するまでの時間T1 ,T2 を計測して、センサ出力の所定変化量を時間T1 ,T2 で割り算してセンサ出力の変化率ΔIを求めるようにしたが、所定時間内の変化量を計測して、この変化量を当該所定時間で割り算してセンサ出力の変化率ΔIを求めるようにしても良い。これを具体化したのが図10及び図11に示す本発明の実施例3と図12及び図13に示す本発明の実施例4である。
  [実施例3]
In the first and second embodiments, the time T1, T2 until the sensor output changes to the predetermined value I2, I4 is measured, and the predetermined change amount of the sensor output is divided by the time T1, T2 to obtain the sensor output. Although the change rate ΔI is determined, the change amount within a predetermined time may be measured, and the change amount divided by the predetermined time to obtain the sensor output change rate ΔI. This is embodied in a third embodiment of the present invention shown in FIGS. 10 and 11, and a fourth embodiment of the present invention shown in FIGS. 12 and 13.
[Example 3]

 図10及び図11に示す本発明の実施例3は、燃料カット開始後のセンサ出力の変化率ΔIを求める実施例1に対応する実施例であり、ステップ303,304の処理が実施例1と異なるのみであり、これ以外の処理は実施例1と実質的に同じである。この実施例3では、燃料カット開始時のセンサ出力I5を読み込んで記憶し(ステップ302)、その後、所定時間T3 経過した時点のセンサ出力I6 を読み込んで記憶し(ステップ303,304)、センサ出力の変化率ΔIを次式により算出する(ステップ305)。 A third embodiment of the present invention shown in FIGS. 10 and 11 is an embodiment corresponding to the first embodiment for calculating the rate of change ΔI of the sensor output after the start of the fuel cut, and the processes of steps 303 and 304 are different from those of the first embodiment. The only difference is that the other processes are substantially the same as those of the first embodiment. In the third embodiment, the sensor output I5 at the start of the fuel cut is read and stored (step 302), and thereafter, the sensor output I6 at the time when a predetermined time T3 {elapses} is read and stored (steps 303 and 304). Is calculated by the following equation (step 305).

 ΔI=(I6 −I5 )/T3
  [実施例4]
ΔI = (I6-I5) / T3
[Example 4]

 一方、図12及び図13に示す本発明の実施例4は、燃料カット復帰後のセンサ出力の変化率ΔIを求める実施例2に対応する実施例であり、ステップ403,404の処理が実施例2と異なるのみであり、これ以外の処理は実施例2と実質的に同じである。この実施例4では、燃料カット復帰時のセンサ出力I7 を読み込んで記憶し(ステップ402)、その後、所定時間T4 経過した時点のセンサ出力I8 を読み込んで記憶し(ステップ403,404)、センサ出力の変化率ΔIを次式により算出する(ステップ405)。 On the other hand, a fourth embodiment of the present invention shown in FIGS. 12 and 13 is an embodiment corresponding to the second embodiment for calculating the rate of change ΔI of the sensor output after returning from the fuel cut. The second embodiment is different from the second embodiment only, and other processes are substantially the same as those of the second embodiment. In the fourth embodiment, the sensor output I7 at the time of returning from the fuel cut is read and stored (step 402), and then the sensor output I8 at the time when a predetermined time T4 has elapsed is read and stored (steps 403 and 404). Is calculated by the following equation (step 405).

 ΔI=(I8 −I7 )/T4
  [実施例5]
ΔI = (I8−I7) / T4
[Example 5]

 ところで、図3に示すように、燃料カット開始からセンサ出力が変化し始めるまでに応答遅れ時間T5 がある。空燃比センサ28の特性が劣化すると、応答性が遅くなり、応答遅れ時間T5 が長くなる傾向がある。 {By the way, as shown in FIG. 3, there is a response delay time T5} from the start of the fuel cut until the sensor output starts to change. If the characteristics of the air-fuel ratio sensor 28 deteriorate, the response tends to be slow and the response delay time T5 # tends to be long.

 そこで、図14及び図15に示す本発明の実施例5では、燃料カット開始からセンサ出力が変化し始めるまでの応答遅れ時間T9 を測定し、この応答遅れ時間T9 を異常判定値Tfcと比較してセンサ異常の有無を判定する。具体的には、ステップ501,502で、燃料カット開始時のセンサ出力I9 を読み込んで記憶すると共に、タイマを作動させて燃料カット開始後の経過時間をカウントする。 Therefore, in the fifth embodiment of the present invention shown in FIGS. 14 and 15, the response delay time T9 from the start of the fuel cut until the sensor output starts to change is measured, and this response delay time T9 is compared with the abnormality determination value Tfc. To determine whether there is a sensor abnormality. Specifically, in steps 501 and 502, the sensor output I9 # at the start of the fuel cut is read and stored, and the timer is operated to count the elapsed time after the start of the fuel cut.

 次いで、ステップ503にて、センサ出力がI9 +Δi(ここでΔiは出力上昇と認められる変化幅)に上昇するまで待機し、センサ出力がI9 +Δiに上昇した時点で、ステップ504に進んで、燃料カット開始からセンサ出力がI9 +Δiに上昇するまでの応答遅れ時間T5 を前述したタイマのカウント値から読み取る。この後、ステップ505で、応答遅れ時間T9 を異常判定値Tfcと比較し、T9 ≦Tfcであれば、空燃比センサ28の応答性は劣化しておらず、センサ出力は正常であるので、本ルーチンを終了する。 Next, in step 503, the process waits until the sensor output rises to I9 + Δi (where Δi is a change width recognized as an increase in output). When the sensor output rises to I9 + Δi, the process proceeds to step 504, and The response delay time T5 from the start of cutting until the sensor output rises to I9 + Δi is read from the count value of the timer described above. Thereafter, in step 505, the response delay time T9 is compared with the abnormality determination value Tfc. If T9 ≦ Tfc, the response of the air-fuel ratio sensor 28 has not deteriorated and the sensor output is normal. End the routine.

 しかし、T9 >Tfcであれば、空燃比センサ28の応答性が劣化しているので、空燃比センサ28の異常(劣化)有りと判定され、ステップ506に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。この場合、ステップ503,504の処理が特許請求の範囲でいう計時手段として機能する。
  [実施例6]
However, if T9> Tfc, the responsiveness of the air-fuel ratio sensor 28 has deteriorated, so it is determined that the air-fuel ratio sensor 28 is abnormal (deteriorated), and the routine proceeds to step 506, where the sensor abnormality is stored in the memory of the ECU 36. At the same time, the warning lamp 39 is turned on to notify the driver. In this case, the processing of steps 503 and 504 functions as a time measuring means referred to in the claims.
[Example 6]

 一方、図16及び図17に示す本発明の実施例6では、燃料カット開始後、応答遅れ時間T10経過後にセンサ出力の変化率ΔIの測定を開始することで、変化率ΔIの測定精度を高めるものである。この実施例6は、所定時間内のセンサ出力の変化量を当該所定時間で割り算して変化率ΔIを求める実施例3(図10,図11)に対応するものであり、以下、図17のタイムチャート中の符号を引用しながら図16のフローチャートを説明する。 On the other hand, in the sixth embodiment of the present invention shown in FIGS. 16 and 17, the measurement accuracy of the change rate ΔI is improved by starting the measurement of the change rate ΔI of the sensor output after the response delay time T10 has elapsed after the start of the fuel cut. Things. The sixth embodiment corresponds to a third embodiment (FIGS. 10 and 11) in which a change amount of a sensor output within a predetermined time is divided by the predetermined time to obtain a change rate ΔI. The flowchart of FIG. 16 will be described with reference to the symbols in the time chart.

