【0001】
【発明の属する技術分野】
本発明はフッ化物セラミックス焼結体とその製造方法に係わり、特にMgの含有量を一定量許容したフッ化物セラミックス焼結体及びその製造方法に関する。
【0002】
【従来の技術】
現在、半導体メモリの急激な高集積化により、エッチング、不純物拡散、イオン注入工程の繰り返し回数の増加や、細密化によるプラズマの高出力化など、半導体装置内の環境は以前と比較して苛酷なものとなっている。その結果、耐高温度性、耐蝕性に優れたセラミックスが多くのプロセスで用いられている。その中で、パターンの焼き付けのために行われるドライエッチングなどでは、ハロゲンガスやフッ素系ガスがプラズマにより活性化されて使用されるため、製造装置を構成する部品には活性なガスに対する耐蝕性が要求される。
【0003】
フッ化物セラミックスは、特にフッ素系の腐蝕ガス又はそれらのプラズマに対して、高い耐蝕性を有しているため、半導体製造装置や液晶プロセス用プラズマ装置内部にて使用される内壁材、窓部材、ガスインレット部材、半導体ウェーハ支持具等の治具用の材料として期待される。
【0004】
フッ化物セラミックスの代表的なものとして、CaF2、BaF2、YF3等の焼結体が挙げられ、これらはいずれも、従来のドライエッチングプロセスで使用されている石英ガラスに比べて5倍以上、アルミナに比べて2倍以上の耐蝕性を有している。なお、CaF2原料粉は高純度のフッ酸製造時(蛍石に濃硫酸を加えて熱し、発生する気体を氷で冷却する)に沈殿生成する硫酸カルシウムを用い、液相で高純度のCaF2を合成している。
【0005】
しかしながら、これらフッ化物セラミックス焼結体の最も大きな欠点は、耐プラズマエッチング性を有するが、高純度な原料が製造しづらく合成原料が高価であること及び機械的強度が低いことである。CaF2、BaF2、YF3等の原料価格は同じ程度の純度品では、石英ガラスの約20倍、アルミナの約10倍であるため、高コストである。また、曲げ強度は100MPa以下であり、石英ガラスの約150MPa、アルミナの約400MPaに比べて低い。このような現状で、半導体製造装置内の部品としてのフッ化物セラミックスの用途を拡大するために低価格化と機械的強度を向上させることが大きな課題である。
【0006】
【発明が解決しようとする課題】
そこで、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスが要望されていた。
【0007】
また、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスの製造方法が要望されていた。
【0008】
本発明は上述した事情を考慮してなされたもので、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスを提供することを目的とする。
【0009】
また、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的実現のために、鋭意研究した結果、フッ化物セラミックス焼結体において、ひたすら高純度化するのではなく、特にCaと同属で分離しづらいMgは半導体用としてそれほど問題なる不純物ではないことに着目し、Mgの含有を一定量許容させて製造し易くし、さらにMgの含有により、焼結体強度の向上を実現した。
【0011】
すなわち、本発明の1つの態様によれば、Mgを50ppm以上5重量%以下含み、残部がフッ化カルシウムからなり、不純物が50ppm以下で、曲げ強度が150MPa以上のフッ化物セラミックス焼結体が提供される。これにより、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスが実現される。
【0012】
好適な一例では、上記フッ化物セラミックス焼結体は、半導体処理用部材あるいはプラズマ処理装置用部材に用いられる。これにより、耐プラズマエッチング性を有しながら低価格化で機械的強度が強い半導体処理用部材が実現される。
【0013】
また、他の態様によれば、Mgを含有する低純度の出発原料とフッ化水素酸を用いて、Mg以外の不純物を除去した後、高純度のフッ化カルシウムを沈殿生成させ、このフッ化カルシウムを熱処理及び造粒した後、成形し、焼結することを特徴とするフッ化物セラミックス焼結体の製造方法が提供される。これにより、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスが製造される。
【0014】
好適な一例では、上記出発原料は、塩化カルシウム又は炭酸カルシウムである。これにより、低価格化が実現される。
【0015】
【発明の実施の形態】
以下、本発明に係わるフッ化物セラミックス焼結体及びその製造方法の実施形態について説明する。
【0016】
本発明に係わるフッ化物セラミックス焼結体は、実質的にフッ化カルシウムを95重量%超と、Mgを50ppm〜5重量%以下含有し、不純物が50ppm以下で、曲げ強度が150MPa以上である。
【0017】
このようにMgの含有を一定量許容して、フッ化カルシウムにMgを複合化することにより、耐蝕性の高いフッ化カルシウム相の粒界にMgが存在し焼結助剤として機能し、焼結体の緻密化に寄与するため高強度となる。
【0018】
Mgを50ppm〜5重量%としたのは、Mgが5重量%を超えると、焼結の際の母材であるフッ化カルシウム量が不足することにより、緻密な焼結体が得られず、Mgの添加量が50ppm未満では、強化材としての効果が少なく、大幅な強度向上が期待できないからである。また、フッ化物セラミックス焼結体の不純物が50ppmを超えると、半導体ウェーハが汚染され好ましくなく、さらに、その曲げ強度が150MPaより小さいと、半導体処理用部材として使用中に破損等が発生するおそれがあり、好ましくない。
【0019】
次に本発明に係わるフッ化物セラミックス焼結体をプラズマ処理装置用部材として、プラズマ処理装置に用いた例を説明する。
【0020】
図1に示すような一般に用いられるプラズマCVD装置1は、気密性を有するチャンバー2を有し、ヒーターユニットと均熱板で構成され上記本発明に係わるフッ化物セラミックス焼結体で形成されたサセプタ3が配置され、このサセプタ3は接地電極を形成している。また、チャンバー2の上方には高電圧が印加されるシャワー電極4が設けられ、さらに、チャンバー2の上面には、ガス流入部5、6が取付けられたガスインレット部材7が設けられている。このガスインレット部材7のガス流路8に設けられた耐熱性多孔質体9を介して、反応ガス及びキャリアガスをチャンバー2内に導入するようになっている。
【0021】
従って、このようなプラズマCVD装置1によりウェーハWの表面に酸化シリコンなどの薄膜を形成するには、ヒーターユニットにより均熱板を加熱してサセプタ3に載置された半導体ウェーハWを所定温度に加熱し、ガス流入部5、6より所定の反応ガス及びキャリアガスが吸入されて、シャワー電極4より噴射される。ここで、シャワー電極4に高周波電圧が印加されるとグロー放電により反応ガスがプラズマ化し、反応による生成物がウェーハWの表面に蒸着して薄膜が形成される。
【0022】
このCVD工程において、サセプタ3は常時プラズマに曝されるが、上記本発明に係わるフッ化物セラミックス焼結体で形成されたサセプタ3は、高い耐プラズマエッチング性を有するのでエッチングされず、長寿命化が図れる。
【0023】
なお、上記本発明に係わるフッ化物セラミックス焼結体を用いて形成されたプラズマ処理装置用部材は、上記のようにサセプタに限らず、チャンバーの内壁部、ガスインレット部材、窓類等耐食性ガス雰囲気下でプラズマに曝される構成部材にも適用ができる。また、図2に示すように、真空ポンプ11に接続され多数の真空吸着孔12aが設けられた真空チャック12、あるいは、図3に示すように、電極板13aが設けられた静電チャック13等に用いてもよく、さらに、上記本発明に係わるフッ化物セラミックス焼結体が低価格化で機械的強度が強い特性を活かして、プラズマ処理装置用部材としてではなく、通常の条件下でのサセプタ、真空チャック、静電チャックあるいはその他の半導体処理用部材として用いることもできる。低価格化で機械的強度が強い半導体処理用部材が実現される。
【0024】
また、本発明に係わるフッ化物セラミックス焼結体の製造方法について説明する。
【0025】
本発明に係わるフッ化物セラミックス焼結体の製造方法は、Mgが含有されている低純度の出発原料とフッ化水素酸を用いて、Mg以外の不純物を除去した後、高純度のフッ化カルシウムを沈殿生成させ、このフッ化カルシウムを熱処理及び造粒した後、成形し、焼結する。
【0026】
具体的には、出発原料は塩化カルシウム又は炭酸カルシウムが好ましく、出発原料を水又は酸で分解した後、pH6.2に調整し、重金属を水酸化物として沈殿させて、ろ過で除去した後、フッ化水素酸を加えてフッ化カルシウム粉末を沈殿生成させる。その後、ろ過により固液分離してアルカリ金属を除去する簡易的な合成方法である。通常は、硫酸を加えて硫酸カルシウムを生成させてアルカリ土類を除去する工程を行うが、Mgを含有させるためにこの工程を省略した。これにより、原料の低コスト化が可能になり、Mgを残存させることができる。上記のような原料粉末を熱処理及び造粒した後、例えば静水圧プレス、押し出し成形、射出成形、鋳込み成形などの成形手段で成形する。その成形体を焼結し、フッ化物セラミックス焼結体を製造する。
【0027】
焼結条件は、常圧焼結で十分であり、焼結温度は600℃以上が好ましい。これは、焼結温度が600℃以下では、十分な焼結が困難であり、緻密質セラミックスが得難く、高強度化も困難であるからである。
【0028】
なお、より高強度な焼結体を得るためには、上記のようにして得られた焼結体をHIP(熱間静水圧成形)処理することが好ましい。
【0029】
上記のような本発明に係わるフッ化物セラミックス焼結体の製造方法により、Mgの含有を一定量許容して製造し易くし、Mgの含有により、耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスが製造される。
【0030】
【実施例】
試験1: 図4に示すような原料粉末の製造方法により原料粉末を製造した。最初に純度98重量%の炭酸カルシウム(関東化学製、鹿1級)粉末を硝酸で分解した後、アンモニア水でpH6.2に調整して重金属を水酸化物として沈殿させて、ろ過で除去する。次にフッ化水素酸を加えてフッ化カルシウム粉末を沈殿生成させて、ろ過によりアルカリ金属を除去して、Mgを含有したフッ化カルシウム粉末を得た。その粉末を過塩素酸により分解してICP発光分光装置及び原子吸光光度計により純度分析を実施した。
【0031】
結果:表1に示す。
【0032】
【表1】
【0033】
表1に示すように、製造された原料粉末(CaF2)のMg含有量は、2000ppmと出発原料のまま残存し、その他の不純物(重金属・アルカリ金属)は除去されて、高純度のフッ化カルシウム原料であることが確認された。
【0034】
試験2: 試験1と同様の方法で得られた上記粉末を、さらに800℃で熱処理し水分を除去し、ボールミルを用いて造粒して得られた造粒粉を静水圧プレス(CIP)にて、9.807×105MPa(1000kgf/cm2)の圧力で成形し、厚さ30mm、幅30mm、長さ30mmの成形体を得た。成形体を800℃で3時間保持の条件で常圧焼結を行った。さらに、常圧焼結体をAr雰囲気、500〜700℃、1800kgf/cm2でHIP処理することで、フッ化カルシウム焼結体を得た。こうして得られたフッ化カルシウム焼結体を、研削加工して負荷速度0.5mm/secにて4点曲げ強度を測定した。さらに、周波数2.45GHz、出力800Wの平行平板電極型プラズマエッチング装置を用いて、約40分間プラズマエッチングを行いエッチングレートを算出した。
【0035】
結果:表2にその結果を示す。
【0036】
【表2】
【0037】
表2に示すように、主原料CaF2にMg2000ppmを添加した実施例1は、曲げ強度は150MPa以上、エッチングレートは約3.1μm/hrとなり強度及び耐蝕性が優れていることが確認された。これに対して主原料CaF2にMgを添加しない比較例1は、曲げ強度は80MPaと実施例1の約50%の強度で弱い。また、比較例2の石英ガラスは、曲げ強度は150MPaで実施例並の強度であるが、耐蝕性は約10.0μm/hrと実施例1の約3倍なり大きく耐食性が著しく劣り、さらに、比較例3のアルミナは、曲げ強度は400MPaで実施例1の約2.5倍の強度であるが、エッチングレートは6.0μm/hrと実施例の約2倍と大きく、耐食性は劣ることがわかった。
【0038】
【発明の効果】
本発明に係わるフッ化物セラミックスによれば、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスを提供することができる。
【0039】
また、本発明に係わるフッ化物セラミックスの製造方法によれば、半導体製造装置内の部品として適するように耐プラズマエッチング性を有しながら低価格化で機械的強度に優れたフッ化物セラミックスの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わるフッ化物セラミックス焼結体を用いたプラズマCVD装置の概念図。
【図2】本発明に係わるフッ化物セラミックス焼結体を用いた真空チャックの概念図。
【図3】本発明に係わるフッ化物セラミックス焼結体を用いた静電チャックの概念図。
【図4】本発明に係わるフッ化物セラミックス焼結体の製造方法の実施例における製造工程フロー図。
【符号の説明】
1 プラズマCVD装置
2 チャンバー
3 サセプタ
4 シャワー電極
5、6 ガス流入部
7 ガスインレット部材
8 ガス流路
9 耐熱性多孔質体
W 半導体ウェーハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluoride ceramics sintered body and a method for producing the same, and more particularly to a fluoride ceramics sintered body in which a certain amount of Mg is allowed and a method for producing the same.
[0002]
[Prior art]
At present, due to the rapid integration of semiconductor memory, the number of repetitions of etching, impurity diffusion, and ion implantation processes has increased, and the output of plasma has been increased due to miniaturization. It has become something. As a result, ceramics excellent in high temperature resistance and corrosion resistance are used in many processes. Among these, in dry etching performed for baking patterns, halogen gas or fluorine-based gas is used after being activated by plasma, so the components that make up the manufacturing equipment have corrosion resistance to active gas. Required.
[0003]
Fluoride ceramics have high corrosion resistance, especially to fluorine-based corrosive gases or their plasmas, and therefore are used for internal wall materials, window members, and the like used in semiconductor manufacturing equipment and plasma equipment for liquid crystal processes. It is expected as a material for jigs such as gas inlet members and semiconductor wafer supports.
[0004]
Typical examples of fluoride ceramics include sintered bodies such as CaF 2 , BaF 2 , and YF 3 , each of which is at least five times as large as quartz glass used in a conventional dry etching process. And more than twice the corrosion resistance of alumina. The CaF 2 raw material powder uses calcium sulfate that precipitates during the production of high-purity hydrofluoric acid (heat generated by adding concentrated sulfuric acid to fluorite, and the generated gas is cooled with ice). 2 are synthesized.
[0005]
However, the major disadvantages of these fluoride ceramic sintered bodies are that although they have plasma etching resistance, it is difficult to produce high-purity raw materials, so that synthetic raw materials are expensive and have low mechanical strength. Raw materials such as CaF 2 , BaF 2 , YF 3, etc. are about 20 times as expensive as quartz glass and about 10 times as expensive as alumina for pure products of the same degree, so that the cost is high. Further, the bending strength is 100 MPa or less, which is lower than about 150 MPa of quartz glass and about 400 MPa of alumina. Under such circumstances, it is a major challenge to reduce the cost and improve the mechanical strength in order to expand the use of the fluoride ceramics as components in a semiconductor manufacturing apparatus.
[0006]
[Problems to be solved by the invention]
Therefore, there has been a demand for a fluoride ceramic which has low plasma etching resistance and excellent mechanical strength while having plasma etching resistance so as to be suitable as a component in a semiconductor manufacturing apparatus.
[0007]
In addition, there has been a demand for a method of manufacturing a fluoride ceramic which is low in cost and excellent in mechanical strength while having plasma etching resistance so as to be suitable as a component in a semiconductor manufacturing apparatus.
[0008]
The present invention has been made in view of the above circumstances, and provides a low-cost, high-strength fluoride ceramics having plasma etching resistance and suitable for use as a part in a semiconductor manufacturing apparatus. With the goal.
[0009]
It is another object of the present invention to provide a method for producing a fluoride ceramic which is low in cost and excellent in mechanical strength while having plasma etching resistance so as to be suitable as a component in a semiconductor manufacturing apparatus.
[0010]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result of conducting intensive studies, it has been found that, in a fluoride ceramic sintered body, Mg that is not purely purified but is particularly difficult to separate in the same genus as Ca is a serious problem for semiconductors. Focusing on the fact that they are not impurities, a certain amount of Mg was allowed to be allowed to be easily manufactured, and further, the strength of the sintered body was improved by containing Mg.
[0011]
That is, according to one embodiment of the present invention, there is provided a fluoride ceramics sintered body containing Mg in an amount of 50 ppm to 5% by weight, the balance being calcium fluoride, impurities of 50 ppm or less, and a bending strength of 150 MPa or more. Is done. As a result, a fluoride ceramic which is low in cost and excellent in mechanical strength while realizing plasma etching resistance so as to be suitable as a component in a semiconductor manufacturing apparatus is realized.
[0012]
In a preferred example, the fluoride ceramics sintered body is used for a member for semiconductor processing or a member for plasma processing apparatus. Thus, a semiconductor processing member having low mechanical strength and high mechanical strength can be realized while having plasma etching resistance.
[0013]
Further, according to another aspect, after removing impurities other than Mg using a low-purity starting material containing Mg and hydrofluoric acid, high-purity calcium fluoride is precipitated and formed. A method for producing a fluoride ceramics sintered body characterized in that calcium is subjected to heat treatment and granulation, followed by molding and sintering. As a result, a fluoride ceramic which is low in cost and excellent in mechanical strength while having plasma etching resistance so as to be suitable as a component in a semiconductor manufacturing apparatus is manufactured.
[0014]
In a preferred example, the starting material is calcium chloride or calcium carbonate. As a result, the price can be reduced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a fluoride ceramics sintered body and a method of manufacturing the same according to the present invention will be described.
[0016]
The fluoride ceramics sintered body according to the present invention substantially contains more than 95% by weight of calcium fluoride, 50 ppm to 5% by weight or less of Mg, contains 50 ppm or less of impurities, and has a bending strength of 150 MPa or more.
[0017]
As described above, by allowing Mg to be contained in a certain amount and combining Mg with calcium fluoride, Mg is present at the grain boundaries of the calcium fluoride phase having high corrosion resistance, and functions as a sintering aid, and High strength because it contributes to densification of the aggregate.
[0018]
The reason why Mg is set to 50 ppm to 5% by weight is that if Mg exceeds 5% by weight, a dense sintered body cannot be obtained due to an insufficient amount of calcium fluoride as a base material during sintering. If the addition amount of Mg is less than 50 ppm, the effect as a reinforcing material is small, and a significant improvement in strength cannot be expected. Further, if the impurity of the fluoride ceramics sintered body exceeds 50 ppm, the semiconductor wafer is contaminated, which is not preferable. Further, if the bending strength is less than 150 MPa, breakage or the like may occur during use as a semiconductor processing member. Yes, not preferred.
[0019]
Next, an example in which the fluoride ceramics sintered body according to the present invention is used for a plasma processing apparatus as a member for a plasma processing apparatus will be described.
[0020]
A generally used plasma CVD apparatus 1 as shown in FIG. 1 has an airtight chamber 2 and is composed of a heater unit and a heat equalizing plate, and is formed of a fluoride ceramic sintered body according to the present invention. The susceptor 3 forms a ground electrode. A shower electrode 4 to which a high voltage is applied is provided above the chamber 2, and a gas inlet member 7 to which gas inlets 5 and 6 are attached is provided on the upper surface of the chamber 2. The reaction gas and the carrier gas are introduced into the chamber 2 through the heat-resistant porous body 9 provided in the gas flow path 8 of the gas inlet member 7.
[0021]
Therefore, in order to form a thin film of silicon oxide or the like on the surface of the wafer W by such a plasma CVD apparatus 1, the heater unit heats the heat equalizing plate to bring the semiconductor wafer W mounted on the susceptor 3 to a predetermined temperature. After heating, predetermined reaction gas and carrier gas are sucked in from the gas inflow portions 5 and 6 and jetted from the shower electrode 4. Here, when a high-frequency voltage is applied to the shower electrode 4, the reaction gas is turned into plasma by glow discharge, and the product of the reaction is deposited on the surface of the wafer W to form a thin film.
[0022]
In this CVD process, the susceptor 3 is always exposed to plasma. However, the susceptor 3 formed of the above-mentioned fluoride ceramics sintered body according to the present invention is not etched since it has high plasma etching resistance, and has a long life. Can be achieved.
[0023]
The member for a plasma processing apparatus formed using the fluoride ceramics sintered body according to the present invention is not limited to the susceptor as described above, but may be a corrosion-resistant gas atmosphere such as an inner wall of a chamber, a gas inlet member, and windows. It can also be applied to components that are exposed to plasma below. Further, as shown in FIG. 2, a vacuum chuck 12 connected to a vacuum pump 11 and provided with a large number of vacuum suction holes 12a, or an electrostatic chuck 13 provided with an electrode plate 13a as shown in FIG. Further, the fluorinated ceramics sintered body according to the present invention may be used not only as a member for a plasma processing apparatus, but also under a susceptor under normal conditions, by utilizing the characteristics of low cost and high mechanical strength. , A vacuum chuck, an electrostatic chuck or other semiconductor processing members. A semiconductor processing member having low mechanical strength and high mechanical strength is realized.
[0024]
In addition, a method for manufacturing a fluoride ceramics sintered body according to the present invention will be described.
[0025]
The method for manufacturing a fluoride ceramics sintered body according to the present invention comprises removing impurities other than Mg using a low-purity starting material containing Mg and hydrofluoric acid, and then removing high-purity calcium fluoride. After the calcium fluoride is subjected to heat treatment and granulation, it is molded and sintered.
[0026]
Specifically, the starting material is preferably calcium chloride or calcium carbonate, after decomposing the starting material with water or acid, adjusting the pH to 6.2, precipitating heavy metals as hydroxides, removing them by filtration, Hydrofluoric acid is added to precipitate calcium fluoride powder. Then, it is a simple synthesis method in which the alkali metal is removed by solid-liquid separation by filtration. Usually, a step of adding calcium sulfate to generate calcium sulfate to remove alkaline earth is performed, but this step is omitted to contain Mg. As a result, the cost of the raw material can be reduced, and Mg can be left. After the above-mentioned raw material powder is heat-treated and granulated, it is molded by molding means such as, for example, isostatic pressing, extrusion molding, injection molding, and casting. The compact is sintered to produce a fluoride ceramic sintered body.
[0027]
As for the sintering conditions, normal pressure sintering is sufficient, and the sintering temperature is preferably 600 ° C. or higher. This is because if the sintering temperature is 600 ° C. or lower, it is difficult to perform sufficient sintering, it is difficult to obtain dense ceramics, and it is also difficult to increase the strength.
[0028]
In order to obtain a higher strength sintered body, the sintered body obtained as described above is preferably subjected to HIP (hot isostatic pressing) treatment.
[0029]
According to the method for manufacturing a fluoride ceramic sintered body according to the present invention as described above, a certain amount of Mg is allowed to be easily manufactured, and the content of Mg allows plasma etching resistance while reducing the cost. A fluoride ceramic having excellent mechanical strength is manufactured.
[0030]
【Example】
Test 1: A raw material powder was manufactured by a method for manufacturing a raw material powder as shown in FIG. First, powder of 98% pure calcium carbonate (Kanto Chemical, deer grade 1) is decomposed with nitric acid, and then adjusted to pH 6.2 with aqueous ammonia to precipitate heavy metals as hydroxides and removed by filtration. . Next, calcium fluoride powder was precipitated by adding hydrofluoric acid, and the alkali metal was removed by filtration to obtain a calcium fluoride powder containing Mg. The powder was decomposed with perchloric acid, and the purity was analyzed using an ICP emission spectrometer and an atomic absorption spectrometer.
[0031]
Results: shown in Table 1.
[0032]
[Table 1]
[0033]
As shown in Table 1, the produced raw material powder (CaF 2 ) had a Mg content of 2000 ppm as a starting material, and other impurities (heavy metals and alkali metals) were removed to obtain high-purity fluoride. It was confirmed that it was a calcium raw material.
[0034]
Test 2: The above powder obtained by the same method as in Test 1 was further heat-treated at 800 ° C. to remove water, and the obtained powder was granulated by using a ball mill, and the obtained granulated powder was subjected to hydrostatic pressing (CIP). And molded at a pressure of 9.807 × 105 MPa (1000 kgf / cm 2 ) to obtain a molded body having a thickness of 30 mm, a width of 30 mm and a length of 30 mm. The green compact was sintered under normal pressure at 800 ° C. for 3 hours. Further, the calcium fluoride sintered body was obtained by subjecting the normal pressure sintered body to HIP treatment in an Ar atmosphere at 500 to 700 ° C. and 1800 kgf / cm 2 . The calcium fluoride sintered body thus obtained was ground and subjected to a 4-point bending strength measurement at a load speed of 0.5 mm / sec. Further, plasma etching was performed for about 40 minutes using a parallel plate electrode type plasma etching apparatus having a frequency of 2.45 GHz and an output of 800 W to calculate an etching rate.
[0035]
Results: Table 2 shows the results.
[0036]
[Table 2]
[0037]
As shown in Table 2, in Example 1, in which 2000 ppm of Mg was added to the main raw material CaF 2 , the bending strength was 150 MPa or more, and the etching rate was about 3.1 μm / hr, confirming that the strength and corrosion resistance were excellent. . On the other hand, in Comparative Example 1 in which Mg was not added to the main raw material CaF 2 , the flexural strength was 80 MPa, which was about 50% of Example 1 and weak. In addition, the quartz glass of Comparative Example 2 has a bending strength of 150 MPa, which is comparable to that of the Example, but the corrosion resistance is about 10.0 μm / hr, which is about three times that of Example 1, and is significantly inferior in corrosion resistance. The alumina of Comparative Example 3 has a bending strength of 400 MPa, which is about 2.5 times that of Example 1, but the etching rate is 6.0 μm / hr, which is about twice as large as that of Example 1, and the corrosion resistance is inferior. all right.
[0038]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the fluoride ceramics concerning this invention, it can provide a low price and high mechanical strength fluoride ceramic which has plasma etching resistance and is suitable as a component in a semiconductor manufacturing apparatus.
[0039]
Further, according to the method for manufacturing a fluoride ceramic according to the present invention, a method for manufacturing a fluoride ceramic which is low in cost and excellent in mechanical strength while having plasma etching resistance so as to be suitable as a part in a semiconductor manufacturing apparatus. Can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a plasma CVD apparatus using a fluoride ceramics sintered body according to the present invention.
FIG. 2 is a conceptual diagram of a vacuum chuck using a fluoride ceramics sintered body according to the present invention.
FIG. 3 is a conceptual diagram of an electrostatic chuck using a fluoride ceramics sintered body according to the present invention.
FIG. 4 is a manufacturing process flow chart in an example of a method for manufacturing a fluoride ceramics sintered body according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma CVD apparatus 2 Chamber 3 Susceptor 4 Shower electrode 5, 6 Gas inflow part 7 Gas inlet member 8 Gas flow path 9 Heat resistant porous body W Semiconductor wafer