【0001】
【発明の属する技術分野】
本発明は、永久磁石型同期モータのロータ構造に関する。
【0002】
【従来の技術】
従来の永久磁石型同期モータのロータ構造として、例えば図7に断面図で示すように、ロータコア51の筒状表面52に軸方向に沿って円弧状の磁石装着用溝53を複数形成し、各々の磁石装着用溝53に円弧状の永久磁石54を、そのステータ側表面がロータコア51の筒状表面52と連続するように露出させて接着剤を介して保持した、いわゆる半埋め込み型のものが知られている。
【0003】
また、他のロータ構造としては、例えば図8に断面図で示すように、ロータコア61の筒状表面62に円弧状の永久磁石63を複数個配置したものがある。このロータ構造は、隣接する永久磁石63の隙間64が外周側に向けて広がるように、各永久磁石63の周方向端部に傾斜面部分63aを形成し、また、ロータコア61の筒状表面62には、各隙間64に対応して、周方向幅が外周側から内周側に向けて広くなる鳩尾状断面の溝65を軸方向に延在して形成し、これら傾斜面部分63aを含む隙間64及び対応する溝65に成形樹脂部材66を充填することにより、永久磁石63をロータコア61の筒状表面62に保持するようにしている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平9−19091号公報(段落番号0011〜0015、図2)
【0005】
【発明が解決しようとする課題】
しかし、上記図7に示した従来の半埋め込み型のロータ構造にあっては、単に、永久磁石54をロータコア51の磁石装着用溝53に接着保持する構造であるため、特に高トルクモータや高速モータに適用した場合には接着剤の経時変性による接着力の低下により、ロータ回転時に永久磁石54に作用する磁気吸引力や遠心力等の半径方向の外力が接着力を超えて、永久磁石54がロータコア51の溝53から脱落して飛散するおそれがある。
【0006】
一方、上記図8に示したロータ構造は、隣接する永久磁石63の隙間64にロータコア61から径方向に抜けないように成形樹脂部材66を充填すると共に、この成形樹脂部材66により隣接する永久磁石63の端部を覆うようにして、永久磁石63をロータコア61の筒状表面62に固定しているので、上記図7のロータ構造と比較してロータコア61への永久磁石63の機械的な保持力を高めることができ、高トルクモータや高速モータへの適用が有利となる。
【0007】
しかし、このロータ構造にあっては、成形樹脂部材66を充填する際に、隣接する永久磁石63の隙間64とロータコア61に形成した溝65とが一致するように、各永久磁石63をロータコア61の筒状表面62に各々位置決めする必要があるため、その組み立てが面倒になり、コストアップを招くことが懸念される。
【0008】
なお、図7に示したような半埋め込み型のロータ構造において、ロータコアからの永久磁石の脱落を防止するために、永久磁石を接着したロータコアの外周にグラスファイバー等のワイヤを巻き付けたり、永久磁石を接着したロータコアの外周を非磁性体の筒で覆ったりしたものが知られている。
【0009】
しかし、ロータコアの外周にワイヤを巻き付ける構造にあっては、手作業に頼る部分が多いため、組み立て作業が厄介で生産性が悪く、コストアップを招くことが懸念される。また、非磁性体の筒でロータコアの周囲を覆う構造にあっては、非磁性体の筒の内周面に永久磁石を含むロータコアの外周面を密着させる必要があるため、非磁性体の筒の成形及びその筒の取り付けが厄介となり、やはりコストアップを招くことが懸念される。
【0010】
従って、かかる点に鑑みてなされた本発明の目的は、簡単かつ安価な構成で、ロータコアに永久磁石を長期間に亘って安定に保持でき、高トルクモータや高速モータにも有効に適用できる永久磁石型同期モータのロータ構造を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成する請求項1に記載の永久磁石型同期モータのロータ構造の発明は、ロータコアの筒状表面に周方向に離間して軸方向に延在する複数の磁石装着用溝を形成し、該各磁石装着用溝にロータコアの径方向に磁極面を向けて永久磁石を装着する永久磁石型同期モータのロータ構造において、上記磁石装着用溝は、上記ロータコアの内周側から外周側に向けて周方向幅が狭くなる断面略台形状であって、上記永久磁石は、上記磁石装着用溝の断面形状とほぼ同寸法の断面略台形状であることを特徴とする。
【0012】
請求項1の発明によると、ロータコアの磁石装着用溝及びこの磁石装着用溝に装着される永久磁石の各断面形状が、ロータコアの内周側から外周側に向けて周方向幅が狭くなる略台形状となっているので、ロータコアの外周にグラスファイバー等のワイヤを巻き付けたり、ロータコアの外周を非磁性体の筒で覆ったりすることなく、ロータコアからの永久磁石の脱落が確実に防止され、永久磁石をロータコアに長期間に亘って安定した状態に保持することが可能となる。
【0013】
従って、簡単かつ安価にでき、高トルクモータや高速モータにも有効に適用することが可能となる。また、永久磁石を、ロータコアの内周側から外周側に向けて周方向幅が狭くなる断面略台形状とすることで、誘起電圧波形の正弦波化による振動低減が可能になり、静音化が図れると共に、磁石トルクに加えてリラクタンストルクを併用でき、高効率化を図ることが可能となる。
【0014】
請求項2に記載の発明は、請求項1の永久磁石型同期モータのロータ構造において、上記ロータコアは、上記磁石装着用溝の両側近傍に、軸方向に延在して周方向幅が上記磁石装着用溝の周方向幅よりも狭い細溝を有することを特徴とする。
【0015】
請求項2の発明によると、磁石装着用溝にロータ軸方向から永久磁石を挿入する際に、磁石装着用溝とその近傍の細溝との間のロータコア部分が細溝側に変形して、磁石装着用溝のロータコア外周側の溝幅が広がるので、永久磁石をロータコアに容易に装着でき、ロータの組み立て作業性が向上し、更に、組み立て後は細溝が磁気ギャップとして作用し、ロータコア表面からロータコア内部へ回り込む永久磁石の漏洩磁束が抑制されるので、コギングトルクが低減でき、より静音化を図ることが可能となる。
【0016】
請求項3に記載の発明は、請求項2の永久磁石型同期モータのロータ構造において、上記細溝は、上記磁石装着用溝の深さとほぼ同じ深さで、かつ上記ロータコアの内周側における周方向幅を外周側の周方向幅よりも広く形成したことを特徴とする。
【0017】
請求項3の発明によると、ロータコア内周側において磁石装着用溝と細溝とがより近接し、磁石装着用溝に永久磁石を挿入する際に、磁石装着用溝とその近傍の細溝との間のロータコア部分が、磁石装着用溝の外周側の溝幅が広がる方向により変形し易くなるので、ロータの組み立て作業性が更に向上する。
【0018】
請求項4に記載の発明は、請求項2または3の永久磁石型同期モータのロータ構造において、上記細溝に樹脂を充填したことを特徴とする。
【0019】
請求項4の発明によると、細溝への樹脂の充填により、永久磁石の装着後における磁石装着用溝とその近傍の細溝との間のロータコア部分の変形が抑制されるので、永久磁石をロータコアにより確実に保持することが可能となる。特に、細溝の周方向幅が、外周側よりも内周側の方が広い場合には、細溝からの樹脂の脱落も防止できるので、高速モータに有利となる。
【0020】
請求項5に記載の発明は、請求項1または4の永久磁石型同期モータのロータ構造において、上記永久磁石を装着した上記ロータコアの外周面全周を樹脂によりモールドしたことを特徴とする。
【0021】
請求項5の発明によると、ロータコアからの永久磁石の脱落がより確実に防止され、高トルクモータや高速モータにより有効に適用することが可能となる。
【0022】
【発明の実施の形態】
以下、本発明による永久磁石型同期モータのロータ構造の実施の形態を図を参照して説明する。
【0023】
(第1実施の形態)
図1乃至図5は、本発明の第1実施の形態を示すもので、図1はロータの断面図、図2は図1の要部拡大図、図3は側面図、図4はロータコアへの永久磁石の装着工程を説明するための斜視図、図5は細溝への樹脂の充填工程を説明するための断面図である。
【0024】
図1乃至図3に示すように、本実施の形態のロータ1は、永久磁石型同期モータに使用するもので、薄板の電磁鋼板の積層体もしくは粉末の焼結或いは溶着により固化された電磁鋼帯からなるロータコア2と、このロータコア2の筒状表面に周方向に等間隔に離間して各々軸方向に延在して形成された8つの磁石装着用溝3と、各磁石装着用溝3にロータコア2の径方向に磁極面を向けて装着された永久磁石4とを有する、いわゆる半埋め込み型のロータ構造を有している。
【0025】
磁石装着用溝3は、ロータコア2の内周側から外周側に向けて周方向幅が狭くなる断面略台形状に形成し、永久磁石4は磁石装着用溝3の断面形状とほぼ同寸法の断面略台形状に形成する。
【0026】
更に、ロータコア2の各磁石装着用溝3の両側近傍には、各々軸方向に延在して、周方向幅が磁石装着用溝3の周方向幅よりも狭い細溝5を形成し、これら各細溝5に各々BMC(Bulk Molding Compound)等の樹脂6を充填して硬化させる。なお、本実施の形態では、各細溝5を、磁石装着用溝3の深さとほぼ同じ深さで、かつロータコア2の内周側における周方向幅を外周側の周方向溝よりも広く形成する。
【0027】
次に、本実施の形態のロータ1の製造方法について、図4及び図5を参照して説明する。
【0028】
先ず、ロータコア2に磁石装着用溝3及び細溝5を形成した状態で、図4に示すように、断面略台形状の各磁石装着用溝3に、同様に断面略台形状の永久磁石4をロータ軸方向から挿入して装着する。ここで、ロータコア2の内周側では、各磁石装着用溝3とその近傍の細溝5とがより近接しているので、磁石装着用溝3に永久磁石4を挿入する際に、磁石装着用溝3とその近傍の細溝5との間のロータコア部分A(図1及び図2参照)は、磁石装着用溝3の外周側の溝幅が広がる方向に変形し易くなる。従って、永久磁石4を磁石装着用溝3に容易に装着することができ、ロータ1の組み立て作業性が向上する。
【0029】
磁石装着用溝3へ永久磁石4を装着したら、各永久磁石4を接着剤によりロータコア2に固定する。その後、図5に示すように、ロータコア2を、型11のロータ外径とほぼ等しい内径の成形空洞12内に配置して、ロータコア2の各細溝5にBMC等の樹脂6を射出成形機により加圧充填し、樹脂6の硬化後、型11から取り出してロータ1を得る。
【0030】
このように、本実施の形態では、ロータコア2の磁石装着用溝3及び磁石装着用溝3に装着する永久磁石4の各々の断面形状を、ロータコア2の内周側から外周側に向けて周方向幅が狭くなる略台形状としたので、ロータコア2の外周にグラスファイバー等のワイヤを巻き付けたり、ロータコア2の外周を非磁性体の筒で覆ったりすることなく、ロータコア2からの永久磁石4の脱落を確実に防止でき、永久磁石4をロータコア2に長期間に亘って安定した状態に保持することができる。従って、簡単かつ安価な構成で、高トルクモータや高速モータにも有効に適用することができる。
【0031】
また、永久磁石4を、ロータコア2の内周側から外周側に向けて周方向幅が狭くなる断面略台形状とすることで、誘起電圧波形を正弦波状してモータの振動を低減でき、静音化を図ることができると共に、磁石トルクに加えてリラクタンストルクを併用できるので、モータの高効率化を図ることができる。
【0032】
更に、各磁石装着用溝3の両側近傍に、磁石装着用溝3の深さとほぼ同じ深さで、周方向幅がロータコア2の外周側よりも内周側が広い細溝5を形成したので、上述したように永久磁石4を磁石装着用溝3に装着する際に、ロータコア部分Aが変形して永久磁石4を磁石装着用溝3に容易に装着でき、ロータ1の組み立て作業性が向上する。
【0033】
更に、磁石装着用溝3への永久磁石4の装着後は、細溝5に樹脂6を充填するので、ロータコア部分Aの変形は抑制され、永久磁石4をロータコア2により確実に保持することができる。しかも、細溝5は、内周側が外周側よりも溝幅が広いので、細溝5からの樹脂6の脱落も防止でき、高速モータに有利となる。
【0034】
また、ロータ1の組み立て後、細溝5は磁気ギャップとして作用するので、ロータコア表面からロータコア内部へ回り込む永久磁石4の漏洩磁束を抑制でき、これによりモータのコギングトルクを低減できるので、より静音化を図ることができる。
【0035】
(第2実施の形態)
図6は本発明の第2実施の形態を示すロータの断面図である。本実施の形態のロータ21は、第1実施の形態のロータ1において、永久磁石4を装着したロータコア2の外周面全周を細溝5に充填した樹脂6と同一樹脂6でモールドしたもので、その他の構成は第1実施の形態のロータ1と同様であるので、第1実施の形態と同一部分に同一符号を付してその説明を省略する。
【0036】
かかる、ロータ21は、第1実施の形態のロータ1の製造方法において、図5に示した樹脂の充填工程で用いる型11の成形空洞12の内径をロータコア2の外径よりも若干大きくし、細溝5への樹脂6の充填と同時に、ロータコア2の外周側の隙間にも樹脂6を充填することにより製造することができる。なお、ロータコア2の外周面全周をモールドする樹脂6の厚さは、当該ロータ21を組み込むモータの回転速度に応じて適宜設定可能であるが、例えば0.5mm程度とする。
【0037】
このように、本実施の形態では、永久磁石4を装着したロータコア2の外周面全周を樹脂6でモールドしたので、第1実施の形態の効果に加えて、ロータコア2からの永久磁石4の脱落をより確実に防止することができる。従って、更に高トルクのモータや高速のモータに適用することができる。
【0038】
なお、本発明は上記実施の形態に限定されることなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、ロータコア2に装着する永久磁石4の数は8個(極)に限らず、適宜の極数とすることができる。また、磁石装着用溝3の近傍に形成する細溝5の断面形状及び溝深さは、例えば同一溝幅で磁石装着用溝3よりも深く形成する等、適宜変更可能であると共に、このような細溝5を省略することもできる。更に、細溝5を省略した構成で、永久磁石4を装着したロータコア2の外周面全周を樹脂6でモールドすることもできる。
【0039】
また、使用する樹脂6は、熱硬化性の代表であるBMCに限らず、モータの使用条件や生産条件等を考慮し、適宜、適切なものを選択すればよい。ロータ温度が低く、樹脂6の耐熱性が満足するならば熱可塑性の樹脂を採用してもよい。
【0040】
【発明の効果】
以上のように、本発明によれば、ロータコアの磁石装着用溝及びこの磁石装着用溝に装着する永久磁石の各の断面形状を、ロータコアの内周側から外周側に向けて周方向幅が狭くなる略台形状としたので、ロータコアの外周にグラスファイバー等のワイヤを巻き付けたり、ロータコアの外周を非磁性体の筒で覆ったりすることなく、簡単かつ安価な構成で、ロータコアからの永久磁石の脱落を確実に防止して、永久磁石をロータコアに長期間に亘って安定に保持することができ、高トルクモータや高速モータにも有効に適用することができる。
【図面の簡単な説明】
【図1】本発明による永久磁石型同期モータのロータ構造の第1実施の形態を示すロータの断面図である。
【図2】同じく、図1の要部拡大図である。
【図3】同じく、ロータの側面図である。
【図4】図1に示すロータを製造する際のロータコアへの永久磁石の装着工程を説明するための斜視図である。
【図5】同じく、細溝への樹脂の充填工程を説明するための断面図である。
【図6】本発明による永久磁石型同期モータのロータ構造の第2実施の形態を示すロータの断面図である。
【図7】従来の永久磁石型同期モータのロータ構造を示すロータの断面図である。
【図8】同じく、従来の永久磁石型同期モータのロータ構造を示すロータの断面図である。
【符号の説明】
1 ロータ
2 ロータコア
3 磁石装着用溝
4 永久磁石
5 細溝
6 樹脂
11 型
12 成形空洞
21 ロータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotor structure of a permanent magnet type synchronous motor.
[0002]
[Prior art]
As a rotor structure of a conventional permanent magnet type synchronous motor, for example, as shown in a cross-sectional view of FIG. 7, a plurality of arc-shaped magnet mounting grooves 53 are formed in a cylindrical surface 52 of a rotor core 51 along an axial direction. A so-called semi-embedded type, in which an arc-shaped permanent magnet 54 is exposed in a magnet mounting groove 53 so that its stator side surface is continuous with the cylindrical surface 52 of the rotor core 51 and is held through an adhesive, is used. Are known.
[0003]
Further, as another rotor structure, for example, as shown in a cross-sectional view in FIG. 8, there is a structure in which a plurality of arc-shaped permanent magnets 63 are arranged on a cylindrical surface 62 of a rotor core 61. In this rotor structure, an inclined surface portion 63a is formed at a circumferential end of each permanent magnet 63 so that a gap 64 between the adjacent permanent magnets 63 is widened toward the outer peripheral side, and a cylindrical surface 62 of the rotor core 61 is formed. A groove 65 having a dovetail-shaped cross-section, whose circumferential width increases from the outer peripheral side toward the inner peripheral side, is formed extending in the axial direction corresponding to each gap 64, and includes these inclined surface portions 63a. The permanent magnet 63 is held on the cylindrical surface 62 of the rotor core 61 by filling the gap 64 and the corresponding groove 65 with a molding resin member 66 (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-9-19091 (paragraph numbers 0011 to 0015, FIG. 2)
[0005]
[Problems to be solved by the invention]
However, the conventional semi-embedded rotor structure shown in FIG. 7 has a structure in which the permanent magnet 54 is simply adhered and held in the magnet mounting groove 53 of the rotor core 51, so that a high torque motor or a high speed When applied to a motor, the external force in the radial direction, such as a magnetic attraction force and a centrifugal force, acting on the permanent magnet 54 during rotation of the rotor exceeds the adhesive force due to a decrease in the adhesive force due to the aging of the adhesive. May fall off the groove 53 of the rotor core 51 and scatter.
[0006]
On the other hand, the rotor structure shown in FIG. 8 fills a gap 64 between the adjacent permanent magnets 63 with a molding resin member 66 so as not to come off in the radial direction from the rotor core 61, and the adjacent permanent magnets are formed by the molding resin member 66. Since the permanent magnet 63 is fixed to the cylindrical surface 62 of the rotor core 61 so as to cover the end of the permanent magnet 63, the mechanical holding of the permanent magnet 63 on the rotor core 61 is different from that of the rotor structure of FIG. The power can be increased, and application to a high torque motor or a high speed motor is advantageous.
[0007]
However, in this rotor structure, when filling the molding resin member 66, each permanent magnet 63 is attached to the rotor core 61 so that the gap 64 between the adjacent permanent magnets 63 and the groove 65 formed in the rotor core 61 coincide. Since it is necessary to position each of them on the cylindrical surface 62, the assembling thereof is troublesome, and there is a concern that the cost may be increased.
[0008]
In the semi-embedded rotor structure as shown in FIG. 7, in order to prevent the permanent magnet from falling off from the rotor core, a wire such as glass fiber is wound around the outer periphery of the rotor core to which the permanent magnet is bonded, Is known in which the outer periphery of a rotor core to which the above is adhered is covered with a non-magnetic tube.
[0009]
However, in the structure in which the wire is wound around the outer periphery of the rotor core, since many parts rely on manual work, there is a concern that the assembling work is troublesome, the productivity is poor, and the cost is increased. In a structure in which the periphery of the rotor core is covered with a non-magnetic cylinder, the outer peripheral surface of the rotor core including the permanent magnet needs to be in close contact with the inner peripheral surface of the non-magnetic cylinder. It is troublesome to mold and mount the cylinder, and there is a concern that the cost is also increased.
[0010]
Accordingly, an object of the present invention made in view of the above point is that a permanent magnet can be stably held on a rotor core for a long time with a simple and inexpensive configuration, and a permanent magnet that can be effectively applied to a high torque motor or a high speed motor. An object of the present invention is to provide a rotor structure of a magnet type synchronous motor.
[0011]
[Means for Solving the Problems]
The invention of a rotor structure of a permanent magnet type synchronous motor according to the first aspect of the present invention, which achieves the above object, forms a plurality of magnet mounting grooves extending in the axial direction while being spaced apart in the circumferential direction on the cylindrical surface of the rotor core. In the rotor structure of the permanent magnet type synchronous motor in which a permanent magnet is mounted with the magnetic pole face facing the rotor mounting core in the radial direction of the magnet mounting groove, the magnet mounting groove extends from the inner peripheral side to the outer peripheral side of the rotor core. The permanent magnet has a substantially trapezoidal cross-sectional shape in which the width in the circumferential direction decreases toward the front, and the permanent magnet has a substantially trapezoidal cross-sectional shape having substantially the same dimensions as the cross-sectional shape of the magnet mounting groove.
[0012]
According to the first aspect of the present invention, the magnet mounting groove of the rotor core and the cross-sectional shape of each of the permanent magnets mounted in the magnet mounting groove have a circumferential width that decreases from the inner peripheral side to the outer peripheral side of the rotor core. Since it has a trapezoidal shape, the permanent magnet is prevented from falling off the rotor core without wrapping a wire such as glass fiber around the outer periphery of the rotor core or covering the outer periphery of the rotor core with a non-magnetic cylinder. It is possible to keep the permanent magnet in the rotor core in a stable state for a long period of time.
[0013]
Therefore, it can be made simple and inexpensive, and can be effectively applied to high torque motors and high speed motors. In addition, the permanent magnet has a substantially trapezoidal cross section in which the circumferential width decreases from the inner circumferential side to the outer circumferential side of the rotor core, so that the induced voltage waveform can be reduced to a sine wave to reduce vibration, thereby reducing noise. At the same time, reluctance torque can be used in addition to magnet torque, and high efficiency can be achieved.
[0014]
According to a second aspect of the present invention, in the rotor structure of the permanent magnet type synchronous motor of the first aspect, the rotor core extends in the axial direction near both sides of the magnet mounting groove and has a circumferential width of the magnet. It has a narrow groove narrower than the circumferential width of the mounting groove.
[0015]
According to the invention of claim 2, when the permanent magnet is inserted into the magnet mounting groove from the rotor axial direction, the rotor core portion between the magnet mounting groove and the narrow groove in the vicinity thereof is deformed to the narrow groove side, Since the groove width of the magnet mounting groove on the outer peripheral side of the rotor core is widened, permanent magnets can be easily mounted on the rotor core, and the workability of assembling the rotor is improved. Since the leakage magnetic flux of the permanent magnet wrapping around from inside the rotor core is suppressed, the cogging torque can be reduced, and the noise can be further reduced.
[0016]
According to a third aspect of the present invention, in the rotor structure of the permanent magnet type synchronous motor according to the second aspect, the narrow groove has a depth substantially equal to a depth of the magnet mounting groove, and is formed on an inner peripheral side of the rotor core. The circumferential width is formed wider than the circumferential width on the outer peripheral side.
[0017]
According to the invention of claim 3, the magnet mounting groove and the narrow groove are closer to each other on the inner peripheral side of the rotor core, and when the permanent magnet is inserted into the magnet mounting groove, the magnet mounting groove and the narrow groove near the magnet mounting groove. Is more likely to be deformed in the direction in which the groove width on the outer peripheral side of the magnet mounting groove widens, so that the workability of assembling the rotor is further improved.
[0018]
According to a fourth aspect of the present invention, in the rotor structure of the permanent magnet type synchronous motor of the second or third aspect, the narrow groove is filled with a resin.
[0019]
According to the fourth aspect of the present invention, by filling the narrow groove with the resin, the deformation of the rotor core portion between the magnet mounting groove and the nearby fine groove after the permanent magnet is mounted is suppressed. It is possible to securely hold the rotor core. In particular, when the circumferential width of the narrow groove is wider on the inner circumferential side than on the outer circumferential side, it is possible to prevent the resin from falling off from the narrow groove, which is advantageous for a high-speed motor.
[0020]
According to a fifth aspect of the present invention, in the rotor structure of the permanent magnet type synchronous motor according to the first or fourth aspect, the entire outer peripheral surface of the rotor core on which the permanent magnet is mounted is molded with resin.
[0021]
According to the fifth aspect of the present invention, the falling off of the permanent magnet from the rotor core is more reliably prevented, and the invention can be more effectively applied to a high-torque motor or a high-speed motor.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a rotor structure of a permanent magnet type synchronous motor according to the present invention will be described with reference to the drawings.
[0023]
(1st Embodiment)
1 to 5 show a first embodiment of the present invention. FIG. 1 is a sectional view of a rotor, FIG. 2 is an enlarged view of a main part of FIG. 1, FIG. 3 is a side view, and FIG. FIG. 5 is a perspective view for explaining a permanent magnet mounting step, and FIG. 5 is a cross-sectional view for explaining a resin filling step in a narrow groove.
[0024]
As shown in FIGS. 1 to 3, a rotor 1 according to the present embodiment is used for a permanent magnet type synchronous motor, and is a laminated electromagnetic steel sheet or a magnetic steel solidified by sintering or welding of powder. A rotor core 2 formed of a belt; eight magnet mounting grooves 3 formed on the cylindrical surface of the rotor core 2 at equal circumferential intervals and extending in the axial direction, respectively; And a permanent magnet 4 mounted so that the magnetic pole face faces in the radial direction of the rotor core 2.
[0025]
The magnet mounting groove 3 is formed to have a substantially trapezoidal cross section in which the circumferential width decreases from the inner peripheral side to the outer peripheral side of the rotor core 2, and the permanent magnet 4 has substantially the same dimensions as the cross sectional shape of the magnet mounting groove 3. It is formed in a substantially trapezoidal cross section.
[0026]
Further, in the vicinity of both sides of each magnet mounting groove 3 of the rotor core 2, narrow grooves 5 each extending in the axial direction and having a circumferential width smaller than the circumferential width of the magnet mounting groove 3 are formed. Each narrow groove 5 is filled with a resin 6 such as BMC (Bulk Molding Compound) and cured. In the present embodiment, each narrow groove 5 is formed to have a depth substantially equal to the depth of the magnet mounting groove 3 and a circumferential width on the inner circumferential side of the rotor core 2 is wider than that on the outer circumferential side. I do.
[0027]
Next, a method for manufacturing the rotor 1 according to the present embodiment will be described with reference to FIGS.
[0028]
First, in the state where the magnet mounting groove 3 and the narrow groove 5 are formed in the rotor core 2, as shown in FIG. Is inserted from the axial direction of the rotor and mounted. Here, on the inner peripheral side of the rotor core 2, each magnet mounting groove 3 and the narrow groove 5 near the magnet mounting groove 3 are closer to each other. The rotor core portion A (see FIGS. 1 and 2) between the groove 3 and the narrow groove 5 in the vicinity thereof is easily deformed in a direction in which the groove width on the outer peripheral side of the magnet mounting groove 3 is increased. Accordingly, the permanent magnet 4 can be easily mounted in the magnet mounting groove 3, and the workability of assembling the rotor 1 is improved.
[0029]
After the permanent magnets 4 are mounted in the magnet mounting grooves 3, each permanent magnet 4 is fixed to the rotor core 2 with an adhesive. Thereafter, as shown in FIG. 5, the rotor core 2 is disposed in a molding cavity 12 having an inner diameter substantially equal to the outer diameter of the rotor of the mold 11, and a resin 6 such as BMC is injected into each narrow groove 5 of the rotor core 2 by an injection molding machine. After the resin 6 is cured, it is taken out of the mold 11 to obtain the rotor 1.
[0030]
As described above, in the present embodiment, the sectional shape of each of the magnet mounting groove 3 of the rotor core 2 and the permanent magnet 4 mounted in the magnet mounting groove 3 is changed from the inner peripheral side to the outer peripheral side of the rotor core 2. Since the width of the rotor core 2 is substantially trapezoidal, the permanent magnet 4 from the rotor core 2 can be formed without winding a wire such as glass fiber around the outer periphery of the rotor core 2 or covering the outer periphery of the rotor core 2 with a non-magnetic tube. Can be reliably prevented, and the permanent magnet 4 can be kept in a stable state on the rotor core 2 for a long period of time. Therefore, it can be effectively applied to a high-torque motor or a high-speed motor with a simple and inexpensive configuration.
[0031]
Further, by forming the permanent magnet 4 to have a substantially trapezoidal cross section whose width in the circumferential direction becomes narrower from the inner peripheral side to the outer peripheral side of the rotor core 2, the induced voltage waveform can be sinusoidal, thereby reducing the vibration of the motor. And the reluctance torque can be used in addition to the magnet torque, so that the efficiency of the motor can be improved.
[0032]
Further, narrow grooves 5 having substantially the same depth as the magnet mounting grooves 3 and having a circumferential width larger on the inner circumferential side than the outer circumferential side of the rotor core 2 are formed near both sides of each magnet mounting groove 3. As described above, when the permanent magnet 4 is mounted in the magnet mounting groove 3, the rotor core portion A is deformed, so that the permanent magnet 4 can be easily mounted in the magnet mounting groove 3, and the workability of assembling the rotor 1 is improved. .
[0033]
Further, after the permanent magnet 4 is mounted in the magnet mounting groove 3, the narrow groove 5 is filled with the resin 6, so that the deformation of the rotor core portion A is suppressed, and the permanent magnet 4 can be securely held by the rotor core 2. it can. Moreover, since the narrow groove 5 has a wider groove width on the inner peripheral side than on the outer peripheral side, it is possible to prevent the resin 6 from falling off from the narrow groove 5, which is advantageous for a high-speed motor.
[0034]
Further, after the rotor 1 is assembled, the narrow groove 5 acts as a magnetic gap, so that it is possible to suppress the leakage magnetic flux of the permanent magnet 4 wrapping around from the surface of the rotor core to the inside of the rotor core, thereby reducing the cogging torque of the motor. Can be achieved.
[0035]
(2nd Embodiment)
FIG. 6 is a sectional view of a rotor showing a second embodiment of the present invention. The rotor 21 of the present embodiment is the same as the rotor 1 of the first embodiment, except that the entire outer peripheral surface of the rotor core 2 on which the permanent magnets 4 are mounted is molded with the same resin 6 as the resin 6 filled in the narrow grooves 5. Since other configurations are the same as those of the rotor 1 of the first embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0036]
In the rotor 21, the inner diameter of the molding cavity 12 of the mold 11 used in the resin filling step shown in FIG. 5 is slightly larger than the outer diameter of the rotor core 2 in the method of manufacturing the rotor 1 of the first embodiment. It can be manufactured by simultaneously filling the narrow groove 5 with the resin 6 and also filling the gap on the outer peripheral side of the rotor core 2 with the resin 6. The thickness of the resin 6 for molding the entire outer peripheral surface of the rotor core 2 can be appropriately set according to the rotation speed of the motor in which the rotor 21 is incorporated, and is set to, for example, about 0.5 mm.
[0037]
As described above, in the present embodiment, the entire outer peripheral surface of the rotor core 2 on which the permanent magnets 4 are mounted is molded with the resin 6. Therefore, in addition to the effects of the first embodiment, the permanent magnets 4 Dropping can be more reliably prevented. Therefore, the present invention can be applied to a motor having a higher torque and a motor having a higher speed.
[0038]
It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the invention. For example, the number of permanent magnets 4 attached to the rotor core 2 is not limited to eight (poles), but may be an appropriate number. Further, the cross-sectional shape and the groove depth of the narrow groove 5 formed in the vicinity of the magnet mounting groove 3 can be appropriately changed, for example, the groove width may be formed to be the same groove width and deeper than the magnet mounting groove 3. The narrow groove 5 can be omitted. Furthermore, with the configuration in which the narrow grooves 5 are omitted, the entire outer peripheral surface of the rotor core 2 on which the permanent magnets 4 are mounted can be molded with the resin 6.
[0039]
The resin 6 to be used is not limited to BMC, which is a typical thermosetting resin, and may be appropriately selected in consideration of motor use conditions, production conditions, and the like. If the rotor temperature is low and the heat resistance of the resin 6 is satisfied, a thermoplastic resin may be employed.
[0040]
【The invention's effect】
As described above, according to the present invention, the cross-sectional shape of each of the magnet mounting groove of the rotor core and the permanent magnet mounted in the magnet mounting groove has a circumferential width from the inner peripheral side to the outer peripheral side of the rotor core. Because it has a narrow trapezoidal shape, the permanent magnet from the rotor core is simple and inexpensive without having to wrap a wire such as glass fiber around the outer periphery of the rotor core or covering the outer periphery of the rotor core with a non-magnetic cylinder. Thus, the permanent magnet can be securely held on the rotor core for a long period of time, and can be effectively applied to a high-torque motor or a high-speed motor.
[Brief description of the drawings]
FIG. 1 is a sectional view of a rotor showing a first embodiment of a rotor structure of a permanent magnet type synchronous motor according to the present invention.
FIG. 2 is an enlarged view of a main part of FIG. 1;
FIG. 3 is a side view of the rotor.
FIG. 4 is a perspective view for explaining a step of mounting a permanent magnet on a rotor core when manufacturing the rotor shown in FIG. 1;
FIG. 5 is also a cross-sectional view for explaining a process of filling a narrow groove with a resin.
FIG. 6 is a sectional view of a rotor showing a second embodiment of the rotor structure of the permanent magnet type synchronous motor according to the present invention.
FIG. 7 is a sectional view of a rotor showing a rotor structure of a conventional permanent magnet type synchronous motor.
FIG. 8 is a sectional view of a rotor showing a rotor structure of a conventional permanent magnet synchronous motor.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 rotor 2 rotor core 3 magnet mounting groove 4 permanent magnet 5 narrow groove 6 resin 11 mold 12 molding cavity 21 rotor