JP2004000167A - Process for preparing fermentation product containing significant amount of nisin by using barley shochu distillation residual liquid as medium - Google Patents
Process for preparing fermentation product containing significant amount of nisin by using barley shochu distillation residual liquid as medium Download PDFInfo
- Publication number
- JP2004000167A JP2004000167A JP2003078903A JP2003078903A JP2004000167A JP 2004000167 A JP2004000167 A JP 2004000167A JP 2003078903 A JP2003078903 A JP 2003078903A JP 2003078903 A JP2003078903 A JP 2003078903A JP 2004000167 A JP2004000167 A JP 2004000167A
- Authority
- JP
- Japan
- Prior art keywords
- nisin
- culture
- liquid
- producing
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
【0001】
【発明が属する技術分野】
本発明は、焼酎蒸留残液を固液分離することにより得られる液体分を培地に使用してナイシン生産能を有する乳酸菌を培養するナイシンを含有する発酵生産物の製造方法であって、前記培地として、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行うことを特徴とするナイシンを著量含有する発酵生産物の製造方法に関する。本発明のナイシンを著量含有する発酵生産物の製造方法は、前記培養を回分培養方式及び/又は連続培養方式で行う態様を包含する。また、本発明のナイシンを著量含有する発酵生産物の製造方法は、前記大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の一部を、米焼酎蒸留残液を固液分離することにより得られる液体分(B)で置き換える態様を包含する。本発明により得られるナイシンを著量含有する発酵生産物は、優れた呈味性を有し、食品として使用できるものである。
【0002】
【従来の技術】
一般にナイシンと呼称されて知られているものは、34のアミノ酸から成るポリペプチドであり、アミノ酸配列の27位がヒスチジンであるものをナイシンAと言い、アミノ酸配列の27位がアスパラギンであるものをナイシンZと言う。こうしたナイシンは、Lactococcus lactis subsp. Lactisによって生産されるバクテリオシンの一種であり、Streptococcus、Bacillus、Clostridium、Staphylococcusなどのグラム陽性菌に対して抗菌作用を示し、現在約50カ国で、特定の食品に限って、保存剤としての使用が認められている。そうした食品の主なものとしては、チーズ、缶詰、牛乳、クリーム、マヨネーズなどを挙げることができる。
【0003】
ナイシンの製造については、以下に述べるような方法が提案されている。即ち、特開平4−75596号公報[以下、「文献1」と言う]には、乳酸菌を用いるナイシンの発酵生産において、ナイシン生産菌が生産するナイシン以外の代謝産物によりこの生産菌の増殖速度が低下するか或いは増殖が停止する前に、菌体を含む培養液を膜を用いて連続的に濾過し、菌体を含む液と、菌体を含まずナイシンを含む液とに分離し、前記菌体を含む液は培養槽内に返送し、菌体を含まずナイシンを含む液を抜き取り、その抜き取った液の量と同体積の新鮮な液体培地を前記培養槽内のナイシン生産菌培養液に、希釈率0.1〜10hr−1で供給しつつ濾過培養を続け、前記菌体を含まずナイシンを含む液、前記培養槽内の培養液、或いは該培養液に含まれる菌体そのものからナイシンを分離することを特徴とするナイシンの製造方法が記載されている。より詳細には、文献1には、培地としてMRS培地を使用し、ナイシン生産能を有する乳酸菌菌株としてストレプトコッカス・ラクチスIFO12007を使用し、上記濾過培養法を用いて発酵に付すことが記載されており、当該発酵により得られる培養液のナイシン濃度は1.72×105U/Lである旨記載されている。
【0004】
特開平4−126093号公報[以下、「文献2」と言う]には、ナイシン生産能を有するストレプトコッカス・ラクチスSBT1212株を培養に付してナイシンを生産するにあたり、培養液中にセリンまたはフェニルアラニンを0.1〜10mg/ml添加して培養を行い、ナイシンの生産を増強することを特徴とするナイシンの生産方法が記載されている。また、文献2には、セリンを添加した全乳からなる培地を使用し、当該生産方法により得られる発酵生産物のナイシン生産量は1000(I.U./ml)である旨記載されている。
特開平6−9690号公報[以下、「文献3」と言う]には、Lactococcus lactis亜種lactisNRRL−B−18809を、1%酵母抽出物を添加したMRS培地、或いは0.5%酵母抽出物を添加した7%乳清からなる培地を用いて培養するバクテリオシン(ナイシン)の生産方法が記載されており、また当該生産方法において得られる発酵生産物のナイシン力価は1600AU/mlである旨記載されている。
【0005】
しかしながら、文献1乃至3に記載のナイシン製造方法によって達成される発酵生産物中のナイシン濃度は上述した通りいずれも極めて低いことから、これらのナイシン製造方法はナイシンを工業的に多量生産するには適さないものである。因みに、現在のところこれらのナイシン製造方法は工業的に実施されていない。
【0006】
ところで、焼酎蒸留残液を乳酸菌の培養用培地として使用することが提案されている。即ち、特開2000−236891号公報[以下、「文献4」と言う。]には、米焼酎蒸留粕を固液分離することにより固体分から得られる培地に乳酸菌を添加して発酵に付すことを特徴とする乳酸の製造方法が記載されている。特開2000−245491号公報[以下、「文献5」と言う]には、蒸気滅菌をしない開放系で、芋焼酎蒸留粕を固液分離した固体分から得られる培地にL乳酸を生産する乳酸菌を添加して発酵に付すことを特徴とする高純度L乳酸の製造方法が記載されている。
特開2000−342247号公報[以下、「文献6」と言う]には、大麦を原料とする焼酎製造において副生する焼酎蒸留残液を固液分離して液体分を得、該液体分をろ過して清澄液を得、該清澄液を濃縮して濃縮液を得、該濃縮液を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着性画分を有効成分として含有した微生物用培地が、酵母、乳酸菌、及びビフィズス菌の培養用培地として優れ、前記微生物用培地を酵母、乳酸菌、及びビフィズス菌の培養に使用した場合、培養菌体の量が著しく増加する旨記載されている。
【0007】
また、特開2002−369672号公報[以下、文献7と言う。]には、ナイシン等のバクテリオシンを含有する乳酸発酵液による食品の殺菌方法が記載されている。そして、食品に対して、該乳酸発酵液とカルシウムイオンを加えることにより、該乳酸発酵液の有する抗菌作用を長く維持できることが記載されている。
【0008】
【特許文献1】
特開平4−75596号公報
【特許文献2】
特開平4−126093号公報
【特許文献3】
特開平6−9690号公報
【特許文献4】
特開2000−236891号公報
【特許文献5】
特開2000−245491号公報
【特許文献6】
特開2000−342247号公報
【特許文献7】
特開2002−369672号公報
【0009】
しかしながら、文献4及び文献5において培地原料として使用する米焼酎蒸留残液の固体分及び芋焼酎蒸留残液の固体分は、本発明において培地原料として使用する、大麦を原料とする焼酎製造において副生する大麦焼酎蒸留残液を固液分離することにより得られる液体分及び米を原料とする焼酎製造において副生する米焼酎蒸留残液を固液分離することにより得られる液体分とは客観的に区別される明らかに別異なるものである。その上、文献4及び文献5に記載の発明は、米焼酎蒸留残液または芋焼酎蒸留残液から得られる固体分からなる培地を使用して乳酸菌を培養することによって乳酸を生産することを目的とするものであり、ナイシンを含有し、優れた呈味性を有する乳酸菌発酵液の製造方法については示唆すらも全くない。
【0010】
文献6は、前記微生物用培地がLactobacillus属の乳酸菌、即ちLactobacillus acidophilus、Lactobacillus plantarum、及びLactobacillus fermentum等の菌体の増殖に有効である旨記載しているが、ナイシン生産能を有するLactococcus lactis subsp. Lactisに属する乳酸菌の菌体増殖効果については全く記載していない。また文献6には、前記微生物用培地がLactobacillus属の乳酸菌、即ちLactobacillus acidophilus、Lactobacillus plantarum、及びLactobacillus fermentum等の菌体増殖に有効である旨記載されていることから、該微生物用培地を用いて上述したナイシン生産能を有するLactococcus lactis subsp. Lactisに属する乳酸菌を培養した場合、同様の菌体増殖効果が奏されることを推測することは容易であるかもしれない。しかしながら、前記ナイシン生産能を有する乳酸菌を培養することによって培養液中に生産されるナイシンの量は、培養液中の菌体量の増加のみによって必然的に高まるものでは到底ない。この点は、上述の菌体増殖効果を有する該微生物用培地を使用する場合であっても同様である。因みに、本発明者らは、該文献6に記載の前記微生物用培地を使用して、ナイシン生産能を有するLactococcus lactis subsp. Lactisに属する幾つかの乳酸菌のそれぞれの菌株を培養条件を変えて培養し、得られた発酵生産物中の菌体量及びナイシン濃度を調べたが、いずれの場合にあっても、前記菌体量と前記ナイシン濃度との間には何ら普遍的な相関関係は認められなかった。
【0011】
文献7には、ナイシン等のバクテリオシンを含有する乳酸発酵液による食品の殺菌方法について記載されている。また、前記乳酸発酵液を得るに際して、培地に使用する窒素源として焼酎粕が使用できる旨記載されている。しかしながら、文献7には、前記焼酎粕を窒素源として使用した場合にナイシンの生産性が顕著に高まり、更に得られる乳酸発酵液が優れた呈味性を有することについては全く記載されていない。
【0012】
以上述べたことからしても明らかなように、上述した文献を精査してみても、大麦焼酎蒸留残液または米焼酎蒸留残液を固液分離して得られる液体分を培地に使用してナイシン生産能を有する乳酸菌を培養した場合、ナイシン生産が顕著に増大すること、そして得られる発酵生産物がナイシンを著量含有し且つ優れた呈味性を有することは、到底予測できないことである。
【0013】
【発明が解決しようとする課題】
以上述べたように、従来のナイシン製造技術においては、上述した各種の培地が使用されているが、それら従来の培地のいずれを使用しても、得られる発酵生産物中のナイシン濃度は極めて低い。こうしたことから、工業的にナイシンを多量生産するためには発酵生産物中に生産されるナイシンの量を更に高める手段の早期提供が強く求められている。
これとは別に、上述したように、文献7には、焼酎粕を窒素源とする培地を使用してナイシン生産能を有する乳酸菌を培養して得られるナイシンを含有する乳酸発酵液は抗菌作用を有し、この乳酸発酵液を食品に添加することによる食品の殺菌方法が記載されている。しかしながら、このような従来の培地を使用してナイシン生産能を有する乳酸菌を培養して得られるナイシンを含有する乳酸発酵液は、上述したようにナイシン濃度が低く、しかもその呈味性は満足のゆくものでは到底ない。このような乳酸発酵液を食品に添加して使用する場合には、該乳酸発酵液は、ナイシンを著量含有し且つ優れた呈味性を有するものであることが切望される。
【0014】
本発明は、上述した従来技術における問題点に鑑みて、更なる研究の結果、完成に至ったものである。本発明の目的は、従来のナイシンの製造技術における上記問題点を解決し、ナイシンの多量生産を可能にするナイシンの工業的製造方法を提供することにある。本発明の他の目的は、ナイシンを著量含有し、且つ優れた呈味性を有し、食品への使用が極めて好適な発酵生産物の効率的製造を可能にする方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、焼酎蒸留残液をより有効に利用して従来のナイシンの製造技術における上述した問題を解決する、即ち、前記焼酎蒸留残液を培地に使用してナイシン生産の増大を可能にする方法を開発すべく実験を介して鋭意検討を行った。
その結果、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法を採用した場合、ナイシンの生産量が著しく増大し、ナイシンを著量含有する発酵生産物が得られることが判明した。そして該発酵生産物を官能検査に付したところ、従来培地を使用することにより得た発酵生産物に比べて、優れた呈味性を有し、食品としての使用に極めて適するものであることが判った。本発明は、以上の発見に基づいて完成に至ったものである。
【0016】
本発明は、従来のナイシンの製造技術においては、培地として使用されることの全くなかった大麦焼酎蒸留残液を培地と使用することによりナイシンの著量生産を可能にするものである。即ち、本発明は、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行うことを特徴とするナイシンを著量含有する発酵生産物の製造方法を提供するものである。本発明の製造方法における前記培養は、回分培養方式及び/又は連続培養方式で行ってもよい。本発明により得られるナイシンを著量含有する発酵生産物は、優れた呈味性を有し、食品として好適に使用できるものである。
【0017】
本発明者らは、文献6に記載の微生物用培地を使用してLactobacillus属の乳酸菌を培養した場合、得られる培養菌体の量が著しく増加することに鑑み、文献6には、前記微生物用培地を使用してナイシン生成能を有するLactococcus lactissubsp. Lactis属の乳酸菌を培養することについては触れるところは全くないが、このナイシン生成能を有する乳酸菌を前記微生物用培地を使用して培養した場合、培養菌体量の増大の程度はともかく、もしかするとナイシンの顕著な生産がもたらされるのではと想像して、本発明者らは実験を介して鋭意検討を行った。即ち、本発明者らは、文献6に記載の、大麦を原料とする焼酎製造において副生する焼酎蒸留残液(以下、これを“大麦焼酎蒸留残液”と略称する)を固液分離して液体分を得、該液体分をろ過して清澄液を得、該清澄液を濃縮して濃縮液を得、該濃縮液を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着性画分、及び前記液体分を、それぞれBrix濃度8.0に調整後、それぞれに同量のグルコースを添加し、次いでLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌をそれぞれ接種して別々に回分培養に付した。対照には、前記と同量のグルコースを添加したMRS培地を使用し、他は全て上述したのと同様の方法により回分培養に付した。
【0018】
それぞれの回分培養において得られた発酵生産物について乳酸菌菌体量及びナイシン濃度を測定した。その結果、文献6に記載の前記液体分からなる培地を使用した場合及び前記非吸着性画分からなる培地を使用した場合、これら二つの場合で得られた発酵生産物中の乳酸菌菌体量及びナイシン濃度は実質的に同じであることが判明した。更に該乳酸菌菌体量及び該ナイシン濃度は、対照のMRS培地を使用した場合と比較しても有意差は認められず、実質的に同等であることが判明した。即ち、文献6に記載の微生物用培地を単に使用するだけでは、前記対照のMRS培地を顕著に上回るナイシン生産性を達成できないことが明らかになった。
【0019】
そこで、本発明者らは大麦焼酎蒸留残液を固液分離することにより得られる液体分からなる培地を使用してナイシンの生産に係る検討を実験を介して行った。
即ち、前記液体分からなる培地を使用してナイシンを生産するに当たり、該液体分のBrix濃度がナイシンの生産に痛切に影響するのではないかと推測して、ナイシン生産に適した該液体分のBrix濃度を決定することを目的として実験を介して検討を行った。即ち、前記液体分のBrix濃度を0.5、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0、12.0、13.0、14.0、及び15.0に調整し、それぞれに同量のグルコースを添加して、下記のナイシン生成能を有する乳酸菌のナイシン生産に係る至適pH値に調整した液体培地を得、それぞれの液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種して別々に回分培養に付した。対照には、上記と同量のグルコースを添加して上記と同じpH値に調整したMRS培地を使用し、それ以外は全て上述と同様の方法により回分培養に付した。その結果、前記液体分のBrix濃度を0.5乃至6.0の範囲に調整して得た液体培地を使用した場合、前記対照のMRS培地を使用した場合と比較して、得られる発酵生産物中のナイシン濃度が高まる傾向が認められた。
【0020】
そこで、上記液体分からなる培地を使用してナイシン生産を目的とした培養に付すに当たり、ナイシンの多量生産に至適なpH条件を決定することを目的として実験を介して検討を行った。即ち、Brix濃度4.0に調整した上記液体分に所定量のグルコースを添加してpH値を3.0乃至8.0に調整した複数の液体培地を得た。得られたpH値の異なる各々の液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌をそれぞれ接種し、調整したpH値を保持しながら別々に回分培養に付した。対照には、上記と同量のグルコースを添加してpH6.8に調整したMRS培地を使用し、それ以外は全て上述と同様の方法により回分培養に付した。その結果、前記液体培地のpH値を4.0乃至7.0の範囲に保持して培養を行った場合、前記対照のMRS培地(pH6.8に保持)を使用して培養を行った場合と比較して、得られる発酵生産物中のナイシン濃度が顕著に高まることが判明した。
【0021】
以上のことから、大麦焼酎蒸留残液を固液分離することにより得られる液体分のBrix濃度を0.5乃至6.0の範囲に調整し、これに糖を添加してpH値を4.0乃至7.0の範囲に保持してLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種して回分培養に付すことにより、得られる発酵生産物中のナイシン濃度が、従来のMRS培地を使用して培養を行った場合と比較して、顕著に高まることが明らかとなった。
【0022】
上記
【0019】及び
【0020】に述べた実験を、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の場合と同様にして、米焼酎蒸留残液を固液分離することにより得られる液体分(B)について行ったところ、上述した大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の場合と同様の結果が得られた。即ち、米焼酎蒸留残液を固液分離することにより得られる液体分(B)のBrix濃度を0.5乃至6.0の範囲に調整し、これに糖を添加してpH値を4.0乃至7.0の範囲に保持してLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種して回分培養に付すことにより、得られる発酵生産物中のナイシン濃度が、従来のMRS培地を使用して培養を行った場合と比較して、顕著に高まることが明らかとなった。
【0023】
次に、上記液体分からなる培地を使用して、連続培養法によるナイシン生産について実験を介して検討を行った。即ち、前記液体分のBrix濃度を4.0に調整し、これにグルコースを3重量%添加してpH値を5.5に調整することにより液体培地を得、該液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種し、ジャーファーメンターからなる連続培養装置を使用し、pHコントローラーによりpH値を5.5に保持し、更に文献1に記載の濾過培養法、即ち、菌体を含まずナイシンを含む液を抜き取り、その抜き取った液量と同体積の新鮮な前記液体培地をジャーファーメンターに供給する連続培養を行った。対照としては、前記濾過培養において新鮮な前記液体培地を使用する代わりに、グルコース3重量%を添加したMRS培地を使用した以外は、全て同様の方法により連続培養を行った。その結果、濾過培養においてジャーファーメンターに供給する新鮮培地に前記液体培地を使用することにより、該新鮮培地に前記MRS培地を使用した場合よりも、得られる発酵生産物中のナイシン濃度が顕著に高まることが判明した。
【0024】
更に文献1の表1には、新鮮培地として使用するMRS培地のグルコース含量が高いほど、培養液中のナイシン濃度が高まる旨記載されているが、同文献1の第4図及び第5図から明らかなように、連続培養に移行後の培養液中のグルコース濃度は、供給するMRS培地のグルコース濃度に関わらずいずれの場合においても実質的に限りなく0g/Lに近い値を示している。そこで、本発明者らは、連続培養時における培養液中のグルコース濃度がナイシン生産性に影響を及ぼすのではないかと推察し実験を介して検討を行った。
【0025】
即ち、上記液体分のBrix濃度を4.0に調整し、これにグルコースを3重量%添加してpH値を5.5に調整することにより液体培地を得、該液体培地にLactococcus lactis subsp. Lactisに属するナイシン生成能を有する乳酸菌を接種し、ジャーファーメンターからなる連続培養装置を使用し、pHコントローラーによりpH値を5.5に保持し、更に文献1記載の濾過培養法、即ち、菌体を含まずナイシンを含む液を抜き取り、その抜き取った液量と同体積の新鮮な前記液体培地をジャーファーメンターに供給する連続培養を行った。その際、グルコース電極を付したオンラインバイオケミカルコントローラーを用いて培養液のグルコース濃度を測定し、連続培養に移行後、前記液体培地をジャーファーメンターに供給して培養液のグルコース濃度を0.01、0.1、1.0、5.0、及び10.0g/Lに保持して、それぞれ別々に連続培養を行った。その結果、連続培養に移行後の培養液中のグルコース濃度を0.1、1.0、5.0、及び10.0g/Lに維持した場合には、培養液中のグルコース濃度を0.01g/Lに維持した場合に比べて、培養液中のナイシン濃度が飛躍的に高まることが明らかになった。このことから、連続培養に移行後の培養液中のグルコース濃度を0.1g/L以上に維持することにより、極めて高濃度のナイシンを含有する培養液を連続的に生産することが可能となることが判明した。
【0026】
そこで、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。得られた発酵生産物のナイシン濃度を調べたところ、従来のMRS培地を使用することにより得た発酵生産物のナイシン濃度と比較して、顕著に高いことが判った。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0027】
また、上記米焼酎蒸留残液の液体分(B)を使用して
【0025】に述べた手法で実験を行ったところ、上記大麦焼酎蒸留残液の液体分を使用した場合と同様に、連続培養に移行後の培養液中のグルコース濃度を0.1g/L以上に維持することにより、極めて高濃度のナイシンを含有する培養液を連続的に生産することが可能となることが判明した。そこで、米焼酎蒸留残液を固液分離することにより得られる液体分(B)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。得られた発酵生産物のナイシン濃度を調べたところ、従来のMRS培地を使用することにより得た発酵生産物のナイシン濃度と比較して、顕著に高いことが判った。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0028】
また、前記培地として、前記大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の一部を米焼酎蒸留残液を固液分離することにより得られる液体分(B)で置き換えたものからなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。その結果、該発酵生産物のナイシン濃度は、従来のMRS培地を使用することにより得た発酵生産物のナイシン濃度と比較して、顕著に高まることが明らかとなった。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0029】
この他に、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の少なくとも一部を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着画分とし、前記液体分(A)を前記非吸着画分を含有するものにした液体分(A’)と、米焼酎蒸留残液を固液分離することにより得られる液体分(B)の少なくとも一部を合成吸着剤を用いる吸着処理に付すことにより得られる非吸着画分とし、前記液体分(B)を前記非吸着画分を含有するものにした液体分(B’)を用意し、前記液体分(A’)を使用しBrix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したもの、及び前記液体分(A’)及び前記液体分(B’)を使用しBrix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを夫々培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う方法により発酵生産物を得た。得られた発酵生産物のナイシン濃度を調べたところ、いずれの発酵生産物のナイシン濃度も従来のMRS培地を使用することにより得られる発酵生産物のナイシン濃度と比較して、顕著に高いことが判った。そして、これらの発酵生産物を10名のパネラーによる官能検査に付したところ、後者は、雑味と刺激味を有し呈味性に問題があったのに対して、前者は、まろやかで調和のとれた香味と豊かな旨味からなる極めて優れた呈味性を有し、食品素材として極めて好適であることが判明した。
【0030】
【実施態様例】
以下、本発明の好ましい実施態様例について述べるが、本発明は、これらの実施態様例によって何ら制限されるものではない。本発明は、大麦焼酎蒸留残液を固液分離することにより液体分(A)を得る工程(イ)、前記液体分(A)を水で希釈してそのBrix濃度を0.5乃至6.0の範囲に調整する工程(ロ)、前記工程(ロ)で得られるものに糖を添加して培地を得る工程(ハ)、及び前記培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行う工程(ニ)を有することを特徴とするナイシンを著量含有する発酵生産物の製造方法を提供する。工程(イ)においては、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)の一部を、米を原料とする焼酎の製造において副生する米焼酎蒸留残液を固液分離することにより得られる液体分(B)で置き換えてもよい。また、前記液体分(A)及び/又は前記液体分(B)の少なくとも一部を合成吸着剤を用いる吸着分離処理に付して得られる非吸着画分にしてもよい。工程(ニ)における培養は、回分培養方式及び/又は連続培養方式で行うことができる。
【0031】
本発明において使用する大麦焼酎蒸留残液は、大麦又は精白大麦を原料として大麦麹及び蒸麦を製造し、得られた大麦麹、及び蒸麦中に含まれるでんぷんを麹、及び/又は酵素剤を使用して糖化し、酵母によるアルコール発酵に付して熟成もろみを得、該熟成もろみを減圧蒸留または常圧蒸留等の蒸留装置を用いて蒸留する際に蒸留残渣として副生するもの、即ち、大麦焼酎の蒸留残液を意味する。また、米焼酎、甘藷焼酎、そば焼酎の製造においても、これらの焼酎製造において原料の一部として大麦を使用する場合に副生する焼酎蒸留残液も本発明において使用する大麦焼酎蒸留残液に包含される。
前記大麦焼酎蒸留残液を得るに際して、大麦焼酎の製造に用いる大麦麹は、通常の大麦焼酎製造において行われている製麹条件で製造すればよく、用いる麹菌株としては、一般的に大麦焼酎製造で使用する白麹菌(Aspergillus kawachii)が好ましい。或いは泡盛製造で使用する黒麹菌(Aspergillus awamori)及び清酒製造等で使用する黄麹菌(Aspergillus oryzae)などのAspergillus属の菌株を用いることもできる。また大麦焼酎の製造に用いる酵母は、一般的に焼酎製造の際に使用する各種の焼酎醸造用酵母を使用することができる。
【0032】
本発明において使用する米焼酎蒸留残液は、米を原料として米麹及び蒸米を製造し、得られた米麹、及び蒸米中に含まれるでんぷんを麹、及び/又は酵素剤を使用して糖化し、更に酵母によるアルコール発酵に付して熟成もろみを得、該熟成もろみを減圧蒸留または常圧蒸留等の蒸留装置を用いて蒸留する際に蒸留残渣として副生するもの、即ち、米焼酎の蒸留残液を意味する。また、大麦焼酎、甘藷焼酎、そば焼酎の製造においても、これらの焼酎製造において原料の一部として米を使用する場合に副生する焼酎蒸留残液も本発明において使用する米焼酎蒸留残液に包含される。
前記米焼酎蒸留残液を得るに際して、米焼酎の製造に用いる米麹は、通常の米焼酎製造において行われている製麹条件で製造すればよく、用いる麹菌株としては、一般的に米焼酎製造で使用する白麹菌(Aspergillus kawachii)が好ましい。或いは泡盛製造で使用する黒麹菌(Aspergillus awamori)及び清酒製造等で使用する黄麹菌(Aspergillus oryzae)などのAspergillus属の菌株を用いることもできる。また米焼酎の製造に用いる酵母は、一般的に焼酎製造の際に使用する各種の焼酎醸造用酵母を使用することができる。
【0033】
工程(イ)において、大麦焼酎蒸留残液を固液分離して液体分を得る理由は、該大麦焼酎蒸留残液から原料大麦及び大麦麹由来の水不溶性の発酵残渣を除去して液体分のみを使用することにある。前記固液分離は、スクリュープレス方式やローラープレス方式の固液分離方法を介するか、或いはろ過圧搾式の固液分離機を用いて予備分離を行い、次いで遠心分離機、ケイソウ土ろ過装置、セラミックろ過装置、或いはろ過圧搾機等を用いた固液分離処理を行い、前記液体分を得る。
【0034】
工程(イ)において、米焼酎蒸留残液を固液分離して液体分を得る理由は、該米焼酎蒸留残液から原料米及び米麹由来の水不溶性の発酵残渣を除去して液体分のみを使用することにある。前記固液分離は、スクリュープレス方式やローラープレス方式の固液分離方法を介するか、或いはろ過圧搾式の固液分離機を用いて予備分離を行い、次いで遠心分離機、ケイソウ土ろ過装置、セラミックろ過装置、或いはろ過圧搾機等を用いた固液分離処理を行い、前記液体分を得る。
【0035】
前記液体分(A)及び/又は前記液体分(B)を合成吸着剤を用いる吸着分離処理に付すことにより非吸着画分にするのは、該液体分に含まれる雑味を呈する成分を除去することを目的として行うものである。前記合成吸着剤の好適な具体例としては、オルガノ(株)製のアンバーライトXAD−4、アンバーライトXAD−16、アンバーライトXAD−1180及びアンバーライトXAD−2000、三菱化学(株)製のセパビーズSP850及びダイヤイオンHP20等の芳香族系(又はスチレン系とも言う)合成吸着剤、オルガノ(株)製のアンバーライトXAD−7、及び三菱化学(株)製のダイヤイオンHP2MG等のメタクリル系(又はアクリル系とも言う)合成吸着剤を挙げることができる。これらの他、場合によっては三菱化学(株)製のセパピーズSP207等の芳香族系修飾型合成吸着剤を用いることができる。このようにして得られる前記非吸着画分は、前記液体分の少なくとも一部に代えて使用することができる。
【0036】
工程(ロ)において、工程(イ)から供給される前記液体分(A)〔前記液体分(A)の非吸着画分を包含する〕及び前記液体分(B)〔前記液体分(B)の前記非吸着画分を包含する〕の夫々のBrix濃度を0.5乃至6.0の範囲に調整するのは、ナイシン生産能を有する乳酸菌のナイシン生産性に適した培地成分濃度に調整することを目的として行うものであり、これによりナイシンの生産性を高めることができる。前記Brix濃度は、2.0乃至4.0の範囲に調整するのがより好ましい。即ちこの場合、ナイシン生産性の顕著な向上を図ることができる。
【0037】
工程(ハ)において添加する前記糖の好ましい具体例としては、グルコース、キシロース、スクロース、フラクトース、マルトース、リボース、ガラクトース、マンノース、マンニトール、セロビオース、サッカロース、及びトレハロースを挙げることができる。前記液体培地の糖濃度は、使用する糖の種類により異なるが、一般的には、5乃至70g/Lの範囲である。これらの糖の中、グルコースが特に好ましく、その場合のグルコース濃度は、5乃至70g/Lの範囲に設定するのが好ましい。
【0038】
工程(ニ)で使用する前記ナイシン生産能を有する乳酸菌は、ナイシン生産能を有する菌株であればいかなるものでも良く、特にLactococcus lactis subsp. Lactisに属する乳酸菌が好ましい。具体的には、生産するナイシンがナイシンAである場合の菌株として、Lactococcus lactis NCDO497、Lactococcus lactis NIZO R5、Lactococcus lactis ATCC 7962及びLactococcus lactis ATCC11454を好ましいものとして挙げることができる。また、生産するナイシンがナイシンZである場合の菌株として、Lactococcus lactis NIZO 22186、Lactococcus lactis NRRL−B−18583、Lactococcus lactis NCFB2118、Lactococcus lactis NCFB2054、Lactococcus lactis NIZO N9、Lactococcus lactis NIZO 221186、Lactococcus lactis IO−1(JCM7638)、Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka(JCM11180)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B(JCM11181)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B(JCM11182)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B(JCM11183)、及びLactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B(JCM11184)、を好ましいものとして挙げることができる。
【0039】
工程(ニ)における培養を、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つ培養液のpH値を4.0乃至7.0の範囲に制御しながら行う工程は、回分培養方式或いは連続培養方式で行うことができる。この他、流加培養方式を採用することができる。前記培養液のpH値を4.0乃至7.0の範囲に制御するに際しては、上述したように、培養槽にpH測定用複合ガラス電極を装着し、pHメーターで測定し、実側pH値が設定pH値よりも低くなった時に、pHコントローラー等を用いて水酸化ナトリウム溶液等のアルカリ溶液を培養槽に供給することにより、設定pH値に保持することができ、好ましくはpH値5.0乃至6.5の範囲に調整する。尚、前記所定のpH値の変動範囲は0.1以下にすることが好ましい。工程(ニ)において、前記培養液の糖濃度(グルコース濃度)を少なくとも0.1g/L以上に制御するに際しては、前記培養を連続培養方式または流加培養方式で行う場合には、グルコースアナライザー等を使用して制御することができる。当該工程においてはグルコースの他に酵母エキスやポリペプトンからなる窒素源を含有する基質溶液又は上記液体製培地からなる基質溶液を培養槽に供給することにより行うことができ、これにより培養工程にある液体培地のグルコース濃度を所望の値に保持することができる。当該グルコース濃度は少なくとも0.1g/L以上とするが、好ましくは1.0g/L以上に保持することによりナイシン生産能を有する乳酸菌の活性及び比ナイシン生産速度を高い値に維持することができる。前記培養を行う際の培養温度は、使用する乳酸菌の生育に最適な温度に設定すればよく、一般的には20乃至40℃の範囲、好ましくは25乃至37℃の範囲とする。攪拌速度は10乃至1000rpm、好ましくは50乃至300rpmが好適である。
【0040】
工程(ニ)における培養を連続培養方式で行う場合には、上述の培養条件に従って培養を開始し、菌体濃度が上昇して、対数増殖期の後期に到達した段階で連続培養に移行する。該連続培養法においては、培養槽にpH測定用複合ガラス電極を装着し、pHメーターで測定し、実側pH値が設定pH値よりも低くなった時に水酸化ナトリウム溶液等のアルカリ溶液を培養槽に供給することにより、該設定pH値に保持することができる。この際、培養槽に供給された前記液体培地又はアルカリ溶液と同量の除菌液を限外濾過膜或いは精密濾過膜等を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持することができる。また、前記pH制御とは別に、培養槽にプロセスオンライン濁度計プローブを装着し、その出力をDDCコントローラーに入力し、培養槽に供給した滅菌水又は液体培地と同量の培養液(菌体を含む)を培養槽から抜き出すことにより、培養槽の濁度制御を行い、培養液中の菌体濃度及び培養液液量を一定に保持することができる。該菌体濃度は4.0乃至18.0g/Lの範囲、好ましくは8.0乃至15.0g/Lの範囲に設定する。培地の希釈率は培養液の菌体濃度及びナイシン生産速度等により任意の値に設定することができ、一般的には0.1乃至2.0hr−1の範囲とするが、好ましくは0.2乃至1.2hr−1の範囲とする。
【0041】
【実施例】
以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0042】
以下の実施例に供する目的で大麦焼酎の製造を行った。原料としては、大麦(70%精白)を用いた。
〔大麦麹の製造〕
大麦を40%(w/w)吸水させ、40分間蒸した後、40℃まで放冷し、大麦トンあたり1kgの種麹(白麹菌)を接種し、38℃、RH95%で24時間、32℃、RH92%で20時間保持することにより、大麦麹を製造した。
〔蒸麦の製造〕
大麦を40%(w/w)吸水させ、40分間蒸した後、40℃まで放冷することにより、蒸麦を製造した。
〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕
1次仕込みでは前述の方法で製造した大麦麹(大麦として3トン)に、水3.6キロリットル及び酵母として焼酎酵母の培養菌体1kg(湿重量)を加えて1次もろみを得、得られた1次もろみを5日間の発酵(1段目の発酵)に付した。次いで、2次仕込みでは、上記1段目の発酵を終えた1次もろみに、水11.4キロリットル、前述の方法で製造した蒸麦(大麦として7トン)を加えて11日間の発酵(2段目の発酵)に付した。発酵温度は1次仕込み、2次仕込みとも25℃とした。上記2段目の発酵を終えた2次もろみを常法により単式蒸留に付し、大麦焼酎10キロリットルと大麦焼酎蒸留残液15キロリットルを得た。得られた大麦焼酎蒸留残液を以下の実施例に用いた。
【0043】
以下の実施例に供する目的で米焼酎の製造を行った。原料としては、精米(70%精白)を用いた。
〔米麹の製造〕
米麹の製造は米を35%(w/w)吸水させ、40分間蒸した後、40℃まで放冷し、米kg当り1g量の白麹菌を接種し、38℃、RH95%で24時間、32℃、RH92%で20時間で行った。
〔蒸米の製造〕
蒸米は米を35%(w/w)吸水させ、40分間蒸した後、40℃まで放冷することにより、蒸米を製造した。
〔米焼酎製造及び米焼酎蒸留残液の製造〕
1次仕込みでは前述の方法で製造した米麹(米として3トン)に、水3.6キロリットル及び酵母として焼酎酵母の培養菌体1kg(湿重量)を加えて1次もろみを得、得られた1次もろみを5日間の発酵(1段目の発酵)に付した。次いで、2次仕込みでは、上記1段目の発酵を終えた1次もろみに、水11.4キロリットル、前述の方法で製造した蒸米(米として7トン)を加えて15日間の発酵(2段目の発酵)に付した。発酵温度は1次仕込み、2次仕込みとも25℃とした。上記2段目の発酵を終えた2次もろみを常法により単式蒸留に付し、米焼酎10キロリットルと米焼酎蒸留残液15キロリットルを得た。得られた米焼酎蒸留残液を以下の実施例に用いた。
【0044】
【実施例1】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.ナイシン生産能を有する乳酸菌の本培養
2L容ジャーファーメンターに、上記1.で得た乳酸菌培養用培地500mlと上記2.で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0045】
【比較例1】
1.MRS培地の調製
MRS培地(ペプトン1重量%、肉エキス1重量%、酵母エキス0.5重量%、K2HPO40.2重量%、クエン酸二アンモニウム0.2重量%、グルコース3.6重量%、Tween80 0.1重量%、酢酸ナトリウム0.5重量%、MGSO4・7H2O 0.058重量%、MnSO4・4H2O 0.028重量%)を、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.ナイシン生産能を有する乳酸菌の本培養
2L容ジャーファーメンターに、上記1.で調製したMRS培地500mlと上記2.で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0046】
【実施例2】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.大麦焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
【0047】
3.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
4.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに上記1で得た乳酸菌培養用培地1800mlと上記3で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後8時間目に培養液のグルコース濃度が4g/Lに達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を4g/Lに保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF−410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、前記2で得たグルコース濃度調整用基質溶液を培養槽に供給して培養液のグルコース濃度を4g/Lに保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液の量と前記グルコース濃度調整用基質溶液の量の総和量と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0048】
【比較例2】
1.MRS培地の調製
MRS培地(ペプトン1重量%、肉エキス1重量%、酵母エキス0.5重量%、K2HPO40.2重量%、クエン酸二アンモニウム0.2重量%、グルコース3.6重量%、Tween80 0.1重量%、酢酸ナトリウム0.5重量%、MGSO4・7H2O 0.058重量%、MnSO4・4H2O 0.028重量%)を、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用MRS培地を得た。
2.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。3.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに上記1.で得た乳酸菌培養用培地1800mlと上記3で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後12時間目に培養液のグルコース濃度が0.1g/L未満に達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を0.1g/L未満に保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF−410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、基質溶液(グルコース1重量%、酵母エキス0.5重量%、ポリペプトン0.5重量%、NaCl0.5重量%)を培養槽に供給して培養液のグルコース濃度を0.1g/L未満に保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液及び前記基質溶液と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0049】
【実施例3】
実施例2で使用したLactococcus lactis IO−1に代えて、Lactococcus lactisNIZO 22186、Lactococcus lactis NRRL−B−18583、Lactococcus lactis NCFB2118、Lactococcus lactis NCFB2054、Lactococcus lactis NIZO N9、Lactococcus lactis NIZO 221186、Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka(JCM11180)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B(JCM11181)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B(JCM11182)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B(JCM11183)、及びLactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B(JCM11184)、を使用した以外は、全て実施例2と同様にして連続培養を行った。
【0050】
【比較例3】
比較例2で使用したLactococcus lactis IO−1に代えて、Lactococcus lactis NIZO 22186、Lactococcus lactis NRRL−B−18583、Lactococcus lactis NCFB2118、Lactococcus lactis NCFB2054、Lactococcus lactis NIZO N9、Lactococcus lactis NIZO 221186、Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka(JCM11180)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B(JCM11181)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B(JCM11182)、Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B(JCM11183)、及びLactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B(JCM11184)、を使用した以外は、全て比較例2と同様にして連続培養を行った。
【0051】
【実施例4】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分をセラミックろ過装置に付して清澄液を得、該清澄液を真空蒸発装置に付して約3倍まで濃縮して濃縮液を得、該濃縮液を合成吸着剤を充填したカラムに接触させ、当該充填カラムから溶出してきた当該合成吸着剤に対して非吸着性を示す非吸着性画分溶液を得、該非吸着性画分溶液を水で希釈そのBrix濃度を4に調整し、グルコースを3.6重量%添加し、次いで水酸化ナトリウムを用いてpH5.5に調整した後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
3.乳酸菌の本培養
2L容ジャーファーメンターに、上記1で得た乳酸菌培養用培地500mlと上記2で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0052】
【実施例5】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分をセラミックろ過装置に付して清澄液を得、該清澄液を真空蒸発装置に付して約3倍まで濃縮して濃縮液を得、該濃縮液を合成吸着剤を充填したカラムに接触させ、当該カラムから溶出してきた前記合成吸着剤に対して非吸着性を示す非吸着性画分溶液を得、該非吸着性画分溶液を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.大麦焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分をセラミックろ過装置に付して清澄液を得、該清澄液を真空蒸発装置に付して約3倍まで濃縮して濃縮液を得、該濃縮液を合成吸着剤を充填したカラムに接触させ、当該カラムから溶出してきた前記合成吸着剤に対して非吸着性を示す非吸着性画分溶液を得、該非吸着性画分溶液を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
3.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
【0053】
4.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに上記1.で得た乳酸菌培養用培地1800mlと上記3で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後8時間目に培養液のグルコース濃度が4g/Lに達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を4g/Lに保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF−410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、前記2で得たグルコース濃度調整用基質溶液を培養槽に供給して培養液のグルコース濃度を4g/Lに保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液及び前記グルコース濃度調整用基質溶液と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0054】
【実施例6】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して大麦焼酎蒸留残液の液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.米焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0043】に記載の〔米焼酎製造及び米焼酎蒸留残液の製造〕で得られた米焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
3.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
4.ナイシン生産能を有する乳酸菌の本培養
2L容ジャーファーメンターに、上記1で得た乳酸菌培養用培地250ml、上記2で得た乳酸菌培養用培地250ml、及び上記3で得た乳酸菌前培養液25mlを導入し、攪拌速度250rpm、培養温度30℃、培養時間24時間、pH5.5の条件で回分培養を行った。
【0055】
【実施例7】
1.大麦焼酎蒸留残液からの乳酸菌培養用培地の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
2.大麦焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記
【0042】に記載の〔大麦焼酎製造及び大麦焼酎蒸留残液の製造〕で得られた大麦焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
3.米焼酎蒸留残液からの乳酸菌培養用培地の調製
米焼酎製造の蒸留工程で得られた前記米焼酎蒸留残液を8000rpm,10minの条件で遠心分離して米焼酎蒸留残液の液体分を得、該液体分をBrix4に調整し、グルコースを3.6重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行い乳酸菌培養用培地を得た。
4.米焼酎蒸留残液からのグルコース濃度調整用基質溶液の調製
上記
【0043】に記載の〔米焼酎製造及び米焼酎蒸留残液の製造〕で得られた米焼酎蒸留残液を8000rpm,10minの条件で遠心分離して液体分を得、該液体分を水で希釈してそのBrix濃度を4に調整し、グルコースを1.0重量%添加し、水酸化ナトリウムを用いてpH5.5に調整後、121℃、15分間の条件で滅菌処理を行いグルコース濃度調整用基質溶液を得た。
【0056】
5.ナイシン生産能を有する乳酸菌の前培養
Lactococcus lactis IO−1の保存株50μlを10mlのTGC培地に接種し、37℃で18時間静置培養することにより培養液を得、該培養液10mlをCMG培地100mlに接種し、37℃で3時間、100rpmで振とう培養することにより乳酸菌前培養液を得た。
6.ナイシン生産能を有する乳酸菌の本培養
ナイシン生産能を有する乳酸菌の本培養は、3L容ジャーファーメンターからなる連続培養装置を使用して連続培養方式で行った。
即ち、上記3L容ジャーファーメンターに、上記1で得た乳酸菌培養用培地900ml、上記3で得た乳酸菌培養用培地900ml、及び上記5で得た乳酸菌前培養液90mlを導入し、攪拌速度250rpm、培養温度30℃、pH5.5の条件で回分培養に付し、培養開始後8時間目に培養液のグルコース濃度が4g/Lに達した時点で、pH制御、グルコース濃度制御、及び濁度制御を伴う連続培養に移行し、培養液のグルコース濃度を4g/Lに保持して培養開始後42時間目まで該連続培養を行った。
なお、前記pH制御は、pHセンサーを使用して、5N水酸化ナトリウム溶液を培養槽に供給してpH5.5に保持することにより行った。前記グルコース濃度制御は、グルコース電極を付したオンラインバイオケミカルコントローラーBF−410(エイブル(株)社製)を用いて培養液のグルコース濃度を測定し、連続培養時において、前記2で得たグルコース濃度調整用基質溶液と前記4で得たグルコース濃度調整用基質溶液を1:1の割合で混合することにより得た混合液を培養槽に供給して培養液のグルコース濃度を4g/Lに保持することにより行った。また、前記pH制御及び前記グルコース濃度制御に際しては、培養槽に供給された前記5N水酸化ナトリウム溶液及び前記グルコース濃度調整用基質溶液と同量の除菌液を精密濾過膜を介して培養槽から抜き出すことにより、培養槽の液量を一定に保持した。前記濁度制御は、レーザー濁度計を使用して、培養槽に供給した濁度制御用供給液(酵母エキス0.5重量%、ポリペプトン0.5重量%)と同量の培養液(菌体を含有)を培養槽から抜き出すことにより行い、これにより培養槽の菌体濃度及び液量を一定に保持した。
【0057】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得た発酵生産物のそれぞれを以下の試験例1に供し、該発酵生産物のナイシン濃度を測定した。
【0058】
【試験例1】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得たそれぞれの発酵生産物を9000rpm、30minの条件で遠心分離に付すことにより該発酵生産物の上清1を得、それぞれの発酵生産物の上清1に濃塩酸を加えてpH3.0に調整後、4℃で一晩放置し、再度9000rpm、30minの条件で遠心分離に付すことによりそれぞれの発酵生産物の上清2を得、得られたそれぞれの発酵生産物の上清2を試料として以下の方法に従って、培養液のナイシン濃度を測定した。即ち、指標菌としてMicrococcus luteus(IFO N0.3333)を用い、ナイシン(ICN製)を3000IU/mlとなるように0.01N HClに溶解したものをナイシンA標準液として用いた。前記指標菌をLB液体培地10mlに一白金耳接種し、培養温度30℃、攪拌速度100rpm、培養時間18時間の条件で振とう培養を行い培養液を得、該培養液100μlを適温まで冷ましたソフトアガー2.0mlに懸濁して懸濁液を得、該懸濁液をLB寒天培地上に重層して1時間放置後、0.01N HClで適当な濃度に希釈した前記発酵生産物上清2を該LB寒天培地上に10μlづつスポットし、30℃で24時間培養後、スポット箇所周辺の増殖阻害を起こした生育阻止円の有無を確認し、該生育阻止円が現れる時の試料の最大希釈率Dを求め、ナイシン抗菌活性(AU/ml)=1/D×試料添加量(ml)の関係式からナイシン抗菌活性値を算出した。
【0059】
【評価1】
実施例1及び比較例1において培養開始後24時間目に得たそれぞれの発酵生産物のナイシン抗菌活性値を表1に示す。表1に示す結果から以下のことが判明した。即ち、培養開始後24時間目のナイシン抗菌活性値は、比較例1で得た発酵生産物は1200IU/mlと低い値であったのに対して、実施例1で得た発酵生産物は4500IU/mlと極めて高い値を示した。即ち、大麦焼酎蒸留残液から得た前記乳酸菌培養用培地を使用する本発明のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値は、MRS培地を使用する従来のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値の約3.8倍に達することが判明した。
実施例2及び比較例2の連続培養におけるナイシン抗菌活性値を表2に示す。表2に示す結果から以下のことが判明した。即ち、ナイシン抗菌活性値は、比較例2においては、回分培養から連続培養に移行した培養開始後12時間目において最大値を示した後は漸減し、培養開始後42時間目には1000IU/mlとなったのに対して、実施例2においては、回分培養から連続培養に移行した培養開始後12時間目において極大値を示した後、24時間目までは減少したが、24時間目以降は再び上昇し、培養開始後42時間目には6300IU/mlに達した。即ち、大麦焼酎蒸留残液から得た前記乳酸菌培養用培地を使用し、且つ連続培養時の培養液のグルコース濃度を4g/Lに保持して培養を行う本発明のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値は、MRS培地を使用し、且つ連続培養時の培養液のグルコース濃度を0.1g/L未満に保持して培養を行う従来公知のナイシンの製造方法により得られる発酵生産物のナイシン抗菌活性値の6.3倍に達することが判明した。
実施例3及び比較例3の結果からは以下のことが判明した。即ち、実施例3においてナイシン生産能を有する各種乳酸菌菌株を連続培養に付すことにより得られるそれぞれの発酵生産物のナイシン抗菌活性値は、いずれの菌株を使用した場合であっても、比較例3に示す従来公知のナイシンの製造方法を採用した場合よりも顕著に高い値を示した。
【0060】
実施例4及び実施例5の結果からは以下のことが判明した。即ち、本発明において使用する大麦焼酎蒸留残液を固液分離することにより得られる液体分の代わりに、該液体分をろ過して清澄液を得、該清澄液を濃縮して濃縮液を得、該濃縮液を合成吸着剤を用いる吸着処理に付すことにより得られる前記文献6に記載の非吸着性画分からなる溶液を使用した場合、実施例4及び実施例5において得た発酵生産物のナイシン抗菌活性値は、実施例1及び実施例2のそれぞれにおいて得た発酵生産物のナイシン抗菌活性値と同等であることが判った。
【0061】
実施例6及び実施例7の結果からは以下のことが判明した。即ち、大麦焼酎蒸留残液を固液分離することにより得られる液体分と米焼酎蒸留残液を固液分離することにより得られる液体分の混合物を培地に使用した場合の実施例6及び実施例7において得た発酵生産物のナイシン抗菌活性値は、実施例1及び実施例2のそれぞれにおいて得た発酵生産物のナイシン抗菌活性値と同等であることが判った。
【0062】
【試験例2】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得た発酵生産物のそれぞれを呈味性について官能試験に供した。即ち、実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得た発酵生産物のそれぞれを10名のパネラーによる官能試験に付し、該発酵生産物の呈味性を評価した。
【0063】
【評価2】
実施例1、実施例2、実施例4乃至実施例7、比較例1及び比較例2で得たそれぞれの発酵生産物の官能試験結果を表3に示す。表3に示す結果から以下のことが判明した。即ち、比較例1及び比較例2で得たそれぞれの発酵生産物は極めて単調な香味と好ましくない雑味を有することから官能評価の値が極めて低かったのに対して、実施例1、実施例2、及び実施例4乃至実施例7で得た発酵生産物は、いずれも、まろやかで調和のとれた香味と豊かな旨味を呈することから官能評価の値が顕著に高く、調味料あるいは食品素材として好適であることが判明した。そして上記パネラーのコメントから、実施例1、実施例2、実施例4乃至実施例7で得た発酵生産物の中で、実施例4及び実施例5で得た発酵生産物は、いずれも特に際立ったまろやかな香味を呈するという特徴を有し、実施例6及び実施例7で得た発酵生産物は、いずれも、実施例1及び実施例2で得た発酵生産物よりも更に味わいのある豊かな旨味を呈するという特徴を有していることが明らかになった。
【0064】
以上の結果から、本発明によれば、従来公知のナイシンの製造方法と比較してナイシン生産性を飛躍的に高めることが可能であることが理解される。また、本発明よって得られる発酵生産物は、ナイシンを著量含有し、優れた抗菌活性に加えて、まろやかで調和のとれた香味と豊かな旨味を呈することから、食品として極めて好適に使用できる。
【0065】
【表1】
【0066】
【表2】
【0067】
【表3】
【0068】
【発明の効果】
以上詳述したように、本発明のナイシンを含有する発酵生産物の製造方法は、大麦焼酎蒸留残液を固液分離することにより得られる液体分(A)からなり、Brix濃度を0.5乃至6.0の範囲に調整した液体に糖を添加したものを培地として使用し、該培地にナイシン生産能を有する乳酸菌を加えて培養を行い、該培養は、培養液の糖濃度を少なくとも0.1g/L以上に制御し且つそのpH値を4.0乃至7.0の範囲に制御しながら行うことを特徴とし、ナイシンを著量含有する発酵生産物の効率的製造を可能にする。そして、得られるナイシンを著量含有する発酵生産物は、優れた呈味性を有し、食品として好適に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a method for producing a nisin-containing fermentation product for culturing lactic acid bacteria having nisin-producing ability using a liquid component obtained by solid-liquid separation of a shochu distillation residue, as a medium, As the liquid component (A) obtained by subjecting the barley shochu distillation residue to solid-liquid separation, a liquid prepared by adding a sugar to a liquid having a Brix concentration adjusted to a range of 0.5 to 6.0 is used, A lactic acid bacterium having a nisin-producing ability is added to the medium for culturing, and the culturing is performed by controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and adjusting the pH value thereof to a value in the range of 4.0 to 7.0. The present invention relates to a method for producing a fermentation product containing a significant amount of nisin, characterized in that the production is performed while controlling the amount of nisin. The method for producing a fermentation product containing a significant amount of nisin of the present invention includes an embodiment in which the culture is performed by a batch culture method and / or a continuous culture method. In addition, the method for producing a fermentation product containing a significant amount of nisin of the present invention comprises: converting a portion of the liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue into a rice shochu distillation residue. It includes a mode in which the liquid component (B) obtained by solid-liquid separation is replaced. The fermented product containing a significant amount of nisin obtained by the present invention has excellent taste and can be used as food.
[0002]
[Prior art]
What is generally known as nisin is a polypeptide consisting of 34 amino acids, a histidine at position 27 of the amino acid sequence is called nisin A, and a polypeptide at position 27 of the amino acid sequence is asparagine. Call it Nisin Z. Such nisin is available from Lactococcus lactis subsp. Lactis is a type of bacteriocin produced by Lactis, and has antibacterial activity against Gram-positive bacteria such as Streptococcus, Bacillus, Clostridium, and Staphylococcus. Has been recognized. The main such foods include cheese, canned milk, cream, mayonnaise and the like.
[0003]
For the production of nisin, the following method has been proposed. That is, in Japanese Patent Application Laid-Open No. 4-75596 [hereinafter referred to as "Document 1"], in fermentative production of nisin using lactic acid bacteria, the growth rate of the bacterium produced by nisin-producing bacteria is increased by metabolites other than nisin. Before decreasing or stopping the growth, the culture solution containing the cells is continuously filtered using a membrane, and separated into a solution containing the cells and a solution containing nisin without the cells, The liquid containing the cells is returned to the culture tank, a liquid containing nisin without the cells is extracted, and a fresh liquid medium having the same volume as the amount of the extracted liquid is used as a nisin-producing bacterial culture in the culture tank. The dilution rate is 0.1 to 10 hours -1 The filtration culture is continued while supplying the nisin, and the nisin is separated from the liquid containing nisin without the cells, the culture solution in the culture tank, or the cells themselves contained in the culture solution. A manufacturing method is described. More specifically, Document 1 describes that an MRS medium is used as a culture medium, Streptococcus lactis IFO12007 is used as a lactic acid bacterium strain having a nisin-producing ability, and fermentation is performed using the above-described filtration culture method. The nisin concentration of the culture obtained by the fermentation was 1.72 × 10 5 U / L.
[0004]
Japanese Patent Application Laid-Open No. 4-126093 (hereinafter referred to as “Reference 2”) discloses that, when culturing a strain of Streptococcus lactis SBT1212 having a nisin-producing ability to produce nisin, serine or phenylalanine is added to the culture solution. There is described a method for producing nisin, which comprises adding 0.1 to 10 mg / ml and culturing to enhance nisin production. Document 2 describes that a nisin production amount of a fermentation product obtained by the production method using a medium consisting of whole milk to which serine is added is 1000 (IU / ml). .
JP-A-6-9690 [hereinafter referred to as “Reference 3”] discloses Lactococcus lactis subsp. LactisNRRL-B-18809 as an MRS medium supplemented with a 1% yeast extract, or a 0.5% yeast extract. Describes a method for producing bacteriocin (Nisin), which is cultured using a medium consisting of 7% whey to which nisin has been added, and that the nisin titer of the fermented product obtained in the production method is 1600 AU / ml. Has been described.
[0005]
However, since the nisin concentration in the fermentation product achieved by the nisin production methods described in Literatures 1 to 3 is extremely low as described above, these nisin production methods are not suitable for industrially producing large amounts of nisin. It is not suitable. Incidentally, at present, these nisin production methods have not been industrially practiced.
[0006]
By the way, it has been proposed to use a shochu distillation residue as a culture medium for lactic acid bacteria. That is, Japanese Patent Application Laid-Open No. 2000-236891 [hereinafter referred to as “Document 4”. ] Describes a method for producing lactic acid, characterized in that lactic acid bacteria are added to a medium obtained from solids by solid-liquid separation of distilled spirits of rice shochu, followed by fermentation. JP-A-2000-245491 [hereinafter referred to as “Reference 5”] discloses a lactic acid bacterium that produces L-lactic acid in a medium obtained from a solid obtained by solid-liquid separation of potato shochu distilled cake in an open system without steam sterilization. A method for producing high-purity L-lactic acid, characterized in that it is added and subjected to fermentation, is described.
JP-A-2000-342247 [hereinafter referred to as “Reference 6”] discloses that a shochu distillation residue, which is a by-product in the production of shochu using barley as a raw material, is subjected to solid-liquid separation to obtain a liquid component. Filtration to obtain a clarified solution, concentration of the clarified solution to obtain a concentrated solution, and a microorganism containing a non-adsorbable fraction obtained by subjecting the concentrated solution to an adsorption treatment using a synthetic adsorbent as an active ingredient. The medium is excellent as a culture medium for culturing yeast, lactic acid bacteria, and bifidobacteria.It is described that when the medium for microorganisms is used for culturing yeast, lactic acid bacteria, and bifidobacteria, the amount of cultured cells significantly increases. .
[0007]
Also, Japanese Patent Application Laid-Open No. 2002-369672 [hereinafter referred to as Document 7]. ] Describes a method for sterilizing foods using a lactic acid fermentation solution containing a bacteriocin such as nisin. It is described that the antibacterial action of the lactic acid fermentation solution can be maintained for a long time by adding the lactic acid fermentation solution and calcium ions to food.
[0008]
[Patent Document 1]
JP-A-4-75596
[Patent Document 2]
JP-A-4-126093
[Patent Document 3]
JP-A-6-9690
[Patent Document 4]
JP 2000-236891 A
[Patent Document 5]
JP-A-2000-245491
[Patent Document 6]
JP 2000-342247 A
[Patent Document 7]
JP-A-2002-369672
[0009]
However, the solids of the rice shochu distillation residue and the solids of the potato shochu distillation residue used as the culture medium raw materials in References 4 and 5 are used in the production of barley-based shochu used as the culture medium raw material in the present invention. The liquid component obtained by solid-liquid separation of the remaining barley shochu distillation residue and the liquid component obtained by solid-liquid separation of the rice shochu distillation residue by-produced in the production of shochu from rice are objective. Are clearly different. In addition, the inventions described in Documents 4 and 5 aim at producing lactic acid by culturing lactic acid bacteria using a medium consisting of solids obtained from rice shochu distillation residue or potato shochu distillation residue. There is no suggestion about a method for producing a fermented lactic acid bacterium solution containing nisin and having excellent taste.
[0010]
Document 6 describes that the microorganism culture medium is effective for the growth of lactic acid bacteria belonging to the genus Lactobacillus, that is, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, and the like, but Lactococcus having nisin-producing ability. No mention is made of the bacterial cell growth effect of lactic acid bacteria belonging to Lactis. Document 6 describes that the culture medium for microorganisms is effective for the growth of cells such as lactic acid bacteria of the genus Lactobacillus, that is, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. The Lactococcus lactis subsp. It may be easy to guess that when lactic acid bacteria belonging to Lactis are cultured, similar cell growth effects are exhibited. However, the amount of nisin produced in the culture by culturing the lactic acid bacterium having the nisin-producing ability cannot be increased at all only by an increase in the amount of cells in the culture. This point is the same even when using the microorganism culture medium having the above-mentioned bacterial cell growth effect. By the way, the present inventors have used the microorganism culture medium described in Document 6 to prepare Lactococcus lactis subsp. Each strain of several lactic acid bacteria belonging to Lactis was cultured under different culturing conditions, and the bacterial cell amount and nisin concentration in the obtained fermentation product were examined. No universal correlation was observed between the amount and the nisin concentration.
[0011]
Document 7 describes a method for sterilizing foods using a lactic acid fermentation solution containing a bacteriocin such as nisin. In addition, it is described that shochu lees can be used as a nitrogen source for a medium in obtaining the lactic acid fermentation liquor. However, Document 7 does not disclose that the productivity of nisin is remarkably increased when the shochu lees is used as a nitrogen source, and that the resulting lactic acid fermentation liquor has excellent taste.
[0012]
As is clear from the above description, even if the above-mentioned literature is examined closely, the liquid content obtained by solid-liquid separation of the barley shochu distillation residue or the rice shochu distillation residue is used as the medium. When lactic acid bacteria having nisin-producing ability are cultured, nisin production is remarkably increased, and that the obtained fermentation product contains a significant amount of nisin and has excellent taste is completely unpredictable. .
[0013]
[Problems to be solved by the invention]
As described above, in the conventional nisin production technology, the various media described above are used.However, using any of these conventional media, the nisin concentration in the obtained fermentation product is extremely low. . For these reasons, in order to industrially produce large amounts of nisin, there is a strong demand for early provision of means for further increasing the amount of nisin produced in the fermentation product.
Apart from this, as described above, Literature 7 discloses that a lactic acid fermented liquor containing nisin obtained by culturing lactic acid bacteria having nisin-producing ability using a medium containing shochu lees as a nitrogen source has an antibacterial effect. A method for sterilizing food by adding the lactic acid fermentation liquid to food is described. However, the lactic acid fermentation solution containing nisin obtained by culturing lactic acid bacteria having nisin-producing ability using such a conventional medium has a low nisin concentration as described above, and its taste is satisfactory. There is no way to go. When such a lactic acid fermentation liquid is used by adding it to food, it is desired that the lactic acid fermentation liquid contains a significant amount of nisin and has excellent taste.
[0014]
The present invention has been completed as a result of further research in view of the above-mentioned problems in the prior art. An object of the present invention is to solve the above-mentioned problems in the conventional nisin production technology and to provide an nisin industrial production method which enables mass production of nisin. Another object of the present invention is to provide a method that contains a significant amount of nisin, has excellent taste, and enables efficient production of a fermentation product extremely suitable for use in foods. is there.
[0015]
[Means for Solving the Problems]
The present inventors solve the above-mentioned problems in the conventional nisin production technology by more effectively utilizing the shochu distillation residue, that is, it is possible to increase nisin production by using the shochu distillation residue in a medium. We conducted intensive investigations through experiments to develop a method to make the data.
As a result, a liquid obtained by solid-liquid separation of the residual liquid from the distillation of barley shochu (A) and having a Brix concentration adjusted to a range of 0.5 to 6.0 and a sugar added to a liquid is used as a medium. A lactic acid bacterium having nisin-producing ability is added to the medium for culturing, and the culturing is performed by controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and adjusting the pH value to 4.0 to 7.0. It was found that, when the method of controlling while controlling the ratio to 0 was adopted, the production amount of nisin was significantly increased, and a fermentation product containing a significant amount of nisin was obtained. When the fermented product was subjected to a sensory test, it was found that the fermented product had an excellent taste as compared with a fermented product obtained by using a conventional medium, and was extremely suitable for use as a food. understood. The present invention has been completed based on the above findings.
[0016]
The present invention makes it possible to produce a large amount of nisin by using a barley shochu distillation residue, which has never been used as a medium in the conventional nisin production technology, as a medium. That is, the present invention comprises a liquid component (A) obtained by subjecting a barley shochu distillation residue to solid-liquid separation, wherein sugar is added to a liquid having a Brix concentration adjusted to a range of 0.5 to 6.0. Is used as a culture medium, and a lactic acid bacterium having nisin-producing ability is added to the medium for culturing. The culturing is performed by controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and adjusting the pH value to 4.0. The present invention provides a method for producing a fermentation product containing a significant amount of nisin, characterized in that the fermentation product is controlled while being controlled in the range of from 7.0 to 7.0. The culture in the production method of the present invention may be performed by a batch culture method and / or a continuous culture method. The fermented product containing a significant amount of nisin obtained by the present invention has excellent taste and can be suitably used as food.
[0017]
In view of the fact that when the lactic acid bacterium of the genus Lactobacillus is cultured using the medium for microorganisms described in Document 6, the amount of the cultured cells obtained is significantly increased. Using a medium, Lactococcus lactissubsp. There is no mention of culturing lactic acid bacteria of the genus Lactis, but when lactic acid bacteria having the nisin-producing ability are cultured using the above-mentioned medium for microorganisms, the degree of increase in the amount of cultured cells is not likely, We imagined that remarkable production of nisin would be brought about, and the present inventors conducted intensive studies through experiments. That is, the present inventors solid-liquid-separate the shochu distillation residue (hereinafter abbreviated as “barley shochu distillation residue”) by-produced in the production of shochu using barley as a raw material described in Document 6. To obtain a clarified liquid by concentrating the clarified liquid to obtain a concentrated liquid, and subjecting the concentrated liquid to an adsorption treatment using a synthetic adsorbent. After adjusting the Brix concentration of each of the fraction and the liquid to 8.0, the same amount of glucose was added to each, and then Lactococcus lactis subsp. Lactic acid bacteria having the ability to produce nisin belonging to Lactis were inoculated and separately subjected to batch culture. As a control, an MRS medium supplemented with the same amount of glucose as described above was used, and all others were subjected to batch culture by the same method as described above.
[0018]
The amount of lactic acid bacteria and the nisin concentration of the fermentation product obtained in each batch culture were measured. As a result, when the medium consisting of the liquid component described in Document 6 was used and when the medium consisting of the non-adsorbable fraction was used, the amount of lactic acid bacteria in the fermentation product obtained in these two cases and nisin The concentrations were found to be substantially the same. Furthermore, no significant difference was observed in the amount of the lactic acid bacteria cells and the nisin concentration as compared with the case where the control MRS medium was used, and it was found that they were substantially equivalent. That is, it was revealed that nisin productivity significantly higher than that of the control MRS medium could not be achieved simply by using the medium for microorganisms described in Reference 6.
[0019]
Therefore, the present inventors conducted an experiment on the production of nisin through experiments using a medium consisting of a liquid component obtained by solid-liquid separation of a barley shochu distillation residue.
That is, in producing nisin using the medium consisting of the liquid component, it is presumed that the Brix concentration of the liquid component may have a detrimental effect on the production of nisin. The study was conducted through experiments for the purpose of determining the concentration. That is, the Brix concentration of the liquid is 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10 0.0, 11.0, 12.0, 13.0, 14.0, and 15.0, and the same amount of glucose was added to each of them to produce the following nisin-producing lactic acid bacteria. A liquid medium adjusted to such an optimum pH value was obtained, and Lactococcus lactis subsp. Lactic acid bacteria capable of producing nisin belonging to Lactis were inoculated and separately subjected to batch culture. As a control, an MRS medium adjusted to the same pH value by adding the same amount of glucose as described above was used, and all other components were subjected to batch culture by the same method as described above. As a result, when the liquid medium obtained by adjusting the Brix concentration of the liquid to be in the range of 0.5 to 6.0 is used, the obtained fermentation production obtained is higher than when the control MRS medium is used. There was a tendency for the nisin concentration in the product to increase.
[0020]
Therefore, when culturing for the production of nisin using the medium composed of the above-mentioned liquid components, an experiment was conducted through experiments for the purpose of determining the optimal pH conditions for mass production of nisin. That is, a predetermined amount of glucose was added to the above-mentioned liquid whose Brix concentration was adjusted to 4.0 to obtain a plurality of liquid culture media whose pH was adjusted to 3.0 to 8.0. Lactococcus lactis subsp. Was added to each of the obtained liquid media having different pH values. Lactic acid-producing lactic acid bacteria belonging to Lactis were inoculated respectively and separately subjected to batch culture while maintaining the adjusted pH value. As a control, an MRS medium adjusted to pH 6.8 by adding the same amount of glucose as described above was used, and all other conditions were subjected to batch culture by the same method as described above. As a result, when the culture was performed while maintaining the pH value of the liquid medium in the range of 4.0 to 7.0, and when the culture was performed using the control MRS medium (maintained at pH 6.8). It was found that the concentration of nisin in the obtained fermentation product was significantly increased as compared with.
[0021]
From the above, the Brix concentration of the liquid obtained by subjecting the barley shochu distillation residue to solid-liquid separation is adjusted to the range of 0.5 to 6.0, and sugar is added thereto to adjust the pH value to 4. 0 to 7.0 and kept in the range of Lactococcus lactis subsp. By inoculating a lactic acid bacterium having nisin-producing ability belonging to Lactis and subjecting it to batch culture, the nisin concentration in the obtained fermentation product is remarkable as compared with the case where the culture is performed using a conventional MRS medium. It became clear that it would increase.
[0022]
the above
And
In the same manner as in the case of the liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue, the experiment described in As for the component (B), the same result as that of the liquid component (A) obtained by solid-liquid separation of the above-mentioned distillation residue of barley shochu was obtained. That is, the Brix concentration of the liquid component (B) obtained by solid-liquid separation of the rice shochu distillation residue is adjusted to a range of 0.5 to 6.0, and sugar is added thereto to adjust the pH value to 4. 0 to 7.0 and kept in the range of Lactococcus lactis subsp. By inoculating a lactic acid bacterium having nisin-producing ability belonging to Lactis and subjecting it to batch culture, the nisin concentration in the obtained fermentation product is remarkable as compared with the case where the culture is performed using a conventional MRS medium. It became clear that it would increase.
[0023]
Next, nisin production by a continuous culture method was examined through experiments using a medium composed of the above liquid components. That is, the Brix concentration of the liquid was adjusted to 4.0, glucose was added to the mixture at 3% by weight to adjust the pH value to 5.5, and a liquid medium was obtained, and Lactococcus lactis subsp. A lactic acid bacterium having the ability to produce nisin belonging to Lactis is inoculated, a continuous culturing device comprising a jar fermenter is used, the pH value is maintained at 5.5 with a pH controller, and the filtration culture method described in Document 1 is used. A liquid containing nisin without cells was extracted, and continuous culture was performed in which a fresh liquid medium having the same volume as the extracted liquid was supplied to a jar fermenter. As a control, continuous culture was carried out in the same manner as described above except that an MRS medium containing 3% by weight of glucose was used instead of using the fresh liquid medium in the filtration culture. As a result, by using the liquid medium as the fresh medium to be supplied to the jar fermenter in the filtration culture, the nisin concentration in the resulting fermentation product is significantly higher than when the MRS medium is used as the fresh medium. It turned out to be growing.
[0024]
Furthermore, Table 1 of Document 1 describes that the higher the glucose content of the MRS medium used as a fresh medium, the higher the nisin concentration in the culture solution is. As shown in FIGS. 4 and 5 of Document 1, As is evident, the glucose concentration in the culture solution after the shift to the continuous culture is substantially infinitely close to 0 g / L in any case regardless of the glucose concentration of the supplied MRS medium. Therefore, the present inventors speculated that the glucose concentration in the culture solution during continuous culture might affect nisin productivity, and studied through experiments.
[0025]
That is, the Brix concentration of the liquid was adjusted to 4.0, glucose was added at 3% by weight to adjust the pH value to 5.5, and a liquid medium was obtained, and Lactococcus lactis subsp. A lactic acid bacterium belonging to Lactis, which has the ability to produce nisin, is inoculated, a continuous culturing device comprising a jar fermenter is used, the pH value is maintained at 5.5 with a pH controller, and the filtration culture method described in Document 1 is used. A liquid containing nisin without the body was extracted, and continuous culture was performed in which a fresh liquid medium having the same volume as the extracted liquid medium was supplied to a jar fermenter. At that time, the glucose concentration of the culture solution was measured using an online biochemical controller equipped with a glucose electrode, and after shifting to continuous culture, the liquid medium was supplied to a jar fermenter to reduce the glucose concentration of the culture solution to 0.01. , 0.1, 1.0, 5.0, and 10.0 g / L, and continuous culture was separately performed. As a result, when the glucose concentration in the culture solution after the shift to the continuous culture was maintained at 0.1, 1.0, 5.0, and 10.0 g / L, the glucose concentration in the culture solution was 0.1 g / L. It was revealed that the nisin concentration in the culture solution was dramatically increased as compared with the case where the concentration was maintained at 01 g / L. From this, it is possible to continuously produce a culture solution containing an extremely high concentration of nisin by maintaining the glucose concentration in the culture solution after transition to continuous culture at 0.1 g / L or more. It has been found.
[0026]
Therefore, a liquid containing a liquid component (A) obtained by solid-liquid separation of the residual liquid of barley shochu distilled water and having a Brix concentration adjusted to a range of 0.5 to 6.0 and added with sugar is used as a medium. Then, a lactic acid bacterium having a nisin-producing ability is added to the medium for culturing, and the culturing is performed by controlling the sugar concentration of the culture solution to at least 0.1 g / L and adjusting the pH value to 4.0 to 7.0. A fermentation product was obtained by a method performed while controlling the temperature within the range. When the nisin concentration of the obtained fermentation product was examined, it was found that the nisin concentration was significantly higher than the nisin concentration of the fermentation product obtained by using the conventional MRS medium. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a rough taste and an irritating taste and had a problem in taste, whereas the former had a rounded and harmonious taste. It has an extremely excellent taste consisting of a good flavor and a rich umami, and has been found to be extremely suitable as a food material.
[0027]
Also, using the liquid component (B) of the above-mentioned rice shochu distillation residue,
When the experiment was carried out by the method described above, the glucose concentration in the culture solution after the shift to the continuous culture was 0.1 g / L or more, as in the case where the liquid content of the barley shochu distillation residue was used. It has been found that the maintenance of the culture medium enables continuous production of a culture solution containing a very high concentration of nisin. Therefore, a liquid containing a liquid component (B) obtained by solid-liquid separation of a rice shochu distillation residue and having a Brix concentration adjusted to a range of 0.5 to 6.0 and added with sugar is used as a medium. Then, a lactic acid bacterium having a nisin-producing ability is added to the medium for culturing, and the culturing is performed by controlling the sugar concentration of the culture solution to at least 0.1 g / L and adjusting the pH value to 4.0 to 7.0. A fermentation product was obtained by a method performed while controlling the temperature within the range. When the nisin concentration of the obtained fermentation product was examined, it was found that the nisin concentration was significantly higher than the nisin concentration of the fermentation product obtained by using the conventional MRS medium. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a rough taste and an irritating taste and had a problem in taste, whereas the former had a rounded and harmonious taste. It has an extremely excellent taste consisting of a good flavor and a rich umami, and has been found to be extremely suitable as a food material.
[0028]
Further, as the medium, a part of the liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue is converted into a liquid component (B) obtained by solid-liquid separation of the rice shochu distillation residue. A liquid obtained by adding a sugar to a liquid whose Brix concentration has been adjusted to a range of 0.5 to 6.0 is used, and a lactic acid bacterium having a nisin-producing ability is added to the medium, followed by culturing. The fermentation product was obtained by a method of controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. As a result, it was revealed that the nisin concentration of the fermentation product was significantly increased as compared with the nisin concentration of the fermentation product obtained by using the conventional MRS medium. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a rough taste and an irritating taste and had a problem in taste, whereas the former had a rounded and harmonious taste. It has an extremely excellent taste consisting of a good flavor and a rich umami, and has been found to be extremely suitable as a food material.
[0029]
In addition, the non-adsorbed fraction obtained by subjecting at least a part of the liquid component (A) obtained by subjecting the barley shochu distillation residue to solid-liquid separation to an adsorption treatment using a synthetic adsorbent, At least a part of the liquid component (A ′) obtained by converting (A) to contain the non-adsorbed fraction and the liquid component (B) obtained by solid-liquid separation of rice shochu distillation residue is used as a synthetic adsorbent. A liquid component (B ') is prepared as a non-adsorbed fraction obtained by subjecting the liquid component (B) to a non-adsorbed fraction containing the non-adsorbed fraction. ), The sugar having been added to a liquid having a Brix concentration adjusted to a range of 0.5 to 6.0, and a Brix concentration of 0 using the liquid component (A ′) and the liquid component (B ′). The medium prepared by adding sugar to the liquid adjusted to the range of 0.5 to 6.0 was used as the medium. A lactic acid bacterium having nisin-producing ability is added to the medium for culturing, and the culturing is performed by controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and adjusting the pH value to 4.0 to 7.0. A fermentation product was obtained by a method performed while controlling to a range of 0. When the nisin concentration of the obtained fermentation product was examined, it was found that the nisin concentration of each fermentation product was significantly higher than the nisin concentration of the fermentation product obtained by using the conventional MRS medium. understood. When these fermented products were subjected to a sensory test by 10 panelists, the latter had a rough taste and an irritating taste and had a problem in taste, whereas the former had a rounded and harmonious taste. It has an extremely excellent taste consisting of a good flavor and a rich umami, and has been found to be extremely suitable as a food material.
[0030]
[Example of embodiment]
Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to these embodiments. In the present invention, a step (a) of obtaining a liquid component (A) by solid-liquid separation of a residual liquid of barley shochu distillation, and diluting the liquid component (A) with water to obtain a Brix concentration of 0.5 to 6. A step (b) of adjusting to a range of 0, a step (c) of adding a sugar to the product obtained in the step (b) to obtain a medium, and culturing by adding a lactic acid bacterium capable of producing nisin to the medium. The culturing is performed while controlling the sugar concentration of the culture solution to at least 0.1 g / L or more and controlling the pH value in the range of 4.0 to 7.0. The present invention provides a method for producing a fermented product containing a significant amount of nisin. In the step (a), a part of the liquid component (A) obtained by solid-liquid separation of the barley shochu distillation residue is converted into a rice shochu distillation residue produced as a by-product in the production of shochu from rice. The liquid component (B) obtained by liquid separation may be replaced. Further, at least a part of the liquid component (A) and / or the liquid component (B) may be a non-adsorbed fraction obtained by performing an adsorption separation treatment using a synthetic adsorbent. The culture in the step (d) can be performed by a batch culture method and / or a continuous culture method.
[0031]
The barley shochu distillation residue used in the present invention is produced from barley or refined barley to produce barley koji and steamed barley, and the resulting barley koji and starch contained in steamed barley are koji, and / or enzyme agents. Saccharified using, and subjected to alcohol fermentation by yeast to obtain aged moromi, which is by-produced as a distillation residue when distilling the aged mash using a distillation apparatus such as vacuum distillation or atmospheric distillation, that is, , Means the residue of distillation of barley shochu. Further, in the production of rice shochu, sweet potato shochu, buckwheat shochu, the shochu distillation residue by-produced as a by-product when barley is used as a part of the raw materials in the production of these shochu is also the barley shochu distillation residue used in the present invention. Included.
In obtaining the barley shochu distillation residue, barley koji used in the production of barley shochu may be produced under the koji making conditions used in ordinary barley shochu production, and as a koji strain used, barley shochu is generally used. Aspergillus kawachii used in the production is preferred. Alternatively, Aspergillus strains such as Aspergillus awamori used in awamori production and Aspergillus oryzae used in sake production can be used. As the yeast used for producing barley shochu, various types of yeast for brewing shochu generally used for producing shochu can be used.
[0032]
The rice shochu distillation residue used in the present invention is produced by producing rice koji and steamed rice using rice as a raw material, and saccharifying the obtained rice koji and starch contained in steamed rice using koji and / or an enzyme agent. Then, it is further subjected to alcohol fermentation by yeast to obtain an aged moromi, which is by-produced as a distillation residue when distilling the aged moromi using a distillation apparatus such as vacuum distillation or atmospheric distillation, that is, rice shochu. It means the distillation residue. Further, in the production of barley shochu, sweet potato shochu, buckwheat shochu, the shochu distillation residue by-produced as a by-product when using rice as a part of the raw material in the production of these shochu is also the rice shochu distillation residue used in the present invention. Included.
In obtaining the rice shochu distillation residue, the rice koji used in the production of rice shochu may be produced under the koji-making conditions used in ordinary rice shochu production. Aspergillus kawachii used in the production is preferred. Alternatively, Aspergillus strains such as Aspergillus awamori used in awamori production and Aspergillus oryzae used in sake production can be used. As the yeast used for the production of rice shochu, various types of yeast for brewing shochu generally used in the production of shochu can be used.
[0033]
In step (a), the reason for obtaining the liquid component by solid-liquid separation of the barley shochu distillation residue is that the water-insoluble fermentation residue derived from the raw barley and barley koji is removed from the barley shochu distillation residue to obtain only the liquid component. Is to use. The solid-liquid separation is performed through a solid-liquid separation method such as a screw press method or a roller press method, or a preliminary separation is performed using a solid-liquid separator of a filtration and pressing type, and then a centrifugal separator, a diatomaceous earth filtration device, a ceramic A solid-liquid separation process is performed using a filtration device or a filtration press to obtain the liquid component.
[0034]
In the step (a), the reason for obtaining the liquid component by solid-liquid separation of the rice shochu distillation residue is that the water-insoluble fermentation residue derived from the raw rice and rice koji is removed from the rice shochu distillation residue to obtain only the liquid component. Is to use. The solid-liquid separation is performed through a solid-liquid separation method such as a screw press method or a roller press method, or a preliminary separation is performed using a solid-liquid separator of a filtration and pressing type, and then a centrifugal separator, a diatomaceous earth filtration device, a ceramic A solid-liquid separation process is performed using a filtration device or a filtration press to obtain the liquid component.
[0035]
The liquid component (A) and / or the liquid component (B) is subjected to an adsorption / separation treatment using a synthetic adsorbent to make a non-adsorbed fraction by removing a component exhibiting unpleasant taste contained in the liquid component. This is done for the purpose of doing so. Preferable specific examples of the synthetic adsorbent include Amberlite XAD-4, Amberlite XAD-16, Amberlite XAD-1180 and Amberlite XAD-2000 manufactured by Organo Corporation, Sepabeads manufactured by Mitsubishi Chemical Corporation. Aromatic (or styrene-based) synthetic adsorbents such as SP850 and Diaion HP20, Amberlite XAD-7 manufactured by Organo Co., Ltd., and methacryl-based (or Diaion HP2MG manufactured by Mitsubishi Chemical Corporation) (or (Also referred to as acrylic). In addition to the above, an aromatic-modified synthetic adsorbent such as Sepapise SP207 manufactured by Mitsubishi Chemical Corporation may be used in some cases. The non-adsorbed fraction thus obtained can be used in place of at least a part of the liquid component.
[0036]
In the step (b), the liquid component (A) (including the non-adsorbed fraction of the liquid component (A)) and the liquid component (B) supplied from the step (a) Of the above-mentioned non-adsorbed fraction) is adjusted to a range of 0.5 to 6.0 by adjusting the concentration of a medium component suitable for nisin productivity of lactic acid bacteria having nisin-producing ability. Therefore, the productivity of nisin can be increased. More preferably, the Brix concentration is adjusted in the range of 2.0 to 4.0. That is, in this case, nisin productivity can be significantly improved.
[0037]
Preferred specific examples of the sugar added in step (c) include glucose, xylose, sucrose, fructose, maltose, ribose, galactose, mannose, mannitol, cellobiose, saccharose, and trehalose. The sugar concentration of the liquid medium varies depending on the type of sugar used, but is generally in the range of 5 to 70 g / L. Among these sugars, glucose is particularly preferred, and in that case, the glucose concentration is preferably set in the range of 5 to 70 g / L.
[0038]
The lactic acid bacterium having nisin-producing ability used in step (d) may be any lactic acid-producing lactic acid bacterium, as long as it is a strain having nisin-producing ability, in particular, Lactococcus lactis subsp. Lactic acid bacteria belonging to Lactis are preferred. Specifically, when the nisin to be produced is nisin A, Lactococcus lactis NCDO497, Lactococcus lactis NIZO R5, Lactococcus lactis ATCC 7962 and Lactococcus lactis ATCC 11454 can be preferably mentioned. Further, as the strain when nisin producing is nisin Z, Lactococcus lactis NIZO 22186, Lactococcus lactis NRRL-B-18583, Lactococcus lactis NCFB2118, Lactococcus lactis NCFB2054, Lactococcus lactis NIZO N9, Lactococcus lactis NIZO 221186, Lactococcus lactis IO- 1 (JCM7638), Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka (JCM11180), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B (JCM11181), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B (JCM11182), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B (JCM11183) and Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 9B (JCM11184) can be mentioned as a preferable example.
[0039]
The step of performing the culture in the step (d) while controlling the sugar concentration of the culture solution to at least 0.1 g / L and controlling the pH value of the culture solution to a range of 4.0 to 7.0 includes batch culture. It can be performed by a system or a continuous culture system. In addition, a fed-batch culture method can be adopted. When controlling the pH value of the culture solution to be in the range of 4.0 to 7.0, as described above, a composite glass electrode for pH measurement was attached to the culture tank, measured with a pH meter, and the actual pH value was measured. When the pH becomes lower than the set pH value, an alkaline solution such as a sodium hydroxide solution is supplied to the culture tank using a pH controller or the like, whereby the pH can be maintained at the set pH value. Adjust to a range of 0 to 6.5. It is preferable that the fluctuation range of the predetermined pH value is 0.1 or less. In the step (d), when controlling the sugar concentration (glucose concentration) of the culture solution to at least 0.1 g / L or more, if the culture is performed by a continuous culture method or a fed-batch culture method, a glucose analyzer or the like is used. Can be controlled using In this step, a substrate solution containing a nitrogen source consisting of yeast extract or polypeptone in addition to glucose or a substrate solution consisting of the above liquid medium can be supplied to the culture tank, whereby the liquid in the culture step can be obtained. The glucose concentration of the medium can be maintained at a desired value. The glucose concentration is at least 0.1 g / L or more, preferably 1.0 g / L or more, so that the activity of lactic acid bacteria having nisin-producing ability and the specific nisin production rate can be maintained at high values. . The culturing temperature at the time of performing the culturing may be set to a temperature optimal for the growth of the lactic acid bacterium to be used, and is generally in the range of 20 to 40 ° C, preferably 25 to 37 ° C. The stirring speed is suitably from 10 to 1000 rpm, preferably from 50 to 300 rpm.
[0040]
When the culture in the step (d) is performed by the continuous culture method, the culture is started according to the above-described culture conditions, the concentration of the bacterial cells is increased, and the culture is shifted to the continuous culture at the latter stage of the logarithmic growth phase. In the continuous culture method, a composite glass electrode for pH measurement is attached to a culture tank, measured with a pH meter, and when an actual pH value is lower than a set pH value, an alkaline solution such as a sodium hydroxide solution is cultured. By supplying to the tank, the set pH value can be maintained. At this time, by removing the same amount of sterilizing solution as the liquid medium or the alkaline solution supplied to the culture tank from the culture tank through an ultrafiltration membrane or a microfiltration membrane, etc., the liquid volume in the culture tank is kept constant. Can be held. Separately from the above pH control, a process online turbidimeter probe is attached to the culture tank, the output of which is input to the DDC controller, and the same amount of sterilized water or liquid medium supplied to the culture tank (cell culture) ) Is removed from the culture tank, thereby controlling the turbidity of the culture tank and keeping the concentration of the bacterial cells in the culture solution and the amount of the culture solution constant. The cell concentration is set in the range of 4.0 to 18.0 g / L, preferably in the range of 8.0 to 15.0 g / L. The dilution rate of the medium can be set to an arbitrary value depending on the cell concentration of the culture solution, the nisin production rate, and the like. -1 But preferably in the range of 0.2 to 1.2 hr -1 Range.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0042]
Barley shochu was produced for the purpose of the following examples. Barley (70% refined) was used as a raw material.
[Production of barley koji]
Barley is allowed to absorb 40% (w / w) water, steamed for 40 minutes, allowed to cool to 40 ° C., inoculated with 1 kg of koji (white koji mold) per ton of barley, and incubated at 38 ° C. and RH 95% for 24 hours for 32 hours. Barley koji was produced by keeping the mixture at RH 92% for 20 hours.
[Manufacture of steamed wheat]
Barley was allowed to absorb 40% (w / w) water, steamed for 40 minutes, and then allowed to cool to 40 ° C. to produce steamed barley.
[Barley shochu production and production of barley shochu distillation residue]
In the primary preparation, 3.6 kiloliters of water and 1 kg (wet weight) of cultured cells of shochu yeast as yeast were added to the barley koji (3 tons as barley) produced by the above-mentioned method to obtain a primary moromi. The obtained primary moromi was subjected to 5 days of fermentation (first stage fermentation). Next, in the secondary preparation, 11.4 kiloliters of water and steamed barley (7 tons as barley) produced by the above-mentioned method are added to the primary moromi after the first stage fermentation, and fermentation for 11 days ( (Second stage fermentation). The fermentation temperature was 25 ° C. for both the primary charge and the secondary charge. The secondary mash after the second-stage fermentation was subjected to simple distillation in a conventional manner to obtain 10 kiloliters of barley shochu and 15 kiloliters of barley shochu distillation residue. The obtained barley shochu distillation residue was used in the following Examples.
[0043]
Production of rice shochu was performed for the purpose of the following examples. As a raw material, milled rice (70% milled) was used.
[Production of rice koji]
Rice koji is produced by absorbing 35% (w / w) of rice, steaming for 40 minutes, allowing to cool to 40 ° C., inoculating 1 g of white koji mold per kg of rice, and 24 hours at 38 ° C. and 95% RH. At 32 ° C. and 92% RH for 20 hours.
[Manufacture of steamed rice]
Steamed rice was prepared by absorbing 35% (w / w) of rice, steaming for 40 minutes, and then allowing the rice to cool to 40 ° C.
[Production of rice shochu and production of rice shochu distillation residue]
In the primary preparation, rice koji (3 tons as rice) produced by the above-mentioned method was added with 3.6 kiloliters of water and 1 kg (wet weight) of cultured cells of shochu yeast as yeast to obtain primary moromi. The obtained primary moromi was subjected to 5 days of fermentation (first stage fermentation). Next, in the secondary preparation, 11.4 kiloliters of water and steamed rice (7 tons as rice) produced by the above-described method were added to the primary moromi after the first stage fermentation, and fermentation was performed for 15 days (2 days). Stage fermentation). The fermentation temperature was 25 ° C. for both the primary charge and the secondary charge. The secondary mash after the second-stage fermentation was subjected to simple distillation by a conventional method to obtain 10 kiloliters of rice shochu and 15 kiloliters of rice shochu distillation residue. The obtained rice shochu distillation residue was used in the following Examples.
[0044]
Embodiment 1
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation of barley shochu distillation residue] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid content of the barley shochu distillation residue. The liquid was diluted with water to adjust its Brix concentration to 4, glucose was added at 3.6% by weight, the pH was adjusted to 5.5 using sodium hydroxide, and then sterilized at 121 ° C for 15 minutes. Was performed to obtain a culture medium for lactic acid bacteria culture.
2. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour.
3. Main culture of lactic acid bacteria capable of producing nisin
In a 2L jar fermenter, add 1. 500 ml of the culture medium for lactic acid bacteria obtained in 25 ml of the lactic acid bacterium preculture liquid obtained in the above was introduced, and batch culture was performed under the conditions of a stirring speed of 250 rpm, a culture temperature of 30 ° C., a culture time of 24 hours, and a pH of 5.5.
[0045]
[Comparative Example 1]
1. Preparation of MRS medium
MRS medium (peptone 1% by weight, meat extract 1% by weight, yeast extract 0.5% by weight, K 2 HPO 4 0.2% by weight, 0.2% by weight of diammonium citrate, 3.6% by weight of glucose, 0.1% by weight of Tween 80, 0.5% by weight of sodium acetate, MGSO 4 ・ 7H 2 O 0.058% by weight, MnSO 4 ・ 4H 2 O (0.028% by weight) was adjusted to pH 5.5 using sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to obtain a lactic acid bacteria culture medium.
2. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour.
3. Main culture of lactic acid bacteria capable of producing nisin
In a 2L jar fermenter, add 1. And 500 ml of the MRS medium prepared in 25 ml of the lactic acid bacterium preculture liquid obtained in the above was introduced, and batch culture was performed under the conditions of a stirring speed of 250 rpm, a culture temperature of 30 ° C., a culture time of 24 hours, and a pH of 5.5.
[0046]
Embodiment 2
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation of barley shochu distillation residue] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid content of the barley shochu distillation residue. The liquid was diluted with water to adjust its Brix concentration to 4, added 3.6% by weight of glucose, adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C for 15 minutes. The treatment was performed to obtain a lactic acid bacteria culture medium.
2. Preparation of substrate solution for adjusting glucose concentration from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation of barley shochu distillation residue] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid content of the barley shochu distillation residue. The liquid was diluted with water to adjust its Brix concentration to 4, added 1.0% by weight of glucose, adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C for 15 minutes. The treatment was performed to obtain a glucose concentration adjusting substrate solution.
[0047]
3. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour.
4. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having a nisin-producing ability was performed by a continuous culture method using a continuous culture device comprising a 3 L jar fermenter.
That is, 1800 ml of the lactic acid bacterium culture medium obtained in 1 above and 90 ml of the lactic acid bacterium preculture liquid obtained in 3 above were introduced into the 3 L jar fermenter, and the mixture was batched under the conditions of a stirring speed of 250 rpm, a culture temperature of 30 ° C., and a pH of 5.5. Eight hours after the start of the cultivation, when the glucose concentration of the culture solution reached 4 g / L, the culture was shifted to continuous culture with pH control, glucose concentration control, and turbidity control. The continuous culture was performed at a concentration of 4 g / L until 42 hours after the start of the culture.
The pH control was performed by using a pH sensor and supplying a 5N sodium hydroxide solution to the culture tank to maintain the pH at 5.5. The glucose concentration was controlled by measuring the glucose concentration of the culture using an online biochemical controller BF-410 (manufactured by Able Corporation) equipped with a glucose electrode, and measuring the glucose concentration obtained in step 2 during continuous culture. The adjustment was performed by supplying the substrate solution for adjustment to the culture tank and maintaining the glucose concentration of the culture solution at 4 g / L. Further, in the pH control and the glucose concentration control, a sterilizing solution having the same amount as the total amount of the 5N sodium hydroxide solution supplied to the culture tank and the amount of the glucose concentration adjusting substrate solution was subjected to precision filtration. The liquid volume in the culture tank was kept constant by extracting from the culture tank through the membrane. The turbidity control is performed by using a laser turbidity meter and using the same amount of culture solution (bacterium) as the turbidity control supply solution (yeast extract 0.5% by weight, polypeptone 0.5% by weight) supplied to the culture tank. Was removed from the culture tank, whereby the cell concentration and liquid volume in the culture tank were kept constant.
[0048]
[Comparative Example 2]
1. Preparation of MRS medium
MRS medium (peptone 1% by weight, meat extract 1% by weight, yeast extract 0.5% by weight, K 2 HPO 4 0.2% by weight, 0.2% by weight of diammonium citrate, 3.6% by weight of glucose, 0.1% by weight of Tween 80, 0.5% by weight of sodium acetate, MGSO 4 ・ 7H 2 O 0.058% by weight, MnSO 4 ・ 4H 2 O (0.028% by weight) was adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to obtain an MRS medium for lactic acid bacteria culture.
2. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand still at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, and 3 ml at 37 ° C. A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour. 3. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having a nisin-producing ability was performed by a continuous culture method using a continuous culture device comprising a 3 L jar fermenter.
That is, the above 1. 1800 ml of the lactic acid bacteria culture medium obtained in the above and 90 ml of the lactic acid bacteria preculture solution obtained in the above 3 were introduced, and subjected to batch culture at a stirring speed of 250 rpm, a culture temperature of 30 ° C. and a pH of 5.5, and 12 hours after the start of the culture. When the glucose concentration of the culture solution reaches less than 0.1 g / L, the process is shifted to continuous culture with pH control, glucose concentration control, and turbidity control, and the glucose concentration of the culture solution is reduced to less than 0.1 g / L. And the continuous culture was carried out up to 42 hours after the start of the culture.
The pH control was performed by using a pH sensor and supplying a 5N sodium hydroxide solution to the culture tank to maintain the pH at 5.5. The glucose concentration is controlled by measuring the glucose concentration of the culture solution using an online biochemical controller BF-410 (manufactured by Able Corporation) equipped with a glucose electrode. , Yeast extract 0.5% by weight, polypeptone 0.5% by weight, and NaCl 0.5% by weight) were supplied to the culture tank to maintain the glucose concentration of the culture solution at less than 0.1 g / L. Further, at the time of the pH control and the glucose concentration control, by removing the same amount of sterilizing solution as the 5N sodium hydroxide solution and the substrate solution supplied to the culture tank from the culture tank through a microfiltration membrane, The liquid volume in the culture tank was kept constant. The turbidity control is performed by using a laser turbidity meter and using the same amount of culture solution (bacterium) as the turbidity control supply solution (yeast extract 0.5% by weight, polypeptone 0.5% by weight) supplied to the culture tank. Was removed from the culture tank, whereby the cell concentration and liquid volume in the culture tank were kept constant.
[0049]
Embodiment 3
Instead of Lactococcus lactis IO-1 used in Example 2, Lactococcus lactisNIZO 22186, Lactococcus lactis NRRL-B-18583, Lactococcus lactis NCFB2118, Lactococcus lactis NCFB2054, Lactococcus lactis NIZO N9, Lactococcus lactis NIZO 221186, Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka (JCM11180), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B (JCM11181), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B (JCM11182), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B (JCM11183) and Lactococcus lactis subsp. Lactis A. Continuous culture was performed in the same manner as in Example 2 except that Ishizaki Yasaka 9B (JCM11184) was used.
[0050]
[Comparative Example 3]
Instead of Lactococcus lactis IO-1 used in Comparative Example 2, Lactococcus lactis NIZO 22186, Lactococcus lactis NRRL-B-18583, Lactococcus lactis NCFB2118, Lactococcus lactis NCFB2054, Lactococcus lactis NIZO N9, Lactococcus lactis NIZO 221186, Lactococcus lactis subsp. Lactis A. Ishizaki Chizuka (JCM11180), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 5B (JCM11181), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 7B (JCM11182), Lactococcus lactis subsp. Lactis A. Ishizaki Yasaka 8B (JCM11183) and Lactococcus lactis subsp. Lactis A. Continuous culture was carried out in the same manner as in Comparative Example 2 except that Ishizaki Yasaka 9B (JCM11184) was used.
[0051]
Embodiment 4
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation of barley shochu distillation residue] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid content of the barley shochu distillation residue. The liquid fraction was subjected to a ceramic filtration device to obtain a clarified solution, the clarified solution was subjected to a vacuum evaporator and concentrated to about 3 times to obtain a concentrated solution, and the concentrated solution was packed with a column filled with a synthetic adsorbent. To obtain a non-adsorbable fraction solution showing non-adsorbability to the synthetic adsorbent eluted from the packed column, and diluting the non-adsorbable fraction solution with water to adjust its Brix concentration to 4. After adding 3.6% by weight of glucose and adjusting the pH to 5.5 with sodium hydroxide, the mixture was sterilized at 121 ° C. for 15 minutes to obtain a lactic acid bacteria culture medium.
2. Preculture of lactic acid bacteria
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour.
3. Main culture of lactic acid bacteria
500 ml of the lactic acid bacterium culture medium obtained in 1 above and 25 ml of the lactic acid bacterium preculture liquid obtained in 2 above were introduced into a 2 L jar fermenter, and the stirring speed was 250 rpm, the culturing temperature was 30 ° C., the culturing time was 24 hours, and the pH was 5.5. Batch culture was performed under the conditions.
[0052]
Embodiment 5
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation residue of barley shochu] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid component, and the liquid component is subjected to ceramic filtration. A clarified solution was obtained by subjecting the clarified solution to a vacuum evaporator, and the clarified solution was concentrated to about 3 times to obtain a concentrated solution. The concentrated solution was brought into contact with a column filled with a synthetic adsorbent, A non-adsorbable fraction solution showing non-adsorbability to the synthetic adsorbent eluted from the above is obtained, and the Brix concentration is adjusted to 4 by diluting the non-adsorbable fraction solution with water, and glucose is adjusted to 3. After adding 6% by weight and adjusting the pH to 5.5 using sodium hydroxide, sterilization was performed at 121 ° C. for 15 minutes to obtain a lactic acid bacteria culture medium.
2. Preparation of substrate solution for adjusting glucose concentration from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation residue of barley shochu] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid component, and the liquid component is subjected to ceramic filtration. A clarified solution was obtained by subjecting the clarified solution to a vacuum evaporator, and the clarified solution was concentrated to about 3 times to obtain a concentrated solution. The concentrated solution was brought into contact with a column filled with a synthetic adsorbent, A non-adsorbable fraction solution showing non-adsorbability to the synthetic adsorbent eluted from the above is obtained, and the Brix concentration is adjusted to 4 by diluting the non-adsorbable fraction solution with water. After adding 0% by weight and adjusting the pH to 5.5 using sodium hydroxide, a sterilization treatment was performed at 121 ° C. for 15 minutes to obtain a glucose concentration adjusting substrate solution.
3. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour.
[0053]
4. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having a nisin-producing ability was performed by a continuous culture method using a continuous culture device comprising a 3 L jar fermenter.
That is, the above 1. 1800 ml of the lactic acid bacterium culture medium obtained in the above and 90 ml of the lactic acid bacterium preculture liquid obtained in the above 3 were introduced, and subjected to batch culture under the conditions of a stirring speed of 250 rpm, a culture temperature of 30 ° C. and a pH of 5.5, and 8 hours after the start of the culture. When the glucose concentration of the culture solution reached 4 g / L, the culture was shifted to continuous culture with pH control, glucose concentration control, and turbidity control, and the culture was started while maintaining the glucose concentration of the culture solution at 4 g / L. The continuous culture was performed until 42 hours thereafter.
The pH control was performed by using a pH sensor and supplying a 5N sodium hydroxide solution to the culture tank to maintain the pH at 5.5. The glucose concentration was controlled by measuring the glucose concentration of the culture solution using an online biochemical controller BF-410 (manufactured by Able Co., Ltd.) equipped with a glucose electrode. The adjustment was performed by supplying the substrate solution for adjustment to the culture tank and maintaining the glucose concentration of the culture solution at 4 g / L. Further, at the time of the pH control and the glucose concentration control, the same amount of sterilizing solution as the 5N sodium hydroxide solution and the glucose concentration adjusting substrate solution supplied to the culture tank was passed through the microfiltration membrane from the culture tank. By withdrawing, the liquid volume in the culture tank was kept constant. The turbidity control is performed by using a laser turbidity meter and using the same amount of culture solution (bacterium) as the turbidity control supply liquid (yeast extract 0.5% by weight, polypeptone 0.5% by weight) supplied to the culture tank. Was removed from the culture tank to maintain the cell concentration and liquid volume in the culture tank constant.
[0054]
Embodiment 6
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation of barley shochu distillation residue] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid content of the barley shochu distillation residue. The liquid was diluted with water to adjust its Brix concentration to 4, added 3.6% by weight of glucose, adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C for 15 minutes. The treatment was performed to obtain a lactic acid bacteria culture medium.
2. Preparation of lactic acid bacteria culture medium from rice shochu distillation residue
the above
The rice shochu distillation residue obtained in [Production of rice shochu and production of distillation residue of rice shochu] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid component, and the liquid component is washed with water. After dilution, the Brix concentration was adjusted to 4, glucose was added at 3.6% by weight, the pH was adjusted to 5.5 using sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to culture lactic acid bacteria. A medium was obtained.
3. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand still at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, and incubated at 37 ° C. for 3 hours. A preculture of lactic acid bacteria was obtained by culturing with shaking at 100 rpm for an hour.
4. Main culture of lactic acid bacteria capable of producing nisin
250 ml of the lactic acid bacteria culture medium obtained in 1 above, 250 ml of the lactic acid bacteria culture medium obtained in 2 above, and 25 ml of the lactic acid bacteria preculture liquid obtained in 3 above were introduced into a 2 L jar fermenter. Batch culture was carried out at 30 ° C., a culture time of 24 hours, and a pH of 5.5.
[0055]
Embodiment 7
1. Preparation of lactic acid bacteria culture medium from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation residue of barley shochu] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid component, and the liquid component is washed with water. After dilution, the Brix concentration was adjusted to 4, glucose was added at 3.6% by weight, the pH was adjusted to 5.5 using sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to culture lactic acid bacteria. A medium was obtained.
2. Preparation of substrate solution for adjusting glucose concentration from barley shochu distillation residue
the above
The barley shochu distillation residue obtained in [Production of barley shochu and distillation residue of barley shochu] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid component, and the liquid component is washed with water. After dilution, the Brix concentration was adjusted to 4, glucose was added at 1.0% by weight, the pH was adjusted to 5.5 using sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to adjust the glucose concentration. A substrate solution was obtained.
3. Preparation of lactic acid bacteria culture medium from rice shochu distillation residue
The rice shochu distillation residue obtained in the distillation process of rice shochu production is centrifuged at 8000 rpm and 10 min to obtain a liquid component of the rice shochu distillation residue, and the liquid component is adjusted to Brix 4 to give glucose of 3%. Then, the mixture was adjusted to pH 5.5 with sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to obtain a lactic acid bacteria culture medium.
4. Preparation of substrate solution for adjusting glucose concentration from distillation residue of rice shochu
the above
The rice shochu distillation residue obtained in [Production of rice shochu and production of distillation residue of rice shochu] described above is centrifuged at 8000 rpm for 10 minutes to obtain a liquid component, and the liquid component is washed with water. After dilution, the Brix concentration was adjusted to 4, glucose was added at 1.0% by weight, the pH was adjusted to 5.5 using sodium hydroxide, and then sterilized at 121 ° C. for 15 minutes to adjust the glucose concentration. A substrate solution was obtained.