 ステップ601〜604の処理は、図14のステップ501〜504の処理と同じであり、燃料カット開始時のセンサ出力I10を求めて記憶すると共に、燃料カット開始からセンサ出力がI10+Δiに上昇するまでの応答遅れ時間T10を測定して記憶する。続くステップ605で、センサ出力がI10+Δiに上昇してから所定時間Δt経過するまで待機し、所定時間Δt経過後にセンサ出力I11を読み込んで記憶する(ステップ606)。続くステップ607で、センサ出力の変化率ΔIを次式により算出する。 The processing in steps 601 to 604 is the same as the processing in steps 501 to 504 in FIG. 14, and calculates and stores the sensor output I10 at the start of the fuel cut, and the processing from the start of the fuel cut until the sensor output rises to I10 + Δi. The response delay time T10 is measured and stored. In the following step 605, the process waits until a predetermined time Δt elapses after the sensor output rises to I10 + Δi, and after the predetermined time Δt elapses, reads and stores the sensor output I11 (step 606). In the following step 607, the rate of change ΔI of the sensor output is calculated by the following equation.

 ΔI={I11−(I10+Δi)}/Δt
 この後、ステップ608で、センサ出力の変化率ΔIを異常判定値Icf2 と比較し、ΔI<Icf2 であれば、空燃比センサ28の異常(劣化)有りと判定され、ステップ609に進んで、ECU36のメモリにセンサ異常を記憶すると共に、警告ランプ39を点灯して運転者に知らせる。
ΔI = {I11− (I10 + Δi)} / Δt
Thereafter, at step 608, the sensor output change rate ΔI is compared with the abnormality determination value Icf2. If ΔI <Icf2, it is determined that the air-fuel ratio sensor 28 is abnormal (deteriorated). The sensor abnormality is stored in the memory and the warning lamp 39 is lit to notify the driver.

 尚、実施例1についても、燃料カット開始後、応答遅れ時間T10の経過後にセンサ出力の変化率ΔIの測定を開始するようにしても良い。また、実施例5及び実施例6の各実施例の考え方は、燃料カット開始時に限らず、燃料カット復帰時等、他の燃料供給量変化を検出する場合にも適用可能である。 In the first embodiment, the measurement of the rate of change ΔI of the sensor output may be started after the response delay time T10 has elapsed after the start of the fuel cut. The concept of each of the fifth and sixth embodiments can be applied not only to the start of the fuel cut, but also to the detection of another change in the fuel supply amount, such as at the time of returning from the fuel cut.

 また、実施例5を除く各実施例では、いずれもセンサ出力の変化量を時間で割り算して単位時間当たりの変化量をセンサ出力の変化率ΔIとして求めるようにしたが、センサ出力の変化率ΔIを直接算出せずに、次のようにして間接的にセンサ出力の変化率を判定するようにしても良い。 In each of the embodiments except for the fifth embodiment, the change amount of the sensor output is divided by the time to obtain the change amount per unit time as the change rate ΔI of the sensor output. Instead of directly calculating ΔI, the change rate of the sensor output may be indirectly determined as follows.

 (1)燃料供給量が変化した後にセンサ出力が所定量変化するまでの時間を計測し、その計測時間の長短によってセンサ出力の変化率を間接的に判定する。つまり、計測時間が長ければ、センサ出力の変化率が小さく、計測時間が短くなるほど、センサ出力の変化率が大きくなるという関係を利用するものである。この場合には、センサ出力の変化量を計測時間で割り算する必要はない。 (1) The time until the sensor output changes by a predetermined amount after the fuel supply amount changes is measured, and the rate of change of the sensor output is indirectly determined based on the length of the measurement time. In other words, the relationship that the change rate of the sensor output is small when the measurement time is long and the change rate of the sensor output is large when the measurement time is short is used. In this case, it is not necessary to divide the amount of change in the sensor output by the measurement time.

 (2)燃料供給量が変化した後の所定時間内に変化するセンサ出力の変化量を求め、その変化量の大小によってセンサの出力の変化率を間接的に判定する。つまり、所定時間内の変化量が大きくなれば、センサ出力の変化率が大きくなり、所定時間内の変化量が小さくなるほど、センサ出力の変化率が小さくなるという関係を利用するものである。この場合も、上述の場合と同じく、変化量を時間で割り算する必要はない。 (2) A change in the sensor output that changes within a predetermined time after the change in the fuel supply amount is determined, and the rate of change in the sensor output is indirectly determined based on the magnitude of the change. In other words, the relationship that the change rate of the sensor output increases as the change amount within the predetermined time increases, and the change rate of the sensor output decreases as the change amount within the predetermined time decreases. Also in this case, it is not necessary to divide the amount of change by time, as in the case described above.

 上記(1)又は(2)の方法を用いれば、センサ出力の変化量を時間で割り算する必要が無いので、演算負荷が少なくて済む利点がある。また、センサ出力の変化率(傾き)をハード的に検出する検出回路を設けるようにしても良い。 (4) When the method (1) or (2) is used, there is no need to divide the amount of change in sensor output by time, so that there is an advantage that the calculation load can be reduced. Further, a detection circuit for detecting the change rate (slope) of the sensor output in a hardware manner may be provided.

 尚、燃料供給量の変化の判定やセンサ出力の変化率の判定は、前記した各例を適宜組み合わせて実施するようにしても良く、例えば燃料カット開始時と燃料カット復帰時の双方でセンサ異常の判定を行うようにしても良い。 The determination of the change in the fuel supply amount and the determination of the rate of change in the sensor output may be performed by appropriately combining the above-described examples. For example, the sensor abnormality may be detected both at the start of the fuel cut and at the time of the return from the fuel cut. May be determined.

 また、前記実施例では、排気ガス中の空燃比に応じて連続的に出力が変化する空燃比センサ28を用いたが、排気ガス中の酸素濃度に応じて出力がステップ的に変化する酸素センサを用いるようにしても良い。 Further, in the above-described embodiment, the air-fuel ratio sensor 28 whose output continuously changes according to the air-fuel ratio in the exhaust gas is used. However, the oxygen sensor whose output changes stepwise according to the oxygen concentration in the exhaust gas. May be used.

 また、前記実施例では、センサ異常時に運転者に警告する警告手段として警告ランプ39を用いたが、ブザー等、音で警告したり、燃料供給又は点火時期を周期的に変化させてエンジン回転数をラフにすることで運転者にセンサ異常を警告するようにしても良い。 Further, in the above-described embodiment, the warning lamp 39 is used as a warning unit for warning the driver when the sensor is abnormal. However, a warning is given by a sound such as a buzzer, or the engine speed is changed by periodically changing the fuel supply or the ignition timing. May be roughened to warn the driver of a sensor abnormality.

本発明の実施例1を示すエンジン制御システム全体の概略構成図1 is a schematic configuration diagram of an entire engine control system according to a first embodiment of the present invention. 実施例1のセンサ異常診断ルーチンの処理の流れを示すフローチャート5 is a flowchart illustrating the flow of a sensor abnormality diagnosis routine according to the first embodiment. 実施例1の異常診断処理の流れを示すタイムチャートTime chart showing the flow of the abnormality diagnosis processing of the first embodiment 空燃比フィードバックゲイン切替ルーチンの流れを示すフローチャートFlow chart showing the flow of the air-fuel ratio feedback gain switching routine 空燃比フィードバック補正係数の経時的変化を示す図Diagram showing change over time of air-fuel ratio feedback correction coefficient 燃料カット判定ルーチンの処理の流れを示すフローチャートFlow chart showing the flow of processing of a fuel cut determination routine 燃料カットの作動を示すフローチャートFlow chart showing operation of fuel cut 本発明の実施例2のセンサ異常診断ルーチンの処理の流れを示すフローチャート9 is a flowchart illustrating a process flow of a sensor abnormality diagnosis routine according to a second embodiment of the present invention. 実施例2の異常診断処理の流れを示すタイムチャートTime chart showing the flow of the abnormality diagnosis processing of the second embodiment 本発明の実施例3のセンサ異常診断ルーチンの処理の流れを示すフローチャート11 is a flowchart showing the flow of processing of a sensor abnormality diagnosis routine according to a third embodiment of the present invention. 実施例3の異常診断処理の流れを示すタイムチャートTime chart showing the flow of the abnormality diagnosis processing of the third embodiment 本発明の実施例4のセンサ異常診断ルーチンの処理の流れを示すフローチャート4 is a flowchart illustrating a process flow of a sensor abnormality diagnosis routine according to a fourth embodiment of the present invention. 実施例4の異常診断処理の流れを示すタイムチャート4 is a time chart illustrating a flow of an abnormality diagnosis process according to the fourth embodiment. 本発明の実施例5のセンサ異常診断ルーチンの処理の流れを示すフローチャート5 is a flowchart illustrating a process flow of a sensor abnormality diagnosis routine according to a fifth embodiment of the present invention. 実施例5の異常診断処理の流れを示すタイムチャート5 is a time chart showing the flow of the abnormality diagnosis processing according to the fifth embodiment. 本発明の実施例6のセンサ異常診断ルーチンの処理の流れを示すフローチャート6 is a flowchart showing the flow of processing of a sensor abnormality diagnosis routine according to a sixth embodiment of the present invention. 実施例5の異常診断処理の流れを示すタイムチャート5 is a time chart showing the flow of the abnormality diagnosis processing according to the fifth embodiment.

符号の説明Explanation of reference numerals

 10…エンジン(内燃機関)、
 20…燃料噴射弁、
 27…排気管、
 28…空燃比センサ、
 36…エンジン制御回路(検出手段,変化率判定手段,異常判定手段)、
 39…警告ランプ(警告手段)。
 
10. Engine (internal combustion engine),
20: fuel injection valve,
27 ... exhaust pipe,
28 ... Air-fuel ratio sensor,
36 ... engine control circuit (detection means, change rate determination means, abnormality determination means),
39 warning lamp (warning means).

Claims (7)

内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
 この変化率判定手段により求めた前記センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、
 前記検出手段は、燃料カット開始又は燃料カット復帰を燃料供給量の変化として検出することを特徴とする内燃機関の空燃比制御装置の自己診断装置。
The self-diagnosis of an air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of an air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
Change rate determining means for determining a change rate of the output of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means;
Abnormality determination means for determining the presence or absence of an abnormality in the air-fuel ratio sensor based on the change rate of the output of the sensor obtained by the change rate determination means,
A self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, wherein the detection means detects a start of fuel cut or a return from fuel cut as a change in fuel supply amount.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
 この変化率判定手段により求めた前記センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、
 前記変化率判定手段は、前記センサの出力の変化率として単位時間当たりの変化量を求めることを特徴とする内燃機関の空燃比制御装置の自己診断装置。
The self-diagnosis of an air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of an air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
Change rate determining means for determining a change rate of the output of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means;
Abnormality determination means for determining the presence or absence of an abnormality in the air-fuel ratio sensor based on the change rate of the output of the sensor obtained by the change rate determination means,
The self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, wherein the change rate determining means obtains a change amount per unit time as a change rate of an output of the sensor.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
 この変化率判定手段により求めた前記センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、
 前記変化率判定手段は、前記燃料供給量が変化した後に前記センサの出力が所定量変化するまでの時間を計測し、その計測時間の長短によって前記センサの出力の変化率を判定することを特徴とする内燃機関の空燃比制御装置の自己診断装置。
The self-diagnosis of an air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of an air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
Change rate determining means for determining a change rate of the output of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means;
Abnormality determination means for determining the presence or absence of an abnormality in the air-fuel ratio sensor based on the change rate of the output of the sensor obtained by the change rate determination means,
The change rate determining means measures a time until the output of the sensor changes by a predetermined amount after the fuel supply amount changes, and determines a change rate of the output of the sensor based on the length of the measurement time. A self-diagnosis device for an air-fuel ratio control device of an internal combustion engine.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
 この変化率判定手段により求めた前記センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、
 前記変化率判定手段は、前記燃料供給量が変化した後の所定時間内に変化する前記センサの出力の変化量を求め、その変化量の大小によって前記センサの出力の変化率を判定することを特徴とする内燃機関の空燃比制御装置の自己診断装置。
The self-diagnosis of an air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of an air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
Change rate determining means for determining a change rate of the output of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means;
Abnormality determination means for determining the presence or absence of an abnormality in the air-fuel ratio sensor based on the change rate of the output of the sensor obtained by the change rate determination means,
The change rate determination means obtains a change amount of the output of the sensor that changes within a predetermined time after the fuel supply amount changes, and determines a change rate of the output of the sensor based on the magnitude of the change amount. A self-diagnosis device for an air-fuel ratio control device of an internal combustion engine.
内燃機関の排気系の空燃比又は酸素濃度を検出するセンサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後に前記センサの出力が変化し始めるまでの応答遅れ時間を計測する計時手段と、
 この計時手段により測定した応答遅れ時間に基づいて前記センサの異常の有無を判定する異常判定手段とを備えたことを特徴とする内燃機関の空燃比制御装置の自己診断装置。
In self-diagnosis of an abnormality of an air-fuel ratio control device that feedback-controls an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine by an output of a sensor that detects an air-fuel ratio or an oxygen concentration of an exhaust system of an internal combustion engine,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
A time measuring means for measuring a response delay time until the output of the sensor starts to change after detecting the change in the fuel supply amount by the detecting means;
A self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, comprising: abnormality determination means for determining the presence or absence of an abnormality in the sensor based on the response delay time measured by the time measurement means.
内燃機関の排気ガスの空燃比に応じて出力が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力の変化率を求める変化率判定手段と、
 この変化率判定手段により求めた前記センサの出力の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備え、
 前記異常判定手段による前記空燃比センサの正常/異常の判定に応じて前記空燃比フィードバック制御の空燃比フィードバックゲインを切り換えることを特徴とする内燃機関の空燃比制御装置の自己診断装置。
The self-diagnosis of an air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine by the output of an air-fuel ratio sensor whose output continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine ,
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
Change rate determining means for determining a change rate of the output of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means;
Abnormality determination means for determining the presence or absence of an abnormality in the air-fuel ratio sensor based on the change rate of the output of the sensor obtained by the change rate determination means,
A self-diagnosis device for an air-fuel ratio control device for an internal combustion engine, wherein an air-fuel ratio feedback gain of the air-fuel ratio feedback control is switched according to a determination of normality / abnormality of the air-fuel ratio sensor by the abnormality determination means.
内燃機関の排気ガスの空燃比に応じて出力電流が連続的に変化する空燃比センサの出力によって内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御装置の異常を自己診断するものにおいて、
 前記内燃機関への燃料供給量の変化を検出する検出手段と、
 この検出手段により前記燃料供給量の変化を検出した後の前記空燃比センサの出力電流の変化率を求める変化率判定手段と、
 この変化率判定手段により求めた前記センサの出力電流の変化率に基づいて前記空燃比センサの異常の有無を判定する異常判定手段とを備えたことを特徴とする内燃機関の空燃比制御装置の自己診断装置。
 
Self-diagnosis of an air-fuel ratio control device that feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of an air-fuel ratio sensor whose output current continuously changes according to the air-fuel ratio of the exhaust gas of the internal combustion engine At
Detecting means for detecting a change in the amount of fuel supplied to the internal combustion engine,
Change rate determining means for determining a change rate of an output current of the air-fuel ratio sensor after detecting a change in the fuel supply amount by the detecting means;
Abnormality determination means for determining whether or not the air-fuel ratio sensor is abnormal based on the change rate of the output current of the sensor obtained by the change rate determination means. Self-diagnosis device.
JP2003282867A 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine Expired - Lifetime JP4101133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282867A JP4101133B2 (en) 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282867A JP4101133B2 (en) 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6328086A Division JPH08177575A (en) 1994-12-28 1994-12-28 Self-diagnostic device for air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004003513A true JP2004003513A (en) 2004-01-08
JP4101133B2 JP4101133B2 (en) 2008-06-18

Family

ID=30438738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282867A Expired - Lifetime JP4101133B2 (en) 2003-07-30 2003-07-30 Self-diagnosis device for air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4101133B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169749A (en) * 2007-01-11 2008-07-24 Nissan Motor Co Ltd Deterioration diagnostic system of air-fuel ratio sensor
US7520274B2 (en) 2004-06-29 2009-04-21 Toyota Jidosha Kabushiki Kaisha Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine
JP2010007534A (en) * 2008-06-26 2010-01-14 Nissan Motor Co Ltd Abnormality diagnostic device for air-fuel ratio sensor
US7681565B2 (en) 2007-03-30 2010-03-23 Denso Corporation Air/fuel ratio control system for internal combustion engine
JP2011106309A (en) * 2009-11-13 2011-06-02 Mazda Motor Corp Method and apparatus for detecting abnormality of engine
JP2018105204A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Diagnostic system for exhaust sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205549A1 (en) * 2020-04-07 2021-10-14 ヤマハ発動機株式会社 Saddle-ride type vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7520274B2 (en) 2004-06-29 2009-04-21 Toyota Jidosha Kabushiki Kaisha Air fuel ratio sensor deterioration determination system for compression ignition internal combustion engine
JP2008169749A (en) * 2007-01-11 2008-07-24 Nissan Motor Co Ltd Deterioration diagnostic system of air-fuel ratio sensor
US7681565B2 (en) 2007-03-30 2010-03-23 Denso Corporation Air/fuel ratio control system for internal combustion engine
JP2010007534A (en) * 2008-06-26 2010-01-14 Nissan Motor Co Ltd Abnormality diagnostic device for air-fuel ratio sensor
JP2011106309A (en) * 2009-11-13 2011-06-02 Mazda Motor Corp Method and apparatus for detecting abnormality of engine
JP2018105204A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Diagnostic system for exhaust sensor
EP3351933A1 (en) 2016-12-26 2018-07-25 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus for exhaust gas sensor

Also Published As

Publication number Publication date
JP4101133B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JPH08177575A (en) Self-diagnostic device for air-fuel ratio control device for internal combustion engine
US7954364B2 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
JP4915526B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006233831A (en) Diagnostic device and control device for internal combustion engine
JP4873378B2 (en) Abnormality diagnosis device for intake air volume sensor
JP4161771B2 (en) Oxygen sensor abnormality detection device
JP4186679B2 (en) Failure diagnosis device for secondary air supply device.
JP2006057587A (en) Malfunction diagnosing device for air/fuel ratio sensor
JPH09170966A (en) Apparatus for diagnosing deterioration of oxygen sensor downstream of catalyst in engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP2005188309A (en) Abnormality determination device of throttle system
JP5533471B2 (en) Catalyst deterioration diagnosis device
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP2005042676A (en) Failure detecting device for oxygen concentration sensor
EP4238634A1 (en) Control device for internal combustion engine and catalyst deterioration diagnosis method
JP4395890B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine
JP4716191B2 (en) Failure diagnosis device for exhaust gas purification system
JP4951612B2 (en) Diagnostic device and control device for internal combustion engine
JP4547617B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine
JP2005282475A (en) Abnormality diagnosis device for air fuel ratio sensor
JP4037485B2 (en) Engine catalyst deterioration diagnosis device
JP2005240642A (en) Malfunction diagnosis method for exhaust emission control system
JP2006009624A (en) Air-fuel ratio control device of engine
JPH08110320A (en) Diagnosis device for oxygen sensor heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070712

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term