【0001】
【発明の属する技術分野】
本発明は、非水系電解液を用いるリチウム2次電池等の負極電極(以下、負極又は負電極という。)及びそれを用いた非水系2次電池に関するものであり、特に、リチウム2次電池等の性能を著しく向上させるために、特定の多環芳香族系炭化水素からなる負極材料を所定の目付量以下にした負極電極及びそれを用いた非水系2次電池に関するものである。
【0002】
【従来の技術】
近年、携帯電話に代表される小型携帯機器用の電源、深夜電力貯蔵システム、太陽光発電に基づく家庭用分散型蓄電システム、電気自動車のための蓄電システムなどに関連して、各種の高エネルギー密度電池の開発が精力的に行われている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度を有すること、金属リチウムを負極として用いるリチウム2次電池に比べて、安全性、サイクル特性などの信頼性が優れることなどの理由により、小型携帯機器用の電源として、その市場が飛躍的に拡大している。
【0003】
リチウムイオン電池は、正極としてLiCoO2、LiMn2O4などに代表されるリチウム含有遷移金属酸化物を用いて、負電極として黒鉛に代表される炭素系材料を用いている。現在、リチウムイオン電池のより一層の高容量化が進められているが、正極酸化物および負極炭素系材料の改良による高容量化は、ほぼ限界に達しており、450Wh/lを超えるエネルギー密度を達成することは困難である。また、今後予測される大型化のニーズに応える為には、材料コストの低減も強く望まれている。
特に、電池の高エネルギー密度化および大型化のためには、安全性の確保が最重要課題であり、この観点からも、電極材料のさらなる特性改善が望まれている。
【0004】
上記の負電極に使用される負極材料においては、種々の黒鉛系材料、炭素系材料および多環芳香族系共役構造物質(一般に、低温処理炭素材料あるいはポリアセン系材料と呼ばれている。)が開発されている。特に、温度550〜1000℃程度の比較的低温で、種々の原料を熱処理して得られる多環芳香族系共役構造物質は、グラファイトの理論容量であるC6Li(372mAh/g)を超える材料として、特に注目を浴びている。
【0005】
その中でも特開2000−251885号公報、特開2002−63892号公報にはピッチを主成分とする原料を熱反応に供することにより得られる多環芳香族系炭化水素であり、(1)水素/炭素(H/C)の元素比が0.35〜0.05であり、(2)BET法による比表面積が50m2/g以下であることを特徴とする非水系2次電池用負極材料が開示されている。
【0006】
上記記載公報によれば石炭系ピッチを熱反応して得られるH/Cが0.22の材料は20時間のリチウムドーピングにより900mAh/gの容量が得られており、上述の課題を解決する可能性が高い材料となっている。しかし、かかる材料の実用化においては、改善すべき課題が多く残されている。その1つに負極でのリチウム受入性(充電受入特性)がある。
また、特開2002−63892号公報の記載にはリチウムをプリドーピングした上記多環芳香族系炭化水素を用いた2次電池が開示されている。この2次電池は市販リチウムイオン電池に比べ著しく容量が向上し、市販電池の2倍程度高容量が得られる事が記載されている。しかしながら、この電池の実用化においても、改善すべき課題が多く残されており、その充電受入特性については何ら示されておらず改良が必要であり、電池設計の観点からも負極の充電受入特性向上が望まれている。
【0007】
更に、一般的なリチウムイオン電池は正極、負極ともその厚さは100μm前後で設計され、黒鉛負極の場合、その電極層の厚さは80乃至120μm程度であり、活物質である黒鉛の目付量は1cm2あたり10mg乃至20mg程度である。また、前述の特開2002−63892号公報の記載においても、ピッチを主成分とする原料を熱反応に供することにより得られる多環芳香族系炭化水素を用いた負電極の厚さは100μmと従来のリチウムイオン電池と同様の設計である。しかしながら、該多環芳香族系炭化水素を負極活物質として用いる場合、従来と同様の設計では充分な充電受入特性が得られず、8時間率程度の充電においてもサイクル進行に伴なう容量の劣化が大きい問題が残されていた。
【0008】
【発明が解決しようとする課題】
従って、本発明が解決しようとする課題は、電池設計の観点から負極での充電受入特性が向上し、8時間率程度の充填に対してもサイクルを重ねることに伴う容量の劣化の少ない負電極及びそれを用いた非水系2次電池を提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は、上記の様な技術の現状に留意しつつ、研究を重ねた結果、ピッチを原料とした特定構造からなる負極材料を特定目付量以下にして作製した負電極を用いる事により、その電池の充電特性、サイクル特性等の信頼性が向上することを見出し本発明に至ったものである。
すなわち、本発明は、以下の部材或いは構成からなる負電極或いはそれを用いた非水系2次電池を提供することにより上記課題を解決したものである。
【0010】
(1) 少なくともピッチを主成分とする原料を熱反応に供することにより得られる多環芳香族系炭化水素からなる負極材料、及び導電材をバインダーで成形した非水系2次電池用の負電極において、I.上記多環芳香族系炭化水素は水素/炭素の元素比が0.50乃至0.05の範囲であり、上記負極材料のBET法による比表面積が0.1乃至50m2/gの範囲であり、II.上記負極材料の目付量が6mg/cm2以下であることを特徴とする負電極。
【0011】
(2) 上記負極材料の平均粒径が10μm以下かつ粒径が1μm以下の粒子の体積分率が1%以上であることを特徴とする上記(1)に記載の負電極。
(3) 上記多環芳香族系炭化水素は水素/炭素の元素比が0.40乃至0.15であることを特徴とする上記(1)又は(2)記載の負電極。
(4) 上記成形材の密度が0.85乃至1.3g/cm3の範囲にあることを特徴とする上記(1)乃至(3)のいずれかに記載の負電極。
(5) 上記成形材の電気伝導度が10−3S/Ωcm以上であることを特徴とする上記(1)乃至(4)のいずれかに記載の負電極。
【0012】
(6) 上記(1)乃至(5)のいずれかに記載の負電極及び正電極を備えた非水系2次電池。
【0013】
【発明の実施の形態】
以下、本発明に係る負電極、及びそれを用いた非水系2次電池の好ましい実施の形態を詳述する。尚、本発明に係る負電極、及びそれを用いた非水系2次電池は以下の実施形態及び実施例に限るものではない。
本発明に係る負電極は、少なくともピッチを主成分とした原料を熱反応に供することにより得られる多環芳香族系炭化水素からなる負極材料、導電材、及びバインダーから成形させる。
【0014】
上記負極材料の原料の主成分となるピッチは、所定の物性を備えた負極材料を得ることができる限り、特に限定されるものではないが、大別して石油系ピッチと石炭系ピッチとに分けられる。例えば、石油ピッチとしては、原料の蒸留残渣、流動性接触分解残渣(デカントオイルなど)、サーマルクラッカーからのボトム油、ナフサクラッキングの際に得られるエチレンタールなどが例示される。
また石炭系ピッチとしては、石炭の乾留時に得られる油分であるコールタールを蒸留して、軽質分を流出させた残査であるストレートピッチあるいはこれにアントラセン油、タールなどを添加したものなどが挙げることができる。これらピッチを原料として合成されるメソフェーズピッチも、本発明に係る負極材料の製造原料として挙げることができる。
更に、ナフタレンの重縮合により合成されるナフタレンピッチ等の合成ピッチを用いることができる。
これらのピッチは、現在安価でかつ大量に生産されており、主に製鉄用コークスバインダー、電極用含浸材、コークス用原料、炭素繊維用原料、成形炭素材科用バインダーなどの用途に用いられている。
【0015】
上記原料として使用するピッチの軟化点は、温度70乃至400℃程度の範囲のものが好ましく、より好ましくは温度100乃至350℃の範囲のもの、特に好ましくは温度150乃至300℃の範囲のものであることが望ましい。ピッチの軟化点が上記範囲を下回るような場合には、所望の熱反応生成物の収率を低下させる一方、ピッチの軟化点が上記範囲を上回るような場合には、熱反応生成物の比表面積を増大させて、所望の負極材料が得られなくなる。
【0016】
本発明に係る非水系2次電池用負極材料は、上記ピッチを主成分とした原料を熱反応に供することにより得られる多環芳香族系炭化水素(熱反応生成物)からなり、かかる炭化水素の水素/炭素の元素比(H/C)が0.5乃至0.05の範囲にあることが必要とされるものである。
特に、負極材料として使用する場合にあっては、好ましくは0.40乃至0.15の範囲、特に0.40乃至0.20の範囲である。
上記H/Cは原料、目的とする電池特性に応じて決定される。上記材料のH/Cが0.50を超えると、負極材料中に主要な多環芳香族系共役構造が十分に生じていないため、負電極に使用した場合には、その容量および効率が低くなる。一方、上記材料のH/Cが0.05未満になると、炭素化が過度に進行して、本発明が目的とする負極材料としての十分な容量が得られない。
【0017】
尚、上記多環芳香族系炭化水素を主要成分とする負極材料にあっては、本発明に係る効果に影響を与えない範囲で炭素及び水素以外に他の元素を含んでいても良い。例えば、負極材料は、その原料由来の炭素および水素以外の元素(酸素、硫黄、窒素など)を含み易い。そして、このような元素により負極材料の特性を阻害しないためには、その他の元素の合計質量が20%以下、より好ましくは10%以下に抑えることが望ましい。このためには、不要元素の含有量の少ない原料を選択するか、あるいは不要元素を放出しやすい条件の熱反応条件を選択することが望ましい。
【0018】
上記原料ピッチの熱反応は窒素、アルゴンなどの不活性雰囲気中(真空を含む)で行う。反応温度は、上述の原料の種類・性状および温度以外の諸条件(昇温速度、反応時間、反応雰囲気、圧力、反応時に生成するガス成分の反応系外の除去速度など)をも考慮して、水素/炭素の元素比を上記範囲となる様に適宜選択することができる。
【0019】
上記熱反応温度は好ましくは550乃至750℃の範囲であり、より好ましくは600乃至700℃の範囲である。
上記ピッチを主成分とした原料を不活性雰囲気下の温度550乃至750℃の範囲で熱反応させれば、上記範囲の水素/炭素の元素比及び好適な比表面積を有する多環芳香族系炭化水素材料が高収率で得られる。熱反応による上記多環芳香族系炭化水素の収率は、上述した原料の配合特性及びピッチの軟化点により左右されるが、本発明の製造方法においては少なくとも60%以上であることが望ましいとされ、上記温度範囲で原料及び軟化点等を適宜選択すれば、多環芳香族系炭化水素を60%以上の収率で十分に得ることができる。
【0020】
上記昇温速度は10乃至1000℃/時間程度の範囲にあることが好ましく、より好ましくは50乃至500℃/時間程度である。昇温速度は一定である必要はなく、例えば、温度300℃までは100℃/時間の速度で昇温し、温度300℃乃至650℃までは50℃/時間の速度で昇温することができる。また、反応時間(ピーク温度保持時間)は1乃至100時間程度である。圧力は常圧でよいが、減圧あるいは加圧状態で行うことも可能である。
【0021】
また、本発明に使用する負極材料は、上記不定形な不溶不融化固体からなる熱反応生成物を粉砕したものであり、その粉砕した負極材料はBET法による比表面積が0.1乃至50m2/gの範囲にあることが必須とされる。より好ましくは比表面積が0.1乃至30m2/gの範囲である。
負極材料の比表面積が大き過ぎると、リチウムのドープおよび脱ドープの初期効率が悪くなるので、実用上好ましくない。従来報告されている多環芳香族系共役構造物質においては、一般に比表面積が高く、炭素系材料および黒鉛系材料に比べて大きく50m2/gを超えるものが殆どである。そこで、高い比表面積を低下させて効率を高めるために、従来、炭素系材料及び黒鉛系材料を再度表面処理する技術が開発されている。しかしながら、このような技術的処理は煩雑な操作を必要とし、製造上、工程が余分に付加され、負極材料の製造コストを著しく高めるので実用的に不利である。これに対して、本発明に係る非水系2次電池用負極材料にあっては後述するように、上記ピッチ原料の1回の熱反応により、比表面積を50m2/g以下とすることが可能であり製造が容易である。
一般に負極材料の比表面積は、熱処理反応温度を上昇させると低下して、リチウムのドープ及び脱ドープの初期効率が高くなるが、その反面、容量が急激に減少する。本発明に使用する負極材料は、上述のH/C比の範囲を維持しながら、比表面積を50m2/g以下とすることを特徴とする。また、比表面積の下限値は0.1m2/g程度が取り扱い上好ましい。
【0022】
ピッチを原料とする本発明に使用する負極材料は、上述したように熱反応条件を適宜制御することにより、特定の構造を得ることができる。特に、ピッチ原料を適切に選択することにより、熱反応条件による制限を緩和して容易に上記H/C比、及び粉砕後に上記比表面積となるような材料が得られる。
一般に、空気中でピッチを100〜400℃程度の温度で加熱するか、或いは硝酸、硫酸などの酸化性液体により処理して、ピッチ全体あるいはその表面を不融化処理(架橋処理)した後、不活性雰囲気中で熱処理することにより、製造される。しかしながら、本発明の製造方法においては、ピッチを不融化処理あるいは表面酸化処理しない状態で、熱反応に供することによって、上述したように1回の熱反応により本発明に使用する負極材料を容易に得ることができる。
【0023】
本発明に使用する負極材料は、不定形な上記熱反応生成物を所定の粒径に粉砕し、必要により粒度調整を実施するが、その平均粒径が30μm以下、より好ましくは20μm以下、特に好ましくは10μm以下であること、及び粒径分布における1μm以下の粒径の体積分率が1%以上で存在することが望ましい。特に、好ましくは、平均粒径が10μm以下であって、1μm以下の粒径の体積分率が1乃至20%、より好ましくは3乃至15%、特に好ましくは5乃至10%の範囲であることが望ましい。
【0024】
上記熱反応生成物は不定形を呈するので、ボールミル、ジェットミル等の粉砕器で粉砕した後、更に必要に応じて、分級することにより所定の粒径とされる。一般にリチウムイオン電池に用いられる黒鉛材料においては、平均粒径10μm以下且つ粒径が1μm以下の体積分率が1%以上の材料では、初期充放電効率の低下及び電極密度が上がり難いことから使用が差し控えられてきた。しかしながら、上記負極材料では、そのメカニズムは不明であるが上記範囲とすることにより電極密度が向上し、充電受入特性も向上する。平均粒径が次第に大きくなると充電受入特性が低下する。また、粒径が1μmの体積分率が1%未満の場合は、電極密度が上がりにくく、かつ充電受入特性が低下し、体積分率が20%を超えると後述の電極の作製が困難となる。
【0025】
本発明に係る非水系2次電池用負電極は、上記負極材料、導電材等を樹脂バインダーに分散させて成形することにより得られる。電極の成形は所望の非水系2次電池の形状、特性などを考慮しつつ、公知の方法により行うことができる。本発明において導電材、バインダーは、特に限定されるものではないないが、具体的には、導電材としてはアセチレンブラック、カーボンブラック、ケッチェンブラック、黒鉛等が例示され、バインダーとしてはポリフッ化ビニリデン(PVdF)、ポリ四フッ化エチレンなどのフッ素系樹脂;フッ素ゴム、SBRなどのゴム系材料;ポリエチレン、ポリプロピレンなどのポリオレフィン;アクリル樹脂などが例示される。
【0026】
上記導電材の配合量は本発明の負極材料の種類、粒径、形状、目的とする電極の目付量、強度などに応じて適宜決定すれば良く、特に限定されるものではないが、通常本発明の負極材料の100質量部に対して1〜20質量部程度とすることが好ましい。
また、バインダーの配合量は、本発明の負極材料の種類、粒径、形状、目的とする電極の目付量、強度などに応じて適宜決定すれば良く、特に限定されるものではないが、通常本発明の負極材料の100質量部に対して1〜30質量部程度とすることが好ましい。
【0027】
本発明において、負電極を集電体上の片面或いは両面に形成することもできる。この場合、使用する集電体は特に限定されるものではないが、銅箔、ステンレス鋼箔、チタン箔などが挙げられる。更に、金属箔上或いは金属の隙間に電極が形成可能であるもの、例えば、エキスパンドメタル、メッシュなどを用いることもできる。
【0028】
本発明に係る負電極における上記負極材料の目付量は6mg/cm2以下であり、好ましくは5mg/cm2以下、2mg/cm2以上である。目付量とは例えば銅箔の片面に負極を形成した場合、負極面1cm2あたりに含まれる本発明の負極材料の質量であり、銅箔の両面に負極を形成した場合、各片面に含まれる負極材料の質量である。
【0029】
本発明において負極材料の目付量を6mg/cm2以下とする事により、充電受入特性を向上させる事ができる。目付量が少なすぎる場合、電池内に占める集電体、セパレータ等の体積割合が上昇し、電池容量が低下する傾向にある。
ここで、充電受入特性面について説明する。本発明の負電極を用いた非水系2次電池は、例えば、後述するリチウム系の電解液を用いると、充電時、負極へはリチウムがドーピングされ負極電位が低下する。リチウム電位に到達し、それを超えるリチウムドーピングを同じ速度で継続した場合、負極はリチウム電位以下となり、場合によってリチウム金属が負電極上に析出する。充電受入性とは、負極がリチウム電位に到達するまでのドーピングのし易さであり、充電受入性が悪いと、たとえ大量のリチウムのドーピング能を有する活物質であったとしても、その容量を充分に電池設計に活かせない事となる。
【0030】
従って、負極材料の目付量が6mg/cm2を超える場合、充電受入性が悪い故に負極材料のリチウムのドーピング能を活かす事ができず電池容量が低下する。また、リチウム金属が負電極上に析出する等でサイクルに伴なう容量劣化が大きくなる。
【0031】
本発明に係る負電極の上記成形密度(或いは成形層の密度)は、特に限定されるものではないが、0.85乃至1.3g/cm3程度の範囲が好ましく、上記負極材料のH/C、粒度分布、導電材量、バインダー量により適宜決定される。また、本発明の負電極の上記成形電気伝導度(或いは成形層の電気伝導度)は、特に限定されるものではないが、10−3S/Ωcm以上が好ましく、より好ましくは5×10−3乃至1×100S/Ωcmの範囲であり、例えば、電気伝導度が低い場合、充電受入性が悪くなる。
【0032】
尚、本発明に係る負電極における上記負極材料中には、予めリチウムをドープした状態で、電池を組み立てることも可能であり、さらに負極上にリチウム金属を張り合わせるなどの方法により、電池組立後に上記負極材料にリチウムをドープすることも可能である。
【0033】
次に、本発明に係る非水系2次電池の実施の態様について簡単に説明する。
本発明に係る非水系2次電池は上記非水系2次電池用負電極を負極に使用することを特徴とする。
本発明に係る非水系2次電池は、上記負電極が使用されている限り、その使用形態に制限はなく、また電池の採用形態に限定されるものではない。例えば、本発明の負電極、公知の正電極および公知の非水系電解液と組み合わせて、非水系2次電池を製造することができる。
【0034】
正電極としてはリチウムの吸蔵/放出が可能な正極材料であれば特に制限されず、高電圧と高容量のリチウム二次電池を得るために、例えば、公知のリチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にこれらの酸化物に異種金属元素を一種以上添加した系などを用いることができる。また、マンガン、バナジウム、鉄などの金属酸化物、ジスルフィド系化合物、ポリアセン系物質、活性炭などを用いることも可能であり、特に、容量の観点からLiCoO2、LiNixCoyO2、LiNixMnyO2などを含むリチウム複合酸化物が好ましい。
また、本発明の負電極の上記負極材料中にあらかじめリチウムをドープした状態で、電池を組み立てることも可能であり、さらに負電極上にリチウム金属を張り合わせるなどの方法により、電池組立後に本発明の負電極にリチウムをドープすることも可能である。
【0035】
非水系電解液としては、公知のリチウム塩を含む非水系電解液が用いられる。電解液の種類は、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに応じて、適宜決定される。電解液としては、例えば、LiPF6、LiBF4、LiClO4などのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種または2種以上からなる有機溶媒に溶解したものが、好ましい。
【0036】
また、電解液の濃度は、特に限定されるものではないが、0.5〜2mol/リットル程度の範囲が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する「非水系電解質」という用語は、非水系電解液および有機電解液を含む概念を意味するものであり、また、ゲル状および固体の電解質を含む概念をも意味するものである。
【0037】
【実施例】
以下に、本発明に係る負電極及びその非水系2次電池の実施例および比較例を示し、本発明の特徴とするところをさらに明確にする。
(実施例1)
石炭系等方性ピッチ(軟化点280℃)1000gをステンレス鋼製の皿に入れ、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱反応は、窒素雰囲気下で行い、窒素流量を10リットル/分とした。熱反応に際しては、室温から100℃/時間の速度で635℃(炉内温)まで昇温した後、この温度で4時間保持し、続いて自然冷却により、温度60℃
まで冷却し、反応生成物を電気炉から取り出した。得られた生成物は、原料の形状を留めず、不定形な不溶不融性固体であった。収量は804gであり、収率は80.4質量%であった。
【0038】
得られた生成物をジェットミルにより粉砕し、平均粒径5.5μm(粒径が1μm以下の体積分率7%)の負極材料を得た。該負極材料を用いて、元素分析(測定使用機:パーキンエルマー製、元素分析装置“PE2400シリーズII、CHNS/0”)およびBET法による比表面積測定(測定使用機:ユアサアイオニクス社製、“NOVA1200”)を行ったところ、H/C=0.26であり、比表面積は24m2/gであった。
【0039】
次いで、上記の負極材料粉末、導電材であるアセチレンブラック、バインダーであるポリフッ化ビニリデン(PVdF)及び溶剤であるN−メチルピロリドン(NMP)を混合し、負極合材スラリーを得た。このとき負極材料粉末、導電材であるアセチレンブラック、バインダーの配合比率(質量比)は、負極材料:アセチレンブラック:バインダー=88:7:7とした。該スラリーを厚さ14μmの銅箔の片面に塗布し、乾燥した後、プレスを行うことにより、負電極を得た。負極合剤層厚さ、目付量を表1に示す。
【0040】
次いで、上記で得られた負電極を作用極とし、金属リチウムを対極および参照極に用い、電解液としてエチレンカーボネートとエチルメチルカーボネートを3:7質量比で混合した溶媒に1mol/Lの濃度にLiPF6を溶解した溶液を用いて、電気化学セルをアルゴンドライボックス中で作製し、負極の充電受入性を評価した。負極の充電受入性は2サイクル目に評価する事とし、2サイクル目のリチウムのドーピングは、リチウム電位に対して1mVになるまで160mA/gの電流で行い、続いて、160mA/gの速度でリチウム電位に対して2Vまで脱ドーピングを行ない、得られた容量で評価した。結果を合わせて下記表1に示す。
【0041】
(実施例2〜3、及び比較例1)
実施例1と同様の方法にて電極を作製した。負極合剤の成形材層厚さ、目付量を表1に示す。また、引き続いて充電受け入れ性を評価した。結果を合わせて表1に示す。
【0042】
【表1】
【0043】
上記結果から明らかな様に目付量が6mg/cm2以下とした場合、良好な充電受入特性が得られる事がわかる。
【0044】
実施例4〜6、比較例2
1)正極材料LiNi0.8Co0.2O2を89.5質量部、アセチレンブラック4.5質量部、PVdF6.0質量部およびNMPを混合し、正極合材スラリーを得た。次いで、該スラリーを集電体となる厚さ20μmのアルミニウム箔の両面に塗布し、乾燥した後、プレスを行って、正極を得た。
【0045】
2)本発明の負電極(実施例1〜3)、及び比較の負電極(比較例1)は、上記方法で得られた正電極とセパレータを介して対向させ、電池を作製した。ここで正電極は、正電極と負電極の活物質重量比が同じとなる様に、目付量を調整して塗布し使用した。電解液は、エチレンカーボネートとエチルメチルカーボネートを3:7質量比で混合した溶媒に1mol/リットルの濃度にLiPF6を溶解した溶液を用いた。
【0046】
3)次いで、上記で作製した電池を0.2CmAの電流で4.2Vまで充電し、その後4.2Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、0.2CmAの定電流で2.0Vまで放電するサイクルを100回線り返した。その結果を表2に示す。
【0047】
【表2】
【0048】
目付量が6mg/cm2以下である負極を用いた電池は初期容量の78%以上の容量を保持したが、目付量が6mg/cm2を超える比較負極を用いた電池の容量は50%まで低下していた。
【0049】
【発明の効果】
以上、説明したように本発明に係る非水系2次電池用の負電極によれば、I.上記多環芳香族系炭化水素は水素/炭素の元素比が0.50乃至0.05の範囲であり、上記負極材料のBET法による比表面積が0.1乃至50m2/gの範囲であり、II.上記負極材料の目付量が6mg/cm2以下であることから、その負電極は電池設計の観点から負極での充電受入特性が向上し、8時間率程度の充填に対してもサイクルを重ねることに伴う容量劣化が少ない。従って、このような負電極を使用した非水系2次電池は実用化が簡単である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode (hereinafter, referred to as a negative electrode or a negative electrode) such as a lithium secondary battery using a non-aqueous electrolyte and a non-aqueous secondary battery using the same, and particularly to a lithium secondary battery and the like. The present invention relates to a negative electrode in which a negative electrode material composed of a specific polycyclic aromatic hydrocarbon is reduced to a predetermined weight per unit area and a non-aqueous secondary battery using the same in order to remarkably improve the performance of the above.
[0002]
[Prior art]
In recent years, various high energy densities have been associated with power sources for small portable devices such as mobile phones, midnight power storage systems, home-based distributed power storage systems based on solar power generation, and power storage systems for electric vehicles. Battery development is being vigorously pursued. In particular, a lithium ion battery has a volume energy density exceeding 350 Wh / l, and is superior in safety and reliability such as cycle characteristics as compared with a lithium secondary battery using lithium metal as a negative electrode. The market for power supplies for small portable devices is expanding exponentially.
[0003]
The lithium ion battery uses a lithium-containing transition metal oxide typified by LiCoO 2 , LiMn 2 O 4 or the like as a positive electrode, and uses a carbon-based material typified by graphite as a negative electrode. At present, the capacity of lithium ion batteries is being further increased, but the capacity improvement by improving the cathode oxide and the anode carbon-based material has almost reached its limit, and the energy density exceeding 450 Wh / l has been reached. It is difficult to achieve. Further, in order to meet the needs for large-sized products, which are expected in the future, it is strongly desired to reduce material costs.
Particularly, in order to increase the energy density and increase the size of the battery, securing safety is the most important issue, and from this viewpoint, further improvement in the characteristics of the electrode material is desired.
[0004]
In the negative electrode material used for the negative electrode, various graphite-based materials, carbon-based materials, and polycyclic aromatic conjugated structural materials (generally referred to as low-temperature-treated carbon materials or polyacene-based materials) are used. Is being developed. In particular, a polycyclic aromatic conjugated structural material obtained by heat-treating various raw materials at a relatively low temperature of about 550 to 1000 ° C. is a material that exceeds the theoretical capacity of graphite, C 6 Li (372 mAh / g). As it has received particular attention.
[0005]
Among them, JP-A-2000-251885 and JP-A-2002-63892 are polycyclic aromatic hydrocarbons obtained by subjecting a raw material mainly composed of pitch to a thermal reaction, and (1) hydrogen / An element ratio of carbon (H / C) is 0.35 to 0.05, and (2) a negative electrode material for a non-aqueous secondary battery, which has a specific surface area of 50 m 2 / g or less by a BET method. It has been disclosed.
[0006]
According to the above-mentioned publication, a material having an H / C of 0.22 obtained by thermally reacting coal-based pitch has a capacity of 900 mAh / g by lithium doping for 20 hours, which can solve the above-mentioned problem. It is a material with high properties. However, there are many problems to be improved in practical use of such materials. One of them is lithium acceptability (charging acceptability) at the negative electrode.
Japanese Patent Application Laid-Open No. 2002-63892 discloses a secondary battery using the above polycyclic aromatic hydrocarbon predoped with lithium. It is described that the capacity of this secondary battery is remarkably improved as compared with a commercially available lithium ion battery, and a capacity approximately twice as high as that of a commercially available battery can be obtained. However, there are still many issues that need to be improved in the practical application of this battery, and its charge receiving characteristics are not disclosed at all, and need to be improved. From the viewpoint of battery design, the charge receiving characteristics of the negative electrode are also considered. Improvement is desired.
[0007]
Further, in a general lithium ion battery, the thickness of both the positive electrode and the negative electrode is designed to be around 100 μm. In the case of a graphite negative electrode, the thickness of the electrode layer is about 80 to 120 μm, and the basis weight of graphite as an active material is Is about 10 mg to 20 mg per 1 cm 2 . Also, in the description of JP-A-2002-63892, the thickness of the negative electrode using a polycyclic aromatic hydrocarbon obtained by subjecting a raw material containing pitch as a main component to a thermal reaction is 100 μm. It has the same design as a conventional lithium ion battery. However, when the polycyclic aromatic hydrocarbon is used as a negative electrode active material, sufficient charge receiving characteristics cannot be obtained with the same design as in the related art, and the capacity accompanying the cycle progresses even at a charge rate of about 8 hours. The problem that deterioration was large remained.
[0008]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to improve the charge receiving characteristics at the negative electrode from the viewpoint of battery design, and to reduce the capacity of the negative electrode with less capacity deterioration due to repeated cycles even at about 8 hours rate of filling. And a non-aqueous secondary battery using the same.
[0009]
[Means for Solving the Problems]
The present inventors, while paying attention to the current state of the technology as described above, as a result of repeated research, by using a negative electrode manufactured with a specific basis weight or less of a negative electrode material having a specific structure using pitch as a raw material The present inventors have found that the reliability of the battery, such as charging characteristics and cycle characteristics, is improved, and have reached the present invention.
That is, the present invention has solved the above-mentioned problems by providing a negative electrode comprising the following members or configurations or a non-aqueous secondary battery using the same.
[0010]
(1) In a negative electrode material composed of a polycyclic aromatic hydrocarbon obtained by subjecting a raw material containing at least pitch as a main component to a thermal reaction, and a negative electrode for a non-aqueous secondary battery in which a conductive material is molded with a binder. , I .. The polycyclic aromatic hydrocarbon has an element ratio of hydrogen / carbon in a range of 0.50 to 0.05, and a specific surface area of the negative electrode material measured by a BET method in a range of 0.1 to 50 m 2 / g. , II. The negative electrode, wherein the basis weight of the negative electrode material is 6 mg / cm 2 or less.
[0011]
(2) The negative electrode according to the above (1), wherein the negative electrode material has an average particle size of 10 μm or less and a particle size of 1 μm or less and a volume fraction of 1% or more.
(3) The negative electrode as described in (1) or (2) above, wherein the polycyclic aromatic hydrocarbon has an element ratio of hydrogen / carbon of 0.40 to 0.15.
(4) The negative electrode according to any one of (1) to (3), wherein the density of the molding material is in a range of 0.85 to 1.3 g / cm 3 .
(5) The negative electrode as described in any of (1) to (4) above, wherein the molded material has an electric conductivity of 10 −3 S / Ωcm or more.
[0012]
(6) A non-aqueous secondary battery comprising the negative electrode and the positive electrode according to any one of (1) to (5).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a negative electrode according to the present invention and a non-aqueous secondary battery using the same will be described in detail. The negative electrode according to the present invention and the non-aqueous secondary battery using the same are not limited to the following embodiments and examples.
The negative electrode according to the present invention is formed from a negative electrode material composed of a polycyclic aromatic hydrocarbon obtained by subjecting at least a raw material mainly composed of pitch to a thermal reaction, a conductive material, and a binder.
[0014]
The pitch as the main component of the raw material of the negative electrode material is not particularly limited as long as a negative electrode material having predetermined physical properties can be obtained, but is roughly classified into a petroleum-based pitch and a coal-based pitch. . Examples of the petroleum pitch include a distillation residue of a raw material, a fluid catalytic cracking residue (such as decant oil), a bottom oil from a thermal cracker, and ethylene tar obtained at the time of naphtha cracking.
Examples of the coal-based pitch include a straight pitch, which is a residue obtained by distilling coal tar, which is an oil component obtained at the time of coal dry distillation, and a light component flowing out, or a product obtained by adding anthracene oil, tar, and the like thereto. be able to. Mesophase pitch synthesized using these pitches as raw materials can also be mentioned as a raw material for producing the negative electrode material according to the present invention.
Furthermore, a synthetic pitch such as a naphthalene pitch synthesized by polycondensation of naphthalene can be used.
These pitches are currently inexpensive and mass-produced, and are mainly used for applications such as ironmaking coke binders, electrode impregnation materials, coke raw materials, carbon fiber raw materials, and molded carbonaceous material binders. I have.
[0015]
The softening point of the pitch used as the raw material is preferably in the range of about 70 to 400 ° C, more preferably in the range of 100 to 350 ° C, and particularly preferably in the range of 150 to 300 ° C. Desirably. When the softening point of the pitch is lower than the above range, the yield of the desired thermal reaction product is reduced. On the other hand, when the softening point of the pitch is higher than the above range, the ratio of the thermal reaction product is reduced. The desired negative electrode material cannot be obtained by increasing the surface area.
[0016]
The negative electrode material for a non-aqueous secondary battery according to the present invention comprises a polycyclic aromatic hydrocarbon (thermal reaction product) obtained by subjecting a raw material containing the pitch as a main component to a thermal reaction. It is required that the element ratio of hydrogen / carbon (H / C) be in the range of 0.5 to 0.05.
In particular, when it is used as a negative electrode material, it is preferably in the range of 0.40 to 0.15, particularly in the range of 0.40 to 0.20.
The H / C is determined according to the raw material and the intended battery characteristics. When the H / C of the above material exceeds 0.50, the main polycyclic aromatic conjugated structure is not sufficiently generated in the negative electrode material, so that when used for the negative electrode, the capacity and efficiency are low. Become. On the other hand, when the H / C of the above material is less than 0.05, carbonization proceeds excessively, and a sufficient capacity as a negative electrode material intended in the present invention cannot be obtained.
[0017]
The negative electrode material containing the polycyclic aromatic hydrocarbon as a main component may contain other elements besides carbon and hydrogen as long as the effects of the present invention are not affected. For example, the negative electrode material tends to contain elements (oxygen, sulfur, nitrogen, etc.) other than carbon and hydrogen derived from the raw material. In order to prevent the characteristics of the negative electrode material from being impaired by such elements, it is desirable that the total mass of the other elements be suppressed to 20% or less, more preferably 10% or less. For this purpose, it is desirable to select a raw material having a small content of unnecessary elements or to select thermal reaction conditions under which unnecessary elements are easily released.
[0018]
The thermal reaction of the raw material pitch is performed in an inert atmosphere (including vacuum) such as nitrogen or argon. The reaction temperature is also determined in consideration of various conditions (temperature rising rate, reaction time, reaction atmosphere, pressure, removal rate of gas components generated during the reaction outside the reaction system, etc.) other than the types and properties of the above-described raw materials and the temperature. And the element ratio of hydrogen / carbon can be appropriately selected so as to be within the above range.
[0019]
The thermal reaction temperature is preferably in the range of 550 to 750 ° C, more preferably in the range of 600 to 700 ° C.
When the raw material containing the pitch as a main component is thermally reacted in a temperature range of 550 to 750 ° C. in an inert atmosphere, a polycyclic aromatic carbon having an element ratio of hydrogen / carbon in the above range and a suitable specific surface area can be obtained. Hydrogen material is obtained in high yield. The yield of the polycyclic aromatic hydrocarbon by the thermal reaction depends on the compounding characteristics of the above-mentioned raw materials and the softening point of the pitch, but it is preferably at least 60% or more in the production method of the present invention. If the raw material, softening point, and the like are appropriately selected within the above temperature range, a polycyclic aromatic hydrocarbon can be sufficiently obtained with a yield of 60% or more.
[0020]
The heating rate is preferably in the range of about 10 to 1000 ° C./hour, more preferably about 50 to 500 ° C./hour. The heating rate does not need to be constant. For example, the temperature can be increased at a rate of 100 ° C./hour up to a temperature of 300 ° C., and at a rate of 50 ° C./hour from 300 ° C. to 650 ° C. . The reaction time (peak temperature holding time) is about 1 to 100 hours. The pressure may be normal pressure, but may be reduced or increased.
[0021]
The negative electrode material used in the present invention is obtained by pulverizing the thermal reaction product comprising the amorphous insoluble and infusible solid, and the pulverized negative electrode material has a specific surface area of 0.1 to 50 m 2 by the BET method. / G is essential. More preferably, the specific surface area is in the range of 0.1 to 30 m 2 / g.
If the specific surface area of the negative electrode material is too large, the initial efficiency of doping and undoping of lithium deteriorates, which is not practically preferable. Most of the conventionally reported polycyclic aromatic conjugated structural materials generally have a high specific surface area and are larger than carbon-based materials and graphite-based materials, and most of them exceed 50 m 2 / g. Therefore, in order to reduce the high specific surface area and increase the efficiency, conventionally, a technique for re-surface-treating the carbon-based material and the graphite-based material has been developed. However, such a technical treatment requires a complicated operation, and extra steps are required in the production, and the production cost of the negative electrode material is significantly increased, so that it is practically disadvantageous. On the other hand, in the negative electrode material for a non-aqueous secondary battery according to the present invention, as described later, the specific surface area can be reduced to 50 m 2 / g or less by one thermal reaction of the pitch raw material. And easy to manufacture.
In general, the specific surface area of the negative electrode material decreases as the heat treatment reaction temperature increases, and the initial efficiency of lithium doping and undoping increases, but on the other hand, the capacity sharply decreases. The negative electrode material used in the present invention has a specific surface area of 50 m 2 / g or less while maintaining the above-described range of the H / C ratio. The lower limit of the specific surface area is preferably about 0.1 m 2 / g for handling.
[0022]
The specific structure of the negative electrode material used in the present invention using pitch as a raw material can be obtained by appropriately controlling the thermal reaction conditions as described above. In particular, by appropriately selecting the pitch raw material, a material having the above H / C ratio and the above specific surface area after pulverization can be easily obtained by alleviating the restriction due to the thermal reaction conditions.
Generally, the pitch is heated at a temperature of about 100 to 400 ° C. in the air, or is treated with an oxidizing liquid such as nitric acid or sulfuric acid to infusibilize (crosslink) the entire pitch or its surface. It is manufactured by heat treatment in an active atmosphere. However, in the production method of the present invention, the pitch is not subjected to infusibilizing treatment or surface oxidizing treatment, and is subjected to a thermal reaction, so that the negative electrode material used in the present invention can be easily formed by one thermal reaction as described above. Obtainable.
[0023]
The negative electrode material used in the present invention is obtained by pulverizing the amorphous thermal reaction product to a predetermined particle size and adjusting the particle size if necessary, but the average particle size is 30 μm or less, more preferably 20 μm or less, particularly Preferably, it is 10 μm or less, and the volume fraction of 1 μm or less in the particle size distribution is 1% or more. Particularly preferably, the average particle size is 10 μm or less, and the volume fraction of the particle size of 1 μm or less is in the range of 1 to 20%, more preferably 3 to 15%, and particularly preferably 5 to 10%. Is desirable.
[0024]
Since the above-mentioned thermal reaction product has an irregular shape, it is pulverized by a pulverizer such as a ball mill and a jet mill, and then, if necessary, classified to obtain a predetermined particle size. In general, graphite materials used for lithium ion batteries, which have an average particle diameter of 10 μm or less and a particle diameter of 1 μm or less and a volume fraction of 1% or more, are used because the initial charge / discharge efficiency is low and the electrode density is difficult to increase. Has been withheld. However, in the above-mentioned negative electrode material, although the mechanism is unknown, setting the above range improves the electrode density and the charge receiving characteristics. As the average particle size gradually increases, the charge receiving characteristics deteriorate. When the volume fraction of 1 μm in particle diameter is less than 1%, it is difficult to increase the electrode density and the charge receiving characteristics are reduced. When the volume fraction exceeds 20%, it becomes difficult to produce an electrode described later. .
[0025]
The negative electrode for a non-aqueous secondary battery according to the present invention is obtained by dispersing the above-described negative electrode material, conductive material, and the like in a resin binder and molding. The electrode can be formed by a known method while taking into consideration the shape, characteristics, and the like of a desired nonaqueous secondary battery. In the present invention, the conductive material and the binder are not particularly limited. Specifically, examples of the conductive material include acetylene black, carbon black, Ketjen black, and graphite, and the binder includes polyvinylidene fluoride. (PVdF), a fluorine-based resin such as polytetrafluoroethylene; a rubber-based material such as fluororubber and SBR; a polyolefin such as polyethylene and polypropylene; and an acrylic resin.
[0026]
The amount of the conductive material may be appropriately determined according to the type, particle size, shape, target weight of the target electrode, strength, and the like of the negative electrode material of the present invention, and is not particularly limited. The amount is preferably about 1 to 20 parts by mass with respect to 100 parts by mass of the negative electrode material of the invention.
The amount of the binder may be appropriately determined depending on the type, particle size, shape, target weight of the target electrode, strength, and the like of the negative electrode material of the present invention, and is not particularly limited. The amount is preferably about 1 to 30 parts by mass based on 100 parts by mass of the negative electrode material of the present invention.
[0027]
In the present invention, the negative electrode may be formed on one side or both sides of the current collector. In this case, the current collector used is not particularly limited, and examples thereof include a copper foil, a stainless steel foil, and a titanium foil. Furthermore, a material on which an electrode can be formed on a metal foil or in a gap between metals, for example, an expanded metal, a mesh, or the like can also be used.
[0028]
The basis weight of the negative electrode material in the negative electrode according to the present invention is 6 mg / cm 2 or less, preferably 5 mg / cm 2 or less, and 2 mg / cm 2 or more. The basis weight is, for example, when a negative electrode is formed on one surface of a copper foil, it is the mass of the negative electrode material of the present invention included per 1 cm 2 of the negative electrode surface, and when the negative electrode is formed on both surfaces of the copper foil, it is included on each side. It is the mass of the negative electrode material.
[0029]
In the present invention, by setting the basis weight of the negative electrode material to 6 mg / cm 2 or less, the charge receiving characteristics can be improved. If the basis weight is too small, the volume ratio of the current collector, the separator and the like in the battery tends to increase, and the battery capacity tends to decrease.
Here, the charge receiving characteristics will be described. In a non-aqueous secondary battery using a negative electrode according to the present invention, for example, when a lithium-based electrolytic solution described later is used, the lithium is doped into the negative electrode during charging, and the negative electrode potential decreases. If the lithium potential is reached and the lithium doping beyond it is continued at the same rate, the negative electrode will be at or below the lithium potential, possibly depositing lithium metal on the negative electrode. The charge acceptability is the easiness of doping until the negative electrode reaches the lithium potential.If the charge acceptability is low, even if the active material has a large amount of lithium doping ability, its capacity is reduced. It cannot be fully utilized in battery design.
[0030]
Therefore, when the basis weight of the negative electrode material exceeds 6 mg / cm 2 , the charge acceptability is poor, so that the lithium doping ability of the negative electrode material cannot be utilized and the battery capacity decreases. In addition, the capacity deterioration accompanying the cycle increases due to the deposition of lithium metal on the negative electrode.
[0031]
The molding density (or the density of the molding layer) of the negative electrode according to the present invention is not particularly limited, but is preferably in the range of about 0.85 to 1.3 g / cm 3 , and the H / It is appropriately determined by C, particle size distribution, amount of conductive material, and amount of binder. The molded electric conductivity (or the electric conductivity of the formed layer) of the negative electrode of the present invention is not particularly limited, but is preferably 10 −3 S / Ωcm or more, more preferably 5 × 10 −. It is in the range of 3 to 1 × 10 0 S / Ωcm. For example, when the electric conductivity is low, the charge acceptability deteriorates.
[0032]
In the negative electrode material of the negative electrode according to the present invention, it is possible to assemble the battery in a state where lithium is doped in advance, and further, after assembling the battery by a method such as laminating lithium metal on the negative electrode. It is also possible to dope the negative electrode material with lithium.
[0033]
Next, an embodiment of the nonaqueous secondary battery according to the present invention will be briefly described.
A non-aqueous secondary battery according to the present invention is characterized in that the non-aqueous secondary battery negative electrode is used as a negative electrode.
The non-aqueous secondary battery according to the present invention is not limited in its use form, and is not limited to the form in which the battery is used, as long as the negative electrode is used. For example, a non-aqueous secondary battery can be manufactured in combination with the negative electrode of the present invention, a known positive electrode, and a known non-aqueous electrolyte.
[0034]
The positive electrode is not particularly limited as long as it is a positive electrode material capable of inserting and extracting lithium. To obtain a high-voltage and high-capacity lithium secondary battery, for example, a known lithium composite cobalt oxide, lithium composite nickel An oxide, a lithium composite manganese oxide, a mixture thereof, or a system in which one or more different metal elements are added to these oxides can be used. Further, manganese, vanadium, metal oxides such as iron, disulfide compounds, polyacene-based material, it is also possible to use a like activated carbon, in particular, lithium complex, including LiCoO 2, LiNixCoyO 2, LiNixMnyO 2 in terms of capacity Oxides are preferred.
Further, it is also possible to assemble the battery in a state in which the negative electrode material of the negative electrode of the present invention is doped with lithium in advance, and further by assembling lithium metal on the negative electrode, the battery of the present invention is assembled after the battery is assembled. It is also possible to dope the negative electrode with lithium.
[0035]
As the non-aqueous electrolyte, a known non-aqueous electrolyte containing a lithium salt is used. The type of the electrolytic solution is appropriately determined according to the type of the positive electrode material, the properties of the negative electrode material, usage conditions such as the charging voltage, and the like. As the electrolytic solution, for example, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 can be used such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, and the like. Those dissolved in one or more organic solvents are preferred.
[0036]
Further, the concentration of the electrolytic solution is not particularly limited, but a range of about 0.5 to 2 mol / liter is practical. Of course, it is preferable to use an electrolyte having a water content of 100 ppm or less. The term “non-aqueous electrolyte” used in the present specification means a concept including a non-aqueous electrolyte and an organic electrolyte, and also includes a concept including a gel and a solid electrolyte. Things.
[0037]
【Example】
Hereinafter, examples and comparative examples of the negative electrode according to the present invention and the non-aqueous secondary battery thereof will be shown to further clarify features of the present invention.
(Example 1)
1000 g of coal-based isotropic pitch (softening point: 280 ° C.) was placed in a stainless steel dish, and placed in an electric furnace (effective size in the furnace: 300 mm × 300 mm × 300 mm) to perform a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the flow rate of nitrogen was 10 liter / min. In the thermal reaction, the temperature was raised from room temperature to 635 ° C. (in-furnace temperature) at a rate of 100 ° C./hour, maintained at this temperature for 4 hours, and then naturally cooled to a temperature of 60 ° C.
And the reaction product was removed from the electric furnace. The obtained product was an amorphous, insoluble, infusible solid without keeping the shape of the raw material. The yield was 804 g, and the yield was 80.4% by mass.
[0038]
The obtained product was pulverized by a jet mill to obtain a negative electrode material having an average particle diameter of 5.5 μm (a particle diameter of 1 μm or less and a volume fraction of 7%). Using the negative electrode material, elemental analysis (measuring machine: PerkinElmer, element analyzer "PE2400 Series II, CHNS / 0") and specific surface area measurement by BET method (measuring machine: Yuasa Ionics, " When NOVA1200 ″) was performed, H / C = 0.26, and the specific surface area was 24 m 2 / g.
[0039]
Next, the above negative electrode material powder, acetylene black as a conductive material, polyvinylidene fluoride (PVdF) as a binder, and N-methylpyrrolidone (NMP) as a solvent were mixed to obtain a negative electrode mixture slurry. At this time, the compounding ratio (mass ratio) of the negative electrode material powder, acetylene black as the conductive material, and the binder was set to 88: 7: 7 as the negative electrode material: acetylene black: binder. The slurry was applied to one surface of a copper foil having a thickness of 14 μm, dried, and then pressed to obtain a negative electrode. Table 1 shows the thickness and the basis weight of the negative electrode mixture layer.
[0040]
Next, the negative electrode obtained above was used as a working electrode, metallic lithium was used as a counter electrode and a reference electrode, and a concentration of 1 mol / L was added to a solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate at a mass ratio of 3: 7 as an electrolytic solution. Using the solution in which LiPF6 was dissolved, an electrochemical cell was fabricated in an argon dry box, and the charge acceptability of the negative electrode was evaluated. The charge acceptability of the negative electrode is evaluated in the second cycle, and the lithium doping in the second cycle is performed at a current of 160 mA / g until the potential of lithium reaches 1 mV, and then at a rate of 160 mA / g. Dedoping was performed up to 2 V with respect to the lithium potential, and the obtained capacity was evaluated. The results are shown in Table 1 below.
[0041]
(Examples 2 and 3, and Comparative Example 1)
An electrode was produced in the same manner as in Example 1. Table 1 shows the molding material layer thickness and the basis weight of the negative electrode mixture. Subsequently, the charge acceptability was evaluated. The results are shown in Table 1.
[0042]
[Table 1]
[0043]
As is clear from the above results, when the basis weight is 6 mg / cm 2 or less, it is understood that good charge receiving characteristics can be obtained.
[0044]
Examples 4 to 6, Comparative Example 2
1) 89.5 parts by mass of the cathode material LiNi 0.8 Co 0.2 O 2 , 4.5 parts by mass of acetylene black, 6.0 parts by mass of PVdF, and NMP were mixed to obtain a cathode mixture slurry. Next, the slurry was applied to both sides of a 20 μm-thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode.
[0045]
2) The negative electrode of the present invention (Examples 1 to 3) and the comparative negative electrode (Comparative Example 1) were opposed to the positive electrode obtained by the above method via a separator to produce a battery. Here, the positive electrode was coated and used so that the basis weight was adjusted so that the active material weight ratio of the positive electrode and the negative electrode was the same. The electrolyte used was a solution in which LiPF 6 was dissolved at a concentration of 1 mol / liter in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a mass ratio of 3: 7.
[0046]
3) Next, the battery prepared above was charged to 4.2 V with a current of 0.2 CmA, and thereafter, constant-current constant-voltage charging in which a constant voltage of 4.2 V was applied was performed for 8 hours. Subsequently, 100 cycles of discharging to 2.0 V at a constant current of 0.2 CmA were repeated 100 times. Table 2 shows the results.
[0047]
[Table 2]
[0048]
A battery using a negative electrode having a basis weight of 6 mg / cm 2 or less maintained a capacity of 78% or more of the initial capacity, but a battery using a comparative negative electrode having a basis weight exceeding 6 mg / cm 2 had a capacity of up to 50%. Had declined.
[0049]
【The invention's effect】
As described above, according to the negative electrode for a non-aqueous secondary battery according to the present invention, I.I. The polycyclic aromatic hydrocarbon has an element ratio of hydrogen / carbon in a range of 0.50 to 0.05, and a specific surface area of the negative electrode material measured by a BET method in a range of 0.1 to 50 m 2 / g. , II. Since the basis weight of the above-mentioned negative electrode material is 6 mg / cm 2 or less, the negative electrode improves the charge receiving characteristics of the negative electrode from the viewpoint of battery design, and repeats the cycle even for the filling of about 8 hours. And there is little capacity deterioration. Therefore, a non-aqueous secondary battery using such a negative electrode is easy to put into practical use.