[0056]
5. Preculture of lactic acid bacteria capable of producing nisin
50 μl of the stock strain of Lactococcus lactis IO-1 was inoculated into 10 ml of TGC medium, and allowed to stand still at 37 ° C. for 18 hours to obtain a culture solution. 10 ml of the culture solution was inoculated into 100 ml of CMG medium, and 3 ml at 37 ° C. A preculture of lactic acid bacteria was obtained by shaking culture at 100 rpm for an hour.
6. Main culture of lactic acid bacteria capable of producing nisin
The main culture of lactic acid bacteria having a nisin-producing ability was performed by a continuous culture method using a continuous culture device comprising a 3 L jar fermenter.
That is, 900 ml of the lactic acid bacteria culture medium obtained in 1 above, 900 ml of the lactic acid bacteria culture medium obtained in 3 above, and 90 ml of the lactic acid bacteria preculture liquid obtained in 5 above were introduced into the 3 L jar fermenter, and the stirring speed was 250 rpm. Batch culture was performed at a culture temperature of 30 ° C. and a pH of 5.5, and when the glucose concentration of the culture solution reached 4 g / L 8 hours after the start of the culture, pH control, glucose concentration control, and turbidity were performed. The culture was shifted to continuous culture with control, and the continuous culture was performed until 42 hours after the start of the culture while maintaining the glucose concentration of the culture solution at 4 g / L.
The pH control was performed by using a pH sensor and supplying a 5N sodium hydroxide solution to the culture tank to maintain the pH at 5.5. The glucose concentration was controlled by measuring the glucose concentration of the culture using an online biochemical controller BF-410 (manufactured by Able Corporation) equipped with a glucose electrode, and measuring the glucose concentration obtained in step 2 during continuous culture. The mixture obtained by mixing the substrate solution for adjustment and the substrate solution for glucose concentration adjustment obtained in 4 above at a ratio of 1: 1 is supplied to a culture tank to maintain the glucose concentration of the culture solution at 4 g / L. It was done by doing. Further, at the time of the pH control and the glucose concentration control, the same amount of sterilizing solution as the 5N sodium hydroxide solution and the glucose concentration adjusting substrate solution supplied to the culture tank was passed through the microfiltration membrane from the culture tank. By withdrawing, the liquid volume in the culture tank was kept constant. The turbidity control is performed by using a laser turbidity meter and using the same amount of culture solution (bacterium) as the turbidity control supply solution (yeast extract 0.5% by weight, polypeptone 0.5% by weight) supplied to the culture tank. Was removed from the culture tank, whereby the cell concentration and liquid volume in the culture tank were kept constant.
[0057]
Each of the fermentation products obtained in Example 1, Example 2, Examples 4 to 7, Comparative Example 1 and Comparative Example 2 was subjected to the following Test Example 1, and the nisin concentration of the fermentation product was measured. .
[0058]
[Test Example 1]
Each of the fermented products obtained in Example 1, Example 2, Examples 4 to 7, Comparative Example 1 and Comparative Example 2 was subjected to centrifugation at 9000 rpm for 30 minutes to obtain a top product. The supernatant 1 of each fermentation product was adjusted to pH 3.0 by adding concentrated hydrochloric acid to the supernatant 1 of each fermentation product, left at 4 ° C. overnight, and again subjected to centrifugation at 9000 rpm and 30 min. The supernatant 2 of the fermentation product was obtained, and the nisin concentration of the culture solution was measured using the obtained supernatant 2 of each fermentation product as a sample according to the following method. That is, Micrococcus luteus (IFO N0.3333) was used as an indicator bacterium, and nisin (manufactured by ICN) dissolved in 0.01 N HCl at 3000 IU / ml was used as a nisin A standard solution. One loopful of the indicator bacterium was inoculated into 10 ml of LB liquid medium, and shake culture was performed under the conditions of a culture temperature of 30 ° C., a stirring speed of 100 rpm, and a culture time of 18 hours to obtain a culture solution, and 100 μl of the culture solution was cooled to an appropriate temperature. The suspension was suspended in 2.0 ml of soft agar to obtain a suspension. The suspension was overlaid on an LB agar medium, allowed to stand for 1 hour, and then diluted with 0.01N HCl to an appropriate concentration to obtain the supernatant of the fermentation product. 2 was spotted on the LB agar medium in an amount of 10 μl each, and cultured at 30 ° C. for 24 hours. Then, the presence or absence of a growth inhibition circle around the spot was confirmed. The dilution rate D was determined, and the nisin antibacterial activity value was calculated from the relational expression of nisin antibacterial activity (AU / ml) = 1 / D × sample addition amount (ml).
[0059]
[Evaluation 1]
Table 1 shows the nisin antibacterial activity values of the respective fermentation products obtained 24 hours after the start of the culture in Example 1 and Comparative Example 1. From the results shown in Table 1, the following was found. That is, the nisin antibacterial activity 24 hours after the start of the culture was as low as 1200 IU / ml for the fermentation product obtained in Comparative Example 1, whereas the fermentation product obtained in Example 1 was 4500 IU. / Ml and an extremely high value. That is, the nisin antibacterial activity value of the fermentation product obtained by the method for producing nisin of the present invention using the lactic acid bacteria culture medium obtained from the barley shochu distillation residue is determined by the conventional method for producing nisin using the MRS medium. It was found that the obtained fermented product reached about 3.8 times the nisin antibacterial activity value.
Table 2 shows the nisin antibacterial activity values in the continuous culture of Example 2 and Comparative Example 2. From the results shown in Table 2, the following was found. That is, in Comparative Example 2, the nisin antibacterial activity value showed a maximum value at 12 hours after the start of culture, in which the batch culture was shifted to continuous culture, and then gradually decreased, and then, at 42 hours after the start of culture, 1000 IU / ml. On the other hand, in Example 2, the maximum value was shown at 12 hours after the start of culture, which shifted from batch culture to continuous culture, and then decreased until 24 hours, but after 24 hours, It rose again and reached 6300 IU / ml 42 hours after the start of the culture. That is, the lactic acid bacterium culture medium obtained from the barley shochu distillation residue is used, and the nisin production method of the present invention in which culturing is performed while maintaining the glucose concentration of the culture solution during continuous culture at 4 g / L. The nisin antibacterial activity value of the fermented product is obtained by a conventionally known method for producing nisin in which culture is performed using an MRS medium and maintaining the glucose concentration of the culture solution during continuous culture at less than 0.1 g / L. It was found to reach 6.3 times the nisin antibacterial activity value of the fermented product.
The following was found from the results of Example 3 and Comparative Example 3. That is, the nisin antibacterial activity value of each fermentation product obtained by subjecting various lactic acid bacteria strains having a nisin-producing ability to continuous culture in Example 3 was the same as in Comparative Example 3 regardless of which strain was used. The value was significantly higher than that in the case of employing the known nisin production method shown in FIG.
[0060]
The results of Example 4 and Example 5 revealed the following. That is, instead of the liquid component obtained by solid-liquid separation of the barley shochu distillation residue used in the present invention, the liquid component is filtered to obtain a clarified liquid, and the clarified liquid is concentrated to obtain a concentrated liquid. When a solution comprising the non-adsorbable fraction described in Document 6 obtained by subjecting the concentrated solution to an adsorption treatment using a synthetic adsorbent is used, the fermentation product obtained in Examples 4 and 5 is used. The nisin antibacterial activity value was found to be equivalent to the nisin antibacterial activity value of the fermented products obtained in each of Example 1 and Example 2.
[0061]
The results of Example 6 and Example 7 revealed the following. That is, Example 6 and Example in which a mixture of a liquid component obtained by solid-liquid separation of a barley shochu distillation residue and a liquid component obtained by solid-liquid separation of a rice shochu distillation residue was used as a medium. The nisin antibacterial activity value of the fermented product obtained in Example 7 was found to be equivalent to the nisin antibacterial activity value of the fermented product obtained in each of Example 1 and Example 2.
[0062]
[Test Example 2]
Each of the fermentation products obtained in Example 1, Example 2, Examples 4 to 7, Comparative Example 1 and Comparative Example 2 was subjected to a sensory test for taste. That is, each of the fermentation products obtained in Example 1, Example 2, Examples 4 to 7, Comparative Example 1 and Comparative Example 2 was subjected to a sensory test by 10 panelists, and the fermentation products were obtained. The taste was evaluated.
[0063]
[Evaluation 2]
Table 3 shows the sensory test results of the fermentation products obtained in Example 1, Example 2, Examples 4 to 7, Comparative Example 1 and Comparative Example 2. From the results shown in Table 3, the following was found. That is, the fermentation products obtained in Comparative Example 1 and Comparative Example 2 had extremely low monotonous flavor and unpleasant unpleasant taste, and thus had very low sensory evaluation values. 2, and all of the fermented products obtained in Examples 4 to 7 have a mellow and harmonious flavor and a rich umami, and thus have a significantly high sensory evaluation value, and thus are seasonings or food materials. It turned out to be suitable. From the comments of the panelists, among the fermentation products obtained in Examples 1, 2, and 4 to 7, the fermentation products obtained in Examples 4 and 5 are particularly The fermented products obtained in Example 6 and Example 7 are characterized by exhibiting a distinctly mellow flavor, and each of the fermented products obtained in Example 6 and Example 7 is more palatable than the fermented products obtained in Example 1 and Example 2. It has been revealed that it has the characteristic of exhibiting a rich umami.
[0064]
From the above results, it is understood that according to the present invention, nisin productivity can be drastically increased as compared with a conventionally known method for producing nisin. In addition, the fermented product obtained by the present invention contains a significant amount of nisin and, in addition to excellent antibacterial activity, exhibits a mellow, harmonious flavor and rich umami, and thus can be used very suitably as food. .
[0065]
[Table 1]
[0066]
[Table 2]
[0067]
[Table 3]
[0068]
【The invention's effect】
As described above in detail, the method for producing a fermentation product containing nisin of the present invention comprises a liquid component (A) obtained by solid-liquid separation of a barley shochu distillation residue, and has a Brix concentration of 0.5. A medium prepared by adding a saccharide to a liquid adjusted to a range of 6.0 to 6.0 and using a lactic acid bacterium having a nisin-producing ability is cultured. 0.1 g / L or more and the pH value is controlled in the range of 4.0 to 7.0, and enables efficient production of a fermentation product containing a significant amount of nisin. The resulting fermented product containing a significant amount of nisin has excellent taste and can be suitably used as food.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003078903A JP3672258B2 (en) | 2002-03-22 | 2003-03-20 | Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002081321 | 2002-03-22 | ||
JP2003078903A JP3672258B2 (en) | 2002-03-22 | 2003-03-20 | Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004000167A true JP2004000167A (en) | 2004-01-08 |
JP3672258B2 JP3672258B2 (en) | 2005-07-20 |
Family
ID=30445813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003078903A Expired - Fee Related JP3672258B2 (en) | 2002-03-22 | 2003-03-20 | Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3672258B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007084504A (en) * | 2005-09-26 | 2007-04-05 | Sanwa Shiyurui Kk | Composition containing fermentation product of barley as active ingredient and having neovascularization inhibitory action |
EP2229432A1 (en) * | 2007-09-05 | 2010-09-22 | Institut National de la Recherche Scientifique | Antimicrobial activity of bacteriocin-producing lactic acid bacteria |
JP2017527267A (en) * | 2014-07-21 | 2017-09-21 | ザイレコ,インコーポレイテッド | Biomass processing |
JP2017536093A (en) * | 2014-09-30 | 2017-12-07 | アールエヌエー インコーポレイテッドRna Inc. | Method for producing microbial preparation and microbial preparation produced thereby |
CN108374033A (en) * | 2018-02-13 | 2018-08-07 | 钟文文 | A kind of extracting method of nisin |
-
2003
- 2003-03-20 JP JP2003078903A patent/JP3672258B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007084504A (en) * | 2005-09-26 | 2007-04-05 | Sanwa Shiyurui Kk | Composition containing fermentation product of barley as active ingredient and having neovascularization inhibitory action |
EP2229432A1 (en) * | 2007-09-05 | 2010-09-22 | Institut National de la Recherche Scientifique | Antimicrobial activity of bacteriocin-producing lactic acid bacteria |
EP2229432A4 (en) * | 2007-09-05 | 2011-05-11 | Inst Nat Rech Scient | Antimicrobial activity of bacteriocin-producing lactic acid bacteria |
JP2017527267A (en) * | 2014-07-21 | 2017-09-21 | ザイレコ,インコーポレイテッド | Biomass processing |
JP2017536093A (en) * | 2014-09-30 | 2017-12-07 | アールエヌエー インコーポレイテッドRna Inc. | Method for producing microbial preparation and microbial preparation produced thereby |
US10676708B2 (en) | 2014-09-30 | 2020-06-09 | Rna Inc. | Method for preparing microbial preparation and microbial preparation produced by the same |
CN108374033A (en) * | 2018-02-13 | 2018-08-07 | 钟文文 | A kind of extracting method of nisin |
Also Published As
Publication number | Publication date |
---|---|
JP3672258B2 (en) | 2005-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2042590B1 (en) | Enhancer of proliferation of lactic acid bacterium, and agent for improvement in survivability of lactic acid bacterium | |
JP4815493B2 (en) | Medium composition containing fermented gochujang, brewed soy sauce stock or acid-decomposed soy sauce stock, and method for producing γ-aminobutyric acid | |
JP2000210075A (en) | Lactic acid bacterium having high productivity of gamma- aminobutyric acid, fermented food with high content of gamma-aminobutyric acid using the same lactic acid bacterium and its production | |
JP5011543B2 (en) | Method for producing fermented material containing GABA | |
US5879915A (en) | Method for the natural production of formic acid or formate | |
JP2806156B2 (en) | How to ferment soy milk | |
US4769329A (en) | Preparation of optically pure D- and L- lactic acid | |
JP3672258B2 (en) | Method for producing fermented product containing significant amount of nisin using barley shochu distillation residue | |
JP6955808B1 (en) | How to make fermented honey | |
JP4325834B2 (en) | Alcohol-containing beverage and method for producing the same | |
JP3672259B2 (en) | A method for producing a fermented product containing a significant amount of nisin using barley shochu distillation residue and rice shochu distillation residue as a medium | |
US9382562B2 (en) | Strains of Serratia plymuthica producing turanose and uses thereof | |
Furuta et al. | Utilization of fermented barley extract obtained from a by-product of barley shochu for nisin production | |
JP5626915B2 (en) | Method for producing γ-aminobutyric acid | |
JPS61293372A (en) | Non-alcoholic grain beverage, its production and bacteria used therein | |
JP2012205539A (en) | Method of manufacturing ferulic acid containing fraction | |
WO1999062347A1 (en) | Process for producing seasoning liquors with flavor of vegetables pickled in salted rice bran paste | |
KR102243418B1 (en) | Novel acetic acid bacteria and process for preparing Kombucha beverages using the same | |
JP4721749B2 (en) | HDMF high-producing lactic acid bacteria and use thereof | |
KR20060042583A (en) | Method for preparing gaba using by-products from rice polishing | |
JP3337098B2 (en) | Fermented acidic whey product and method for producing the same | |
JPH08242880A (en) | Production of gamma-polyglutamic acid | |
JP3791681B2 (en) | Beverage containing acetic acid | |
JP4020444B2 (en) | Method for producing liquid composition containing γ-lactone | |
JP4204173B2 (en) | Sake production method using lactic acid bacteria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040518 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040518 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040518 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20040518 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040624 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040624 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20040812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050208 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050415 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150428 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |