JP2004099438A - Graphite powder, negative pole for lithium secondary battery and lithium secondary battery - Google Patents
Graphite powder, negative pole for lithium secondary battery and lithium secondary battery Download PDFInfo
- Publication number
- JP2004099438A JP2004099438A JP2003358046A JP2003358046A JP2004099438A JP 2004099438 A JP2004099438 A JP 2004099438A JP 2003358046 A JP2003358046 A JP 2003358046A JP 2003358046 A JP2003358046 A JP 2003358046A JP 2004099438 A JP2004099438 A JP 2004099438A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- secondary battery
- lithium secondary
- graphite powder
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 135
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 46
- 239000002245 particle Substances 0.000 claims abstract description 40
- 230000002427 irreversible effect Effects 0.000 abstract description 25
- 229910002804 graphite Inorganic materials 0.000 description 78
- 239000010439 graphite Substances 0.000 description 78
- 238000000034 method Methods 0.000 description 14
- 239000002243 precursor Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 12
- -1 for example Inorganic materials 0.000 description 9
- 238000010304 firing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011280 coal tar Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000005087 graphitization Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、黒鉛粉末、その製造法、リチウム二次電池用負極及びリチウム二次電池に関する。さらに詳しくは、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適な、不可逆容量が小さく、急速充放電特性等に優れ、且つ高容量のリチウム二次電池とそれを得るためのリチウム二次電池用負極、前記リチウム二次電池用負極用黒鉛粉末に関する。 The present invention relates to a graphite powder, a method for producing the same, a negative electrode for a lithium secondary battery, and a lithium secondary battery. More specifically, a lithium secondary battery with a small irreversible capacity, excellent rapid charge / discharge characteristics, etc., and a high capacity lithium secondary battery suitable for use in portable equipment, electric vehicles, power storage, etc. The present invention relates to a negative electrode for a battery and the graphite powder for a negative electrode for a lithium secondary battery.
従来黒鉛粒子としては、例えば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分子材料やピッチを黒鉛化した人造黒鉛粒子、それらを粉砕した黒鉛粒子、高密度黒鉛成形体を粉砕した黒鉛粒子等がある。これらの黒鉛粒子は、有機系結着剤及び有機溶剤と混合して黒鉛ペーストとし、この黒鉛ペーストを銅箔の表面に塗布し、溶剤を乾燥してリチウム二次電池用負極として使用されている。例えば、特公昭62−23433号公報に示されるように、負極に黒鉛を使用することでリチウムのデンドライトによる内部短絡の問題を解消し、サイクル特性の改良を図っている。 Conventional graphite particles include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke, artificial graphite particles obtained by graphitizing an organic polymer material or pitch, graphite particles obtained by crushing them, and a high-density graphite molded product obtained by crushing. There are graphite particles and the like. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste, the graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. . For example, as shown in JP-B-62-23433, the problem of internal short circuit due to lithium dendrite is solved by using graphite for the negative electrode, and the cycle characteristics are improved.
しかしながら、黒鉛結晶が発達している天然黒鉛やコークスを黒鉛化した人造黒鉛等の黒鉛材料は、c軸方向の結晶の層間の結合力が、結晶の面方向の結合に比べて弱いために、粉砕により黒鉛層間の結合が切れ、アスペクト比が大きいいわゆる鱗状の黒鉛粒子となる。鱗状黒鉛は、アスペクト比が大きいために、バインダーと混練して集電体に塗布して電極を作製したときに、鱗状黒鉛粒子が集電体の面方向に配向し、その結果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによって発生するC軸方向の膨張・収縮により電極内部の破壊が生じ、サイクル特性が低下する問題がある。またこれらの黒鉛は粉砕による衝撃で黒鉛粒子の表面状態が変化し、その結果比表面積が大きくなり、作製するリチウム二次電池の第一サイクル目の不可逆容量が大きくなる問題がある。そこで、リチウム二次電池の第一サイクル目の不可逆容量が小さく、高容量急速充放電特性サイクル特性が向上できる黒鉛粉末が要求されている。 However, graphite materials such as natural graphite in which graphite crystals have been developed and artificial graphite obtained by graphitizing coke have a weaker bonding force between layers of crystals in the c-axis direction than bonding in the crystal plane direction. The pulverization breaks the bond between the graphite layers, resulting in so-called scale-like graphite particles having a large aspect ratio. Since the scale-like graphite has a large aspect ratio, when the electrode is produced by kneading with a binder and applying to a current collector, the scale-like graphite particles are oriented in the plane direction of the current collector, and as a result, the graphite crystal is formed. There is a problem that the inside of the electrode is broken by expansion and contraction in the C-axis direction caused by repetition of occlusion and desorption of lithium, thereby deteriorating cycle characteristics. In addition, these graphites have a problem that the surface state of the graphite particles changes due to the impact due to the pulverization, resulting in an increase in the specific surface area and an increase in the irreversible capacity in the first cycle of the manufactured lithium secondary battery. Therefore, there is a demand for a graphite powder that has a small irreversible capacity in the first cycle of the lithium secondary battery and can improve the cycle characteristics of high-capacity rapid charge / discharge characteristics.
請求項1及び2記載の発明は、高容量で、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れたリチウム二次電池に好適な黒鉛粉末の製造法を提供するものである。請求項3記載の発明は、高容量で、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れたリチウム二次電池に好適な黒鉛粉末を提供するものである。請求項4記載の発明は、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れたリチウム二次電池用負極を提供するものである。請求項5記載の発明は、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れたリチウム二次電池を提供するものである。
The inventions of
本発明は、かさ密度が1.6g/cm3以下の黒鉛成形体を粉砕する工程を含むことを特徴とする黒鉛粉末の製造法に関する。また本発明は、前記かさ密度が1.6g/cm3以下の黒鉛成形体が、400〜3200℃の範囲で揮発する成分を少なくとも1種類含んでなる黒鉛前駆体を黒鉛化して得られたものである黒鉛粉末の製造法に関する。また本発明は、平均粒径が10〜50μm、比表面積が8m2/g以下、アスペクト比が5以下である黒鉛粉末に関する。また本発明は、前記黒鉛粉末又は前記製造法により得られる黒鉛粉末を含有してなるリチウム二次電池用負極に関する。さらに本発明は、前記の負極と正極を有してなるリチウム二次電池に関する。 The present invention relates to a method for producing graphite powder, comprising a step of pulverizing a graphite molded body having a bulk density of 1.6 g / cm 3 or less. Further, the present invention provides a graphite molded article having a bulk density of 1.6 g / cm 3 or less, which is obtained by graphitizing a graphite precursor containing at least one component that volatilizes in a range of 400 to 3200 ° C. And a method for producing graphite powder. The present invention also relates to a graphite powder having an average particle size of 10 to 50 μm, a specific surface area of 8 m 2 / g or less, and an aspect ratio of 5 or less. The present invention also relates to a negative electrode for a lithium secondary battery containing the graphite powder or the graphite powder obtained by the production method. Further, the present invention relates to a lithium secondary battery having the above-described negative electrode and positive electrode.
請求項1及び2記載の製造法によれば、高容量で、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れたリチウム二次電池に好適な黒鉛粉末が得られる。請求項3記載の黒鉛粉末は、高容量で、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れたリチウム二次電池に好適なものである。請求項4記載のリチウム二次電池用負極は、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れるものである。請求項5記載のリチウム二次電池は、第一サイクル目の不可逆容量が小さく、急速充放電特性に優れるものである。
According to the production method of
本発明の黒鉛粉末は、かさ密度が1.6g/cm3以下の黒鉛成形体を粉砕する工程を含むことを特徴とする。粉砕する黒鉛成形体のかさ密度は1.0〜1.6g/cm3の範囲が好ましく、1.2〜1.5g/cm3の範囲であればさらに好ましく、1.2〜1.45g/cm3の範囲であれば特に好ましい。粉砕する黒鉛成形体のかさ密度が1.6g/cm3を超えると、粉砕において大きな粉砕力が必要となり、その粉砕力によって作製する黒鉛粉末の表面の状態が変化し、その結果比表面積が増大し、作製するリチウム二次電池の不可逆容量が低下する。さらには、作製する黒鉛粉末の表面の結晶性も低下し、得られるリチウム二次電池の放電容量が低下する。一方、粉砕する黒鉛成形体の密度が1.0g/cm3未満であると、黒鉛成形体の取扱性が低下する傾向にある。また、黒鉛化時の炉詰め重量が少なくなり黒鉛化処理効率が悪くなる傾向にある。なお、かさ密度は黒鉛成形体の重量及び体積の測定値から算出できる。 The graphite powder of the present invention is characterized by including a step of pulverizing a graphite molded body having a bulk density of 1.6 g / cm 3 or less. The bulk density of the graphite molded grinding is preferably in the range of 1.0~1.6g / cm 3, more preferably be in the range of 1.2~1.5g / cm 3, 1.2~1.45g / A range of cm 3 is particularly preferable. If the bulk density of the graphite compact to be crushed exceeds 1.6 g / cm 3 , a large crushing force is required in crushing, and the state of the surface of the graphite powder to be produced is changed by the crushing force, and as a result, the specific surface area increases. However, the irreversible capacity of the manufactured lithium secondary battery is reduced. Further, the crystallinity of the surface of the graphite powder to be produced also decreases, and the discharge capacity of the obtained lithium secondary battery decreases. On the other hand, when the density of the graphite molded body to be ground is less than 1.0 g / cm 3 , the handleability of the graphite molded body tends to decrease. Further, the furnace filling weight at the time of graphitization tends to decrease, and the graphitization treatment efficiency tends to deteriorate. The bulk density can be calculated from the measured values of the weight and volume of the graphite molded body.
かさ密度が1.6g/cm3以下の黒鉛成形体の作製方法としては、特に制限はない。例えば、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダを含む材料を混合したのち、所定形状に成形した黒鉛前駆体を非酸化性雰囲気で熱処理することで得られる。 There is no particular limitation on the method for producing a graphite molded body having a bulk density of 1.6 g / cm 3 or less. For example, it can be obtained by mixing a material containing a graphitizable aggregate or graphite and a graphitizable binder, and then heat-treating the graphite precursor formed into a predetermined shape in a non-oxidizing atmosphere.
黒鉛化可能な骨材としては、黒鉛化できる粉末材料であれば特に制限はなく、例えば、コークス粉末、樹脂の炭化物等が使用できる。黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末等が使用できるが粉末状であれば特に制限はない。黒鉛化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛粉末の粒径より小さいことが好ましい。黒鉛化可能なバインダとしては、タール、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が挙げられる。バインダの量としては、作製する黒鉛成形体の密度及び作製する黒鉛粉末のアスペクト比及び比表面積の点から、黒鉛化可能な骨材又は黒鉛との合計に対して30〜50重量%が好ましい。黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダを混合する方法は特に制限はないが、バインダの軟化温度以上で混合することが好ましく、その温度は使用するバインダの種類によって異なるが、80〜350℃の範囲が好ましい。 骨 The graphitizable aggregate is not particularly limited as long as it is a powder material that can be graphitized. For example, coke powder, carbide of resin, and the like can be used. As the graphite, for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as the powder is in the form of powder. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite powder produced in the present invention. Examples of the binder which can be graphitized include tar, pitch, and organic materials such as thermosetting resins and thermoplastic resins. The amount of the binder is preferably 30 to 50% by weight based on the total amount of the graphitizable aggregate or graphite from the viewpoint of the density of the graphite compact to be produced and the aspect ratio and the specific surface area of the graphite powder to be produced. The method of mixing the graphitizable aggregate or graphite with the graphitizable binder is not particularly limited, but it is preferable to mix at a temperature equal to or higher than the softening temperature of the binder, and the temperature varies depending on the type of the binder used. The range of -350 ° C is preferred.
黒鉛前駆体の成形体形状は、特に制限はないが、例えばブロック状、円筒状、塊状等が作業性、黒鉛化時の炉への詰め効率の点で好ましい。成形体の大きさに特に制限はないが、一片が5mm以上の長さを持つ形状のものが好ましい。ここで、上記かさ密度とするためには、黒鉛前駆体中に400〜3200℃の温度範囲において揮発する成分を含ませる方法、黒鉛前駆体をプレス成形する際のプレス圧力を低くしてかさ密度を調整する方法等があるが、黒鉛前駆体中に400〜3200℃の温度範囲において揮発する成分を含ませる方法が好ましい。この方法において、含まれる成分の揮発温度が400℃未満では黒鉛成形体のかさ密度が高くなりやすく、3200℃を超えると黒鉛成形体中に揮発成分が残存しやすくなる問題がある。ここで揮発温度とは、常圧において成分が昇華、分解、溶融ガス化等により揮発し、重量減少を生じる温度をいう。一般に、黒鉛前駆体は、焼成温度400〜900℃の炭素化において、収縮し、高密度化しやすい。従って、揮発する成分としては、400〜1000℃の炭素化時の収縮後も、残存しやすいものが得られる黒鉛成形体の密度の点で好ましく、揮発温度は800〜3000℃の範囲が好ましく、1000〜3000℃の範囲がより好ましい。 成形 The shape of the graphite precursor is not particularly limited, but is preferably, for example, a block, a cylinder, or a lump in terms of workability and packing efficiency in a furnace during graphitization. There is no particular limitation on the size of the molded body, but a molded article having a length of 5 mm or more is preferable. Here, in order to obtain the above bulk density, a method of including a component which is volatilized in a temperature range of 400 to 3200 ° C. in the graphite precursor, a method of lowering the pressing pressure when press-forming the graphite precursor, and reducing the bulk density And the like, but it is preferable to include a component that volatilizes in a temperature range of 400 to 3200 ° C. in the graphite precursor. In this method, if the volatilization temperature of the contained component is lower than 400 ° C., the bulk density of the graphite molded body tends to increase, and if it exceeds 3200 ° C., there is a problem that the volatile component tends to remain in the graphite molded body. Here, the volatilization temperature refers to a temperature at which the components volatilize at normal pressure due to sublimation, decomposition, melt gasification, and the like, causing a weight loss. In general, graphite precursors tend to shrink and become denser when carbonized at a firing temperature of 400 to 900 ° C. Therefore, as a volatile component, even after shrinkage during carbonization at 400 to 1000 ° C., it is preferable in terms of the density of a graphite molded body that easily remains, and the volatilization temperature is preferably in a range of 800 to 3000 ° C., The range of 1000-3000 degreeC is more preferable.
400〜3200℃の温度範囲において揮発する成分の添加は黒鉛前駆体を成形する前に添加してもよいが、均一混合の点で、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダを混合する際に添加し、これらを同時に混合することが好ましい。400〜3200℃の温度範囲において揮発する成分が含まれる黒鉛前駆体は、非酸化性雰囲気中で、焼成又は黒鉛化の熱処理を行う際に揮発することによって、かさ密度が1.6g/cm3以下の低密度黒鉛成形体とすることができる。400〜3200℃の温度範囲において揮発する成分の種類としては、特に制限はなく、例えばポリビニルアルコール(揮発温度400〜700℃)等の熱可塑性樹脂、松脂等の植物から得られる樹脂(揮発温度400〜1000℃)、ケイ素、ホウ素、鉄、チタン、ニッケル等の金属、これらの酸化物、炭化物等(揮発温度2200〜3200℃)が使用できる。これらの中で、金属、その酸化物又は炭化物を使用すると、黒鉛化触媒としての機能も発揮し、作製する黒鉛粉末の結晶性の点でさらに好ましい。 The addition of a component that volatilizes in a temperature range of 400 to 3200 ° C. may be added before molding the graphite precursor, but in terms of uniform mixing, a graphitizable aggregate or graphite and a graphitizable binder are added. It is preferable to add them at the time of mixing and mix them simultaneously. A graphite precursor containing a component that volatilizes in a temperature range of 400 to 3200 ° C. is volatilized when performing a heat treatment for firing or graphitization in a non-oxidizing atmosphere, so that the bulk density is 1.6 g / cm 3. The following low-density graphite molded body can be obtained. There are no particular restrictions on the types of components that evaporate in the temperature range of 400 to 3200 ° C., for example, thermoplastic resins such as polyvinyl alcohol (evaporation temperature of 400 to 700 ° C.) and resins obtained from plants such as rosin (evaporation temperature of 400). To 1000 ° C.), metals such as silicon, boron, iron, titanium and nickel, oxides and carbides thereof, and the like (volatile temperature of 2200 to 3200 ° C.). Among these, the use of a metal, an oxide or a carbide thereof also functions as a graphitization catalyst, and is more preferable in view of the crystallinity of the graphite powder to be produced.
黒鉛前駆体の焼成は、酸化し難い条件で行うことが好ましく、例えば窒素雰囲気中、アルゴン雰囲気中、真空中で焼成する方法が挙げられる。焼成の温度は、2000℃以上が好ましく、2500℃以上であればより好ましく、2800℃以上であればさらに好ましい。焼成の温度が低いと、黒鉛の結晶の発達が悪く、放電容量が低くなる傾向にある。また、黒鉛化の温度が低いと添加した揮発成分が黒鉛成形体に残存し易く、黒鉛成形体の密度が高くなる傾向にある。焼成の温度に上限はないが、一般に3200℃以下である。また揮発成分は、作製する黒鉛成形体中に残存すると、得られる黒鉛粉末の比表面積が大きくなるばかりでなく、放電容量が低下する傾向にあるので、揮発成分の揮発温度より焼成、黒鉛化温度を高くすることが好ましい。焼成の昇温は段階的に行ってもよく、例えば、一度500〜1200℃程度で仮焼成したのちさらに2000℃以上で焼成することも可能である。 焼 成 The firing of the graphite precursor is preferably performed under conditions that are difficult to oxidize, and examples include a method of firing in a vacuum in a nitrogen atmosphere, an argon atmosphere, or a vacuum. The firing temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, even more preferably 2800 ° C. or higher. If the firing temperature is low, the development of graphite crystals is poor, and the discharge capacity tends to be low. When the temperature for graphitization is low, the added volatile component tends to remain in the graphite molded body, and the density of the graphite molded body tends to increase. Although there is no upper limit on the firing temperature, it is generally 3200 ° C. or lower. When the volatile components remain in the graphite compact to be produced, not only the specific surface area of the obtained graphite powder increases, but also the discharge capacity tends to decrease. Is preferably increased. The temperature for firing may be increased stepwise. For example, it is also possible to temporarily fire at about 500 to 1200 ° C. and then fire at 2000 ° C. or more.
以上によりかさ密度が1.6g/cm3以下の黒鉛成形体を得、ついでこれを粉砕する。粉砕する方法は、特に制限はなく、例えば、ジェットミル、ハンマーミル、ピンミル等の衝撃粉砕が比表面積、不可逆容量、放電容量の点で好ましい。粉砕後の黒鉛粉末の平均粒径は10〜50μmとすることが好ましい。なお、本発明において平均粒径は、レーザー回折粒度分布計により測定することができる。 Thus, a graphite molded body having a bulk density of 1.6 g / cm 3 or less is obtained, and then pulverized. The method of pulverization is not particularly limited, and for example, impact pulverization such as a jet mill, a hammer mill, and a pin mill is preferable in terms of specific surface area, irreversible capacity, and discharge capacity. The average particle size of the pulverized graphite powder is preferably 10 to 50 μm. In the present invention, the average particle size can be measured by a laser diffraction particle size distribution meter.
以上のように方法によれば、得られる黒鉛粉末は、比表面積が8m2/g以下とすることができる。比表面積は、6m2/g以下であればより好ましく、4m2/g以下であればさらに好ましい。なお、比表面積は、窒素ガス吸着によるBET法で測定することができる。また、得られる黒鉛粉末は、アスペクト比が5以下であることが好ましく、3以下であればさらに好ましい。アスペクト比が大きすぎると、急速充放電特性が低下する傾向にある。なお、アスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明のアスペクト比は、顕微鏡で黒鉛粒子を拡大し、任意に10個以上の黒鉛粒子を選択し、A/Bを測定し、その平均値をとったものである。 According to the method as described above, the obtained graphite powder can have a specific surface area of 8 m 2 / g or less. The specific surface area is more preferably 6 m 2 / g or less, further preferably 4 m 2 / g or less. The specific surface area can be measured by a BET method using nitrogen gas adsorption. The obtained graphite powder preferably has an aspect ratio of 5 or less, more preferably 3 or less. If the aspect ratio is too large, the rapid charge / discharge characteristics tend to decrease. The aspect ratio is represented by A / B, where A is the length of the graphite particle in the major axis direction and B is the length of the graphite particle in the minor axis direction. The aspect ratio of the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 10 or more graphite particles, measuring A / B, and taking the average value.
また、得られる黒鉛粉末のX線広角回折における結晶の層間距離d(002)は3.40Å以下が好ましく、3.38Å以下であればより好ましく、3.37Å以下であれば特に好ましい。c軸方向の結晶子の大きさLc(002)は500Å以上であることが好ましく、1000Å以上であることがより好ましい。結晶の層間距離d(002)が小さくなるかc軸方向の結晶子の大きさLc(002)が大きくなると、放電容量が大きくなる。 {Also, the interlayer distance d (002) of the obtained graphite powder in X-ray wide angle diffraction is preferably 3.40 ° or less, more preferably 3.38 ° or less, and particularly preferably 3.37 ° or less. The crystallite size Lc (002) in the c-axis direction is preferably at least 500 °, more preferably at least 1000 °. As the interlayer distance d (002) of the crystal decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity increases.
本発明の黒鉛粉末は、リチウム二次電池用負極用として、有機系結着剤及び溶剤と混練して、シート状、ペレット状等の形状に成形される。有機系結着剤としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物等が使用できる。本発明においてイオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。これらの中では、イオン伝導率の大きな高分子化合物が好ましく、ポリフッ化ビニリデンが特に好ましい。 (4) The graphite powder of the present invention is used for a negative electrode for a lithium secondary battery, and is kneaded with an organic binder and a solvent, and is formed into a sheet shape, a pellet shape, or the like. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a polymer compound having a high ionic conductivity, and the like can be used. In the present invention, as the polymer compound having a large ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, and the like can be used. Among these, a polymer compound having a high ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.
黒鉛粉末と有機系結着剤との混合比率は、黒鉛粉末100重量部に対して、有機系結着剤を20重量部以下用いることが好ましく、3〜10重量部用いることがより好ましい。溶剤としては特に制限はなく、N−メチル2−ピロリドン、ジメチルホルムアミド、イソプロパノール等が用いられる。溶剤の量に特に制限はなく、所望の粘度に調整できればよいが、混合物に対して、30〜70重量%用いられることが好ましい。黒鉛粉末は、有機系結着剤及び溶剤と混練し、粘度を調整した後、集電体に塗布し、該集電体と一体化して負極とされる。集電体としては、例えばニッケル、銅等の箔、メッシュなどの金属集電体が使用できる。なお一体化は、例えばロール、プレス等の成形法で行うことができ、またこれらを組み合わせて一体化してもよい。 混合 The mixing ratio of the graphite powder and the organic binder is preferably 20 parts by weight or less, more preferably 3 to 10 parts by weight, with respect to 100 parts by weight of the graphite powder. The solvent is not particularly limited, and N-methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity, but is preferably used in an amount of 30 to 70% by weight based on the mixture. The graphite powder is kneaded with an organic binder and a solvent, and after adjusting the viscosity, is applied to a current collector and integrated with the current collector to form a negative electrode. As the current collector, for example, a metal current collector such as a foil of nickel, copper or the like, or a mesh can be used. In addition, the integration can be performed by a molding method such as a roll, a press, or the like, and may be integrated by combining these.
このようにして得られた負極は、リチウムイオン二次電池やリチウムポリマ二次電池等の負極として用いられる。例えば、リチウムイオン二次電池においては、セパレータを介して正極を対向して配置し、かつ電解液を注入する。本発明のリチウム二次電池用負極を用いることにより、従来の炭素材料を負極に使用したリチウム二次電池に比較して、不可逆容量が小さく、高容量で急速充放電特性、サイクル特性に優れたリチウム二次電池を作製することができる。 The negative electrode thus obtained is used as a negative electrode of a lithium ion secondary battery, a lithium polymer secondary battery, or the like. For example, in a lithium ion secondary battery, a positive electrode is arranged to face a separator, and an electrolyte is injected. By using the negative electrode for a lithium secondary battery of the present invention, compared with a lithium secondary battery using a conventional carbon material for the negative electrode, the irreversible capacity is small, high capacity, rapid charge / discharge characteristics, and excellent cycle characteristics. A lithium secondary battery can be manufactured.
本発明におけるリチウム二次電池の正極に用いられる材料については特に制限はなく、例えばLiNiO2、LiCoO2、LiMn2O4等を単独または混合して使用することができる。電解液としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等のリチウム塩を例えばエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン、プロピレンカーボネート等の非水系溶剤、ポリフッ化ビニリデン、ポリアニリン等の高分子固体電解質に溶解又は含有させたいわゆる有機電解液を使用することができる。液体の電解液を使用する場合に用いられるセパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。 The material used for the positive electrode of the lithium secondary battery in the present invention is not particularly limited, and for example, LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , or the like can be used alone or as a mixture. Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3. A so-called organic electrolytic solution dissolved or contained in a solid polymer electrolyte such as vinylidene fluoride and polyaniline can be used. As a separator used when a liquid electrolyte is used, for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof, containing a polyolefin such as polyethylene or polypropylene as a main component can be used.
なお、図1に円筒型リチウムイオン二次電池の一例の一部断面正面図を示す。図1に示す円筒型リチウムイオン二次電池は、薄板状に加工された正極1と、同様に加工された負極2が、ポリエチレン製微孔膜等のセパレータ3を介して重ね合わせたものを捲回し、これを金属製等の電池缶7に挿入し、密閉化されている。正極1は正極タブ4を介して正極蓋6に接合され、負極2は負極タブ5を介して電池底部へ接合されている。正極蓋6はガスケット8にて電池缶7へ固定されている。
FIG. 1 shows a partial cross-sectional front view of an example of a cylindrical lithium ion secondary battery. The cylindrical lithium ion secondary battery shown in FIG. 1 is obtained by winding a
以下、本発明の実施例を図面を参照し説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例1
平均粒径10μmのコークス粉末50重量部と、ピッチ15重量部と、炭化ケイ素(揮発温度2500〜3000℃)10重量部と、コールタール10重量部を混合し、200℃で1時間撹拌した。次いで、この混合物を平均粒径20μmに粉砕し、該粉砕物を金型に入れプレス成形し、大きさ15mm×25cm×6cmの直方体の黒鉛前駆体成形体とした。この黒鉛前駆体成形体を窒素雰囲気中で1000℃で熱処理した後、さらに窒素雰囲気下で3000℃で熱処理し、黒鉛成形体を得た。得られた黒鉛成形体のかさ密度は、黒鉛成形体の重量及び体積の測定値から算出した。さらにこの黒鉛成形体を粉砕し、黒鉛粉末とした。得られた黒鉛粉末の平均粒径は、レーザー回折式粒度測定機で、比表面積は窒素ガス吸着によるBET5点法で求めた。アスペクト比の測定は、得られた黒鉛粉末を電子顕微鏡で拡大し、10個任意に選び出し、アスペクト比の平均値を測定した。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測定結果を示す。
Example 1
50 parts by weight of coke powder having an average particle size of 10 μm, 15 parts by weight of pitch, 10 parts by weight of silicon carbide (volatilization temperature 2500 to 3000 ° C.), and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Next, this mixture was pulverized to an average particle size of 20 μm, and the pulverized product was put into a mold and press-formed to obtain a rectangular graphite precursor molded body having a size of 15 mm × 25 cm × 6 cm. This graphite precursor compact was heat-treated at 1000 ° C. in a nitrogen atmosphere, and further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a graphite compact. The bulk density of the obtained graphite molded body was calculated from the measured values of the weight and volume of the graphite molded body. Further, the graphite compact was pulverized to obtain graphite powder. The average particle size of the obtained graphite powder was determined by a laser diffraction particle size analyzer, and the specific surface area was determined by a BET five-point method using nitrogen gas adsorption. The aspect ratio was measured by enlarging the obtained graphite powder with an electron microscope, arbitrarily selecting ten pieces, and measuring the average value of the aspect ratio. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio.
次いで得られた黒鉛粒子90重量%に、N−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%加えて混練して黒鉛ペーストを作製した。この黒鉛ペーストを厚さが10μmの圧延銅箔に塗布し、さらに乾燥して、面圧490MPa(0.5トン/cm2)の圧力で圧縮成形し、試料電極とした。黒鉛粒子層の厚さは90μm、密度は1.5g/cm3とした。作製した試料電極を3端子法による定電流充放電を行い、リチウム二次電池用負極としての評価を行った。 Next, to 90% by weight of the obtained graphite particles, 10% by weight of solid content of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone was added and kneaded to prepare a graphite paste. This graphite paste was applied to a rolled copper foil having a thickness of 10 μm, further dried, and compression-molded under a pressure of 490 MPa (0.5 ton / cm 2 ) to obtain a sample electrode. The thickness of the graphite particle layer was 90 μm, and the density was 1.5 g / cm 3 . The prepared sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery.
図2は作成したリチウム二次電池の概略図であり、試料電極の評価は図2に示すようにガラスセル9に、電解液10としてLiPF6をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)(ECとDMCは体積比で1:1)の混合溶媒に1モル/リットルの濃度になるように溶解した溶液を入れ、試料電極11、セパレータ12及び対極13を積層して配置し、さらに参照極14を上部から吊るしてリチウム二次電池を作製して行った。なお、対極13及び参照極14には金属リチウムを使用し、セパレータ4にはポリエチレン微孔膜を使用した。得られたリチウム二次電池を用いて試料電極11と対極13の間に、試料電極の面積に対して、0.2mA/cm2の定電流で5mV(Vvs.Li/Li+)まで充電し、1V(Vvs.Li/Li+)まで放電する試験を繰り返した。また、30サイクル毎に対極の金属リチウムを新品に交換しながら繰り返し充放電を行った。表1に1サイクル目の放電容量、不可逆容量、100サイクル目の放電容量を示す。
FIG. 2 is a schematic diagram of the prepared lithium secondary battery. The evaluation of the sample electrode was performed by using LiPF 6 as an electrolyte 10 in ethylene carbonate (EC) and dimethyl carbonate (DMC) (FIG. 2). A solution prepared by dissolving EC and DMC at a volume ratio of 1 mol / L in a mixed solvent of 1: 1) is added, and the sample electrode 11, the separator 12, and the counter electrode 13 are stacked and arranged. 14 was suspended from above to produce a lithium secondary battery. Note that metallic lithium was used for the counter electrode 13 and the
実施例2
平均粒径10μmのコークス粉末50重量部と、ピッチ15重量部と、炭化ケイ素5重量部と、コールタール10重量部を混合し、200℃で1時間撹拌した以外は実施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製した。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測定結果を示す。また、実施例1と同様の方法で充放電試験を実施した。表1に1サイクル目の放電容量、不可逆容量、100サイクル目の放電容量を示す。
Example 2
A method similar to that of Example 1 except that 50 parts by weight of coke powder having an average particle size of 10 μm, 15 parts by weight of pitch, 5 parts by weight of silicon carbide, and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. A graphite molded body and a graphite powder were produced. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
実施例3
平均粒径10μmのコークス粉末50重量部と、ピッチ15重量部と、炭化ケイ素2重量部と、コールタール10重量部を混合し、200℃で1時間撹拌した以外は実施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製した。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測定結果を示す。また、実施例1と同様の方法で充放電試験を実施した。表1に1サイクル目の放電容量、不可逆容量、100サイクル目の放電容量を示す。
Example 3
A method similar to that of Example 1 except that 50 parts by weight of coke powder having an average particle diameter of 10 μm, 15 parts by weight of pitch, 2 parts by weight of silicon carbide, and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. A graphite molded body and a graphite powder were produced. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
実施例4
平均粒径10μmのコークス粉末50重量部と、ピッチ15重量部と、炭化ケイ素1重量部と、コールタール10重量部を混合し、200℃で1時間撹拌した以外は実施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製した。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測定結果を示す。また、実施例1と同様の方法で充放電試験を実施した。表1に1サイクル目の放電容量、不可逆容量、100サイクル目の放電容量を示す。
Example 4
A method similar to that of Example 1 except that 50 parts by weight of coke powder having an average particle size of 10 μm, 15 parts by weight of pitch, 1 part by weight of silicon carbide, and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. A graphite molded body and a graphite powder were produced. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
比較例1
平均粒径10μmのコークス粉末50重量部と、ピッチ15重量部と、コールタール10重量部を混合し、200℃で1時間撹拌した。次いで、この混合物を平均粒径20μmに粉砕し、該粉砕物を型に入れ冷間静水圧成形機(CIP成形機)で直方体に成形した。次いでこの成形体を窒素雰囲気中で1000℃で熱処理した後、ピッチ含浸を行い、この操作を2回繰り返し、黒鉛前駆体とした。この黒鉛前駆体を窒素雰囲気中で1000℃で熱処理したさらに窒素雰囲気下で3000℃で熱処理し、高密度黒鉛成形体を得た。さらにこの黒鉛成形体を粉砕し、黒鉛粉末とした。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測定結果を示す。また、実施例1と同様の方法で充放電試験を実施した。表1に1サイクル目の放電容量、不可逆容量、100サイクル目の放電容量を示す。
Comparative Example 1
50 parts by weight of coke powder having an average particle size of 10 μm, 15 parts by weight of pitch, and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Next, this mixture was pulverized to an average particle size of 20 μm, and the pulverized product was put into a mold and formed into a rectangular parallelepiped by a cold isostatic press (CIP press). Next, after heat-treating this compact at 1000 ° C. in a nitrogen atmosphere, pitch impregnation was performed, and this operation was repeated twice to obtain a graphite precursor. This graphite precursor was heat-treated at 1000 ° C. in a nitrogen atmosphere and further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a high-density graphite molded body. Further, the graphite compact was pulverized to obtain graphite powder. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
比較例2
平均粒径15μmの天然黒鉛粉末50重量部と、ピッチ15重量部とコールタール20重量部を混合し、200℃で1時間撹拌した以外は実施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製した。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測定結果を示す。また、実施例1と同様の方法で充放電試験を実施した。表1に1サイクル目の放電容量、不可逆容量、100サイクル目の放電容量を示す。
50 parts by weight of natural graphite powder having an average particle size of 15 μm, 15 parts by weight of pitch, and 20 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour, and the same procedure as in Example 1 was repeated to form a graphite compact and graphite powder. Was prepared. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
1 正極
2 負極
3 セパレータ
4 正極タブ
5 負極タブ
6 正極蓋
7 電池缶
8 ガスケット
9 ガラスセル
10 電解液
11 試料電極(負極)
12 セパレータ
13 対極(正極)
14 参照極
DESCRIPTION OF
12 Separator 13 Counter electrode (positive electrode)
14 Reference electrode
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003358046A JP2004099438A (en) | 2003-10-17 | 2003-10-17 | Graphite powder, negative pole for lithium secondary battery and lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003358046A JP2004099438A (en) | 2003-10-17 | 2003-10-17 | Graphite powder, negative pole for lithium secondary battery and lithium secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34595397A Division JP3582336B2 (en) | 1997-12-16 | 1997-12-16 | Manufacturing method of graphite powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004099438A true JP2004099438A (en) | 2004-04-02 |
Family
ID=32290876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003358046A Pending JP2004099438A (en) | 2003-10-17 | 2003-10-17 | Graphite powder, negative pole for lithium secondary battery and lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004099438A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157509A1 (en) * | 2013-03-29 | 2014-10-02 | Jx日鉱日石エネルギー株式会社 | Method for producing graphite and particles for graphite production |
-
2003
- 2003-10-17 JP JP2003358046A patent/JP2004099438A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157509A1 (en) * | 2013-03-29 | 2014-10-02 | Jx日鉱日石エネルギー株式会社 | Method for producing graphite and particles for graphite production |
JP2014196211A (en) * | 2013-03-29 | 2014-10-16 | Jx日鉱日石エネルギー株式会社 | Production method of graphite and particle for producing graphite |
US9725323B2 (en) | 2013-03-29 | 2017-08-08 | Jx Nippon Oil & Energy Corporation | Method for producing graphite and particulates for graphite production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10651458B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP3305995B2 (en) | Graphite particles for lithium secondary battery negative electrode | |
JP2002050346A (en) | Negative electrode for lithium secondary cell, its manufacturing method and lithium secondary cell | |
JP2001089118A (en) | Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery | |
JP3582336B2 (en) | Manufacturing method of graphite powder | |
JP2010267629A (en) | Negative electrode for lithium secondary battery, and lithium secondary battery | |
JP2000294243A (en) | Carbon powder for lithium secondary battery negative electrode, manufacture therefor, negative electrode for lithium secondary battery and lithium secondary battery | |
JP2002083587A (en) | Negative electrode for lithium secondary battery | |
TW201943131A (en) | Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, slurry for negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondar | |
JP3951219B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP4811699B2 (en) | Negative electrode for lithium secondary battery | |
JP4483560B2 (en) | Negative electrode for lithium secondary battery | |
JP2004099438A (en) | Graphite powder, negative pole for lithium secondary battery and lithium secondary battery | |
JP4828118B2 (en) | Negative electrode for lithium secondary battery | |
JP4985611B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP5853293B2 (en) | Negative electrode for lithium secondary battery | |
JP2017033945A (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP6481714B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP5704473B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP2004006358A (en) | Carbon powder for negative electrode for lithium secondary battery, manufacturing method, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP2015144142A (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP4687661B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP4952549B2 (en) | Carbon powder for negative electrode of lithium secondary battery, production method thereof, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP2012109280A (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP2013211279A (en) | Negative electrode for lithium secondary battery, and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080325 |