JP2004091680A - Polymer composition, method for manufacturing the polymer composition, modifier and thermoplastic resin composition - Google Patents
Polymer composition, method for manufacturing the polymer composition, modifier and thermoplastic resin composition Download PDFInfo
- Publication number
- JP2004091680A JP2004091680A JP2002255704A JP2002255704A JP2004091680A JP 2004091680 A JP2004091680 A JP 2004091680A JP 2002255704 A JP2002255704 A JP 2002255704A JP 2002255704 A JP2002255704 A JP 2002255704A JP 2004091680 A JP2004091680 A JP 2004091680A
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- mass
- polymer composition
- copolymer
- total
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、他の樹脂に配合することにより、軟質且つ優れた寸法安定性、耐衝撃性及び流動性を付与できる重合体組成物及びその製造方法、該重合体組成物を含む改質剤並びに該重合体組成物を含む熱可塑性樹脂組成物に関する。
【0002】
【従来の技術】
従来より、寸法安定性に優れた熱可塑性樹脂組成物を得る方法として、無機充填剤、金属粉末、補強剤等の各種樹脂添加剤を樹脂に添加して、熱可塑性樹脂組成物の線膨張係数を下げる方法が広く知られている。しかし、この方法により得られる熱可塑性樹脂組成物は、通常、熱可塑性樹脂組成物の流動性、耐衝撃性、及び柔軟性が損なわれ、また、曲げ弾性率は大きく、引っ張り伸び率が小さい硬い樹脂となり、その結果、柔軟性が必要な用途に用いるには困難となる。一方、樹脂を軟質化する方法としては、可塑剤の添加、ジエン系ゴムの添加、及びABS樹脂やAES樹脂のブレンド比率を多くする等の方法が知られている。しかし、この方法では、寸法安定性に劣る樹脂となるという問題がある。このように、従来、寸法安定性と柔軟性が両立する熱可塑性樹脂組成物及びそのような熱可塑性樹脂組成物を得る方法は知られていなかった。
【0003】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みてなされたものであり、他の樹脂に配合することにより、軟質且つ優れた寸法安定性、耐衝撃性及び流動性を付与できる重合体組成物及びその製造方法、該重合体組成物を含む改質剤並びに該重合体組成物を含む熱可塑性樹脂組成物を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、以下のとおりである。
〔1〕芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体を重合して得られる共重合体(A)を5〜70質量%、及びアクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体を重合して得られる共重合体(B)を30〜95質量%含有する(但し、上記共重合体(A)及び(B)の含有量の合計は100質量%)ことを特徴とする重合体組成物。
〔2〕芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体(a1)を重合する第1工程を行い、
次いで、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体(b1)を重合する第2工程を行い、
その後、芳香族ビニル単量体/シアン化ビニ単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、単量体の合計100質量%)からなる単量体(a2)を重合する第3工程を行うことより得られる請求項1記載の重合体組成物。
〔3〕上記〔1〕又は〔2〕記載の重合体組成物を含むことを特徴とする改質剤。
〔4〕上記〔3〕記載の改質剤と、他の熱可塑性樹脂と、を含有し、両者の含有量の合計を100質量%とした場合、上記〔3〕記載の改質剤の含有量が0.1〜70質量%であり、上記他の熱可塑性樹脂の含有量が30〜99.9質量%であることを特徴とする熱可塑性樹脂組成物。
〔5〕芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体(a1)を重合する第1工程を行い、
次いで、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体(b1)を重合する第2工程を行い、
その後、芳香族ビニル単量体/シアン化ビニ単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体(a2)を重合する第3工程を行う(但し、単量体(a1)+単量体(b1)+単量体(a2)=100質量部とした場合、単量体(a1)+単量体(a2)=5〜70質量部である。)ことを特徴とする重合体組成物の製造方法。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
(1)重合体組成物
▲1▼共重合体(A)
本発明の重合体組成物に含まれる上記共重合体(A)は、芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体を重合して得られる共重合体である。
【0006】
上記芳香族ビニル単量体の種類及び構造について特に限定はない。また、上記芳香族ビニル単量体は1種単独で用いてもよく、2種以上を併用してもよい。上記芳香族ビニル単量体として具体的には、例えば、スチレン、スチレン誘導体(メチルスチレン、α−メチルスチレン、クロルスチレン及びt−ブチルスチレン等)等の1種又は2種以上が挙げられる。また、上記共重合体(A)を構成する全単量体に対する上記芳香族ビニル単量体の割合は、上記共重合体(A)を構成する全単量体の合計を100質量%とした場合、50〜90質量%、好ましくは50〜85質量%、更に好ましくは55〜85質量%、より好ましくは60〜85質量%、特に好ましくは65〜85質量%である。上記芳香族ビニル単量体の割合が50質量%未満であると、重合体組成物の分散状態が劣り、他の樹脂と配合した場合の樹脂の流動性が低下するので好ましくない。一方、上記芳香族ビニル単量体の割合が90質量%を越えると、他の樹脂に配合した場合、重合体組成物の分散状態が劣る上、樹脂の耐衝撃性が低下するので好ましくない。
【0007】
上記シアン化ビニル単量体の構造及び種類についても特に限定はない。また、上記シアン化ビニル単量体は1種単独で用いてもよく、2種以上を併用してもよい。上記シアン化ビニル単量体として具体的には、例えば、アクリロニトリル、メタクリロニトリル等の1種又は2種以上が挙げられる。また、上記共重合体(A)を構成する全単量体に対する上記シアン化ビニル単量体の割合は、上記共重合体(A)を構成する全単量体の合計を100質量%とした場合、10〜50質量%、好ましくは10〜45質量%、更に好ましくは10〜40質量%、より好ましくは15〜40質量%、特に好ましくは15〜35質量%である。上記シアン化ビニル単量体の割合が10%質量未満であると、他の樹脂に配合した場合、重合体組成物の分散状態が劣るので好ましくない。一方、上記シアン化ビニル単量体の割合が50質量%を越えると、他の樹脂に配合した場合、重合体組成物の分散状態が劣る上、樹脂の耐衝撃性が低下するので好ましくない。
【0008】
上記共重合体(A)の上記芳香族ビニル単量体及び上記シアン化ビニル単量体の組み合わせは特に限定はないが、スチレン及び/又はα−メチルスチレンとアクリロニトリル及び/又はメタクリロニトリルとの組み合わせが好ましい。
【0009】
上記共重合体(A)は、上記芳香族ビニル単量体と上記シアン化ビニル単量体とを共重合したものでもよいが、更に上記芳香族ビニル単量体及び上記シアン化ビニル単量体以外の他の共重合可能な単量体を加えて共重合を行ってもよい。上記他の共重合可能な単量体は、上記芳香族ビニル単量体及び上記シアン化ビニル単量体以外であり、且つ、上記芳香族ビニル単量体及び上記シアン化ビニル単量体と共重合することができる限り、その構造及び種類には特に限定がなく、必要に応じて種々の種類の単量体を用いることができる。また、上記他の共重合可能な単量体は1種単独で用いてもよく、2種以上用いてもよい。
【0010】
上記他の共重合可能な単量体として具体的には、例えば、アクリル酸エステル、不飽和酸、不飽和酸無水物、マレイミド系単量体、エポキシ基含有不飽和化合物、水酸基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは1種単独で用いてもよく、2種以上用いてもよい。
上記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等の1種又は2種以上が挙げられる。
上記不飽和酸としては、アクリル酸及び/又はメタクリル酸等が挙げられる。
上記不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の1種又は2種以上が挙げられる。
上記マレイミド系単量体としては、マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、N−(4−ヒドロキシフェニル)マレイミド、N−シクロヘキシルマレイミド等の1種又は2種以上が挙げられる。また、無水マレイン酸を(共)重合させ、その後、イミド化してマレイミドを導入する方法でもよい。
上記エポキシ基含有不飽和化合物としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等の1種又は2種以上が挙げられる。
上記水酸基含有不飽和化合物としては、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、ヒドロキシスチレン等の1種又は2種以上が挙げられる。
上記オキサゾリン基含有不飽和化合物としては、ビニルオキサゾリン等の1種又は2種以上が挙げられる。
尚、本発明の重合体組成物は、上記構成を備えることにより、上記他の共重合体としてマレイミド系単量体を含まなくても、樹脂に添加した場合に耐熱性及び流動性を向上させることができるので、上記他の共重合可能な単量体として、上記のマレイミド系単量体以外の他の共重合可能な単量体を用いるのが好ましい。
【0011】
また、上記共重合体(A)を構成する全単量体に対する上記他の共重合可能な単量体の割合は特に限定はなく、必要に応じて種々の割合とすることができる。通常、上記他の共重合可能な単量体の割合は、上記共重合体(A)を構成する全単量体の合計を100質量%とした場合、0〜40質量%、好ましくは0〜30質量%、更に好ましくは0〜20質量%、より好ましくは0より大きく20質量%以下である。
【0012】
▲2▼共重合体(B)
本発明の重合体組成物に含まれる上記共重合体(B)は、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体を重合して得られる共重合体である。
【0013】
上記共重合体(B)中の上記アクリル酸アルキルエステル単量体の種類及び構造については特に限定はない。例えば、上記アクリル酸アルキルエステル単量体のアルキルエステル(RCOO−)を構成するアルキル基(R)の種類については特に限定はない。上記アルキル基は飽和アルキル基でも不飽和アルキル基でもよい。また、上記アルキル基は直鎖状、分岐状又は環状アルキル基のいずれでもよい。更に、上記環状アルキル基には脂環式アルキル基の他、芳香環も含まれる。通常、上記アルキル基として、炭素数1〜12、好ましくは1〜10、より好ましくは1〜8のアルキル基が用いられる。また、上記アクリル酸アルキルエステル単量体は1種単独で用いてもよく、2種以上用いてもよい。上記アクリル酸アルキルエステル単量体として具体的には、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n−ブチルアクリレート、i−ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート等の1種又は2種以上が挙げられる。
【0014】
また、上記共重合体(B)を構成する全単量体に対する上記アクリル酸アルキルエステル単量体の割合は、上記共重合体(B)を構成する全単量体の合計を100質量%とした場合、26〜85質量%、好ましくは26〜80質量%、更に好ましくは26〜75質量%、より好ましくは30〜75質量%である。上記アクリル酸アルキルエステル単量体の割合が26質量%未満であると、他の樹脂に配合した場合、重合体組成物の分散状態が劣る上、樹脂の耐衝撃性、柔軟性及び線膨張係数が劣るので好ましくない。一方、上記アクリル酸アルキルエステル単量体の配合割合が85質量%を越えると、他の樹脂に配合した場合、重合体組成物の分散状態が劣るので好ましくない。
【0015】
上記共重合体(B)中の上記芳香族ビニル単量体及び上記シアン化ビニル単量体の種類及び構造について特に限定はない。また、上記共重合体(B)中の上記芳香族ビニル単量体は1種単独で用いてもよく、2種以上を併用してもよい。更に、上記共重合体(B)中の上記芳香族ビニル単量体は、上記共重合体(A)中の上記芳香族ビニル単量体と同じ種類の単量体でもよく、異なる種類の単量体でもよい。また、上記共重合体(B)中の上記シアン化ビニル単量体は1種単独で用いてもよく、2種以上を併用してもよい。更に、上記共重合体(B)中の上記シアン化ビニル単量体は、上記共重合体(A)中のシアン化ビニル単量体と同じ種類の単量体でもよく、異なる種類の単量体でもよい。上記共重合体(B)中の上記芳香族ビニル単量体及び上記シアン化ビニル単量体として具体的には、例えば、上記共重合体(A)中の上記芳香族ビニル単量体及び上記シアン化ビニル単量体として挙げられたものの1種又は2種以上が挙げられる。
【0016】
また、上記共重合体(B)を構成する全単量体に対する上記共重合体(B)中の上記芳香族ビニル単量体の割合は、上記共重合体(B)を構成する全単量体の合計を100質量%とした場合、5〜60質量%、好ましくは5〜55質量%、更に好ましくは5〜50質量%、より好ましくは5〜45質量%である。また、上記共重合体(B)を構成する全単量体に対する上記共重合体(B)中の上記シアン化ビニル単量体の割合は、上記共重合体(B)を構成する全単量体の合計を100質量%とした場合、10〜40質量%、好ましくは12〜40質量%、更に好ましくは12〜35質量%、より好ましくは12〜33質量%である。上記共重合体(B)を構成する全単量体に対する上記芳香族ビニル単量体又は上記シアン化ビニル単量体の配合割合が上記範囲から外れていると、他の樹脂と配合した場合の重合体組成物の分散状態が劣り、また、樹脂の耐衝撃性も低下するので好ましくない。
【0017】
上記共重合体(B)中の上記アクリル酸アルキルエステル単量体、上記芳香族ビニル単量体及び上記シアン化ビニル単量体の組み合わせには特に限定はないが、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n−ブチルアクリレート及びi−ブチルアクリレートの1種又は2種以上と、スチレン及び/又はα−メチルスチレンと、アクリロニトリル及び/又はメタクリロニトリルと、の組み合わせが好ましい。
【0018】
上記共重合体(B)は、上記アクリル酸アルキルエステル単量体、上記芳香族ビニル単量体及び上記シアン化ビニル単量体を共重合したものでもよいが、更に他の共重合可能な単量体を加えて共重合を行ってもよい。上記他の共重合可能な単量体は、上記アクリル酸アルキルエステル単量体、上記芳香族ビニル単量体及び上記シアン化ビニル単量体と共重合することができる限り、その構造及び種類には特に限定がなく、必要に応じて種々の種類の単量体を用いることができる。また、上記他の共重合可能な単量体は1種単独で用いてもよく、2種以上用いてもよい。上記他の共重合可能な単量体として具体的には、例えば、上記共重合体(A)で示された他の共重合可能な単量体が挙げられる。また、上述のように、上記他の共重合可能な単量体として、マレイミド系単量体以外の他の共重合可能な単量体を用いるのが好ましい。尚、上記共重合体(B)中の上記他の共重合可能な単量体は、上記共重合体(A)中の上記他の共重合可能な単量体と同じ種類の単量体でもよく、異なる種類の単量体でもよい。
【0019】
また、上記共重合体(B)を構成する全単量体に対する上記共重合体(B)中の上記他の共重合可能な単量体の割合は特に限定はなく、必要に応じて種々の割合とすることができる。通常、上記共重合体(B)を構成する全単量体に対する上記他の共重合可能な単量体の割合は、上記共重合体(B)を構成する全単量体の合計を100質量%とした場合、0〜59質量%、好ましくは0〜58質量%、更に好ましくは0〜55質量%、より好ましくは0より大きく55質量%以下である。
【0020】
本発明の重合体組成物中の上記共重合体(A)及び(B)の含有量の合計を100質量%とした場合、上記共重合体(A)成分の含有量は5〜70質量%(上記共重合体(B)の含有量は30〜95質量%)、好ましくは10〜65質量%(上記共重合体(B)の含有量は35〜90質量%)、更に好ましくは15〜65質量%(上記共重合体(B)の含有量は35〜85質量%)、より好ましくは15〜60質量%(上記共重合体(B)の含有量は40〜85質量%)、より好ましくは20〜60質量%(上記共重合体(B)の含有量は40〜80質量%)である。上記共重合体(A)成分の含有量が5質量%未満であると(上記共重合体(B)の含有量が95質量%を超えると)、他の熱可塑性樹脂に配合した樹脂組成物の流動性に劣るので好ましくない。一方、上記共重合体(A)成分の含有量が70質量%を超えると(上記共重合体(B)の含有量が30質量%未満であると)、樹脂の柔軟性、線膨張係数、流動性、及び耐衝撃性が低下するので好ましくない。
【0021】
本発明の重合体組成物は、上記共重合体(A)及び(B)が存在する限り、特にその製造方法に限定はない。即ち、別々に上記共重合体(A)及び(B)を調製し、両者を混合することにより製造してもよい。また、上記共重合体(A)を調製後、得られた上記共重合体(A)と、上記共重合体(B)の上記各単量体と、を反応器に加えて重合を行って調製することもできる。逆に、上記共重合体(B)を調製後、得られた上記共重合体(B)と、上記共重合体(A)の上記各単量体と、を反応器に加えて重合を行って調製することもできる。本発明の重合体組成物の好ましい製造方法としては、以下に詳述する本発明の重合体組成物の製造方法が挙げられる。
【0022】
本発明の重合体組成物の物性は特に限定はなく、必要に応じて種々の物性値とすることができる。具体的には、本発明の重合体組成物の成形体のデュロメータ硬さは、通常90以下、好ましくは5〜80、更に好ましくは10〜70、より好ましくは20〜60とすることができる。デュロメータ硬さを上記範囲とすると、本発明の重合体組成物が適度な硬さ及び軟化点を有することから、他の樹脂に添加、混合することにより、樹脂中に適度に分散し、樹脂を軟質化すると共に、線膨張係数を低くして、寸法安定性に優れた樹脂とすることができる。
【0023】
(2)改質剤
本発明の重合体組成物は、上記のように、他の樹脂に添加、混合することにより、樹脂中に適度に分散し、樹脂を軟質化すると共に、線膨張係数を低くして、寸法安定性に優れた樹脂とすることができる。そのため、本発明の重合体組成物は、樹脂の性質を改良する樹脂の改質剤として使用することができる。本発明の改質剤は、本発明の重合体組成物の他、本発明の目的を阻害しない範囲で、必要に応じて、後述する各種の添加剤を1種又は2種以上添加することができる。また、本発明の改質剤を使用する場合、樹脂への配合割合には特に限定はなく、必要に応じて様々な配合割合とすることができる。本発明の改質剤の配合割合は、本発明の改質剤と樹脂成分の合計を100質量%とした場合、通常70質量%以下、好ましくは1〜70質量%、更に好ましくは1〜65質量%、より好ましくは3〜60質量%、特に好ましくは5〜55質量%である。
【0024】
(3)本発明の重合体組成物の製造方法
本発明の重合体組成物の製造方法は、芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体(a1)を重合する第1工程を行い、次いで、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体(b1)を重合する第2工程を行い、その後、芳香族ビニル単量体/シアン化ビニ単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体(a2)を重合する第3工程を行う(但し、単量体(a1)+単量体(b1)+単量体(a2)=100質量部であり、且つ、単量体(a1)+単量体(a2)=5〜70質量部である。)ことを特徴とする。
【0025】
上記第1工程及び上記第3工程において、原料として用いる上記芳香族ビニル単量体、上記シアン化ビニル単量体及び上記他の共重合可能な単量体の割合は、それぞれ独立に、芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、単量体の合計100質量%)、好ましくは50〜85/10〜45/0〜40質量%、更に好ましくは55〜85/10〜40/0〜35質量%である。かかる範囲とすることにより好ましい理由は上記の通りである。また、上記第2工程において、原料として用いる上記アクリル酸アルキルエステル単量体、上記芳香族ビニル単量体、上記シアン化ビニル単量体及び上記他の共重合可能な単量体の割合は、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、単量体の合計100質量%)、好ましくは26〜80/5〜55/12〜40/0〜58質量%、更に好ましくは26〜75/5〜50/12〜35/0〜58質量%である。かかる範囲とすることにより好ましい理由は上記の通りである。
【0026】
上記単量体(a1)、上記単量体(b1)及び上記単量体(a2)の合計を100質量部とした場合、上記単量体(a1)及び上記単量体(a2)の合計の割合は、5〜70質量部、好ましくは10〜65質量部、更に好ましくは15〜65質量部、より好ましくは15〜60質量部、特に好ましくは20〜60質量部である。上記単量体(a1)及び上記単量体(a2)の合計が5質量部未満であると、他の熱可塑性樹脂に配合した樹脂組成物の流動性に劣るので好ましくない。一方、70質量部を超えると、樹脂の柔軟性、線膨張係数、流動性、及び耐衝撃性が低下するので好ましくない。更に、上記単量体(a1)及び上記単量体(a2)の割合は、上記単量体(a1)及び上記単量体(a2)の合計の割合が上記範囲にある限り特に限定はない。通常、上記単量体(a1)及び上記単量体(a2)の合計を100質量部とした場合、上記単量体(a1)の割合は、5〜50質量部、好ましくは5〜45質量部、更に好ましくは5〜40質量部、より好ましくは10〜40質量部、特に好ましくは10〜35質量部である。
【0027】
上記単量体(a1)、上記単量体(b1)及び上記単量体(a2)の合計を100質量部とした場合、上記単量体(b1)の割合は、30〜95質量部、好ましくは35〜90質量部、更に好ましくは35〜85質量部、より好ましくは40〜85質量部、特に好ましくは40〜80質量部である。
【0028】
上記第1工程〜第3工程は、単量体の量を上記範囲として行う限り、その反応条件、重合方法に特に限定はない。例えば、上記第1工程〜第3工程の共重合の方法としては、例えば、乳化重合、懸濁重合、乳化−懸濁重合、塊状重合、溶液重合等が挙げられる。この中で、好ましくは乳化重合法である。即ち、例えば、必要に応じて乳化剤(ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のアルキルスルホン酸系のアルカリ金属塩、ラウリル硫酸ナトリウム等のアルキル硫酸系のアルカリ金属塩等の1種又は2種以上)を添加した水性分散体中の単量体を、ラジカル開始剤の存在下で共重合させることにより行うことができる。ここで、上記ラジカル開始剤としては、例えば、過硫酸カリ、過硫酸アンモニウム、キュメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の過酸化物の1種又は2種以上を挙げることができる。また、その他に連鎖移動剤(n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン及びチオグリコール酸等のメルカプタン類、ジメチルキサントゲンジサルファイド及びジイソプロピルキサントゲンジサルファイド等のキサントゲン類、タービノーレン、α−メチルスチレンダイマー等)を使用してもよい。
【0029】
また、上記第1工程〜第3工程における各重合添加率も特に限定はなく、必要に応じて種々の範囲とすることができる。通常、上記第1工程の重合添加率は、80%以上、好ましくは85%以上、更に好ましくは90%以上である。また、上記第2工程の重合添加率は、通常85%以上、好ましくは90%以上、更に好ましくは95%以上である。更に、上記第3工程の重合添加率は、通常85%以上、好ましくは90%以上、更に好ましくは95%以上である。
【0030】
また、上記第1工程〜第3工程における各比粘度(ηsp)をいかなる範囲とするかは特に限定はなく、必要に応じて種々の範囲とすることができるが、上記第1工程のηspとして好ましくは0.05以下、より好ましくは0.04以下である。上記第1工程のηspを0.05以下とすると、他の熱可塑性樹脂に配合した樹脂組成物の流動性を高めることができるので好ましい。また、上記第2工程のηspとして好ましくは0.03〜0.20、より好ましくは0.05〜0.18である。更に、上記第3工程のηspとして好ましくは0.04〜0.16、より好ましくは0.05〜0.15である。上記第2工程のηspを0.03以上、又は上記第3工程のηspを0.04以上とすると、他の樹脂に配合した場合、樹脂の耐衝撃性、柔軟性及び線膨張係数を向上させることができるので好ましい。また、上記第2工程のηspを0.20以下、又は上記第3工程のηspを0.10以下とすると、他の熱可塑性樹脂に配合した樹脂組成物の流動性を高めることができるので好ましい。
【0031】
本発明の重合体組成物の製造方法は、上記共重合体(A)の共重合の工程を分けて、その間に上記共重合体(B)の共重合を行っている。上記共重合体(B)の共重合を最初に行うと、生成した上記共重合体(B)の反応器への付着量が多いので生産性が低下しやすい。また、上記共重合体(B)の共重合を最後に行うと、重合後の凝固工程でパウダー状になりにくく、大きな塊となり、適度に凝固しにくい。これに対し、本発明の重合体組成物では上記工程を経ることにより、生成した上記共重合体(B)の反応器への付着を抑制すると共に、得られた重合体組成物の凝固性を高めることができるので好ましい。本発明の重合体組成物の製造方法によれば、推定であるが、上記第1工程で形成された上記共重合体(A)の表面に、上記第2工程で上記共重合体(B)が形成され、更に上記第3工程により、上記共重合体(B)の表面に上記共重合体(A)が形成されるという多層構造になると考えられる。勿論、本発明の製造方法により得られる重合体組成物は、上記多層構造の重合体組成物には何らも限定されない。
【0032】
(4)熱可塑性樹脂組成物
本発明の熱可塑性樹脂組成物は、本発明の重合体組成物を含有する本発明の改質剤と、他の熱可塑性樹脂と、を含有する。上記他の熱可塑性樹脂の種類については特に限定はなく、必要に応じて種々の熱可塑性樹脂組成物を用いることができる。また、上記他の熱可塑性樹脂は1種単独で用いてもよく、2種以上を併用してもよい。上記他の熱可塑性樹脂として具体的には、例えば、ブタジエン−アクリロニトリル−スチレン共重合体、アクリロニトリル−アクリル酸エステル−スチレン共重合体、アクリロニトリル−スチレン−α―メチルスチレン共重合体、アクリロニトリル−スチレン共重合体、耐衝撃性ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−アクリル酸エステル−スチレン共重合体(AAS樹脂)、アクリロニトリル−EPDM−スチレン共重合体(AES樹脂)、耐熱性ABS樹脂(アクリロニトリル−ブタジエン−スチレン−α−メチルスチレン共重合体)、超耐熱性ABS樹脂(アクリロニトリル−ブタジエン−スチレン−フェニルマレイミド共重合体)及びメチルメタクリレート−アクリロニトリル−ブタジエン−スチレン共重合体(MABS)等のスチレン系樹脂、ポリメチルメタクリレート、ポリ塩化ビニル、ポリアミド類、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンオキサイド等の1種又は2種以上が挙げられる。
【0033】
本発明の熱可塑性樹脂組成物中、本発明の重合体組成物の配合割合は、本発明の重合体組成物及び上記他の熱可塑性樹脂の合計を100質量%とした場合、0.1〜70質量%(上記他の熱可塑性樹脂の配合割合が30〜99.9質量%)、好ましくは1〜70質量%(上記他の熱可塑性樹脂の配合割合が30〜99質量%)、更に好ましくは1〜65質量%(上記他の熱可塑性樹脂の配合割合が35〜99質量%)、より好ましくは3〜60質量%(上記他の熱可塑性樹脂の配合割合が40〜97質量%)、特に好ましくは5〜55質量%(上記他の熱可塑性樹脂の配合割合が45〜95質量%)である。本発明の重合体組成物の配合割合が0.1質量%未満(上記他の熱可塑性樹脂の配合割合が99.9質量%を越える場合)では、本発明の重合体組成物の添加効果が得られないので好ましくない。一方、本発明の重合体組成物の配合割合が70質量%を越えると(上記他の熱可塑性樹脂の配合割合が30質量%未満の場合)、上記他の熱可塑性樹脂の要求される性能が十分に得られないので好ましくない。
【0034】
本発明の熱可塑性樹脂組成物は、本発明の目的を阻害しない範囲で、必要に応じて、各種の添加剤を1種又は2種以上添加することができる。該添加剤としては、例えば、酸化防止剤、滑剤、無機充填剤、金属粉末、補強剤、可塑剤、相溶化剤、熱安定剤、光安定剤、紫外線吸収剤、染料、顔料、帯電防止剤、難燃剤等の各種樹脂添加剤等の1種又は2種以上が挙げられる。
【0035】
本発明の熱可塑性樹脂組成物は、かかる構成を備えることにより、成形品の成形加工時の成形性に優れ、そして、軟質且つ優れた寸法安定性、耐衝撃性を有する成形品を得ることができるという作用効果を奏する。そのため、本発明の熱可塑性樹脂組成物は、車両の内装(ピラー等)、外装を始め、建築材料、玩具、家電製品、医療器具、工業部品、日用雑貨品、スポーツ用品等の幅広い用途に用いることができる。
【0036】
【実施例】
以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の記載例に限定されるものではない。尚、以下において、部及び%は特に断らない限り質量基準である。
(1)重合体組成物の製造及び物性評価
以下に記載の方法により、重合体組成物(K−1)〜(K−14)を調製した。尚、重合体組成物(K−1)〜(K−14)の第1工程〜第3工程における各重合添加率及びηspは、以下に記載の方法により求めた。その結果を以下の表1に示す。
【0037】
〔1〕重合転化率(%)
充分乾燥したアルミ製カップの重量を予め精秤し、次いで、そのアルミカップに、重合中又は重合終了後の重合体ラテックスを約1g採取、精秤した。該アルミカップを250℃に熱したホットプレート上に載せて、揮発分を除去した後、固形分の重量をアルミカップごと精秤した。これらの重量値及び重合処方に基づいて、単量体の重合転化率を算出した。
〔2〕ηsp
以下の式に基づいて、ηspを算出した。
ηsp=(td−t)/t
td;25℃の恒温槽に充分浸した粘度管の標線間を、25℃のN,N−ジメチルホルムアミドが自然落下する秒数。
t;重合体組成物溶液(重合途中又は重合終了後のラテックスを少量抜き出し、メタノール中に落として析出した重合体組成物を水洗し、60℃で一昼夜真空乾燥させて得られた乾燥後の重合体組成物0.0500gをN,N−ジメチルホルムアミド50mlに投入し、振とう機で1時間振とうすることにより調製した重合体組成物の溶液)が、25℃の恒温槽に充分浸した粘度管の標線間を自然落下する秒数。
【0038】
重合体組成物(K−1)
攪拌装置、原料及び助剤添加装置、温度計、並びに加熱装置等を備えた、容量5Lのガラス製反応器に、▲1▼水151部、▲2▼水20部にアルカンスルホン酸ナトリウムの40%水溶液2.0部及びp−メンタンハイドロパーオキサイド0.425部を混合した水溶液(以下、「水溶液(I)」と略記する。)のうち60%分、並びに▲3▼アクリロニトリル(以下、「AN」と略記する。)2.5部、スチレン(以下、「ST」と略記する。)1部、α−メチルスチレン(以下、「AMS」と略記する。)6.5部、及びt−ドデシルメルカプタン(以下、「TDM」と略記する。)0.06部を混合した単量体混合物(M−1)を仕込み、攪拌しつつ、窒素気流下で、内温を45℃まで昇温した(第1工程)。
【0039】
45℃に達した時点で、水10部にエチレンジアミン四酢酸・四ナトリウム塩・二水塩を0.015部、硫酸鉄(II)・七水和物0.004部、及びナトリウムホルムアルデヒドスルホキシレート0.3部を溶解した水溶液(以下、「R水溶液」と略記する。)のうち、60%分を反応器に仕込み、重合を開始した。その後、1時間かけて65℃まで昇温した。次いで、65℃に達した時点で、上記R水溶液のうち20%分、上記水溶液(I)のうち20%分、及び水4部を反応器に仕込み、その直後に、AN13部、ST5部、及びアクリル酸n−ブチル42部を混合した単量体混合物(M−2)を一括添加し、1時間、65℃に保持したまま重合した(第2工程)。
【0040】
その後、さらに1時間30分、65℃に保持した後、AN7.5部、ST3部、AMS19.5部、TDM0.24部を混合した単量体混合物(M−3)を1時間にわたって連続添加し、重合した。単量体混合物(M−3)の連続添加終了直後から30分後、上記R水溶液のうち20%分、上記水溶液(I)のうち20%分、及び水4部を反応器に仕込み、更に1時間、65℃に保持した。次いで、水49部にβ−ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩1部を溶解した水溶液を仕込み、重合を終了し、共重合体ラテックスを得た(第3工程)。この共重合体ラテックスを、硫酸マグネシウム5部と水700部との水溶液中に投入し、温度95℃で5分間凝固し、その後、水洗、脱水、及び乾燥を行うことにより、重合体組成物(K−1)を得た。
【0041】
重合体組成物(K−2)〜(K−10)、(K−12)
以下の表1に示した配合で、上記重合体組成物(K−1)と同様にして、重合体組成物(K−2)を得た。
また、第2工程の単量体混合物(M−2)の添加方法を、1時間にわたる連続添加に変更した以外は、以下の表1に示した配合で、上記重合体組成物(K−1)と同様の工程により、重合体組成物(K−3)〜(K−10)、(K−12)を得た。
【0042】
重合体組成物(K−11)、(K−13)〜(K−14)
第1工程及び第3工程を省いた以外は、以下の表1に示した配合で、上記重合体組成物(K−1)と同様の工程により、重合体組成物(K−11)を得た。
また、第3工程を省いた以外は、以下の表1に示した配合で、上記重合体組成物(K−1)と同様の工程により、重合体組成物(K−13)を得た。
更に、第1工程を省いた以外は、以下の表1に示した配合で、上記重合体組成物(K−1)と同様の工程により、重合体組成物(K−14)を得た。
【0043】
上記重合体組成物(K−1)〜(K−14)について、以下に記載の方法により、デュロメータ硬さ、重合体組成物重合時のリアクター内部の残存重合体の除去性及び凝固性の評価を行った。その結果を以下の表1に示す。
〔1〕重合体組成物のデュロメータ硬さ
JIS K7215に準拠して測定した。
〔2〕重合体組成物重合時のリアクター内部の残存重合体の除去性
重合体組成物を重合した後、リアクター内部に付着した残存重合体の除去しやすさを評価した。表1中、「○」は水のみで容易に残存重合体が除去できることを示し、「×」は水のみでは残存重合体を除去し切れず、残存重合体の除去には溶剤等を必要とすることを示す。
〔3〕重合体組成物の凝固性
重合体組成物を凝固したときの凝固性を評価した。表1中、「○」は得られる重合体組成物の粒子のうち、殆どが直径10mm以下となることを示し、「×」は得られる重合体組成物の粒子のうち、直径10mm以上となるものが多数生成していることを示す。
【0044】
【表1】
【0045】
(2)熱可塑性樹脂組成物の製造及び物性評価
上記方法により得られた重合体組成物(K−1)〜(K−14)、アクリロニトリル−スチレン−α―メチルスチレン共重合体(以下、「AMS系樹脂」と略記する。)、ブタジエン−アクリロニトリル−スチレン共重合体(以下、「ABS樹脂」と略記する。)、アクリロニトリル−アクリル酸エステル−スチレン共重合体(以下、「AAS樹脂」と略記する。)、及びアクリロニトリル−スチレン共重合体(以下、「AS樹脂」と略記する。)を用い、これらを以下の表2に示した配合割合で混合し、次いで、脱気装置付き単軸押出機により混練することにより、実施例1〜11及び比較例1〜9の熱可塑性樹脂組成物のペレットを得た。得られた実施例1〜11及び比較例1〜9の熱可塑性樹脂組成物のペレットから、射出成形機にて物性評価用の試験片及び外観評価用試験片を作成し、以下に記載の方法により物性等の評価を行った。その結果を以下の表3に示す。
【0046】
〔1〕熱可塑性樹脂中の重合体組成物の分散状態
実施例1〜11及び比較例1〜9の熱可塑性樹脂組成物を、切片の厚みが80〜120nmとなるようにミクロトームで切削し、次いで、四酸化オスミウム及び四酸化ルテニウムで染色し、透過型電子顕微鏡でモルフォロジーを観察した。そして、電子顕微鏡で得られた写真に基づいて、重合体組成物の分散状態を観察した。表4中、「○」は重合体組成物が熱可塑性樹脂中で均一に分散していることを示し、「×」は重合体組成物が熱可塑性樹脂中で均一に分散していないことを示している。
〔2〕シャルピー衝撃強度(KJ/m2)
ISO 179に準拠して測定した。
〔3〕引張り強さ(MPa)及び引張り伸び(%)
ISO 527に準拠して測定した。
〔4〕曲げ強さ(MPa)及び曲げモジュラス(MPa)
ISO 178に準拠して測定した。単位:MPa。
〔5〕メルトマスフローレート(g/10min)
ISO 1133に準拠して測定した(220℃×98N)。
〔6〕荷重たわみ温度(℃)
ISO 75に準拠して測定した。
〔7〕ロックウエル硬さ
ISO 2039に準拠して測定した。
〔8〕線膨張係数(10−5×℃−1)
実施例1〜11及び比較例1〜9の熱可塑性樹脂組成物の成形品(シャルピー衝撃強度試験用テストピース)を、80℃で2時間アニールし、予め成形歪みを除去する。その後、その成形品を50mmの長さに切断する。次いで、切断した成形品を、23℃の雰囲気に充分長時間さらし、その時の成形品の長さを、MITUTOYO製「LASER SCAN MICROMETER 1000」にて測定する。同様な方法で、30℃、50℃、70℃で成形品の長さを測定する。そして、23℃から70℃までの、1℃当たりの長さの平均変化率を線膨張係数として求めた。
【0047】
【表2】
【0048】
【表3】
【0049】
(3)実施例の効果
表1より、本発明の重合体組成物である重合体組成物(K−1)〜(K−6)、(K−13)及び(K−14)では、いずれも樹脂に添加した場合の重合体組成物中での分散性に優れていることが分かる。しかも、本発明の重合体組成物の製造方法中の上記第3工程を行わずに得られた重合体組成物(K−13)及び上記第1工程を行わずに得られた重合体組成物(K−14)と比べて、本発明の重合体組成物の製造方法、即ち、上記第1工程〜第3工程を行って得られた本発明の重合体組成物(K−1)〜(K−6)は、重合体組成物の凝固性に優れ、また、重合体組成物重合時のリアクター内部の残存重合体の除去性に優れていることが分かる。
【0050】
一方、表1より、上記共重合体(B)成分のシアン化ビニル含量が本発明の範囲から外れる重合体組成物(K−7)及び(K−8)、並びに上記共重合体(A)中のシアン化ビニル含量が、本発明の範囲を越えている重合体組成物(K−10)では、いずれも樹脂に分散した場合の分散状態に劣るものであることが分かる。更に、上記共重合体(B)のみで構成される重合体組成物(K−11)は、デュロメーター硬さが低く、凝固性に劣り、重合体組成物重合時のリアクター内部の残存重合体の除去性にも劣ることが分かる。
【0051】
また、表2及び表3より、本発明の重合体組成物(K−1)〜(K−6)、(K−13)及び(K−14)を添加した熱可塑性樹脂組成物である実施例1〜11は、いずれも本発明の目的とする効果を達成していることが分かる。特に、ABS樹脂及びAS樹脂を含む熱可塑性樹脂組成物である比較例8と、これに本発明の重合体組成物を添加した実施例7及び8とを対比すると、実施例7及び8は、いずれも比較例8より、シャルピー衝撃強度、曲げモジュラス、メルトマスフローレートが高く、ロックウエル硬さ、線膨張係数が低いことが分かる。また、AAS樹脂及びAS樹脂を含む熱可塑性樹脂組成物である比較例9と、これに本発明の重合体組成物を添加した実施例9とを対比した場合も、上記実施例7及び8と比較例8とを対比した場合と同様の結果が認められる。よって、本発明の重合体組成物を改質剤として熱可塑性樹脂に添加することにより、本発明の目的とする効果が得られることが分かる。
【0052】
一方、表2及び表3より、上記共重合体(A)中のシアン化ビニル含量が、本発明の重合体組成物の範囲を越えている重合体組成物(K−10)を添加した比較例4は、重合体組成物の分散状態が劣ることが分かる。また、上記共重合体(A)の含有量が、本発明の重合体組成物の範囲を越えている重合体組成物(K−12)を添加した比較例6は、実施例1〜11よりも、耐衝撃性、引張り伸び、曲げモジュラス及びロックウェル硬さに劣ることが分かる。更に、上記共重合体(B)のみで構成される重合体組成物(K−11)を添加した比較例5及び7は、メルトマスフローレートが劣り、本発明の目的とする改質剤効果は得られていないことが分かる。
【0053】
また、表2及び表3より、上記共重合体(B)中のシアン化ビニル単量体の含有量が、本発明の範囲未満の重合体組成物(K−7)を添加した比較例1は、実施例1〜11と比較して、引張り伸び、曲げモジュラス及び線膨張係数が劣り、一方、上記共重合体(B)中のシアン化ビニル含量が本発明の範囲を越えている重合体組成物(K−8)を添加した比較例2では、引張り伸び及び線膨張係数が劣ることが分かる。また、上記共重合体(B)成分のアクリル酸アルキルエステル含量が本発明の範囲未満である重合体組成物(K−9)を添加した比較例3は、耐衝撃性、引張り伸び、曲げモジュラス、ロックウェル硬さ及び線膨張係数が劣ることが分かる。
【0054】
【発明の効果】
本発明の重合体組成物は、上記構成を備えることにより、他の樹脂に添加、混合することにより、樹脂中に適度に分散し、樹脂を軟質性、線膨張係数等の性質を改善することができる。
また、本発明の改質剤は、上記構成を備えることにより、他の樹脂に添加、混合することにより、樹脂中に適度に分散し、樹脂を軟質化すると共に、線膨張係数を低くして、寸法安定性に優れた樹脂とすることができる。
更に、本発明の熱可塑性樹脂は、上記構成を備えることにより、寸法安定性と柔軟性の双方に優れていることから、車両の内装等、柔軟性が必要な用途に広く好適に用いることができる。
本発明の重合体組成物の製造方法によれば、生成した上記共重合体(B)の反応器への付着を抑制すると共に、得られた重合体組成物の凝固性を高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer composition that can be imparted with softness and excellent dimensional stability, impact resistance and fluidity by blending with other resins, a method for producing the same, a modifier containing the polymer composition, and The present invention relates to a thermoplastic resin composition containing the polymer composition.
[0002]
[Prior art]
Conventionally, as a method for obtaining a thermoplastic resin composition having excellent dimensional stability, various resin additives such as inorganic fillers, metal powders and reinforcing agents are added to the resin, and the linear expansion coefficient of the thermoplastic resin composition The method of lowering is widely known. However, the thermoplastic resin composition obtained by this method usually loses the fluidity, impact resistance and flexibility of the thermoplastic resin composition, and has a high bending elastic modulus and a low tensile elongation. It becomes a resin, and as a result, it becomes difficult to use in applications that require flexibility. On the other hand, methods for softening the resin include methods such as adding a plasticizer, adding a diene rubber, and increasing the blend ratio of ABS resin or AES resin. However, this method has a problem that the resin is inferior in dimensional stability. Thus, conventionally, a thermoplastic resin composition having both dimensional stability and flexibility and a method for obtaining such a thermoplastic resin composition have not been known.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and by blending with other resins, a polymer composition capable of imparting soft and excellent dimensional stability, impact resistance and fluidity, and a production method thereof, It is an object of the present invention to provide a modifier containing the polymer composition and a thermoplastic resin composition containing the polymer composition.
[0004]
[Means for Solving the Problems]
The present invention is as follows.
[1] Aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, total 100% by mass) 5 to 70% by mass of copolymer (A) obtained by polymerizing monomers, and alkyl acrylate monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable Monomer = 26 to 85/5 to 60/10 to 40/0 to 59% by mass (however, a total of 100% by mass) is obtained by polymerizing a copolymer (B) 30 to 30%. 95% by mass (provided that the total content of the copolymers (A) and (B) is 100% by mass).
[2] Aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, total 100% by mass) Performing the first step of polymerizing the monomer (a1);
Then, alkyl acrylate ester monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers = 26 to 85/5 to 60/10 to 40/0 to 59 mass % (However, a total of 100% by mass) of the monomer (b1) comprising the second step,
Thereafter, aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (provided that the total amount of monomers is 100% by mass) The polymer composition of Claim 1 obtained by performing the 3rd process which superposes | polymerizes the monomer (a2) which consists of).
[3] A modifier comprising the polymer composition according to [1] or [2].
[4] When containing the modifier according to [3] and another thermoplastic resin, and the total content of both is 100% by mass, inclusion of the modifier according to [3] above A thermoplastic resin composition, characterized in that the amount is 0.1 to 70% by mass, and the content of the other thermoplastic resin is 30 to 99.9% by mass.
[5] Aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, total 100% by mass) Performing the first step of polymerizing the monomer (a1);
Then, alkyl acrylate ester monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers = 26 to 85/5 to 60/10 to 40/0 to 59 mass % (However, a total of 100% by mass) of the monomer (b1) comprising the second step,
Thereafter, an aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, a total of 100% by mass) A third step of polymerizing the monomer (a2) is performed (provided that the monomer (a1) + monomer (b1) + monomer (a2) = 100 parts by mass) + Monomer (a2) = 5 to 70 parts by mass.) A method for producing a polymer composition.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(1) Polymer composition
(1) Copolymer (A)
The copolymer (A) contained in the polymer composition of the present invention is aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50. It is a copolymer obtained by polymerizing monomers consisting of / 0 to 40% by mass (however, a total of 100% by mass).
[0006]
There is no limitation in particular about the kind and structure of the said aromatic vinyl monomer. Moreover, the said aromatic vinyl monomer may be used individually by 1 type, and may use 2 or more types together. Specific examples of the aromatic vinyl monomer include one or more of styrene and styrene derivatives (such as methylstyrene, α-methylstyrene, chlorostyrene, and t-butylstyrene). The ratio of the aromatic vinyl monomer to the total monomer constituting the copolymer (A) is 100% by mass of the total of all monomers constituting the copolymer (A). In this case, it is 50 to 90% by mass, preferably 50 to 85% by mass, more preferably 55 to 85% by mass, more preferably 60 to 85% by mass, and particularly preferably 65 to 85% by mass. When the ratio of the aromatic vinyl monomer is less than 50% by mass, the dispersion state of the polymer composition is inferior, and the fluidity of the resin when blended with another resin is not preferable. On the other hand, when the ratio of the aromatic vinyl monomer exceeds 90% by mass, the dispersion state of the polymer composition is inferior and the impact resistance of the resin is lowered when blended with other resins.
[0007]
There is no particular limitation on the structure and type of the vinyl cyanide monomer. Moreover, the said vinyl cyanide monomer may be used individually by 1 type, and may use 2 or more types together. Specific examples of the vinyl cyanide monomer include one or more of acrylonitrile and methacrylonitrile. The ratio of the vinyl cyanide monomer to the total monomers constituting the copolymer (A) is 100% by mass with respect to the total of all monomers constituting the copolymer (A). In this case, it is 10 to 50% by mass, preferably 10 to 45% by mass, more preferably 10 to 40% by mass, more preferably 15 to 40% by mass, and particularly preferably 15 to 35% by mass. When the proportion of the vinyl cyanide monomer is less than 10% by mass, it is not preferable because the dispersion state of the polymer composition is inferior when blended with another resin. On the other hand, when the proportion of the vinyl cyanide monomer exceeds 50% by mass, it is not preferable because the dispersion state of the polymer composition is inferior and the impact resistance of the resin is lowered when blended with other resins.
[0008]
The combination of the aromatic vinyl monomer and the vinyl cyanide monomer of the copolymer (A) is not particularly limited, but styrene and / or α-methylstyrene and acrylonitrile and / or methacrylonitrile. A combination is preferred.
[0009]
The copolymer (A) may be a copolymer obtained by copolymerizing the aromatic vinyl monomer and the vinyl cyanide monomer, and further the aromatic vinyl monomer and the vinyl cyanide monomer. Copolymerization may be performed by adding other copolymerizable monomers other than the above. The other copolymerizable monomer is other than the aromatic vinyl monomer and the vinyl cyanide monomer, and is copolymerizable with the aromatic vinyl monomer and the vinyl cyanide monomer. As long as it can be polymerized, the structure and type are not particularly limited, and various types of monomers can be used as necessary. Moreover, the said other copolymerizable monomer may be used individually by 1 type, and may be used 2 or more types.
[0010]
Specific examples of the other copolymerizable monomers include acrylic acid esters, unsaturated acids, unsaturated acid anhydrides, maleimide monomers, epoxy group-containing unsaturated compounds, and hydroxyl group-containing unsaturated compounds. And oxazoline group-containing unsaturated compounds. These may be used alone or in combination of two or more.
Examples of the acrylic ester include one or more of methyl acrylate, ethyl acrylate, butyl acrylate, and the like.
Examples of the unsaturated acid include acrylic acid and / or methacrylic acid.
Examples of the unsaturated acid anhydride include one or more of maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
Examples of the maleimide monomer include one or more of maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N-cyclohexylmaleimide and the like. It is done. Alternatively, maleic anhydride may be (co) polymerized and then imidized to introduce maleimide.
Examples of the epoxy group-containing unsaturated compound include one or more of glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, and the like.
Examples of the hydroxyl group-containing unsaturated compound include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, and 3-hydroxy-2. -1 type, or 2 or more types, such as methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxystyrene, is mentioned.
As said oxazoline group containing unsaturated compound, 1 type (s) or 2 or more types, such as vinyl oxazoline, are mentioned.
In addition, the polymer composition of the present invention improves the heat resistance and fluidity when added to a resin even if it does not contain a maleimide monomer as the other copolymer by providing the above-described configuration. Therefore, it is preferable to use a copolymerizable monomer other than the maleimide monomer as the other copolymerizable monomer.
[0011]
Moreover, the ratio of the said other copolymerizable monomer with respect to all the monomers which comprise the said copolymer (A) does not have limitation in particular, It can be set as a various ratio as needed. Usually, the ratio of the other copolymerizable monomer is 0 to 40% by mass, preferably 0 to 0% when the total of all monomers constituting the copolymer (A) is 100% by mass. 30 mass%, More preferably, it is 0-20 mass%, More preferably, it is more than 0 and 20 mass% or less.
[0012]
(2) Copolymer (B)
The copolymer (B) contained in the polymer composition of the present invention comprises an acrylic acid alkyl ester monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers. = A copolymer obtained by polymerizing monomers composed of 26 to 85/5 to 60/10 to 40/0 to 59% by mass (however, a total of 100% by mass).
[0013]
There is no limitation in particular about the kind and structure of the said acrylic acid alkylester monomer in the said copolymer (B). For example, the type of the alkyl group (R) constituting the alkyl ester (RCOO-) of the acrylic acid alkyl ester monomer is not particularly limited. The alkyl group may be a saturated alkyl group or an unsaturated alkyl group. The alkyl group may be a linear, branched or cyclic alkyl group. Furthermore, the cyclic alkyl group includes an aromatic ring in addition to the alicyclic alkyl group. Usually, as said alkyl group, a C1-C12, Preferably it is 1-10, More preferably, a 1-8 alkyl group is used. Moreover, the said alkyl acrylate monomer may be used individually by 1 type, and may be used 2 or more types. Specific examples of the acrylic acid alkyl ester monomer include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, i-butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, and cyclohexyl. 1 type, or 2 or more types, such as an acrylate, is mentioned.
[0014]
The ratio of the alkyl acrylate monomer to the total monomers constituting the copolymer (B) is 100% by mass with respect to the total amount of all monomers constituting the copolymer (B). When it is, it is 26-85 mass%, Preferably it is 26-80 mass%, More preferably, it is 26-75 mass%, More preferably, it is 30-75 mass%. When the proportion of the acrylic acid alkyl ester monomer is less than 26% by mass, the dispersion state of the polymer composition is inferior when blended with another resin, and the impact resistance, flexibility and linear expansion coefficient of the resin are inferior. Is not preferable because it is inferior. On the other hand, when the blending ratio of the alkyl acrylate monomer exceeds 85% by mass, it is not preferable because the dispersion state of the polymer composition is inferior when blended with another resin.
[0015]
There are no particular limitations on the types and structures of the aromatic vinyl monomer and the vinyl cyanide monomer in the copolymer (B). Moreover, the said aromatic vinyl monomer in the said copolymer (B) may be used individually by 1 type, and may use 2 or more types together. Further, the aromatic vinyl monomer in the copolymer (B) may be the same type of monomer as the aromatic vinyl monomer in the copolymer (A), or a different type of monomer. It may be a mer. Moreover, the said vinyl cyanide monomer in the said copolymer (B) may be used individually by 1 type, and may use 2 or more types together. Further, the vinyl cyanide monomer in the copolymer (B) may be the same type of monomer as the vinyl cyanide monomer in the copolymer (A), or a different type of monomer. It may be the body. Specifically, as the aromatic vinyl monomer and the vinyl cyanide monomer in the copolymer (B), for example, the aromatic vinyl monomer in the copolymer (A) and the above One or more of those listed as vinyl cyanide monomers may be mentioned.
[0016]
Moreover, the ratio of the said aromatic vinyl monomer in the said copolymer (B) with respect to all the monomers which comprise the said copolymer (B) is the total single quantity which comprises the said copolymer (B). When the total body is 100% by mass, it is 5 to 60% by mass, preferably 5 to 55% by mass, more preferably 5 to 50% by mass, and more preferably 5 to 45% by mass. In addition, the ratio of the vinyl cyanide monomer in the copolymer (B) to the total monomers constituting the copolymer (B) is the total amount of the monomers constituting the copolymer (B). When the total body is 100% by mass, it is 10 to 40% by mass, preferably 12 to 40% by mass, more preferably 12 to 35% by mass, and more preferably 12 to 33% by mass. When the blending ratio of the aromatic vinyl monomer or the vinyl cyanide monomer with respect to all the monomers constituting the copolymer (B) is out of the above range, when blended with another resin This is not preferable because the dispersion state of the polymer composition is inferior and the impact resistance of the resin is also lowered.
[0017]
The combination of the alkyl acrylate monomer, the aromatic vinyl monomer, and the vinyl cyanide monomer in the copolymer (B) is not particularly limited, but methyl acrylate, ethyl acrylate, propyl A combination of one or more of acrylate, n-butyl acrylate and i-butyl acrylate, styrene and / or α-methylstyrene, and acrylonitrile and / or methacrylonitrile is preferable.
[0018]
The copolymer (B) may be a copolymer of the alkyl acrylate monomer, the aromatic vinyl monomer, and the vinyl cyanide monomer. Copolymerization may be performed by adding a monomer. The other copolymerizable monomer has a structure and type as long as it can be copolymerized with the alkyl acrylate monomer, the aromatic vinyl monomer, and the vinyl cyanide monomer. There is no particular limitation, and various types of monomers can be used as necessary. Moreover, the said other copolymerizable monomer may be used individually by 1 type, and may be used 2 or more types. Specifically as said other copolymerizable monomer, the other copolymerizable monomer shown by the said copolymer (A) is mentioned, for example. Moreover, as mentioned above, it is preferable to use other copolymerizable monomers other than maleimide monomers as the other copolymerizable monomers. The other copolymerizable monomer in the copolymer (B) may be the same type of monomer as the other copolymerizable monomer in the copolymer (A). Well, different types of monomers may be used.
[0019]
Moreover, the ratio of the said other copolymerizable monomer in the said copolymer (B) with respect to all the monomers which comprise the said copolymer (B) does not have limitation in particular, Various as needed It can be a percentage. Usually, the ratio of the other copolymerizable monomer to the total monomer constituting the copolymer (B) is 100 masses of the total of all monomers constituting the copolymer (B). %, 0 to 59% by mass, preferably 0 to 58% by mass, more preferably 0 to 55% by mass, more preferably greater than 0 and 55% by mass or less.
[0020]
When the total content of the copolymers (A) and (B) in the polymer composition of the present invention is 100% by mass, the content of the copolymer (A) component is 5 to 70% by mass. (The content of the copolymer (B) is 30 to 95% by mass), preferably 10 to 65% by mass (the content of the copolymer (B) is 35 to 90% by mass), more preferably 15 to 65% by mass (the content of the copolymer (B) is 35 to 85% by mass), more preferably 15 to 60% by mass (the content of the copolymer (B) is 40 to 85% by mass), and more. Preferably it is 20-60 mass% (content of the said copolymer (B) is 40-80 mass%). When the content of the copolymer (A) component is less than 5% by mass (when the content of the copolymer (B) exceeds 95% by mass), a resin composition blended with another thermoplastic resin This is not preferable because of poor fluidity. On the other hand, when the content of the copolymer (A) component exceeds 70% by mass (when the content of the copolymer (B) is less than 30% by mass), the flexibility of the resin, the linear expansion coefficient, Since fluidity | liquidity and impact resistance fall, it is not preferable.
[0021]
The polymer composition of the present invention is not particularly limited in its production method as long as the above copolymers (A) and (B) are present. That is, you may manufacture by preparing the said copolymer (A) and (B) separately, and mixing both. Moreover, after preparing the said copolymer (A), the said copolymer (A) obtained and said each monomer of the said copolymer (B) are added to a reactor, and it superposes | polymerizes. It can also be prepared. On the contrary, after preparing the copolymer (B), the obtained copolymer (B) and each monomer of the copolymer (A) are added to a reactor for polymerization. It can also be prepared. As a preferable manufacturing method of the polymer composition of the present invention, the manufacturing method of the polymer composition of the present invention described in detail below may be mentioned.
[0022]
The physical properties of the polymer composition of the present invention are not particularly limited, and various physical property values can be obtained as necessary. Specifically, the durometer hardness of the molded article of the polymer composition of the present invention is usually 90 or less, preferably 5 to 80, more preferably 10 to 70, and more preferably 20 to 60. When the durometer hardness is in the above range, the polymer composition of the present invention has an appropriate hardness and softening point, and therefore, by adding to and mixing with other resins, the resin composition is appropriately dispersed in the resin. While being softened, the linear expansion coefficient can be lowered to obtain a resin having excellent dimensional stability.
[0023]
(2) Modifier
As described above, the polymer composition of the present invention is added to and mixed with other resins as described above, so that it is appropriately dispersed in the resin, softens the resin, lowers the linear expansion coefficient, and is dimensionally stable. It can be set as resin excellent in property. Therefore, the polymer composition of the present invention can be used as a resin modifier that improves the properties of the resin. In addition to the polymer composition of the present invention, the modifier of the present invention may be added with one or more of various additives described below, as necessary, within a range that does not impair the object of the present invention. it can. Moreover, when using the modifier of this invention, there is no limitation in particular in the mixture ratio to resin, It can be set as various mixture ratios as needed. The blending ratio of the modifier of the present invention is usually 70% by mass or less, preferably 1 to 70% by mass, and more preferably 1 to 65% when the total of the modifier and the resin component of the present invention is 100% by mass. It is 3 mass%, More preferably, it is 3-60 mass%, Most preferably, it is 5-55 mass%.
[0024]
(3) Method for producing the polymer composition of the present invention
The production method of the polymer composition of the present invention is as follows: aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass ( However, the first step of polymerizing the monomer (a1) consisting of 100% by mass in total is carried out, and then the alkyl acrylate monomer / aromatic vinyl monomer / vinyl cyanide monomer / other Monomer which can be copolymerized = 26-85 / 5-60 / 10-40 / 0-59 mass% (however, a total of 100 mass%) The second step of polymerizing the monomer (b1) is performed, Thereafter, an aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, a total of 100% by mass) The third step of polymerizing the monomer (a2) is carried out (provided that the monomer (a1) + monomer (b1) + single Body (a2) = a 100 parts by weight, and the monomer (a1) + is a monomer (a2) = 5 to 70 parts by mass.) It is characterized.
[0025]
In the first step and the third step, the ratios of the aromatic vinyl monomer, the vinyl cyanide monomer and the other copolymerizable monomer used as raw materials are independently aromatic. Vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers = 50 to 90/10 to 50/0 to 40% by mass (provided that the total amount of monomers is 100% by mass), preferably It is 50 to 85/10 to 45/0 to 40% by mass, more preferably 55 to 85/10 to 40/0 to 35% by mass. The reason why it is preferable to be in this range is as described above. In the second step, the ratio of the acrylic acid alkyl ester monomer used as a raw material, the aromatic vinyl monomer, the vinyl cyanide monomer and the other copolymerizable monomer is as follows: Acrylic acid alkyl ester monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers = 26 to 85/5 to 60/10 to 40/0 to 59% by mass ( However, the total amount of the monomers is 100% by mass), preferably 26-80 / 5-55 / 12-40 / 0-58% by mass, more preferably 26-75 / 5-50 / 50-35 / 0-58. % By mass. The reason why it is preferable to be in this range is as described above.
[0026]
When the total of the monomer (a1), the monomer (b1) and the monomer (a2) is 100 parts by mass, the total of the monomer (a1) and the monomer (a2) The ratio is 5 to 70 parts by mass, preferably 10 to 65 parts by mass, more preferably 15 to 65 parts by mass, more preferably 15 to 60 parts by mass, and particularly preferably 20 to 60 parts by mass. If the total of the monomer (a1) and the monomer (a2) is less than 5 parts by mass, the fluidity of the resin composition blended with another thermoplastic resin is inferior, which is not preferable. On the other hand, if it exceeds 70 parts by mass, the flexibility, linear expansion coefficient, fluidity, and impact resistance of the resin are lowered, which is not preferable. Furthermore, the ratio of the monomer (a1) and the monomer (a2) is not particularly limited as long as the total ratio of the monomer (a1) and the monomer (a2) is within the above range. . Usually, when the total of the monomer (a1) and the monomer (a2) is 100 parts by mass, the proportion of the monomer (a1) is 5 to 50 parts by mass, preferably 5 to 45 parts by mass. Parts, more preferably 5 to 40 parts by weight, more preferably 10 to 40 parts by weight, particularly preferably 10 to 35 parts by weight.
[0027]
When the total of the monomer (a1), the monomer (b1) and the monomer (a2) is 100 parts by mass, the proportion of the monomer (b1) is 30 to 95 parts by mass, Preferably it is 35-90 mass parts, More preferably, it is 35-85 mass parts, More preferably, it is 40-85 mass parts, Most preferably, it is 40-80 mass parts.
[0028]
In the first to third steps, the reaction conditions and the polymerization method are not particularly limited as long as the amount of the monomer is within the above range. For example, examples of the copolymerization method in the first to third steps include emulsion polymerization, suspension polymerization, emulsion-suspension polymerization, bulk polymerization, and solution polymerization. Among these, the emulsion polymerization method is preferable. That is, for example, if necessary, an emulsifier (an alkylsulfonic acid alkali metal salt such as sodium dodecylbenzenesulfonate, sodium alkanesulfonate or sodium dialkylsulfosuccinate, an alkylsulfuric alkali metal salt such as sodium lauryl sulfate, etc. The monomer in the aqueous dispersion added with one or more) can be copolymerized in the presence of a radical initiator. Here, examples of the radical initiator include one or more peroxides such as potassium persulfate, ammonium persulfate, cumene hydroperoxide, paramentane hydroperoxide, and the like. In addition, other chain transfer agents (mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and thioglycolic acid, xanthogens such as dimethylxanthogen disulfide and diisopropylxanthogen disulfide, Turbinolene, α-methylstyrene dimer, etc.) may be used.
[0029]
Further, the polymerization addition rates in the first to third steps are not particularly limited, and can be set in various ranges as required. Usually, the polymerization addition rate in the first step is 80% or more, preferably 85% or more, more preferably 90% or more. The polymerization addition rate in the second step is usually 85% or more, preferably 90% or more, and more preferably 95% or more. Furthermore, the polymerization addition rate in the third step is usually 85% or more, preferably 90% or more, and more preferably 95% or more.
[0030]
In addition, there is no particular limitation as to what range each specific viscosity (ηsp) in the first to third steps is, and various ranges can be used as necessary. However, as ηsp in the first step, Preferably it is 0.05 or less, More preferably, it is 0.04 or less. When ηsp in the first step is 0.05 or less, the fluidity of the resin composition blended with another thermoplastic resin can be improved, which is preferable. The ηsp in the second step is preferably 0.03 to 0.20, more preferably 0.05 to 0.18. Further, ηsp in the third step is preferably 0.04 to 0.16, more preferably 0.05 to 0.15. When ηsp in the second step is 0.03 or more, or ηsp in the third step is 0.04 or more, when blended with other resins, the impact resistance, flexibility and linear expansion coefficient of the resin are improved. This is preferable. Further, it is preferable that ηsp in the second step is 0.20 or less, or ηsp in the third step is 0.10 or less, because the fluidity of the resin composition blended with another thermoplastic resin can be improved. .
[0031]
In the method for producing the polymer composition of the present invention, the copolymer (A) is copolymerized by dividing the copolymer (A) copolymerization step. When the copolymer (B) is first copolymerized, the amount of the produced copolymer (B) attached to the reactor is large, so that the productivity tends to be lowered. Further, when the copolymer (B) is finally copolymerized, it is difficult to form a powder in the coagulation step after polymerization, and it becomes a large lump and is difficult to coagulate appropriately. On the other hand, in the polymer composition of the present invention, by passing through the above steps, the adhesion of the produced copolymer (B) to the reactor is suppressed and the solidification property of the obtained polymer composition is reduced. Since it can raise, it is preferable. According to the method for producing a polymer composition of the present invention, it is estimated that the surface of the copolymer (A) formed in the first step is applied to the copolymer (B) in the second step. It is considered that a multilayer structure is formed in which the copolymer (A) is formed on the surface of the copolymer (B) by the third step. Of course, the polymer composition obtained by the production method of the present invention is not limited to the polymer composition having the multilayer structure.
[0032]
(4) Thermoplastic resin composition
The thermoplastic resin composition of the present invention contains the modifier of the present invention containing the polymer composition of the present invention and another thermoplastic resin. There is no limitation in particular about the kind of said other thermoplastic resin, A various thermoplastic resin composition can be used as needed. Moreover, said other thermoplastic resin may be used individually by 1 type, and may use 2 or more types together. Specific examples of the other thermoplastic resins include butadiene-acrylonitrile-styrene copolymer, acrylonitrile-acrylic ester-styrene copolymer, acrylonitrile-styrene-α-methylstyrene copolymer, acrylonitrile-styrene copolymer. Polymer, high impact polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-acrylic ester-styrene copolymer (AAS resin), acrylonitrile-EPDM-styrene copolymer (AES resin), heat resistance ABS resin (acrylonitrile-butadiene-styrene-α-methylstyrene copolymer), super heat-resistant ABS resin (acrylonitrile-butadiene-styrene-phenylmaleimide copolymer), and methyl methacrylate-acryloni Styrenic resins such as tolyl-butadiene-styrene copolymer (MABS), polymethyl methacrylate, polyvinyl chloride, polyamides, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene oxide, etc. .
[0033]
In the thermoplastic resin composition of the present invention, the blending ratio of the polymer composition of the present invention is 0.1 to 0.1% when the total of the polymer composition of the present invention and the other thermoplastic resin is 100% by mass. 70 mass% (the blending ratio of the other thermoplastic resin is 30 to 99.9 mass%), preferably 1 to 70 mass% (the blending ratio of the other thermoplastic resin is 30 to 99 mass%), more preferably Is 1 to 65 mass% (the blending ratio of the other thermoplastic resin is 35 to 99 mass%), more preferably 3 to 60 mass% (the blending ratio of the other thermoplastic resin is 40 to 97 mass%), Particularly preferably, it is 5 to 55% by mass (the blending ratio of the other thermoplastic resin is 45 to 95% by mass). When the blending ratio of the polymer composition of the present invention is less than 0.1% by mass (when the blending ratio of the other thermoplastic resin exceeds 99.9% by mass), the effect of adding the polymer composition of the present invention is Since it cannot be obtained, it is not preferable. On the other hand, when the blending ratio of the polymer composition of the present invention exceeds 70% by mass (when the blending ratio of the other thermoplastic resin is less than 30% by mass), the required performance of the other thermoplastic resin is high. It is not preferable because it cannot be obtained sufficiently.
[0034]
The thermoplastic resin composition of the present invention can be added with one or more various additives as necessary within a range that does not impair the object of the present invention. Examples of the additive include an antioxidant, a lubricant, an inorganic filler, a metal powder, a reinforcing agent, a plasticizer, a compatibilizer, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a dye, a pigment, and an antistatic agent. 1 type, or 2 or more types, such as various resin additives, such as a flame retardant.
[0035]
By providing the thermoplastic resin composition of the present invention with such a configuration, it is possible to obtain a molded product that is excellent in moldability during molding of a molded product, and that is soft and has excellent dimensional stability and impact resistance. There is an effect of being able to. Therefore, the thermoplastic resin composition of the present invention can be used in a wide range of applications such as interiors (pillars, etc.) and exteriors of vehicles, building materials, toys, home appliances, medical equipment, industrial parts, daily goods, sports equipment, etc. Can be used.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to the following description examples, unless the summary is exceeded. In the following, parts and% are based on mass unless otherwise specified.
(1) Production of polymer composition and evaluation of physical properties
Polymer compositions (K-1) to (K-14) were prepared by the method described below. In addition, each superposition | polymerization addition rate and (eta) sp in the 1st process-3rd process of polymer composition (K-1)-(K-14) were calculated | required by the method as described below. The results are shown in Table 1 below.
[0037]
[1] Polymerization conversion rate (%)
The weight of the sufficiently dried aluminum cup was weighed in advance, and then about 1 g of polymer latex during or after the polymerization was collected into the aluminum cup and weighed accurately. The aluminum cup was placed on a hot plate heated to 250 ° C., and after removing volatile components, the weight of the solid content was precisely weighed together with the aluminum cup. Based on these weight values and polymerization prescription, the polymerization conversion rate of the monomer was calculated.
[2] ηsp
Based on the following equation, ηsp was calculated.
ηsp = (t d -T) / t
t d The number of seconds during which N, N-dimethylformamide at 25 ° C. falls spontaneously between the marked lines of the viscosity tube sufficiently immersed in a constant temperature bath at 25 ° C.
t: Polymer composition solution (withdrawing a small amount of latex in the middle of polymerization or after completion of polymerization, dropping it into methanol, washing the polymer composition with water, vacuum drying at 60 ° C. for one day and night, and drying weight Viscosity in which 0.0500 g of the combined composition was put into 50 ml of N, N-dimethylformamide and the solution of the polymer composition prepared by shaking with a shaker for 1 hour was sufficiently immersed in a thermostatic bath at 25 ° C. The number of seconds to naturally fall between the marked lines of the tube.
[0038]
Polymer composition (K-1)
A glass reactor having a capacity of 5 L equipped with a stirrer, a raw material and auxiliary agent addition device, a thermometer, a heating device, and the like was added to (1) 151 parts of water and (2) 20 parts of water containing 40 parts of sodium alkanesulfonate 60% of an aqueous solution (hereinafter abbreviated as “aqueous solution (I)”) obtained by mixing 2.0 parts of a 2.0% aqueous solution and 0.425 parts of p-menthane hydroperoxide, and (3) acrylonitrile (hereinafter referred to as “ AN ”.) 2.5 parts, styrene (hereinafter abbreviated as“ ST ”) 1 part, α-methylstyrene (hereinafter abbreviated as“ AMS ”) 6.5 parts, and t- A monomer mixture (M-1) mixed with 0.06 part of dodecyl mercaptan (hereinafter abbreviated as “TDM”) was charged, and the internal temperature was raised to 45 ° C. under nitrogen flow while stirring. (First step).
[0039]
When the temperature reached 45 ° C., 0.015 part of ethylenediaminetetraacetic acid, tetrasodium salt, dihydrate, 0.004 part of iron (II) sulfate heptahydrate, and sodium formaldehyde sulfoxylate in 10 parts of water Of the aqueous solution in which 0.3 part was dissolved (hereinafter abbreviated as “R aqueous solution”), 60% was charged into the reactor to initiate polymerization. Then, it heated up to 65 degreeC over 1 hour. Next, when the temperature reached 65 ° C., 20% of the R aqueous solution, 20% of the aqueous solution (I), and 4 parts of water were charged into the reactor, and immediately after that, 13 parts of AN, 5 parts of ST, The monomer mixture (M-2) in which 42 parts of n-butyl acrylate was mixed was added all at once and polymerized while being held at 65 ° C. for 1 hour (second step).
[0040]
Then, after maintaining at 65 ° C. for another 1 hour 30 minutes, a monomer mixture (M-3) in which 7.5 parts of AN, 3 parts of ST, 19.5 parts of AMS and 0.24 part of TDM were mixed was continuously added over 1 hour. And polymerized. 30 minutes after the end of continuous addition of the monomer mixture (M-3), 20% of the R aqueous solution, 20% of the aqueous solution (I), and 4 parts of water were charged into the reactor. Hold at 65 ° C. for 1 hour. Next, an aqueous solution in which 1 part of a sodium salt of β-naphthalenesulfonic acid formalin condensate was dissolved in 49 parts of water was terminated, and polymerization was completed to obtain a copolymer latex (third step). This copolymer latex is put into an aqueous solution of 5 parts of magnesium sulfate and 700 parts of water, coagulated at a temperature of 95 ° C. for 5 minutes, and then washed with water, dehydrated, and dried to obtain a polymer composition ( K-1) was obtained.
[0041]
Polymer compositions (K-2) to (K-10), (K-12)
With the formulation shown in Table 1 below, a polymer composition (K-2) was obtained in the same manner as the polymer composition (K-1).
Moreover, except having changed the addition method of the monomer mixture (M-2) of a 2nd process into the continuous addition over 1 hour, it is the mixing | blending shown in the following Table 1, and the said polymer composition (K-1). ), Polymer compositions (K-3) to (K-10) and (K-12) were obtained.
[0042]
Polymer composition (K-11), (K-13) to (K-14)
A polymer composition (K-11) is obtained by the same steps as the polymer composition (K-1) with the formulation shown in Table 1 below except that the first step and the third step are omitted. It was.
Moreover, the polymer composition (K-13) was obtained by the process similar to the said polymer composition (K-1) by the mixing | blending shown in the following Table 1 except having excluded the 3rd process.
Furthermore, a polymer composition (K-14) was obtained in the same manner as the polymer composition (K-1) with the formulation shown in Table 1 below except that the first step was omitted.
[0043]
For the above polymer compositions (K-1) to (K-14), evaluation of durometer hardness, removability of the remaining polymer inside the reactor during polymerization of the polymer composition, and evaluation of coagulation by the method described below. Went. The results are shown in Table 1 below.
[1] Durometer hardness of polymer composition
The measurement was performed according to JIS K7215.
[2] Removability of residual polymer inside reactor during polymerization of polymer composition
After polymerizing the polymer composition, the ease of removing the residual polymer adhering to the inside of the reactor was evaluated. In Table 1, “◯” indicates that the residual polymer can be easily removed only with water, “×” indicates that the residual polymer cannot be completely removed only with water, and a solvent or the like is required for removal of the residual polymer. Indicates to do.
[3] Solidification of polymer composition
The coagulability when the polymer composition was coagulated was evaluated. In Table 1, “◯” indicates that most of the obtained polymer composition particles have a diameter of 10 mm or less, and “x” indicates that the obtained polymer composition particles have a diameter of 10 mm or more. It shows that many things are generated.
[0044]
[Table 1]
[0045]
(2) Production of thermoplastic resin composition and evaluation of physical properties
Polymer compositions (K-1) to (K-14) obtained by the above method, acrylonitrile-styrene-α-methylstyrene copolymer (hereinafter abbreviated as “AMS resin”), butadiene-acrylonitrile. -Styrene copolymer (hereinafter abbreviated as "ABS resin"), acrylonitrile-acrylic acid ester-styrene copolymer (hereinafter abbreviated as "AAS resin"), and acrylonitrile-styrene copolymer (hereinafter abbreviated as "ABS resin"). These are abbreviated as “AS resin”), and these are mixed at the blending ratio shown in Table 2 below, and then kneaded by a single-screw extruder equipped with a degassing device. The pellets of the thermoplastic resin compositions of Comparative Examples 1 to 9 were obtained. From the obtained pellets of the thermoplastic resin compositions of Examples 1 to 11 and Comparative Examples 1 to 9, a test piece for physical property evaluation and a test piece for appearance evaluation were prepared with an injection molding machine, and the method described below The physical properties and the like were evaluated. The results are shown in Table 3 below.
[0046]
[1] Dispersion state of polymer composition in thermoplastic resin
The thermoplastic resin compositions of Examples 1 to 11 and Comparative Examples 1 to 9 were cut with a microtome so that the thickness of the sections was 80 to 120 nm, then stained with osmium tetroxide and ruthenium tetroxide, and transmitted. The morphology was observed with an electron microscope. And based on the photograph obtained with the electron microscope, the dispersion state of the polymer composition was observed. In Table 4, “◯” indicates that the polymer composition is uniformly dispersed in the thermoplastic resin, and “X” indicates that the polymer composition is not uniformly dispersed in the thermoplastic resin. Show.
[2] Charpy impact strength (KJ / m 2 )
Measured according to ISO 179.
[3] Tensile strength (MPa) and tensile elongation (%)
Measured according to ISO 527.
[4] Bending strength (MPa) and bending modulus (MPa)
Measured according to ISO 178. Unit: MPa.
[5] Melt mass flow rate (g / 10 min)
Measurement was performed in accordance with ISO 1133 (220 ° C. × 98 N).
[6] Deflection temperature under load (℃)
Measured according to ISO 75.
[7] Rockwell hardness
Measured according to ISO 2039.
[8] Linear expansion coefficient (10 -5 × ℃ -1 )
The molded articles (Charpy impact strength test test pieces) of Examples 1 to 11 and Comparative Examples 1 to 9 are annealed at 80 ° C. for 2 hours to remove molding distortion in advance. Thereafter, the molded product is cut into a length of 50 mm. Next, the cut molded product is exposed to an atmosphere of 23 ° C. for a sufficiently long time, and the length of the molded product at that time is measured by “LASER SCAN MICROMETER 1000” manufactured by MITUTOYO. In the same manner, the length of the molded product is measured at 30 ° C., 50 ° C., and 70 ° C. And the average change rate of the length per 1 degreeC from 23 degreeC to 70 degreeC was calculated | required as a linear expansion coefficient.
[0047]
[Table 2]
[0048]
[Table 3]
[0049]
(3) Effects of the embodiment
From Table 1, in the polymer compositions (K-1) to (K-6), (K-13) and (K-14) which are the polymer compositions of the present invention, all are added to the resin. It turns out that it is excellent in the dispersibility in a polymer composition. And the polymer composition (K-13) obtained without performing the said 3rd process in the manufacturing method of the polymer composition of this invention, and the polymer composition obtained without performing the said 1st process Compared with (K-14), the method for producing the polymer composition of the present invention, that is, the polymer composition (K-1) of the present invention obtained by performing the first to third steps (K-1) to ( It can be seen that K-6) is excellent in the coagulation property of the polymer composition and excellent in the removability of the residual polymer inside the reactor during the polymerization of the polymer composition.
[0050]
On the other hand, from Table 1, polymer compositions (K-7) and (K-8) in which the vinyl cyanide content of the copolymer (B) component falls outside the scope of the present invention, and the copolymer (A) It can be seen that the polymer composition (K-10) having a vinyl cyanide content exceeding the range of the present invention is inferior in the dispersion state when dispersed in the resin. Furthermore, the polymer composition (K-11) composed only of the copolymer (B) has a low durometer hardness and inferior coagulation property, and the residual polymer inside the reactor during polymerization of the polymer composition. It turns out that it is inferior also in removability.
[0051]
Moreover, from Table 2 and Table 3, it is implementation which is a thermoplastic resin composition which added the polymer composition (K-1)-(K-6), (K-13), and (K-14) of this invention. It can be seen that Examples 1 to 11 all achieve the intended effect of the present invention. In particular, when Comparative Example 8 which is a thermoplastic resin composition containing an ABS resin and an AS resin is compared with Examples 7 and 8 to which the polymer composition of the present invention is added, Examples 7 and 8 are In any case, it can be seen from Comparative Example 8 that the Charpy impact strength, the bending modulus and the melt mass flow rate are high, and the Rockwell hardness and the linear expansion coefficient are low. Further, when Comparative Example 9 which is a thermoplastic resin composition containing AAS resin and AS resin is compared with Example 9 in which the polymer composition of the present invention is added thereto, Examples 7 and 8 above are also compared. The same results as in the case of comparison with Comparative Example 8 are observed. Therefore, it turns out that the effect made into the objective of this invention is acquired by adding the polymer composition of this invention to a thermoplastic resin as a modifier.
[0052]
On the other hand, from Tables 2 and 3, a comparison was made by adding a polymer composition (K-10) in which the vinyl cyanide content in the copolymer (A) exceeded the range of the polymer composition of the present invention. Example 4 shows that the dispersion state of a polymer composition is inferior. In addition, Comparative Example 6 in which the polymer composition (K-12) in which the content of the copolymer (A) exceeds the range of the polymer composition of the present invention was added is from Examples 1 to 11. It can also be seen that they are inferior in impact resistance, tensile elongation, bending modulus and Rockwell hardness. Furthermore, Comparative Examples 5 and 7 to which the polymer composition (K-11) composed only of the copolymer (B) was added had poor melt mass flow rate, and the effect of the modifier intended by the present invention was as follows. It turns out that it is not obtained.
[0053]
Moreover, from Table 2 and Table 3, the comparative example 1 which added the polymer composition (K-7) whose content of the vinyl cyanide monomer in the said copolymer (B) is less than the range of this invention was added. Is inferior in tensile elongation, bending modulus and coefficient of linear expansion compared with Examples 1 to 11, while the vinyl cyanide content in the copolymer (B) exceeds the range of the present invention. In Comparative Example 2 to which the composition (K-8) was added, it can be seen that the tensile elongation and the linear expansion coefficient are inferior. Further, Comparative Example 3 to which the polymer composition (K-9) in which the copolymer (B) component has an alkyl acrylate content less than the range of the present invention is added, is impact resistance, tensile elongation, bending modulus. It can be seen that Rockwell hardness and linear expansion coefficient are inferior.
[0054]
【The invention's effect】
The polymer composition of the present invention is provided with the above-described configuration, and is added and mixed with other resins, so that the resin composition is appropriately dispersed in the resin and the properties such as softness and linear expansion coefficient are improved. Can do.
In addition, the modifier of the present invention is provided with the above-described configuration, so that it can be appropriately dispersed in the resin by adding and mixing with other resins, softening the resin, and reducing the linear expansion coefficient. The resin can be excellent in dimensional stability.
Furthermore, since the thermoplastic resin of the present invention is excellent in both dimensional stability and flexibility by having the above-described configuration, it can be suitably used widely for applications that require flexibility, such as vehicle interiors. it can.
According to the method for producing a polymer composition of the present invention, the produced copolymer (B) can be prevented from adhering to the reactor, and the coagulability of the obtained polymer composition can be enhanced.
Claims (5)
次いで、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体(b1)を重合する第2工程を行い、
その後、芳香族ビニル単量体/シアン化ビニ単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、単量体の合計100質量%)からなる単量体(a2)を重合する第3工程を行うことより得られる請求項1記載の重合体組成物。Monomer composed of aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, total 100% by mass) Performing the first step of polymerizing (a1),
Then, alkyl acrylate ester monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers = 26 to 85/5 to 60/10 to 40/0 to 59 mass % (However, a total of 100% by mass) of the monomer (b1) comprising the second step,
Thereafter, aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (provided that the total amount of monomers is 100% by mass) The polymer composition of Claim 1 obtained by performing the 3rd process which superposes | polymerizes the monomer (a2) which consists of).
次いで、アクリル酸アルキルエステル単量体/芳香族ビニル単量体/シアン化ビニル単量体/他の共重合可能な単量体=26〜85/5〜60/10〜40/0〜59質量%(但し、合計100質量%)からなる単量体(b1)を重合する第2工程を行い、
その後、芳香族ビニル単量体/シアン化ビニ単量体/他の共重合可能な単量体=50〜90/10〜50/0〜40質量%(但し、合計100質量%)からなる単量体(a2)を重合する第3工程を行う(但し、単量体(a1)+単量体(b1)+単量体(a2)=100質量部とした場合、単量体(a1)+単量体(a2)=5〜70質量部である。)ことを特徴とする重合体組成物の製造方法。Monomer composed of aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, total 100% by mass) Performing the first step of polymerizing (a1),
Then, alkyl acrylate ester monomer / aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomers = 26 to 85/5 to 60/10 to 40/0 to 59 mass % (However, a total of 100% by mass) of the monomer (b1) comprising the second step,
Thereafter, an aromatic vinyl monomer / vinyl cyanide monomer / other copolymerizable monomer = 50 to 90/10 to 50/0 to 40% by mass (however, a total of 100% by mass) A third step of polymerizing the monomer (a2) is performed (provided that the monomer (a1) + monomer (b1) + monomer (a2) = 100 parts by mass) + Monomer (a2) = 5 to 70 parts by mass.) A method for producing a polymer composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002255704A JP4359421B2 (en) | 2002-08-30 | 2002-08-30 | Polymer composition, modifier, and method for producing thermoplastic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002255704A JP4359421B2 (en) | 2002-08-30 | 2002-08-30 | Polymer composition, modifier, and method for producing thermoplastic resin composition |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004091680A true JP2004091680A (en) | 2004-03-25 |
JP2004091680A5 JP2004091680A5 (en) | 2005-09-29 |
JP4359421B2 JP4359421B2 (en) | 2009-11-04 |
Family
ID=32061161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002255704A Expired - Fee Related JP4359421B2 (en) | 2002-08-30 | 2002-08-30 | Polymer composition, modifier, and method for producing thermoplastic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4359421B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010509427A (en) * | 2006-11-10 | 2010-03-25 | チェイル インダストリーズ インコーポレイテッド | Thermoplastic resin with uniform composition and narrow molecular weight distribution and method for producing the same |
JP2011132352A (en) * | 2009-12-24 | 2011-07-07 | Techno Polymer Co Ltd | Transparent thermoplastic resin composition and molded resin product |
JP2013040237A (en) * | 2011-08-11 | 2013-02-28 | Techno Polymer Co Ltd | Thermoplastic resin composition and molding |
-
2002
- 2002-08-30 JP JP2002255704A patent/JP4359421B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010509427A (en) * | 2006-11-10 | 2010-03-25 | チェイル インダストリーズ インコーポレイテッド | Thermoplastic resin with uniform composition and narrow molecular weight distribution and method for producing the same |
JP2011132352A (en) * | 2009-12-24 | 2011-07-07 | Techno Polymer Co Ltd | Transparent thermoplastic resin composition and molded resin product |
JP2013040237A (en) * | 2011-08-11 | 2013-02-28 | Techno Polymer Co Ltd | Thermoplastic resin composition and molding |
Also Published As
Publication number | Publication date |
---|---|
JP4359421B2 (en) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20150068313A (en) | COMPOSITION OF STYRENE RESIN HAVING Chemical Resistance and SUPERIOR HEAT RESISTANCE AND MOLDED ARTICLE MADE FROM the SAME | |
JP2006528722A (en) | Method for producing rubber-reinforced thermoplastic resin and rubber-reinforced thermoplastic resin composition using the same | |
JP4359421B2 (en) | Polymer composition, modifier, and method for producing thermoplastic resin composition | |
JP4603653B2 (en) | Thermoplastic resin composition | |
JPH02272050A (en) | Transparent thermoplastic resin composition | |
JPH0791341B2 (en) | Maleimide-based copolymer and method for producing the same | |
JP3850504B2 (en) | Thermoplastic resin composition | |
US10329416B2 (en) | Thermoplastic resin composition and molded article manufactured from the same | |
JP2000017170A (en) | Thermoplastic resin composition | |
CA2314460C (en) | Thermoplastic resin composition | |
JP3286971B2 (en) | Styrene-based copolymer, thermoplastic resin composition containing the copolymer, and methods for producing them | |
JP3626288B2 (en) | Low rigidity styrenic resin composition with excellent pigment dispersibility | |
JPH1025371A (en) | Rubber-containing resin composition and styrene-based resin composition using the same | |
JPH08333489A (en) | Rubberlike polymer latex for base rubber of rubber-reinforced vinyl polymer, rubber-reinforced vinyl polymer, and thermoplastic polymer composition | |
CN108137899B (en) | Thermoplastic resin composition | |
JP4739489B2 (en) | Heat resistant thermoplastic resin composition and method for producing the same | |
JP5632447B2 (en) | Thermoplastic resin composition and molded article thereof | |
JP2001226556A (en) | Flame-retardant thermoplastic resin composition | |
JP2002179866A (en) | Resin composition and interior and exterior automotive trim obtained by molding the same | |
JP2692019B2 (en) | Thermoplastic resin composition excellent in plating property, impact resistance and large-scale moldability | |
JPH10298375A (en) | Rubber-modified heat-resistant styrene-based resin composition | |
JP2007023098A (en) | Thermoplastic resin composition and its molded article | |
JPH11279366A (en) | Methacrylate-based resin plate excellent in impact resistance | |
JP2000198902A (en) | Thermoplastic resin composition | |
JP2000017137A (en) | Multiphase copolymer-containing resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050512 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050512 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090810 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4359421 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |