JP2004080930A - Disconnection spark detection circuit and breaker using the same - Google Patents
Disconnection spark detection circuit and breaker using the same Download PDFInfo
- Publication number
- JP2004080930A JP2004080930A JP2002239171A JP2002239171A JP2004080930A JP 2004080930 A JP2004080930 A JP 2004080930A JP 2002239171 A JP2002239171 A JP 2002239171A JP 2002239171 A JP2002239171 A JP 2002239171A JP 2004080930 A JP2004080930 A JP 2004080930A
- Authority
- JP
- Japan
- Prior art keywords
- current
- disconnection
- spark detection
- spark
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Breakers (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電線の心線の半断線や断線に起因する電線内のスパーク放電の発生を検出する断線スパーク検出回路及び断線スパークの検出時に電路を遮断する遮断装置に関するものである。
【0002】
【従来の技術】
従来、負荷と電源(例えば交流電源)とを接続する電線の心線間がトラッキング等によって絶縁破壊された際に起きる放電短絡を検出して回路遮断を行う回路遮断器が提供されている(特開平10−14086号公報参照)。
【0003】
【発明が解決しようとする課題】
上記の回路遮断器では、電線の絶縁破壊に伴う放電短絡を検出するものであって、電線の心線が使用経過により被覆内で起きる断線や半断線については検出できなかった。
【0004】
つまり、比較的大電流の負荷が接続される電線では、その使用経過で、心線が劣化して断線状態(半断線状態)に近づくと、外部から加わる振動などによって心線が間欠的に断線することがある。この場合断線によってスパーク放電が発生して、電線の被覆(例えば塩化ビニル)が異常に発熱し、この発熱によって被覆から発生するガスが内部に溜まり、ついには電線被覆が爆発的に破裂するとともに燃焼し、火災に至るという問題があった。
【0005】
このような外部からは見えない電線の心線の断線や半断線に起因するスパーク放電を検出することができる断線スパーク検出回路や、電路を遮断する遮断装置が希求されている。
【0006】
本発明は、上記の点に鑑みて為されたもので、請求項1,2の発明の目的とするところは電線の心線の断線や半断線に起因するスパーク放電の発生を検出することができる断線スパーク検出回路を提供することにあり、併せて請求項3の発明は、請求項1,2の発明の断線スパーク検出回路を用いてスパーク放電の検出を行い、スパーク放電の検出時には電路を遮断して電線の被覆の燃焼等を未然に防ぐことができる遮断装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明の断線スパーク検出回路では、負荷と交流電源とを接続する電路を形成する電線に流れる電流を検出し、該検出電流の大きさに対応するレベルの電圧信号を出力する電流検出手段と、前記電流検出手段の出力電圧が所定以下となる時間が一定時間内にあれば、無電流区間と判断するとともに、無電流区間と判断してから所定時間内に次の無電流と判断される区間があると連続発生とし、この無電流と判断される区間の連続発生回数が所定数に達すると前記電線にスパーク放電有りと判定してスパーク検出信号を出力する判定手段とを備えていることを特徴とする。
【0008】
請求項2の発明の断線スパーク検出回路では、請求項1の発明において、上記判定手段が、上記電流検出手段からの電圧信号をA/D変換するA/D変換手段と、A/D変換手段が変換出力する電圧値が所定電圧範囲内にあって、且つ一つ前のサンプリング時の電圧値との差が一定電圧範囲にあると無変化と判定し、この無変化状態が所定時間継続すると無電流の区間と判断してその判断結果を出力する判断機能と、前記判断結果の出力毎にカウントアップするもとともに、先のカウントアップから一定時間内に次の無電流の判断結果の出力が無ければカウント値をクリアするカウンタ機能とを備え、このカウンタ機能のカウント数が所定数に達すると、上記スパーク検出信号を出力することを特徴とする。
【0009】
請求項3の発明の遮断装置では、請求項1又は請求項2の断線スパーク検出回路を用い、該断線スパーク検出回路のスパーク検出信号が入力すると、負荷と交流電源とを接続する電路に挿入したスイッチ手段を開極駆動する遮断手段を備えたことを特徴とする。
【0010】
【発明の実施の形態】
以下本発明を実施形態により説明する。
【0011】
図1は負荷1と交流電源ACとの間を接続する電線L,Lの心線の半断線や断線を検出する断線スパーク検出回路2と遮断手段たる遮断機構8とを用いた遮断装置の一実施形態の概要構成を示す。
【0012】
断線スパーク検出回路2は、電線Lに流れる負荷電流の大きさに対応した2次出力を発生する変流器3及びこの変流器3の2次出力電流を電圧に変換するI/V変換回路4で構成される電流検出手段5と、この電流検出手段5から出力される負荷電流の大きさに対応して電圧信号を取り込み、この電圧信号から後述する断線の有無の判定を行う判定手段を構成するマイクロコンピュータ(以下マイコンと略す)6と、交流電源ACから交流電力を取り込んで、所定の直流に変換しその直流を電源+Vとしてマイコン6へ供給する電源回路7とで構成される。
【0013】
遮断機構8は図2に示すように電磁開閉器9と、この電磁開閉器9の励磁コイル9aへの通電をオン/オフするサイリスタ10とで構成され、電磁開閉器9の常閉の開閉接点S,Sはスイッチ手段として対の電路に夫々直列挿入される。またサイリスタ10は、そのゲートをスパーク検出信号が出力されるマイコン6の出力ポートに接続している。
【0014】
マイコン6の上記出力ポートは通常時には”L”レベルとなっており、そのためサイリスタ10はオフ状態にあって、電磁開閉器9の励磁コイル9aへの励磁電流を遮断している。そして後述する断線判定時に上記出力ポートから”H”レベルのスパーク検出信号が出力することでサイリスタ10がトリガされてターンオンし、電磁開閉器9の励磁コイル9aに励磁電流を流し、電磁開閉器9を開極動作せるようになっている。
【0015】
断線スパーク検出回路2の電源回路7の電源入力端の電路に対する接続点は遮断機構8の開閉接点S,Sと交流電源ACとの間とし、開閉接点S,Sの開極後も電源回路7からマイコン6への電源供給を維持できるようになっている。
【0016】
さてマイコン6は、図2に示すように電流検出手段5のI/V変換回路4の出力電圧をA/D変換するA/D変換器60を内蔵するとともに、このA/D変換器60でデジタル化された電圧値を所定間隔でサンプリングして取り込み、その電圧値に基づいて断線判定を行うための判断機能とカウンタ機能とをプログラムを実行することで実現する演算処理部61を備えている。
【0017】
次に本実施形態の動作について説明する。
【0018】
まず図2の回路において、接続される負荷1を抵抗負荷とした場合、電線L,Lが正常な場合(図3(a)の正常時区間)に示す負荷電圧波形(ほぼ交流電源ACの波形)に対応して負荷電圧の変化に応じた正弦波形の電流が図3(b)に示すように流れる。この場合、例えば±10A(説明のための例であり、限定される値ではない)の負荷電流が流れるものとする。これに対応して例えばA/D変換器60に入力するI/V変換器4の出力は例えば、2.5Vを中心として±2.5Vに上下する波形の電圧が出力されるものとする(説明のための例であり、限定される値ではない)。
【0019】
そして電線L,Lの心線に断線(半断線)が発生したとすると(図3(a)の異常時区間)、図2に示す断線箇所Xでは、負荷電圧が所定電圧以上あると、断線箇所Xの対向心線間にスパーク放電によって電流が流れることになるが、負荷電圧が所定電圧以下(交流電源電圧の零クロス付近など)に低下した区間ではほぼ零となり、そのため負荷電流波形は図3(b)に示すように負荷電圧波形の変化とは異なる波形となる。
【0020】
このスパーク放電による電流が流れなくなる無電流区間をA/D変換器60の変換出力から検出して、断線判定を行うのがマイコン6の演算処理部61であり、次にこの演算処理部61の判定動作を図4に示すフローチャートに基づいて説明する。
【0021】
まず電源が投入されると(ステップS1)と、マイコン6は初期化処理(ステップS2)を行う。そしてこの初期化後、マイコン6内のA/D変換器60は一定周期(例えば200μs周期)で入力電圧をサンプリングしてA/D変換処理を行う(ステップS3)。一方演算処理部61は、A/D変換器60から出力されるA/D変換された電圧値を取り込み、その電圧値によってステップS6の無変化処理か、ステップS7の変化処理を選択する判断処理を行う(ステップS5)。
【0022】
この判断処理では、A/D変換された電圧値が、例えば2.3V以上2.7V以下の範囲の場合には無変化処理を選択する。この無変化処理では取り込んだ電圧値を一時的に保持している一つ前のサンプリング時の電圧値と比較し、一つ前のサンプリング時の電圧値に対して、例えば±0.04V(使用するA/D変換の2ビット)内にあれば、一つ前のサンプリング時の電圧値と同一、つまり無変化と見なす判断を行う。そして前のサンプリング値で無変化と見なす判断が為されていない場合には、次の出力処理のステップS8をスルーしてステップS3に戻り、ステップS4でのA/D変換処理を経て、ステップS5での判断処理を再度行い、この判断処理で再度ステップS6の無変化処理と判断された場合には、今回のサンプリングでA/D変換された電圧値に対する無変化処理を行う。以後ステップS5での判断処理を経てステップS6の無変化処理が繰り返して行われ、無変化と見なす判断が1ms〜50ms内で継続的に行われると、この区間を無電流区間と判断する。ここで上限を50msとしたのは機械的な力が電線Lに加わって連続的な断線状態が継続した場合を考慮したもので、勿論上限を50ms以上でも以下でもよいが、電路が遮断された場合のように連続的に無変化状態が継続する場合を排除するために上限を必ず設定する。一方下限の1msは瞬断などの一過性の現象を排除するために設定されている。
【0023】
さて、無変化処理で無電流区間の判断結果が出力されると、次のステップS8の出力処理において、判断結果の出力回数として演算処理部61のカウンタ機能のカウント値をカウントアップさせ、その値を1とする。
【0024】
そしてステップS3に戻って上述の処理を繰り返すことになるが、次の無電流区間の判断結果が10ms以内(50Hzの交流電源ACの半周期に対応する)に出力されなければ、ステップS8での出力処理において、カウンタ機能のカウント値をクリアする。一方10ms以内に再度無電流区間の判断結果が出された場合には、ステップS8での出力処理でカウンタ機能のカウント値をカウントアップするとともに、そのカウント値が所定数(例えば3回)に達したか否かの判断を行い、所定数に達していない場合には、ステップS3に戻って上述の処理を繰り返す。そしてステップS8の出力処理でのカウンタ機能のカウント値が「3」になると、演算処理部61ではステップ9の終了処理によってサイリスタ10のゲートにスパーク検出信号を出力し、サイリスタ10をターンオンさせる。これによりサイリスタ10を介して電磁開閉器9の励磁コイル9aに励磁電流が流れて電磁開閉器9は開閉接点S,Sを開極させ、負荷1と交流電源ACとの間の電路を遮断する。この遮断によって電線L,Lの半断線、断線を起因とするスパーク放電によって起きる被覆の発火を未然に防ぐことができることになる。
【0025】
ところで、上記のステップS5の判断処理でA/D変換出力電圧が2.3V未満若しくは2.7Vを越えていると判断されると、ステップS7の変化処理が選択される。この変化処理では、A/D変換出力電圧から負荷電流の波高値を調べ、負荷電流値が急峻に下がるような場合にはスパーク放電検出の処理動作を動作を停止する。
【0026】
尚上記実施形態ではマイコン6を用いて信号処理を行っているが、検出電流の弁別をコンパレータを用いて行うとともにタイマ等で無電流区間の設定などを行うなどマイコン6によらない回路を用いて構成しても断線スパーク検出回路2を構成することはできる。
【0027】
また上記実施形態は遮断装置を構成するものであったが、断線スパーク検出回路2は、断線発生報知などを行う装置にも適用できるのは勿論であり、断線スパーク検出回路2の使用方法としては実施形態に特に限定されるものではない。
【0028】
【発明の効果】
請求項1の発明は、負荷と交流電源とを接続する電路を形成する電線に流れる電流を検出し、該検出電流の大きさに対応するレベルの電圧信号を出力する電流検出手段と、前記電流検出手段の出力電圧が所定以下となる時間が一定時間内にあれば、無電流区間と判断するとともに、無電流区間と判断してから所定時間内に次の無電流と判断される区間があると連続発生とし、この無電流と判断される区間の連続発生回数が所定数に達すると前記電線にスパーク放電有りと判定してスパーク検出信号を出力する判定手段とを備えているので、電線内の心線が断線や半断線が起きたことを、確実に検出することができ、そのため電線の心線の断線や半断線を起因とするスパーク放電によって起きる電線の被覆の発火などを未然に防ぐためのセンサとして用いることができる。
【0029】
請求項2の発明は、請求項1の発明において、上記判定手段が、上記電流検出手段からの電圧信号をA/D変換するA/D変換手段と、A/D変換手段が変換出力する電圧値が所定電圧範囲内にあって、且つ一つ前のサンプリング時の電圧値との差が一定電圧範囲にあると無変化と判定し、この無変化状態が所定時間継続すると無電流の区間と判断してその判断結果を出力する判断機能と、前記判断結果の出力毎にカウントアップするもとともに、先のカウントアップから一定時間内に次の無電流の判断結果の出力が無ければカウント値をクリアするカウンタ機能とを備え、このカウンタ機能のカウント数が所定数に達すると、上記スパーク検出信号を出力するので、判断処理のための回路構成をマイクロコンピュータを用いて実現することが可能となり、回路の小型化を図ることができる。
【0030】
請求項3の発明は、請求項1又は請求項2の断線スパーク検出回路を用い、該断線スパーク検出回路の断線検出出力が入力すると、負荷と交流電源とを接続する電路に挿入したスイッチ手段を開極駆動する遮断手段を備えたので、電線の心線に断線や半断線を起因とするスパーク放電が生じたときに、負荷と交流電源との電路を自動的に遮断することができ、そのため電線内のスパーク放電によって被覆から発生するガスによる爆発的な被覆の破裂や、被覆の発火により火事発生を未然に防止することができる遮断装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の概要構成図である。
【図2】同上の要部の具体回路を示す構成図である。
【図3】同上の動作説明用の各部の波形図である。
【図4】同上の動作説明用フローチャートである。
【符号の簡単な説明】
1 負荷
2 断線スパーク検出回路
3 変流器
4 I/V変換回路
5 電流検出手段
6 マイコン
7 電源回路
8 遮断機構
AC 交流電源
L 電線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disconnection spark detection circuit that detects the occurrence of spark discharge in an electric wire caused by a partial disconnection or a disconnection of a core wire of an electric wire, and a circuit breaker that disconnects an electric circuit when a disconnection spark is detected.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been provided a circuit breaker that detects a discharge short circuit that occurs when insulation between a core wire of a wire connecting a load and a power supply (for example, an AC power supply) is broken down due to tracking or the like and cuts off the circuit. See JP-A-10-14086).
[0003]
[Problems to be solved by the invention]
The circuit breaker described above detects a discharge short-circuit caused by insulation breakdown of an electric wire, and cannot detect a disconnection or a partial disconnection that occurs in a sheath of a core wire of the electric wire due to use progress.
[0004]
In other words, in a wire to which a load with a relatively large current is connected, if the core wire is deteriorated and approaches a disconnected state (semi-disconnected state) during use, the core wire is intermittently disconnected due to vibration applied from the outside. Sometimes. In this case, a spark discharge occurs due to the disconnection, and the coating (eg, vinyl chloride) of the electric wire abnormally generates heat, and the heat generated from the coating accumulates inside, and eventually the electric wire coating explosively ruptures and burns. Then, there was a problem of causing a fire.
[0005]
There is a need for a disconnection spark detection circuit that can detect a spark discharge caused by a disconnection or a partial disconnection of a core of an electric wire that cannot be seen from the outside, and a disconnection device that disconnects an electric circuit.
[0006]
The present invention has been made in view of the above points, and an object of the first and second aspects of the present invention is to detect the occurrence of spark discharge caused by a broken or partially broken core of an electric wire. Another object of the present invention is to provide a disconnection spark detection circuit capable of detecting a spark discharge using the disconnection spark detection circuit according to the first and second aspects of the present invention. An object of the present invention is to provide a shutoff device that can shut off and prevent burning of a coating of an electric wire beforehand.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a disconnection spark detection circuit according to the first aspect of the present invention detects a current flowing through an electric wire forming an electric path connecting a load and an AC power supply, and corresponds to the magnitude of the detected current. A current detecting means for outputting a voltage signal of a level, and if the time during which the output voltage of the current detecting means is equal to or less than a predetermined time is within a predetermined time, it is determined that there is no current section; If there is a next section where it is determined that there is no current within the time, it is determined that there is a continuous discharge. If the number of continuous occurrences of the section that is determined to be no current reaches a predetermined number, it is determined that there is a spark discharge in the electric wire and a spark detection signal is generated. And determination means for outputting
[0008]
In the spark spark detection circuit according to a second aspect of the present invention, in the first aspect of the present invention, the determining means A / D converting means for A / D converting a voltage signal from the current detecting means, and A / D converting means. It is determined that there is no change when the voltage value to be converted and output is within the predetermined voltage range, and the difference from the voltage value at the time of the previous sampling is within the certain voltage range, and when this non-change state continues for a predetermined time, A judgment function of judging a current-free section and outputting the judgment result, and counting up each time the judgment result is output, and outputting the next judgment result of no current within a predetermined time from the previous count-up. A counter function for clearing the count value if not present, and outputting the spark detection signal when the count number of the counter function reaches a predetermined number.
[0009]
According to a third aspect of the present invention, the disconnection spark detection circuit according to the first or second aspect is used, and when a spark detection signal of the disconnection spark detection circuit is input, the circuit is inserted into an electric circuit connecting the load and the AC power supply. It is characterized in that it is provided with blocking means for opening the switch means.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments.
[0011]
FIG. 1 shows an example of a breaking device using a breaking
[0012]
The disconnection
[0013]
As shown in FIG. 2, the shut-
[0014]
The output port of the
[0015]
The connection point of the power input terminal of the
[0016]
The
[0017]
Next, the operation of the present embodiment will be described.
[0018]
First, in the circuit of FIG. 2, when the
[0019]
If a break (semi-break) occurs in the core wires of the electric wires L, L (the abnormal time section in FIG. 3A), the disconnection X shown in FIG. Although a current will flow due to spark discharge between the opposing core wires at the point X, the load current waveform is substantially zero in a section where the load voltage has dropped below a predetermined voltage (for example, near the zero crossing of the AC power supply voltage). As shown in FIG. 3B, the waveform is different from the change in the load voltage waveform.
[0020]
The
[0021]
First, when the power is turned on (step S1), the
[0022]
In this determination processing, if the A / D-converted voltage value is in the range of, for example, 2.3 V or more and 2.7 V or less, the non-change processing is selected. In this non-change processing, the fetched voltage value is compared with the voltage value at the previous sampling that is temporarily held, and the voltage value at the previous sampling is, for example, ± 0.04 V (use (2 bits of A / D conversion to be performed), it is determined that the voltage value is the same as the voltage value at the time of the immediately preceding sampling, that is, that the voltage value does not change. If it is not determined that there is no change in the previous sampling value, the process goes through step S8 of the next output process, returns to step S3, passes through the A / D conversion process in step S4, and returns to step S5. Is performed again, and if it is determined again in this determination process that there is no change processing in step S6, the change processing is performed on the voltage value A / D converted in the current sampling. Thereafter, the non-change processing of step S6 is repeatedly performed through the determination processing of step S5, and if the determination that there is no change is continuously performed within 1 ms to 50 ms, this section is determined as a currentless section. Here, the upper limit is set to 50 ms in consideration of the case where a mechanical force is applied to the electric wire L and a continuous disconnection state is continued. Of course, the upper limit may be 50 ms or more or less, but the electric circuit is interrupted. An upper limit is always set in order to eliminate the case where the unchanged state continues continuously as in the case. On the other hand, the lower limit of 1 ms is set to eliminate transient phenomena such as instantaneous interruption.
[0023]
When the determination result of the no-current section is output in the no-change processing, the count value of the counter function of the
[0024]
Then, the process returns to step S3 to repeat the above-described processing. However, if the determination result of the next no-current section is not output within 10 ms (corresponding to a half cycle of the AC power supply AC of 50 Hz), the process proceeds to step S8. In the output processing, the count value of the counter function is cleared. On the other hand, if the determination result of the no-current section is output again within 10 ms, the count value of the counter function is counted up in the output processing in step S8, and the count value reaches a predetermined number (for example, three times). It is determined whether or not the processing has been performed. If the predetermined number has not been reached, the process returns to step S3 and the above-described processing is repeated. When the count value of the counter function in the output processing of step S8 becomes "3", the
[0025]
By the way, if the A / D conversion output voltage is determined to be less than 2.3V or more than 2.7V in the determination processing in step S5, the change processing in step S7 is selected. In this change process, the peak value of the load current is checked from the A / D conversion output voltage, and when the load current value drops sharply, the operation of the spark discharge detection processing is stopped.
[0026]
In the above embodiment, signal processing is performed using the
[0027]
In the above-described embodiment, the disconnection
[0028]
【The invention's effect】
The invention according to
[0029]
According to a second aspect of the present invention, in the first aspect, the determining means A / D converting means for A / D converting a voltage signal from the current detecting means, and a voltage converted and output by the A / D converting means. If the value is within the predetermined voltage range, and the difference from the voltage value at the time of the immediately preceding sampling is within the constant voltage range, it is determined that there is no change. A judgment function for judging and outputting the judgment result, and counting up each time the judgment result is output, and if there is no output of the next no-current judgment result within a predetermined time from the previous count up, the count value is counted. A counter function for clearing, and when the count number of this counter function reaches a predetermined number, the above-mentioned spark detection signal is output, so that a circuit configuration for the judgment processing is realized using a microcomputer. Possible and it can reduce the size of the circuit.
[0030]
According to a third aspect of the present invention, when the disconnection detection output of the disconnection spark detection circuit is input using the disconnection spark detection circuit of the first or second aspect, the switch means inserted in the electric circuit connecting the load and the AC power supply is provided. Since the disconnection means for opening drive is provided, when spark discharge occurs due to disconnection or partial disconnection in the core wire of the electric wire, it is possible to automatically disconnect the electric circuit between the load and the AC power supply, It is possible to provide a shut-off device capable of preventing explosive rupture of a coating due to gas generated from the coating due to spark discharge in an electric wire and preventing fire from occurring due to ignition of the coating.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
FIG. 2 is a configuration diagram showing a specific circuit of a main part of the above.
FIG. 3 is a waveform diagram of each part for explaining the operation of the above.
FIG. 4 is a flowchart for explaining the above operation.
[Brief description of reference numerals]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002239171A JP3721561B2 (en) | 2002-08-20 | 2002-08-20 | Disconnection spark detection circuit and circuit breaker using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002239171A JP3721561B2 (en) | 2002-08-20 | 2002-08-20 | Disconnection spark detection circuit and circuit breaker using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004080930A true JP2004080930A (en) | 2004-03-11 |
JP3721561B2 JP3721561B2 (en) | 2005-11-30 |
Family
ID=32022346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002239171A Expired - Lifetime JP3721561B2 (en) | 2002-08-20 | 2002-08-20 | Disconnection spark detection circuit and circuit breaker using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3721561B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008859A (en) * | 2006-06-30 | 2008-01-17 | Kawamura Electric Inc | Method and device for detecting deterioration of wire |
WO2008127032A1 (en) * | 2007-04-13 | 2008-10-23 | Tae Young Chung | Power cutoff device automatically operated upon occurrence of spark on electric wire |
JP2008541682A (en) * | 2005-05-06 | 2008-11-20 | セルゲイヴィチ コロリョフ イゴール | Method for detecting faults in electrical network and electrical equipment and misfire alarm device |
JP2019211381A (en) * | 2018-06-07 | 2019-12-12 | 三菱電機株式会社 | Electronic control device |
JP2020118521A (en) * | 2019-01-23 | 2020-08-06 | サンケン電気株式会社 | Arc detector |
CN112285402A (en) * | 2020-12-04 | 2021-01-29 | 青岛乾程科技股份有限公司 | Electric energy meter circuit capable of preventing electricity from being stolen |
JP2021092402A (en) * | 2019-12-06 | 2021-06-17 | 河村電器産業株式会社 | Partial disconnection detector |
JPWO2022091716A1 (en) * | 2020-10-29 | 2022-05-05 | ||
WO2022091715A1 (en) * | 2020-10-29 | 2022-05-05 | パナソニックIpマネジメント株式会社 | Arc detection system, arc detection method, and program |
JPWO2022091717A1 (en) * | 2020-10-29 | 2022-05-05 | ||
WO2022151877A1 (en) * | 2021-01-15 | 2022-07-21 | 常熟开关制造有限公司(原常熟开关厂) | Disconnection detection method and apparatus for dual-core current transformer, and breaker |
RU2820252C2 (en) * | 2021-01-15 | 2024-05-31 | Чаншу Свитчгир Мфг. Ко., Лтд. (Формер Чаншу Свитчгир Плант) | Device and method of detecting breakage in a current transformer with two cores, as well as an automatic circuit breaker |
-
2002
- 2002-08-20 JP JP2002239171A patent/JP3721561B2/en not_active Expired - Lifetime
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008541682A (en) * | 2005-05-06 | 2008-11-20 | セルゲイヴィチ コロリョフ イゴール | Method for detecting faults in electrical network and electrical equipment and misfire alarm device |
JP2008008859A (en) * | 2006-06-30 | 2008-01-17 | Kawamura Electric Inc | Method and device for detecting deterioration of wire |
WO2008127032A1 (en) * | 2007-04-13 | 2008-10-23 | Tae Young Chung | Power cutoff device automatically operated upon occurrence of spark on electric wire |
GB2461205A (en) * | 2007-04-13 | 2009-12-30 | Tae Young Chung | Power cutoff device automatically operated upon occurrence of spark on electric wire |
JP2010541518A (en) * | 2007-04-13 | 2010-12-24 | ユン チャン,テ | Power shut-off device that operates automatically immediately after the occurrence of sparks on the electric wire |
GB2461205B (en) * | 2007-04-13 | 2012-07-25 | Tae Young Chung | Power cutoff device automatically operated upon occurrence of spark on electric wire |
US8238065B2 (en) | 2007-04-13 | 2012-08-07 | Tae Young Chung | Power cutoff device automatically operated upon occurrence of spark on electric wire |
JP2019211381A (en) * | 2018-06-07 | 2019-12-12 | 三菱電機株式会社 | Electronic control device |
JP2020118521A (en) * | 2019-01-23 | 2020-08-06 | サンケン電気株式会社 | Arc detector |
JP2021092402A (en) * | 2019-12-06 | 2021-06-17 | 河村電器産業株式会社 | Partial disconnection detector |
JP7314039B2 (en) | 2019-12-06 | 2023-07-25 | 河村電器産業株式会社 | Half disconnection detector |
JPWO2022091716A1 (en) * | 2020-10-29 | 2022-05-05 | ||
WO2022091716A1 (en) * | 2020-10-29 | 2022-05-05 | パナソニックIpマネジメント株式会社 | Arc detection system, arc detection method, and program |
WO2022091715A1 (en) * | 2020-10-29 | 2022-05-05 | パナソニックIpマネジメント株式会社 | Arc detection system, arc detection method, and program |
JPWO2022091717A1 (en) * | 2020-10-29 | 2022-05-05 | ||
WO2022091717A1 (en) * | 2020-10-29 | 2022-05-05 | パナソニックIpマネジメント株式会社 | Arc detection system, arc detection method, and program |
JP7457990B2 (en) | 2020-10-29 | 2024-03-29 | パナソニックIpマネジメント株式会社 | Arc detection system, arc detection method, and program |
JP7458014B2 (en) | 2020-10-29 | 2024-03-29 | パナソニックIpマネジメント株式会社 | Arc detection system, arc detection method, and program |
CN112285402A (en) * | 2020-12-04 | 2021-01-29 | 青岛乾程科技股份有限公司 | Electric energy meter circuit capable of preventing electricity from being stolen |
WO2022151877A1 (en) * | 2021-01-15 | 2022-07-21 | 常熟开关制造有限公司(原常熟开关厂) | Disconnection detection method and apparatus for dual-core current transformer, and breaker |
RU2820252C2 (en) * | 2021-01-15 | 2024-05-31 | Чаншу Свитчгир Мфг. Ко., Лтд. (Формер Чаншу Свитчгир Плант) | Device and method of detecting breakage in a current transformer with two cores, as well as an automatic circuit breaker |
Also Published As
Publication number | Publication date |
---|---|
JP3721561B2 (en) | 2005-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2292384B1 (en) | Protective redundant subsystem for power tools | |
US6504692B1 (en) | AFCI device which detects upstream and downstream series and parallel ARC faults | |
JP3441672B2 (en) | Automotive power supply monitoring device | |
JP2001045652A (en) | Arc detector | |
US20030099070A1 (en) | Arc fault circuit interrupter which detects the cessation of arcs of an arc fault | |
US20020054464A1 (en) | Ground fault circuit interrupter incorporating miswiring prevention circuitry | |
JP3721561B2 (en) | Disconnection spark detection circuit and circuit breaker using the same | |
US20070195470A1 (en) | Intelligent life testing methods and apparatus for leakage current protection | |
MXPA06008708A (en) | Ground fault circuit interrupter (gfci) end-of-life (eol) status indicator. | |
US20140268436A1 (en) | Protective Device With Non-Volatile Memory Miswire Circuit | |
KR101809944B1 (en) | Arcless DC Circuit Breaker using Semiconductor Switch | |
CN110073562B (en) | Overcurrent and short circuit detector | |
JP5155687B2 (en) | Wiring equipment | |
JP3928610B2 (en) | Spark detection method and circuit breaker using the same | |
JP5511599B2 (en) | Commutation type shut-off device | |
JP4856391B2 (en) | Tracking current detector | |
JP5150927B2 (en) | Tracking current detector | |
KR101527366B1 (en) | Arc detection circuit by contact failure | |
EP1287599B1 (en) | Software-controlled evaluation of fault current for protection and monitoring systems | |
AU2003271869A1 (en) | Fault detection apparatus and method | |
JP3879653B2 (en) | Arc current discrimination method and arc current discrimination device | |
KR101464246B1 (en) | Arc detection breaker using ZCT | |
JP3788353B2 (en) | Ground fault detection device for earth leakage breaker and phase control device | |
JP2001289900A (en) | Insulation deterioration detecting circuit and device using it | |
JP2008008859A (en) | Method and device for detecting deterioration of wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3721561 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150922 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |