Nothing Special   »   [go: up one dir, main page]

JP2004078136A - Optical deflection method and device, method for manufacturing optical deflecting device, optical information processor provided with the optical deflecting device, image forming device image projecting and display device and optical transmitting device - Google Patents

Optical deflection method and device, method for manufacturing optical deflecting device, optical information processor provided with the optical deflecting device, image forming device image projecting and display device and optical transmitting device Download PDF

Info

Publication number
JP2004078136A
JP2004078136A JP2002282858A JP2002282858A JP2004078136A JP 2004078136 A JP2004078136 A JP 2004078136A JP 2002282858 A JP2002282858 A JP 2002282858A JP 2002282858 A JP2002282858 A JP 2002282858A JP 2004078136 A JP2004078136 A JP 2004078136A
Authority
JP
Japan
Prior art keywords
plate
light
optical
shaped member
fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002282858A
Other languages
Japanese (ja)
Other versions
JP4307813B2 (en
Inventor
Takeshi Nanjo
南條 健
Seiichi Kato
加藤 静一
Koichi Otaka
大高 剛一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002282858A priority Critical patent/JP4307813B2/en
Priority to US10/294,033 priority patent/US6900915B2/en
Publication of JP2004078136A publication Critical patent/JP2004078136A/en
Priority to US11/092,841 priority patent/US7064878B2/en
Priority to US11/098,722 priority patent/US7099060B2/en
Priority to US11/404,866 priority patent/US7215452B2/en
Priority to US11/411,849 priority patent/US7342702B2/en
Priority to US11/683,284 priority patent/US7333256B2/en
Priority to US11/952,771 priority patent/US7538923B2/en
Priority to US12/014,570 priority patent/US7457019B2/en
Priority to US12/398,033 priority patent/US7697179B2/en
Application granted granted Critical
Publication of JP4307813B2 publication Critical patent/JP4307813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical deflecting device of which the structure and control for performing optical deflection in a uniaxial or biaxial direction are simple and easy, in which stable operation and fast response are assured, the wavelength of incident light is not restricted, deterioration in mechanical strength is small, driving voltage is low, miniaturization and integration are possible at a low cost, and use environment is not restricted, an optical deflecting method, a method for manufacturing the optical deflecting device, an optical information processor provided with the optical deflecting device, an image forming device, an image projecting and display device and an optical transmitting device. <P>SOLUTION: A plate-shaped member 2 is arranged in a gap (G) formed between a supporting member 4 on a substrate 3 and a bamboo hat-shaped member 5 without being fixed onto the substrate 3 so that the plate-shaped member 2 is freely displaceable. Electric potential is given to an electrode 6 arranged opposite to the plate-shaped member 2 around the supporting member 4 on the substrate 3. A reflecting means 1 on the plate-shaped member 2 mounted with a tilt on the supporting member 4 changes the reflection direction of the incident light to perform optical deflection. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光偏向方法並びに光偏向装置及びその光偏向装置の製造方法並びにその光偏向装置を具備する光情報処理装置及びその光偏向装置を具備する画像形成装置及びその光偏向装置を具備する画像投影表示装置及びその光偏向装置を具備する光伝送装置に関し、詳しくは、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向方法、並びに、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向装置及びその光偏向装置の製造方法、並びに、その光偏向装置を具備する光情報の処理を行なう光情報処理装置、及び、その光偏向装置を具備する電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置、及び、その光偏向装置を具備する画像を投影して表示する画像投影表示装置、及び、その光偏向装置を具備する光信号の光路を決定して出力して伝送する光伝送装置に関する。
本発明は入射光に対する出射光の方向を変える光偏向装置の構成に関する。応用分野として、電子写真プロセスにおける光書込デバイス等の画像装置、及びプロジェクターなどの映像装置、及び電気信号伝達に変わる光通信・光接続機器などがある。
【0002】
【従来の技術】
静電力を利用した光スイッチデバイスの入射光の反射方向を変えて光偏向を行う光偏向装置では、片持ち梁を静電力で撓ませて、入射光の反射方向を変えてスイッチするデバイス、及び、それを用いた光偏向システムは、既に公知である。又 、回折格子を静電力で駆動して光スイッチする素子も公知である(例えば 特許文献1、特許文献2、特許文献3、非特許文献1、非特許文献2 参照。)。
更に、デジタルマイクロミラーデバイスと一般的に称される「DMD」を一次元、又は、二次元に配置した光偏向システムを用いた画像形成装置も公知である(例えば 特許文献4 参照。)。
更に、デジタルマイクロミラーデバイスと一般的に称される「DMD」の素子構造として、ねじり梁型やカンチレバー梁型においては、ミラー部は傾斜されて用いられるが、ミラー部は少なくとも一箇所以上の固定端を有している構造となっている。
然し、片持ち梁を利用した光スイッチやカンチレバー梁型のデジタルマイクロミラーデバイス(例えば 非特許文献3 参照。)と一般的に称されるDMDは、梁の安定性の確保が難しく、応答速度も遅い。非特許文献3に示され該ねじり梁型やカンチレバー型のデジタルマイクロミラーデバイスにおいては、本発明同様ミラー部は傾斜されて用いられるが、本発明の光偏向装置と異なり、ミラー部は少なくとも一箇所以上の固定端を有している構造となっている。
ねじり梁型のデジタルマイクロミラーデバイスと一般的に称されるDMDは、ねじり梁のヒンジ部の機械的強度が長期間使用時に変化して劣化する。回折格子を静電力で駆動して光スイッチする素子は、使用される入射光の波長が制限される。
又、両端固定型の梁を円筒状に撓み変形させて、高速に光偏向を行う素子も公知である(例えば 特許文献5 参照。)。然し、平行な空隙を電極間に有し、その静電引力による両端固定梁を円筒上に撓ませるために、高速に変形することがが可能で応答速度を速くすることは出来るが、両端が固定されているから、駆動電圧が片持ち梁等に比べ高くなっている。
【0003】
そこで、同一出願人の発明者から、平行、又は、非平行な空隙を介した電極間に作用させる静電力により、ミラーが形成される両端固定梁を変形させ空隙を介して対向する基板に接触させ、光反射面に入射する入射光束の反射方向を変えることで光偏向する光偏向装置において、任意の基板上に窪み部を有し、且つ、該窪み部の任意の箇所に少なくとも二つ以上の電極を有し、該電極は互いに異なる電位を与えることが出来、且つ、該窪み部と空隙を介して対向する基板平面上部に光反射領域が設置された梁を有し、且つ、該梁及び該光反射領域が電気的に浮いている状態、即ち、接地されることがなく、且つ、任意の電位に接続されることがない光変調装置が提案されている。
然し、同様に、梁の安定性を確保し、応答速度は速いが、両端固定梁型であるために、駆動電圧が片持ち梁等に比べ高くなっている。
更に、2軸可動ミラー、及び、それを用いた表示装置も公知である(例えば 特許文献6 参照。)。上述の2 軸可動ミラー、及び、それを用いた表示装置は、磁性金属で構成されたスリ鉢状のミラー板を、永久磁石が配置されたミラー台に針状のピボットで磁力により固定し、ミラー台に形成した複数の電極に異なる電圧を印加して、ミラー板に静電気による電位差を発生させ、ミラー板を電極方向に近づくようにピボットの針状先端を中心にして回転させる2軸可動ミラーの光走査用ミラーである。然し、上述の2軸可動ミラー、及び、それを用いた表示装置は、実質的に磁力によりミラー板がピボット部にてミラー台に固定させている複雑な構造となっていて、完全なフリー状態のミラー板ではない。
更に、ミラー板が磁性金属により構成され、且つ、ミラー台の下部に永久磁石を設置し、且つ、ミラー台を囲むように磁気ヨークを配置していることにより、デバイスの微細化が困難で、複数個配置して個別に動作を行うアレー化が出来ない欠点を有している。又、磁性材料で構成されているため、装置の設置環境の磁力の影響を受けやすいので、使用環境が制限されることになる。
それに対し、本発明においては、磁性材料を積極的に用いていないので、磁場の影響を受けにくい。
従って、従来の入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向方法、並びに、光偏向装置、及び、その光偏向装置の製造方法、並びに、その光偏向装置を具備する光情報処理装置、及び、その光偏向装置を具備する画像形成装置、及び、その光偏向装置を具備する画像投影表示装置、及び、その光偏向装置を具備する光伝送装置は、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が複雑で作動が不安定で応答も遅く、使用する入射光の波長が制限され、機械的強度が長期間使用時に変化して劣化し、駆動電圧が高く大きなエネルギーが必要になり、微細化と集積化が困難でコスト高で、使用環境も制限されると言う不具合が生じていた。
【0004】
【特許文献1】
特許第2941952号公報
【特許文献2】
特許第3016871号公報
【特許文献3】
特表平10−510374号公報
【特許文献4】
特開平6−138403号公報
【特許文献5】
特開2000−2842号公報
【特許文献6】
特開平8−220455号公報
【非特許文献1】
K.E.Petersen,”Applied Physics Letters”,1977,Vol.31, No.8, pp521〜pp523
【非特許文献2】
D.M.Bloom,”Optics Letters”,Vol.7, No.9, pp688〜pp690
【非特許文献3】
L.J.Hornbeck,”Proc. SPIE”,1989, Vol.1150,pp.86−102
【0005】
【発明が解決しようとする課題】
そこで本発明の課題は、このような問題点を解決するものである。即ち、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向方法並びに光偏向装置及びその光偏向装置の製造方法並びにその光偏向装置を具備する光情報処理装置及びその光偏向装置を具備する画像形成装置及びその光偏向装置を具備する画像投影表示装置及びその光偏向装置を具備する光伝送装置を提供することを目的とする。
【0006】
本発明の目的を簡単に述べると、ミラーの偏向角の制御が容易かつ安定で、応答速度が速く、長期的な劣化が少なく、より低電圧で駆動でき、反射光のON/OFF比(画像機器におけるS/N比、映像機器におけるコントラスト比に相当)を向上でき、低コストにて微細化と集積化が可能で、かつ1軸又は2軸方向の光偏向を可能とする光偏向装置及び光偏向アレー、及びそれらを用いた画像形成装置、画像投影表示装置及び光伝送装置、及び光偏向装置の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の本発明は、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向方法において、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を、基板上に固定することなく上記基板上の支点部材上と笠形状の笠形状部材間に形成される空隙内に変位が自由の状態で配置して、上記基板上の上記支点部材の周囲に上記板形状部材と対向して配置した電極に電位を付与して、上記支点部材上に傾斜して載置する上記板形状部材上の上記反射手段で入射光の反射方向を変えて光偏向を行う光偏向方法であることを最も主要な特徴とする。
請求項2の本発明は、請求項1に記載の光偏向方法において、電極は、基板上の支点部材の周囲に板形状部材と対向して配列した複数個の各電極に異なる電位を付与して光偏向を行う光偏向方法であることを主要な特徴とする。
請求項3の本発明は、請求項1又は2に記載の光偏向方法において、電極に異なる電位を付与して、反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を基板上の斜面に接触して、入射光の反射方向を接触する位置で規定して変えて光偏向を行なう光偏向方法であることを主要な特徴とする。
【0008】
請求項4の本発明は、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向装置において、入射光を反射する反射手段と、上記反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材と、上記板形状部材を固定することなく載置する基板と、上記基板上の傾斜する上記板形状部材の変位時の支点となる支点部材と、上記支点部材上に上記板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材と、上記基板上の上記支点部材の周囲に上記板形状部材の裏面と対向して配置した電極とからなる光偏向装置であることを最も主要な特徴とする。
請求項5の本発明は、請求項4 に記載の光偏向装置において、反射手段の反射面は、平板で形成されている光偏向装置であることを主要な特徴とする。
請求項6の本発明は、請求項4又は5に記載の光偏向装置において、反射手段は、アルミニウム系金属膜で形成されている光偏向装置であることを主要な特徴とする。
請求項7の本発明は、請求項4、5又は6に記載の光偏向装置において、板形状部材は、支点部材と接する個所の面形状に湾曲形状の湾曲形状部からなる光偏向装置であることを主要な特徴とする。
請求項8の本発明は、請求項4、5、6又は7に記載の光偏向装置において、板形状部材は、外形が円形状である光偏向装置であることを主要な特徴とする。請求項9の本発明は、請求項4、5、6、7又は8に記載の光偏向装置において、板形状部材は、シリコン窒化膜からなる光偏向装置であることを主要な特徴とする。
請求項10の本発明は、請求項4、5、6、78 又は9に記載の光偏向装置において、反射手段又は板形状部材は、導電性を有する導電性領域を有して、上記導電性領域が電極と対向する光偏向装置であることを主要な特徴とする。
請求項11の本発明は、請求項4、5、6、7、8、9又は10に記載の光偏向装置において、基板は、窪み形状の窪み形状部からなる光偏向装置であることを主要な特徴とする。
【0009】
請求項12の本発明は、請求項4、5、6、7、8、9、10又は11に記載の光偏向装置において、基板は、(100 )面方位を有するシリコン基板からなる光偏向装置であることを主要な特徴とする。
請求項13の本発明は、請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と接する個所の面形状が円形状部である光偏向装置であることを主要な特徴とする。
請求項14の本発明は、請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と点で接する円錐形状部である光偏向装置であることを主要な特徴とする。
請求項15の本発明は、請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と接する面が長方形の長方形状部である光偏向装置であることを主要な特徴とする。
請求項16の本発明は、請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と線で接する尾根の形状からなる尾根形状部である光偏向装置であることを主要な特徴とする。
請求項17の本発明は、請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と接する斜面を有する光偏向装置であることを主要な特徴とする。
請求項18の本発明は、請求項4乃至17の何れか一項に記載の光偏向装置において、支点部材は、酸化シリコン膜又はシリコン窒化膜からなる光偏向装置であることを主要な特徴とする。
請求項19の本発明は、請求項4乃至18の何れか一項に記載の光偏向装置において、笠形状部材は、板形状部材の外周に対応して複数個の各笠形状部材を所定間隔を空けて配置した光偏向装置であることを主要な特徴とする。
【0010】
請求項20の本発明は、請求項4乃至18の何れか一項に記載の光偏向装置において、笠形状部材は、板形状部材の外周に対応する全領域に配置した光偏向装置であることを主要な特徴とする。
請求項21の本発明は、請求項4乃至20の何れか一項に記載の光偏向装置において、笠形状部材は、絶縁性を有する絶縁膜からなる光偏向装置であることを主要な特徴とする。
請求項22の本発明は、請求項4乃至21の何れか一項に記載の光偏向装置において、笠形状部材は、入射光束に対し透光性を有する透光性膜からなる光偏向装置であることを主要な特徴とする。
請求項23の本発明は、請求項4乃至22の何れか一項に記載の光偏向装置において、笠形状部材は、酸化シリコン膜からなる光偏向装置であることを主要な特徴とする。
請求項24の本発明は、請求項4乃至23の何れか一項に記載の光偏向装置において、笠形状部材は、入射光束に対し遮光性を有する遮光性膜からなる光偏向装置であることを主要な特徴とする。
請求項25の本発明は、請求項4乃至24の何れか一項に記載の光偏向装置において、笠形状部材は、酸化クロム膜からなる光偏向装置であることを主要な特徴とする。
請求項26の本発明は、請求項4乃至25の何れか一項に記載の光偏向装置において、電極は、複数個の各電極からなり、板形状部材は電気的に浮いている光偏向装置であることを主要な特徴とする。
請求項27の本発明は、請求項26に記載の光偏向装置において、複数個の各電極は、板形状部材の裏面と対向した斜面上に配置した光偏向装置であることを主要な特徴とする。
請求項28の本発明は、請求項4乃至27の何れか一項に記載の複数個の光偏向装置において、一次元アレー状に配列した1次元光偏向アレーを形成した光偏向装置であることを主要な特徴とする。
請求項29の本発明は、請求項4乃至28の何れか一項に記載の複数個の光偏向装置においては、2次元アレー状に配列した2次元光偏向アレーを形成した光偏向装置であることを主要な特徴とする。
【0011】
請求項30の本発明は、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う請求項4乃至29の何れか一項に記載の光偏向装置の製造方法において、基板上に支点部材と電極を形成し、堆積して平坦化した第1 の犠牲層を介して上記反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、上記第1の犠牲層と上記第2 の犠牲層を除去する光偏向装置の製造方法であることを最も主要な特徴とする。
請求項31の本発明は、請求項30に記載の光偏向装置の製造方法において、基板上に支点部材と電極を形成し、上記支点部材を突出させて堆積して平坦化した第1の犠牲層に重ねて堆積して平坦化した第3の犠牲層を介して上記反射手段を表面に組み合わせ構成する薄膜で形成された湾曲形状の湾曲形状部からなる板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、上記第1の犠牲層と上記第2の犠牲層と上記第3の犠牲層を除去する光偏向装置の製造方法であることを主要な特徴とする。
請求項32の本発明は、請求項30に記載の光偏向装置の製造方法において、基板上に窪み形状部と上記窪み形状部内に斜面からなる支点部材と電極を形成し、堆積して平坦化した第1の犠牲層を介して上記反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、上記第1の犠牲層と第2の犠牲層を除去する光偏向装置の製造方法であることを主要な特徴とする。
請求項33の本発明は、請求項30、31又は32に記載の光偏向装置の製造方法において、笠形状部材の複数個の各笠形状部材間を空けて配置した所定間隔から犠牲層を除去する光偏向装置の製造方法であることを主要な特徴とする。
請求項34の本発明は、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向装置を使用して光情報の処理を行なう光情報処理装置において、複数の上記請求項4乃至29の何れか一項に記載の光偏向装置と、複数の上記光偏向装置を各々独立に駆動する独立駆動手段とからなる光情報処理装置であることを最も主要な特徴とする。
【0012】
請求項35の本発明は、電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置において、回動可能に保持されて形成画像を担持する画像担持体と、上記画像担持体上に光書き込みを行なって潜像を形成する上記請求項4乃至29の何れか一項に記載の光偏向装置からなる潜像形成手段と、上記潜像形成手段の上記光偏向装置によって形成された潜像を顕像化してトナー画像を形成する現像手段と、上記現像手段で形成されたトナー画像を被転写体に転写する転写手段とからなる画像形成装置であることを最も主要な特徴とする。
請求項36の本発明は、画像を投影して表示する画像投影表示装置において、画像投影データの入射光の反射方向を変えて光偏向を行なって画像を投影して表示する請求項4乃至29の何れか一項に記載の光偏向装置からなる光スイッチ手段と、上記光スイッチ手段が投影する画像を表示する投影スクリーンとからなる画像投影表示装置であることを最も主要な特徴とする。
請求項37の本発明は、光信号の光路を決定して出力して伝送する光伝送装置において、光信号を入力する光信号入力手段と、上記光信号入力手段からの光信号の入射光の反射方向を1軸又は2軸方向に変えて光偏向を行なって、各光信号の光路を決定する請求項4乃至29の何れか一項に記載の光偏向装置からなる光スイッチ手段と、上記光スイッチ手段からの光信号を出力する光信号出力手段とからなる光伝送装置であることを最も主要な特徴とする。
請求項38の本発明は、請求項37に記載の光偏向装置において、光スイッチ手段は、複数段の光偏向装置からなる光伝送装置であることを主要な特徴とする。
【0013】
請求項39に記載の発明では、請求項4ないし12のいずれか1つに記載の光偏向装置において、前記支点部材は前記板形状部材と点で接触する4角錐形状であることを特徴とする。
請求項40に記載の発明では、請求項39に記載の光偏向装置において、前記4角錐形状の支点部材の底面の大きさは、前記板形状部材の大きさにほぼ等しいことを特徴とする。
請求項41に記載の発明では、請求項4ないし16のいずれか1つに記載の光偏向装置において、前記板形状部材が静電引力により変位したとき、前記基板と点または線で接触することにより、入射光束の反射方向を決定することを特徴とする。
【0014】
請求項42に記載の発明では、入射光の反射方向を複数の軸方向に変えて光偏向を行う光偏向装置において、入射光を反射する反射機能を有する板形状の板形状部材と、上記板形状部材を固定することなく載置する基板と、上記基板上の傾斜する上記板形状部材の変位時の支点となる支点部材と、上記支点部材上に上記板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材と、上記基板上の上記支点部材の周囲に上記板形状部材の裏面と対向して配置した電極とからなることを特徴とする。
請求項43に記載の発明では、請求項42に記載の光偏向装置において、前記板形状部材は単層薄膜で形成されていることを特徴とする。
【0015】
請求項44に記載の発明では、請求項42または43に記載の光偏向装置において、反射手段の反射面は、平板で形成されていることを特徴とする。
請求項45に記載の発明では、請求項42ないし44のいずれか1つに記載の光偏向装置において、反射手段は、アルミニウム系金属膜で形成されていることを特徴とする。
請求項46に記載の発明では、請求項42ないし45のいずれか1つに記載の光偏向装置において、板形状部材は、支点部材と接する個所の面形状に湾曲形状の湾曲形状部からなることを特徴とする。
【0016】
請求項47に記載の発明では、請求項42ないし46のいずれか1つにに記載の光偏向装置において、板形状部材は、外形が円形状であることを特徴とする。請求項48に記載の発明では、請求項42ないし47のいずれか1つにに記載の光偏向装置において、反射手段又は板形状部材は、導電性を有する導電性領域を有して、上記導電性領域が電極と対向することを特徴とする。
請求項49に記載の発明では、請求項42ないし48のいずれか1つにに記載の光偏向装置において、基板は、窪み形状の窪み形状部からなることを特徴とする。
【0017】
請求項50に記載の発明では、請求項42ないし49のいずれか1つにに記載の光偏向装置において、基板は、(100)面方位を有するシリコン基板からなることを特徴とする。
請求項51に記載の発明では、請求項42ないし50のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と接する個所の面形状が円形状部であることを特徴とする。
請求項52に記載の発明では、請求項42ないし50のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と点で接する円錐形状部であることを特徴とする。
【0018】
請求項53に記載の発明では、請求項42ないし50のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と接する面が長方形の長方形状部であることを特徴とする。
請求項54に記載の発明では、請求項42ないし50のいずれか1つに記載の光偏向装置において、前記支点部材は前記板状部材と点で接触する4角錐形状であることを特徴とする。
請求項55に記載の発明では、請求項54に記載の光偏向装置において、前記4角錐形状の支点部材の底面の大きさは、前記板状部材の大きさにほぼ等しいことを特徴とする。
【0019】
請求項56に記載の発明では、請求項42ないし53のいずれか1つに記載の光偏向装置において、前記板状部材が静電引力により変位したとき、前記基板と点または線で接触することにより、入射光束の反射方向を決定することを特徴とする。
請求項57に記載の発明では、請求項42ないし56のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と接する斜面を有することを特徴とする。
【0020】
請求項58に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位を前記支点部材との接触により付与することを特徴とする。
【0021】
請求項59に記載の発明では、請求項58に記載の光偏向装置において、前記板状部材の上面全域が前記光反射領域であることを特徴とする。
請求項60に記載の発明では、請求項58または59に記載の光偏向装置において、前記板状部材が誘電性を有する部材からなる誘電体層と、前記導電体層との積層により構成されていることを特徴とする。
【0022】
請求項61に記載の発明では、請求項60に記載の光偏向装置において、前記誘電体層の比誘電率が3以上であることを特徴とする。
請求項62に記載の発明では、請求項60または61に記載の光偏向装置において、前記板状部材の前記誘電体層はシリコン窒化膜により構成されることを特徴とする。
【0023】
請求項63に記載の発明では、請求項58ないし62のいずれか1つに記載の光偏向装置において、前記板状部材の裏面側に対向する前記基板上に電極が複数形成され、該電極は前記支点部材の前記頂部と電気的に分離されていることを特徴とする。
請求項64に記載の発明では、請求項63に記載の光偏向装置において、前記板状部材の前記導電体層の少なくとも一部が前記電極と対向していることを特徴とする。
【0024】
請求項65に記載の発明では、請求項58ないし64のいずれか1つに記載の光偏向装置において、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が、円錐体であることを特徴とする。
請求項66に記載の発明では請求項58ないし64のいずれか1つに記載の光偏向装置において、前記板状部材と前記支点部材とがほぼ点で接しており、かつ前記支点部材が、複数の斜面を有する多角錐体であることを特徴とする。
【0025】
請求項67に記載の発明では、請求項58ないし64のいずれか1つに記載の光偏向装置において、前記板状部材と前記支点部材とがほぼ線で接しており、かつ前記支点部材が、斜面を有し頂部が前記板状部材と線接触可能な稜を有する柱状体であることを特徴とする。
請求項68に記載の発明では、請求項66または67に記載の光偏向装置において、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有することを特徴とする。
【0026】
請求項69に記載の発明では、請求項68に記載の光偏向装置において、前記板状部材が前記斜面からの静電引力により変位し、前記斜面へ接触することにより光偏向方向が規定されることを特徴とする。
請求項70に記載の発明では、請求項68に記載の光偏向装置において、前記斜面上に複数の凸部位が形成されており、かつ前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定されることを特徴とする。
【0027】
請求項71に記載の発明では、請求項58ないし70のいずれか1つに記載の光偏向装置において、前記板状部材の近傍の雰囲気がほぼ真空であることを特徴とする。
請求項72に記載の発明では、請求項58ないし70のいずれか1つに記載の光偏向装置において、前記板状部材の近傍の雰囲気が不活性な気体の雰囲気であることを特徴とする。
【0028】
請求項73に記載の発明では、請求項63ないし72のいずれか1つに記載の光偏向装置において、前記複数の電極に最大電位差が所定値以上になるようにそれぞれ任意の電位を与え、前記頂部に与える電位を、前記複数の電極に与える電位の最大値と最小値のいずれか一方の値と等しくすることを特徴とする。
請求項74に記載の発明では、請求項63ないし72のいずれか1つに記載の光偏向装置において、前記複数の電極のうち、前記板状部材の変位の軸となる前記頂部を通る直線に関して、同じ側に存在する電極において最大電位差が所定値以上になるようにそれぞれ任意の電位を与え、前記頂部に与える電位を、前記複数の電極に与える電位の最大値と最小値の略中間値とすることを特徴とする。
【0029】
請求項75に記載の発明では、請求項58ないし74のいずれか1つに記載の光偏向装置において、前記導電体層はアルミニウム系金属膜であることを特徴とする。
請求項76に記載の発明では、請求項75に記載の光偏向装置において、前記光反射領域は前記導電体層が兼ねることを特徴とする。
請求項77に記載の発明では、請求項58ないし76のいずれか1つに記載の光偏向装置を複数、任意の基板上に1次元又は2次元アレー状に配置したことを特徴とする。
【0030】
請求項78に記載の発明では、画像投影表示装置において、請求項58ないし76のいずれか一つに記載の光偏向装置、または請求項77に記載の光偏向アレーを、画像データに従って入射光の反射方向を切り替える光スイッチ手段として用い、スクリーン上に前記画像データによる画像を投影することを特徴とする。請求項79に記載の発明では、請求項78に記載の画像投影表示装置において、前記光偏向装置の前記板状部材が中立位置にあるときの光反射面の法線方向が、重力の作用方向とほぼ同方向になるように配置することを特徴とする。
【0031】
請求項80に記載の発明では、画像形成装置において、請求項77に記載の光偏向アレーを、ライン露光型の潜像形成手段として用いることを特徴とする。
請求項81に記載の発明では、請求項80に記載の画像形成装置において、前記光偏向装置の前記板状部材が中立位置にあるときの光反射面の法線方向が、重力の作用方向とほぼ同方向になるように配置することを特徴とする。
【0032】
請求項82に記載の発明では、光伝送装置において、請求項68ないし76のいずれか1つに記載の光偏向装置を光スイッチ手段として用い、光情報の伝送を、1個の入出力ポートと複数の入出力ポート中の任意のポートとの間で切り替えることを特徴とする。
請求項83に記載の発明では、光伝送装置において、請求項77に記載の光偏向アレーを光スイッチ手段として用い、、光情報の伝送を、一方の入出力部の複数の入出力ポートの中の任意のポートと他方の入出力部の複数の入出力ポート中の任意のポートとの間でそれぞれ切り替えることを特徴とする。
請求項84に記載の発明では、請求項83に記載の光伝送装置において、前記光偏向装置の前記板状部材が中立位置にあるときの光反射面の法線方向が、重力の作用方向とほぼ同方向になるように配置することを特徴とする。
【0033】
請求項85に記載の発明では、請求項58ないし76のいずれか1つに記載の光偏向装置の製造方法において、任意の基板上に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有することを特徴とする。
【0034】
請求項86に記載の発明では、請求項77に記載の光偏向アレーの製造方法において、任意の基板上に複数の区画を、1次元または2次元状に密着させて形成し、各区画毎に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有することを特徴とする。
【0035】
請求項87に記載の発明では、請求項70に記載の光偏向装置の製造方法において、少なくとも、複数の電極上に薄膜を堆積させる工程と、該薄膜をパターン化し凸部位を形成する工程を有することを特徴とする。
【0036】
請求項88に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円錐体であり、該円錐体の頂部が球状であることを特徴とする。
【0037】
請求項89に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が、円錐体と、該円錐体底面の下に該底面の径と同径の底面を有する円柱とを合体させた形状であることを特徴とする。
【0038】
請求項90に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円錐台形状であることを特徴とする。
【0039】
請求項91に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円錐台と、該円錐台底面の下に該底面の径と同径の底面を有する円柱とを合体させた形状であることを特徴とする。
【0040】
請求項92に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円柱であることを特徴とする。
【0041】
請求項93に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、かつ前記支点部材が、複数の斜面を有する多角錐体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は、電極上に複数の帯状に配列されていることを特徴とする。
【0042】
請求項94に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、かつ前記支点部材が、複数の斜面を有する多角錐体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は複数の帯状に配列され、該凸部位の周囲の平坦部に前記電極を形成することを特徴とする。
【0043】
請求項95に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ線で接しており、かつ前記支点部材が、斜面を有し頂部が前記板状部材と線接触可能な稜を有する柱状体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は、電極上に複数の帯状に配列されていることを特徴とする。
【0044】
請求項96に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ線で接しており、かつ前記支点部材が、斜面を有し頂部が前記板状部材と線接触可能な稜を有する柱状体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は複数の帯状に配列され、該凸部位の周囲の平坦部に前記電極を形成することを特徴とする。
【0045】
請求項97に記載の発明では、請求項88ないし96のいずれか1つに記載の光偏向装置において、前記板状部材の上面全域が前記光反射領域であることを特徴とする。
【0046】
請求項98に記載の発明では、請求項88ないし97のいずれか1つに記載の光偏向装置において、前記板状部材が誘電性を有する部材からなる誘電体層と、前記導電体層との積層により構成されていることを特徴とする。
【0047】
請求項99に記載の発明では、請求項98に記載の光偏向装置において、前記誘電体層の比誘電率が3以上であることを特徴とする。
【0048】
請求項100に記載の発明では、請求項98または99に記載の光偏向装置において、前記板状部材の前記誘電体層はシリコン窒化膜により構成されることを特徴とする。
【0049】
請求項101に記載の発明では、請求項88ないし100のいずれか1つに記載の光偏向装置において、前記電極は、前記板状部材の裏面側に対向する位置に設けられ、該電極は前記支点部材の前記頂部と電気的に分離されていることを特徴とする。
【0050】
請求項102に記載の発明では、請求項101に記載の光偏向装置において、前記板状部材の前記導電体層の少なくとも一部が前記電極と対向していることを特徴とする。
【0051】
請求項103に記載の発明では、請求項88ないし102のいずれか1つに記載の光偏向装置において、前記規制部材は頂部のストッパの突出方向とは逆方向に突出した延長基部を下端部に有することを特徴とする。
【0052】
請求項104に記載の発明では、光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位を前記支点部材との接触により付与する光偏向装置を複数、任意の基板上に1次元又は2次元アレー状に配置し、前記光偏向装置の前記基板を円形とし、隣接する基板同士の前記規制部材の位置を一致させ、両規制部材を一体化して複合規制部材とすることを特徴とする。
【0053】
請求項105に記載の発明では、請求項104に記載の光偏向アレーにおいて、前記規制部材もしくは複合規制部材を、前記基板の円周上に等間隔に6個配置し、前記光偏向装置を2次元的に最稠密に配列したことを特徴とする。
【0054】
請求項106に記載の発明では、請求項104または105に記載の光偏向アレーにおいて、前記規制部材は頂部のストッパの突出方向とは逆方向に突出した延長基部を下端部に有することを特徴とする。
【0055】
請求項107に記載の発明では、請求項104ないし106のいずれか1つに記載の光偏向アレーにおいて、前記複合規制部材は、隣接する2個の基板の境界線上に、両基板に等分に跨って基板上に横たわる平板状の基部の対向する両端に、直立部を設け、両直立部の頂部に、前記境界線と逆方向に突出するストッパをそれぞれ設けた形であることを特徴とする。
【0056】
請求項108に記載の発明では、請求項104ないし106のいずれか1つに記載の光偏向アレーにおいて、前記複合規制部材は、隣接する2個の基板の境界線上に、両基板に等分に跨って基板上に直立部を設け、該直立部の頂部に、双方向に突出するストッパを有することを特徴とする。
【0057】
請求項109に記載の発明では、任意の基板上に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有する請求項128ないし143のいずれか1つに記載の光偏向装置の製造方法を特徴とする。
【0058】
請求項110に記載の発明では、請求項109に記載の光偏向装置の製造方法において、前記支点部材の頂部は、前記平坦化された第1の犠牲層より突出していることを特徴とする。
【0059】
請求項111に記載の発明では、任意の基板上に複数の区画を、1次元または2次元状に密着させて形成し、各区画毎に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有する請求項144ないし148のいずれか1つに記載の光偏向アレーの製造方法を特徴とする。
【0060】
請求項112に記載の発明では、請求項111に記載の光偏向アレーの製造方法において、前記支点部材の頂部は、前記平坦化された第1の犠牲層より突出していることを特徴とする。
【0061】
【発明の実施の形態】
次に、本発明の実施の形態を図面を参照して詳細に説明する。
図1及び図2は本発明の第1の実施形態に係る光偏向装置の断面図、及び平面図であり、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う光偏向装置0は、入射光を反射する反射面を備えた反射手段1と、反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2と、板形状部材2を固定することなく載置する基板3の(100)面方位を有するシリコン基板3bと、基板3の上記(100)面方位を有するシリコン基板3b上の傾斜する板形状部材2の変位時の支点となる支点部材4と、支点部材4上に板形状部材2を変位が自由の状態で配置される空隙(G)を形成する笠形状の笠形状部材5と、基板3の上記(100)面方位を有するシリコン基板3b上の支点部材4の周囲に板形状部材2の裏面と対向して配置した電極6とからなり、反射手段1と板形状部材2を、基板3の上記(100)面方位を有するシリコン基板3b上に固定することなく基板3の上記(100)面方位を有するシリコン基板3b上の支点部材4上と笠形状部材5間に形成される空隙(G)内に変位が自由の状態で配置して、基板3の上記(100)面方位を有するシリコン基板3b上の支点部材4の周囲に板形状部材2と対向して配置した電極6に電位を付与して、支点部材4上に傾斜して載置する板形状部材2上の反射手段1で入射光の反射方向を変えて光偏向を行うようにしたので、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で歩留も高く低コストで、使用環境も制限されない。
【0062】
反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2は、後述するように、薄膜で形成されているので、重量が低減されて、待機時に板形状部材2が笠形状部材5に衝突した場合の衝撃や、動作時に板形状部材2が基板3に接触した場合の衝撃が低減されて、機械的強度が長期間使用時にも変化と劣化が少ない光偏向装置0を提供することが出来るようになっている。
基板3は、微細化のことを考慮するとシリコン、及び、ガラス等の、一般に半導体プロセスや液晶プロセスにて用いられているものが望ましい。
更に、光偏向装置0における基板3は、駆動系回路と同一基板に形成して簡単な構成と低コスト化を考慮して、上記(100)面方位を有するシリコン基板3bで形成されている。
笠形状部材5は、板形状部材2の変位する可動範囲を任意の空隙(G)に制限するように、笠形状で、板形状部材2の外周に対応して複数個の各笠形状部材5a、笠形状部材5a、笠形状部材5a、笠形状部材5aを所定の間隔(g)を空けて4隅に配置されている。又は、図示しないが、笠形状部材5は、板形状部材2の外周に対応する全領域に配置される。
笠形状部材5は、酸化シリコン膜5d、又は、酸化クロム膜5fにより形成されている。従って、光偏向装置0を、図示しない1次元光偏向アレー10、又は、2次元光偏向アレー20のようにアレー化した時に、反射手段1の反射面1aの反射領域の面積割合を最大にするために極力薄膜、及び、省スペースで構成でき、且つ、機械的強度が強くなっている。
支点部材4は、板形状部材2が変位する時の支点となり、後述するように、光偏向装置0に求められる性能に応じて任意の形状が選択される。支点部材4は、酸化シリコン膜4f、又は、シリコン窒化膜4gで形成されているから機械的強度が強くなっている。但し、支点部材4を通して、板形状部材2の電位を取る場合は、各種金属膜等の導電性材料で形成される。
【0063】
図3と図4は構成及び動作説明図であり、同図において、板形状部材2の表面に組み合わせ構成された反射手段1の少なくとも光反射領域の反射面1aは、平板で形成されている。図3に、反射手段1の上記反射面1aが、平板である場合の光反射の模式図を、図4に、反射手段1の上記反射面1aが、図示のように凸形状である場合の光反射の模式図を示す。
図3に示すように、反射手段1の上記反射面1aが、平板であることにより、光反射領域に入射した光束は反射方向を揃えて反射することが可能で、反射光を拡散することなく目的の反射方向にのみ光変更が可能となり、光偏向装置0を、図示しない各光情報処理装置100、画像形成装置200、画像投影表示装置300、及び、光伝送装置400等に用いる場合にも、隣接素子への影響を抑制され、重要である。尚、反射手段1の上記反射面1aの平面性としては、曲率半径Raが数m以上であることが望まれる。
他方、図4に示すように、仮に、反射手段1の上記反射面1aが、図示のように凸形状を示していた場合、光反射領域に入射した光束は、反射方向を拡散して反射してしまうため、隣接素子への影響が顕著となる。このことは、特に、図示しない上記画像形成装置200や上記画像投影表示装置300等において、反射光を、更に、拡大光学系にて光書込み、及び、表示させる場合等に顕著となる。図5乃至図8は本発明の第2の実施形態の断面図、平面図、動作説明図、及び湾曲形状部がない場合の欠点を示す図であり、各図において、板形状部材2は、支点部材4と接する個所の面形状に湾曲形状の湾曲形状部2aが形成されている(図5と図6を参照)。上記湾曲形状部2aを形成する方法は、後述する。
上記湾曲形状部2aは、これを支点部材4の近傍の板形状部材2に配置することにより、静電引力により板形状部材2が傾斜変位する時に、板形状部材2の変位時に上記湾曲形状部2aを中心とした変位が可能となり、板形状部材2がずれることを抑制することが出来る。言い換えると、支点部材4に対する板形状部材2の位置決めが自発的に容易となる。
それにより、図7に示すように、板形状部材2の変位時に、板形状部材2が笠形状部材5の側面に接触することを抑制する。
他方、図8に示すように、仮に、上記湾曲形状部2aが無い場合には、板形状部材2が、図示の矢印C方向の位置にずれる等の不具合が発生し、それによる反射性能は低下し、支点部材4とその部位の機械的磨耗の発生が顕著となり機械的強度が低下する。
【0064】
図9乃至図12は本発明の第3の実施形態の断面図、平面図、及び支点部材の構成例を示す斜視図であり、各図において、支点部材4は、板形状部材2と接する個所の面形状が円形状部4aである円柱形状4aであり、上述のように、上記酸化シリコン膜4f、又は、上記シリコン窒化膜4gで形成されているから機械的強度が強くなっている。同様に、支点部材4を通して、板形状部材2の電位を取る場合は、各種金属膜等の導電性材料で形成される。
図11に示すように、支点部材4は、上記円柱形状4aである。
然し、図12に示すように、板形状部材2に近い個所において斜面4dの斜面4dを有し、上記円形状部4aの接触面積を極力低下させる形状でも良い。
従って、支点部材4は、板形状部材2と接触する領域において、上記円形状部4aを有することから、静電引力に作用する方向に対応した任意の方向へ、反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2を傾斜変位させることが容易に可能となり、板形状部材2と支点部材4の接触面積を低下させて2軸方向の光偏向が容易となる。
図13乃至図16は本発明の第4の実施形態の断面図、平面図、及び支点部材の構成例を示す斜視図であり、各図において、支点部材4は、板形状部材2に接する支点部位がほぼ点で接する円錐形状部4bであり、上述のように、上記酸化シリコン膜4f、又は、上記シリコン窒化膜4gで形成されているから機械的強度が強くなっている。同様に、支点部材4を通して、板形状部材2の電位を取る場合は、各種金属膜等の導電性材料で形成される。
図15に示すように、支点部材4の上記円錐形状4bは、頂点が点形状4bを有する。
然し、図16に示すように、板形状部材2に近い個所において、頂点近傍が丸みを有する丸形状4bでも良い。
従って、支点部材4が、図示のような上記円錐形状部4bであることから、支点部材4の支点部位の基板3側の機械的強度を強めることが出来、且つ、板形状部材2の変位は、板形状部材2の端部における基板3の上面との接触部2dで規定されるので、接触面積を極力低減して板形状部材2の基板3への固着や接触帯電を抑制できる。
又、同様に、支点部材4が、板形状部材2と接触する領域において点形状を有することから、静電引力に作用する方向に対応した任意の方向へ板形状部材2を傾斜変位させることが容易となる。
【0065】
図17と図18は本発明の第5の実施形態の断面図、及び平面図であり、同図において、支点部材4は、板形状部材2に接する支点部材4の支点部位の面が長方形の長方形状部4cであり、上述のように、上記酸化シリコン膜4f、又は、上記シリコン窒化膜4gで形成されているから機械的強度が強くなっている。同様に、支点部材4を通して、板形状部材2の電位を取る場合は、各種金属膜等の導電性材料で形成される。従って、板形状部材2に接する支点部材4の上記長方形状部4cが長方形であることから、支点部材4の短尺方向への支点部材4の傾斜変位、即ち、1軸方向の板形状部材2の静電引力による傾斜変位を安定して起こすことが出来る。
図19乃至図22は本発明の第6の実施形態の断面図、平面図、及び支点部材の構成例を示す斜視図であり、支点部材4は、板形状部材2に接する支点部材4の支点部位がほぼ線で接する上記斜面4dの斜面4dを有する尾根の形状からなる尾根形状部4eであり、上述のように、上記酸化シリコン膜4f、又は、上記シリコン窒化膜4gで形成されているから機械的強度が強くなっている。同様に、支点部材4を通して、板形状部材2の電位を取る場合は、各種金属膜等の導電性材料で形成される。
図21に示すように、支点部材4の上記尾根形状部4eの支点部位は線を頂点とする線形状4eであるが、図22に示すように、頂点近傍が丸みを有する丸形状4eでも良い。
板形状部材2に接する支点部材4の上記尾根形状部4eの支点部位がほぼ線で接していることから、支点部材4の上記尾根形状部4eと板形状部材2の接触面積を低減して1軸方向の板形状部材2の静電引力による傾斜変位を安定して起こすことが出来る。
又、支点部材4の上記尾根形状部4eが上記斜面4dの斜面4dを有する尾根状形状であることから、支点部材4の機械的強度を強め、且つ、板形状部材2の変位は板形状部材2の端部における基板3の上面との上記接触部2dで規定されるので、接触面積を極力低減して板形状部材2の基板3への固着や接触帯電を抑制できる。
【0066】
図23と図24において、静電引力を作用させるための電極6は、少なくとも2個以上、例えば、図示のように電極6a、電極6a、電極6a、電極6aの4個が、板形状部材2の裏側に対向する支点部材4が形成された基板3上に形成されており、且つ、板形状部材2は電気的に浮いている。電極6a、電極6a、電極6a、電極6aの材質としては、導電性などを考慮すると、アルミニウム系金属や窒化チタンやチタン等の金属が望ましい。
図示のように、基板3に形成された2個以上の、例えば、電極6a、電極6a、電極6a、電極6aの4個間の電位差に起因した静電引力を、板形状部材2を誘電的に経由して板形状部材2と電極6の各電極6a、電極6a、電極6a、電極6aの間に働かせ、板形状部材2を目的の方向へ変位させることが出来る。
更に、引き続き支点部材4がを中心として対向する電極6の各電極6a、電極6a、電極6a、電極6aへ任意の電圧を印加することにより、板形状部材2の変位方向を高速で変えることが出来る。
更に、電極6の複数の各電極6a、電極6a、電極6a、電極6a間に任意に電位差を生じさせることが出来、それにより板形状部材2の傾斜の向きを2軸方向で高精度に制御されて、光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も更に速く出来る。
図25と図26において、反射手段1の上記反射面1aの光反射領域、又は、板形状部材2の少なくとも一部に導電性を有する導電性領域2bが形成され、且つ、上記導電性領域2bの少なくとも一部が、電極6と対向している。上記導電性領域2bの材質としては、導電性などを考慮すると、アルミニウム系金属や窒化チタンやチタン等の金属が望ましい。更に、上記導電性領域2bにより反射手段1の上記反射面1aの光反射領域を兼ねて低コスト化する場合には、反射性能が良好であることが望ましく、その場合には、特に、上記アルミニウム系金属1bが望ましい。
図示のように、基板3に形成された2個以上の、例えば、電極6の複数の各電極6a、電極6a、電極6a、電極6a間の電位差に起因した静電引力を、上記導電性領域2bを経由して板形状部材2と電極6の複数の各電極6a、電極6a、電極6a、電極6a間に働かせ、より低い駆動電圧で板形状部材2を目的の方向へ変位させることが出来る。
更に、引き続き支点部材4の支点部位を中心として電極6の複数の対向する各電極6a、電極6a、電極6a、電極6aへ任意の電圧を印加することにより、板形状部材2の変位方向を高速で変えることが出来る。
更に、電極6の複数の対向する各電極6a、電極6a、電極6a、電極6a間に任意に電位差を生じさせることが出来、それにより板形状部材2の傾斜の向きを2軸方向で高精度に制御することが出来る。
【0067】
図27と図28において、光偏向装置0は、入射光を反射する反射手段1と、反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2と、板形状部材2を固定することなく載置する基板3と、基板3上の傾斜する板形状部材2の変位時の支点となる支点部材4と、支点部材4上に板形状部材2を変位が自由の状態で配置される空隙(G)を形成する笠形状の笠形状部材5の笠形状部材5a、笠形状部材5a、笠形状部材5a、笠形状部材5aと、基板3上の支点部材4の周囲に板形状部材2の裏面と対向して配置した電極6a、電極6a、電極6a、電極6aとからなる(図27を参照)。
そして、光偏向装置0においては、板形状部材2は、固定端を有していないので、その初期の位置を、基板3上の支点部材4上と笠形状の笠形状部材5の笠形状部材5a、笠形状部材5a、笠形状部材5a、笠形状部材5a間に形成される空隙(G)内に制限されて変位が自由であるから、電極6a、電極6a、電極6a、電極6aより最も遠ざかる配置を記載した(図28を参照)。
図29と図30において、光偏向装置0は、初期状態から、板形状部材2を支点部材4上に設置するために、リセット動作を行う。
リセット動作においては、電極6a、電極6a、電極6a、電極6aよりの電位をそれぞれ電極6a=X(V)、電極6a=0(V)、電極6a=X/2(V)、電極6a=X/2(V)とすることにより、図示の白抜き矢印線で示したような静電引力分布が得られ、白抜き矢印線の大きさにより静電引力の大小を示した。
図示の矢印M方向に板形状部材2が傾斜し、板形状部材2の少なくとも一部、例えば、板形状部材2の端部の上記接触部2dが基板3と接触して、図示のように方向を規定して、リセット方向に反射光が得られる。
尚、ここで印加されるX(V)は、板形状部材2と各電極6a、電極6a、電極6a、電極6aとの間の距離、及び、静電容量などにより決定され、通常の板形状部材2の変位、即ち、支点部材4の支点部位を中心とした傾斜を起こす電圧Y(V)よりやや大きい電圧となる。
【0068】
図31と図32において、次に、電極6a、電極6a、電極6a、電極6aよりの電位をそれぞれ電極6a=Y/2(V)、電極6a=Y/2(V)、電極6a=Y(V)、電極6a=0(V)とすることにより、リセット方向と反対方向に高速に図示の矢印N方向に板形状部材2が傾斜し、板形状部材2の少なくとも一部、例えば、板形状部材2の端部の上記接触部2dが基板3と接触して、図示のように方向を規定して、光偏向を行う。
即ち、支点部材4の支点部位を中心とし対向する電極6a、電極6a、電極6a、電極6aへ任意の電圧を印加することにより、板形状部材2の変位方向を高速で変えることが出来る。
図33と図34において、電極6a、電極6a、電極6a、電極6aの電位をそれぞれ電極6a=Y/2(V)、電極6a=0(V)、電極6a=Y/2(V)、電極6a=Y(V)とすることにより、図31と図32の光偏向(1)とは軸を変えて、高速に板形状部材2が図示の矢印O方向に傾斜変位し、板形状部材2の少なくとも一部、例えば、板形状部材2の端部の上記接触部2dが基板3と接触して、方向を規定して、光偏向(2)を行う。
即ち、板形状部材2の傾斜の向きを2軸方向で高精度に制御することが出来る。
以上のように、電極6の2個以上の電極6a、電極6a、電極6a、電極6a間に異なる電位を与えることにより、板形状部材2が静電引力により変位し、即ち、支点部材4の支点部位を中心に傾斜し、入射する光束が反射方向を変えることが出来る。
尚、支点部材4の図示しない上記斜面4dの少なくとも一部に板形状部材2を接触させて光偏向を行うことにより、接触時の衝撃を面で受けることが出来、板形状部材2に及ぼす衝撃を緩和することが出来る。又、支点部材4の図示しない上記斜面4dにより板形状部材2の傾斜の向きを規定でき、傾斜の制御性及び安定性を向上する。
【0069】
図35において、次に、異なる電極6、例えば、電極6aと電極6a間に異なる電位を与えることにより、静電引力が発生する原理を、板形状部材2上に上記導電性領域2bを配置した効果を含めて、リセット動作時を例に説明する。電極6aには、正電位X(V)が印加され、電極6aには0(V)が印加されている。この時、両電極6aと電極6aと電気的に浮いている板形状部材2の間には静電引力が発生し、板形状部材2を電極側に変位させるのであるが、まず電極6aに印加された正電位により電極6aには正電荷が現れる。そして空隙(G)を介して板形状部材2に誘電的に負電荷が発生し、同時に上記導電性領域2bにおいて導電的に効率よく負電荷が広がる。逆に言うと、上記導電性領域2bにより効率的に板形状部材2に負電荷を発生させる。この時、板形状部材2と上記導電性領域2bは電気的に浮いているので、電極6aに空隙(G)を介して対向する板形状部材2と上記導電性領域2bには模式的には正電荷が広がる。その正電荷に対応するように、電極6aには模式的に負電荷が発生する、電極6aは実際には接地されているが、模式的に考えた場合はそのようになる。それにより、電極6a上部に位置する板形状部材2においても静電引力が発生する。
上記説明は一連の流れにて説明したが、必ずしも一連の流れにより起こる訳ではなく、両電極6aと電極6aの電位差がそれらの現象を同時進行的に発生させる。
尚、実際には、電気的に浮いている板形状部材2と上記導電性領域2bは電極6aと電極6aの間の任意の電位となり、任意の電位と電極6aの電位差による静電引力、及び、任意の電位と電極6aの電位差による静電引力が発生することとなる。
この任意の電位は空隙(G)、及び、電極6aと電極6aの面積などの構造的要因により異なる。このようにして発生した静電引力により、板形状部材2が、電極6a、又は、電極6a側に変位する。
【0070】
図36と図37において、光偏向装置0において、支点部材4の上記斜面4dの斜面4dが、板形状部材2のほぼ全域に対応して形成され、且つ、上記斜面4dの上記斜面4d上に静電引力を作用させるための電極6の少なくとも2個以上の、例えば、電極6a、電極6a、電極6a、電極6aを有する。上記斜面4dの上記斜面4d上からなる支点部材4の材質としては、同様に、上記酸化シリコン膜4f、又は、上記シリコン窒化膜4gである。
図示のように、支点部材4の支点部位に近づくにつれ、電極6を板形状部材2に近接して設置でき、それにより、より大きな静電引力を発生させることが出来る。言い換えると、より低電圧で板形状部材2の変位を可能とする。
又、電極6a、電極6a、電極6a、電極6aの全面に接触して、板形状部材2を変位させることが出来るので、接触時の衝撃を分散させることが出来て機械的強度が長期間使用時にも変化と劣化が更に少なくなる。又、電極6a、電極6a、電極6a、電極6aの全面に接触して板形状部材2を変位させることにより、板形状部材2の変位方向の制御が容易となり、作動が更に安定で応答も更に速くなる。
図38と図39において、光偏向装置0において、反射手段1の上記反射面1aの光反射領域、又は、板形状部材2の少なくとも一部に導電性を有する上記導電性領域2bが形成され、且つ、上記導電性領域2bの少なくとも一部が電極6a、電極6a、電極6a、電極6aと対向している。
上記導電性領域2bの材質としては、導電性などを考慮すると、アルミニウム系金属や窒化チタンやチタン等の金属が望ましい。
基板3に形成された電極6の2個以上の、例えば、電極6a、電極6a、電極6a、電極6a間の電位差に起因した静電引力を、上記導電性領域2bを経由して板形状部材2と電極6の、例えば、電極6a、電極6a、電極6a、電極6a間に働かせ、より低い駆動電圧で、板形状部材2を目的の方向へ変位させることが出来る。
更に、引き続き、支点部材4の支点部位を中心として対向する電極6の、例えば、電極6a、電極6a、電極6a、又は、電極6aへ任意の電圧を印加することにより、板形状部材2の変位方向を高速で変えることが出来る。
更に、電極6の複数の、例えば、電極6a、電極6a、電極6a、又は、電極6a間に任意に電位差を生じさせることが出来る。
【0071】
図40と図41において、光偏向装置0は、基板3上に形成された窪み形状の窪み形状部3aを有し、且つ、上記窪み形状部3aの任意の箇所に支点部材4の上記斜面4dの上記斜面4d、及び、電極6の、例えば、電極6a、電極6a、電極6a、又は、電極6aを有し、且つ、笠形状部材5を上記基板5の平面上部に有し、且つ、笠形状部材5と上記窪み形状部3aにより構成される空隙(G)に板形状部材2を有し、且つ、板形状部材2は電気的に浮いており、且つ、支点部材4と板形状部材2が接触する個所、即ち、支点部材4の頂点が、基板3の上面より窪み形状部3a側に低く形成されている。
窪み形状部3a、及び、支点部材4は、基板3をエッチング加工することにより形成されるが、基板3上に厚く絶縁膜3cを形成後、これを加工しても良い。支点部材4の頂点、即ち、板形状部材2の変位の支点部位は、上記加工時に基板3の表面より低く形成することが可能である。
尚、上記該光偏向装置0の製造方法は後述するが、板形状部材2の可動範囲を制限する空隙(G)の下方部を基板3の上記窪み形状部3aに構成されているため、笠形状部材5の高さを低く出来る。
笠形状部材5は、板形状部材2を空隙(G)に留めるために衝突等の衝撃を受ける。
そのため、機械的強度を高めることが重要で、笠形状部材5を低く形成することは、笠形状部材5自体の自立安定につながり、ひいては機械的強度を高めることになる。
又、後述する製造方法により歩留まりも向上し、光偏向装置0の空隙(G)は、基板3に形成した上記窪み形状部3aの深さと図示しない第2の犠牲層7bの膜厚により規定することが出来、図示しない第1犠牲層7aの平坦化の割合に大きく依存しないため、但し、基板3に至る平坦化は少なくとも必要で、空隙(G)の高さの制御性を向上でき、駆動電圧、及び、リセット電圧の制御性が良くなった。
【0072】
図42乃至図44は本発明の第11の実施形態を示す光偏向装置の一単位の断面図、平面図、及び集合状態を示す平面図である。各図において、光偏向装置0において、板形状部材2が、図示のように外形が円形状である(図43を参照)。
板形状部材2が図示のように円形状であることから、板形状部材2に組み合わされた反射手段1の上記反射面1aの反射領域にて反射した反射光が円形となり、光偏向装置0を具備する図示しない上記画像形成装置200、及び、図示しない上記画像投影装置300等における1画素を円形状とすることが出来る。それにより、隣接画素の隙間部をドット状に点在させることが出来る(図44を参照)。従って、矩形な板形状部材2による矩形な画素形状の隣接画素の隙間部が線状の筋となるのと異なり、高精彩な画像を得ることが出来る。
図45と図46は他の実施形態の断面図、及び平面図であり、この光偏向装置0においては、笠形状部材5が、板形状部材2の外周に対応する任意の個所に、例えば、笠形状部材5a、笠形状部材5a、笠形状部材5a、笠形状部材5aが間隔(g)を空けて複数個設置されている。後述する光偏向装置0の製造方法における、図示しない犠牲層7のエッチング除去を複数の間隔(g)部から開始することが可能なので、図示しない上記犠牲層7のエッチング除去時に要する時間を短縮化できる。
エッチング除去時には、板形状部材2や基板3がエッチング液に晒されるので、そのエッチング時間が短くなることにより、歩留の向上が得られる。
【0073】
図47と図48は第13の実施形態の断面図、及び平面図であり、光偏向装置0においては、笠形状部材5が、板形状部材2の外周に対応する個所全領域に設置されている。笠形状部材5が、板形状部材2の全周に渡って連続配置されていることから、板形状部材2が機械的に可動範囲を制限された空隙(G)よりはみ出し、光偏向装置0が故障することを極力低減するから、作動が更に安定で機械的強度が長期間使用時にも変化と劣化が更に少なくすることが出来る。
次に、光偏向装置0における笠形状部材5が絶縁性を有する絶縁膜5bにより構成されている。前述のように、笠形状部材5は、板形状部材2を任意の空隙(G)に留めるために、板形状部材2と接触する。そのため、笠形状部材5が導電性であると、電気的に浮いている板形状部材2の電位が変動する危険性が高い。即ち、板形状部材2が笠形状部材5に接触した場合でも、電気的に浮いている板形状部材2の電荷が笠形状部材5を経由して移動しないので板形状部材2の電位が変動することを抑制できる。
次に、光偏向装置0において、笠形状部材5が、入射光束に対し透光性を有する透光性膜5cにより構成されて、特に、上記酸化シリコン膜5dにより構成されている。笠形状部材5を上記透光性膜5cとすることにより、板形状部材2と組み合わせ構成される反射手段1の上記反射面1aの光反射領域の笠形状部材5と重なる領域からの反射光も寄与させることが出来るので、1素子における反射光の面積、及び、光量を増加させることが出来る。即ち、ON光量が増大するから、光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も更に速くさせることが出来る、
更に、笠形状部材5を上記酸化シリコン膜5dとすることにより、高い絶縁性と高い透光性を両立した笠形状部材5を提供でき、後述する光偏向装置0の製造方法において、微細化と集積化の作製が可能となり、構造と制御が更に簡単容易で作動が更に安定で応答も更に速く、微細化と集積化が更に可能で更に低コスト化が出来る。
【0074】
次に、光偏向装置0における笠形状部材5が、入射光束に対し遮光性を有する遮光性膜5eにより構成されて、特に、酸化クロム膜5fにより構成されている。笠形状部材5を上記遮光性膜5eとすることにより、笠形状部材5に入射した光束の望まれない方向への反射を抑制することができる。それにより、目的方向への光偏向の迷光を低下させることが出来る。迷光は、目的方向への光偏向を行っていない場合にも生じる成分なので、OFF光量が抑制されて、光偏向を行う構造と制御が更に簡単容易で作動が更に安定になる。
更に、笠形状部材5を上記酸化クロム膜5fとすることにより、高い絶縁性と高い遮光性を両立した笠形状部材5を提供でき、後述する光偏向装置0の製造方法において、微細化と集積化の作製が可能となり、光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も更に速く、更に低コストとなる。
次に、光偏向装置0において、板形状部材2が、シリコン窒化膜2cにより構成され、且つ、板形状部材2に組み合わせ構成される反射手段1の上記反射面1aの光反射領域が高い導電性を有し、且つ、高い反射性を有する上記アルミニウム系金属膜1bにより構成されている。
上記シリコン窒化膜2cの板形状部材2は、高い絶縁破壊電圧を有し、且つ、長期的な劣化、即ち、繰り返し変位に伴う疲労に対する耐性も高いので極力軽量、及び、薄膜化でき、それにより高い周波数における駆動が可能な、即ち、数10kHz以上の高速動作が可能となる。
又、反射手段1の上記反射面1aの光反射領域を高い反射性能と高い導電性を両立する上記アルミニウム系金属膜1bとすることにより、上記導電性領域2bと兼ねることができ、それにより、光偏向装置0の光偏向動作、即ち、板形状部材2の変位を、より高い反射光量を得ながら低電圧にて行うことが出来る。
【0075】
図49と図50において、光偏向装置0は、複数個を1次元アレー形状に配列した1次元光偏向アレー10として、図示しない上記画像形成装置200における図示しない潜像形成手段202等に使用することが出来る(図49を参照)。更に、上記1次元光偏向アレー10を複数組み合わせて、2次元アレー形状に配列した2次元光偏向アレー20として、図示しない上記画像投影表示装置300における光スイッチ手段301等に使用することが出来る(図50を参照)。
【0076】
図51乃至図59において、光偏向装置0は、次のように、基板3上に支点部材4と電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aを形成し、堆積して平坦化した上記第1の犠牲層7aを介して反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2を形成して、更に、堆積した上記第2の犠牲層7bとをパターン化した所定の位置に笠形状部材5をパターン化した後に、上記第1の犠牲層7aと上記第2の犠牲層7bをエッチングにより除去するから、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置0の製造方法を提供することが出来るようになった。
基板上支点部材形成工程(a)において、上記(100)面方位を有するシリコン基板3bの基板3上に、支点部材4を構成する上記酸化シリコン膜4fがプラズマCVD法により堆積され、その後、面積階調を有するパターンを形成したフォトマスクを用いた写真製版法やレジストパターン形成後熱変形させる写真製版法により、支点部材4の形状とほぼ同形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法の手法により目的形状の支点部材4が形成される。
尚、上記(100)面方位を有するシリコン基板3b上に2μm程度の酸化シリコン膜を形成し、その上層1μm程度にて同様の加工を行っても良い。
又、支点部材4の支点部位の頂点における高さは、およそ1μmである(図51を参照)。
【0077】
電極形成工程(a)において、電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aを窒化チタン(TiN)膜の薄膜で形成する。
TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により、厚さ0.01μmに成膜し、写真製版法、及び、ドライエッチング法の手法により複数の、例えば、電極6a、電極6a、電極6a、電極6aとしてパターン化した(図52を参照)。
保護膜形成工程(a)において、電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aの保護膜6bとして、プラズマCVD法によるシリコン窒化膜を膜厚0.2μmで形成した(図53を参照)。
第1の犠牲層形成工程(a)において、非晶質なシリコン膜をスパッタ法により2μm堆積させ、CMP技術を用いて処理時間制御にて平坦化した。この時、支点部材4の頂点上に残る非晶質シリコン膜の膜厚を0.1μmとなる時間にて処理した。残存する非晶質シリコン膜が上記第1の犠牲層7aである。
尚、上記第1の犠牲層7aとしては、上記膜以外にもポリイミド膜や感光性有機膜、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることも出来、平坦化の手法としては、熱処理によるリフロー法やドライエッチングによるエッチバック法を用いることも出来る(図54を参照)。
反射手段と板形状部材形成工程(a)において、板形状部材2となる上記シリコン窒化膜2cをプラズマCVD法により厚さ0.2μmで堆積させ、引き続き、反射手段1の上記反射面1aの光反射領域を兼ねる上記導電性領域2bとなる上記アルミニウム系金属膜1bを0.05μmの厚さでスパッタリング技術により堆積させた。その後、上記導電性領域2b、及び、板形状部材2をそれぞれ写真製版法、及び、ドライエッチング法によりパターン化した(図55を参照)。
【0078】
第2の犠牲層形成工程(a)において、非晶質なシリコン膜をスパッタ法により1μm堆積させ、上記第2の犠牲層7bとした。尚、上記第2の犠牲層7bとしては、上記膜以外にもポリイミド膜や感光性有機膜、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることも出来る(図56を参照)。
笠形状部材パターン化工程(a)において、光偏向装置0を個別に分離し、反射手段1を組み合わせ構成する板形状部材2の周囲に、図示しない笠形状部材5を配置するために、写真製版法、及び、ドライエッチング法により、上記第1の犠牲層7a、及び、上記第2の犠牲層7bを同時に、反射手段1を組み合わせ構成する板形状部材2よりやや広くパターン化した(図57を参照)。
笠形状部材形成工程(a)において、笠形状部材5を構成する上記酸化シリコン膜5dをプラズマCVD法により厚さ0.8μmで堆積させ、写真製版法、及び、ドライエッチング法により、パターン化して、笠形状部材5を形成した。尚、笠形状部材5は、図示のような形状に留まらず、図60、又は、図61に図示するような形状を取ることも出来る(図58を参照)。
犠牲層除去工程(a)において、残存する上記第1の犠牲層7a、及び、上記第2の犠牲層7bを、ウェットエッチング技術により開口部を通してエッチング除去し、反射手段1を組み合わせ構成する板形状部材2を可動範囲が制限された空隙(G)に配置して、光偏向装置0が完成する。
尚、笠形状部材5が、板形状部材2の外周に対応して複数個の例えば、各笠形状部材5a1、笠形状部材5a2、笠形状部材5a3、笠形状部材5aを所定の間隔(g)を空けて配置することにより、間隔(g)部には上記犠牲層7の上記第1の犠牲層7a、及び、上記第2の犠牲層7bが、3次元的に露出しているので、エッチングがより短時間で終了できる(図59を参照)。
【0079】
図62乃至図71は本発明の他の実施形態に係る光偏向装置の製造手順を示す図であり、光偏向装置0は、次のように、基板3上に支点部材4と電極6を複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aを形成し、支点部材4を突出させて堆積して平坦化した上記第1の犠牲層7aに重ねて堆積して平坦化した第3の犠牲層7cを介して反射手段1を表面に組み合わせ構成する薄膜で形成された湾曲形状の上記湾曲形状部2aからなる板形状部材2を形成して、更に、堆積した上記第2の犠牲層7bとをパターン化した所定の位置に笠形状部材5をパターン化した後に、上記犠牲層7の上記第1の犠牲層7aと上記第2の犠牲層7bと上記第3の犠牲層7cをエッチングにより除去するから、静電引力により板形状部材2が傾斜変位する時に、板形状部材2の変位時に上記湾曲形状部2aを中心とた変位が可能となり、板形状部材2がずれることを抑制し、言い換えると、支点部材4に対する板形状部材2の位置決めが自発的に容易となり、板形状部材2の変位時に、板形状部材2が笠形状部材5の側面に接触することを抑制して、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置0の製造方法を提供することが出来るようになった。
基板上支点部材形成工程(b)において、上記(100)面方位を有するシリコン基板3bの基板3上に、支点部材4を構成する上記酸化シリコン膜4fがプラズマCVD法により堆積され、その後、面積階調を有するパターンを形成したフォトマスクを用いた写真製版法やレジストパターン形成後熱変形させる写真製版法により、支点部材4の形状とほぼ同形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法の手法により目的形状の支点部材4が形成される。
尚、上記(100)面方位を有するシリコン基板3b上に2μm程度の酸化シリコン膜を形成し、その上層1μm程度にて同様の加工を行っても良い。
又、支点部材4の支点部位の頂点における高さは、およそ1μmである(図62を参照)。
【0080】
電極形成工程(b)において、電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aを窒化チタン(TiN)膜の薄膜で形成する。
TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により、厚さ0.01μmに成膜し、写真製版法、及び、ドライエッチング法の手法により複数の、例えば、電極6a、電極6a、電極6a、電極6aとしてパターン化した(図63を参照)。
保護膜形成工程(b)において、電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aの上記保護膜6bとして、プラズマCVD法によるシリコン窒化膜を膜厚0.2μmで形成した(図64を参照)。
第1の犠牲層形成工程(b)において、非晶質なシリコン膜をスパッタ法により2μm堆積させ、CMP技術を用いて支点部材4が露出し、更に、時間をオーバーさせて平坦化した。この時、支点部材4、及び、上記保護膜6bとの研磨選択性の高いCMP条件とすることにより、支点部材4の頂点近傍では支点部位が残存し、非晶質シリコン膜がやや低く残存する。支点部材4の支点部位が約0.2μm突出した。残存する非晶質シリコン膜が上記第1の犠牲層7aである。尚、上記第1の犠牲層7aとしては、上記膜以外にもポリイミド膜や感光性有機膜、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることも出来、平坦化の手法としては、ドライエッチングによるエッチバック法を用いることも出来る(図65を参照)。
【0081】
第3の犠牲層形成工程(b)において、非晶質なシリコン膜をスパッタ法により0.1μm堆積させ、上記第3の犠牲層7cとした(図66を参照)。
反射手段と板形状部材形成工程(b)において、板形状部材2となる上記シリコン窒化膜2cをプラズマCVD法により厚さ0.2μmで堆積させ、引き続き、反射手段1の上記反射面1aの光反射領域を兼ねる上記導電性領域2bとなる上記アルミニウム系金属膜1bを0.05μmの厚さでスパッタリング技術により堆積させた。その後、上記導電性領域2b、及び、板形状部材2をそれぞれ写真製版法、及び、ドライエッチング法によりパターン化した(図67を参照)。
第2の犠牲層形成工程(b)において、非晶質なシリコン膜をスパッタ法により1μm堆積させ、上記第2の犠牲層7bとした。尚、上記第2の犠牲層7bとしては、上記膜以外にもポリイミド膜や感光性有機膜、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることも出来る(図68を参照)。
笠形状部材パターン化工程(b)において、光偏向装置0を個別に分離し、反射手段1を組み合わせ構成する板形状部材2の周囲に、図示しない笠形状部材5を配置するために、写真製版法、及び、ドライエッチング法により、上記第1の犠牲層7a、及び、上記第2の犠牲層7b、上記第3の犠牲層7cを同時に、反射手段1を組み合わせ構成する板形状部材2よりやや広くパターン化した(図69を参照)。
笠形状部材形成工程(b)において、笠形状部材5を構成する上記酸化シリコン膜5dをプラズマCVD法により厚さ0.8μmで堆積させ、写真製版法、及び、ドライエッチング法により、パターン化して、笠形状部材5を形成した。尚、笠形状部材5は、図示のような形状に留まらず、図60、又は、図61に図示するような形状を取ることも出来る(図70を参照)。
犠牲層除去工程(b10)において、残存する上記第1の犠牲層7a、上記第2の犠牲層7b、及び、上記第3の犠牲層7cを、ウェットエッチング技術により開口部を通してエッチング除去し、反射手段1を組み合わせ構成する板形状部材2を可動範囲が制限された空隙(G)に配置して、光偏向装置0が完成する。尚、笠形状部材5が、板形状部材2の外周に対応して複数個の例えば、各笠形状部材5a、笠形状部材5a、笠形状部材5a、笠形状部材5aを所定の間隔(g)を空けて配置することにより、間隔(g)部には上記犠牲層7の上記第1の犠牲層7a、上記第2の犠牲層7b、及び、上記第3の犠牲層7cが、3次元的に露出しているので、エッチングがより短時間で終了できる(図71を参照)。
【0082】
図72乃至図80は本発明の更に他の実施形態に係る光偏向装置の製造手順を示す図であり、この光偏向装置0は、次のように、基板3上に上記窪み形状部3aと上記窪み形状部3a内に上記斜面4dの斜面4dからなる支点部材4と電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aを形成し、堆積して平坦化した上記第1の犠牲層7aを介して反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2を形成して、更に、堆積した上記第2の犠牲層7bとをパターン化した所定の位置に笠形状部材5をパターン化した後に、上記第1の犠牲層7aと上記第2の犠牲層7bをエッチングにより除去するから、笠形状部材5の高さが低くなり、笠形状部材5自体の自立安定につながり、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置0の製造方法を提供することが出来るようになった。
基板上窪み形状部と支点部材形成工程(c)において、上記(100)面方位を有するシリコン基板3bの基板3上に、面積階調や濃度階調を有するパターンを形成したフォトマスクを用いた写真製版法により、上記窪み形状部3a、及び、支点部材4の形状とほぼ同形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法の手法により上記(100)面方位を有するシリコン基板3bの基板3上をエッチング加工する。その後、上記(100)面方位を有するシリコン基板3bの基板3との絶縁性を取るために、支点部材4を構成する上記酸化シリコン膜4fを約1μmプラズマCVD法により堆積させる。以上の工程により、目的形状の上記窪み形状部3a、及び、支点部材4が形成される。
尚、上記(100)面方位を有するシリコン基板3b上に2μm程度の酸化シリコン膜を形成し、その上層1μm程度にて同様の加工を行っても良い。上記窪み形状部3aの最大深さは、およそ3μmであり、支点部材4の支点部位の頂点における深さはおよそ0.3μmである(図72を参照)。
【0083】
電極形成工程(c)において、電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aを窒化チタン(TiN)膜の薄膜で形成する。TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により、厚さ0.01μmに成膜し、写真製版法、及び、ドライエッチング法の手法により複数の、例えば、電極6a、電極6a、電極6a、電極6aとしてパターン化した(図73を参照)。
保護膜形成工程(c)において、電極6の複数個、例えば、電極6a、電極6a、電極6a、又は、電極6aの上記保護膜6bとして、プラズマCVD法によるシリコン窒化膜を膜厚0.2μmで形成した(図74を参照)。
第1の犠牲層形成工程(c)において、非晶質なシリコン膜をプラズマCVD法により2μm堆積させ、CMP技術を用いて上記(100)面方位を有するシリコン基板3bの基板3、及び、上記保護膜6bをエッチングストップ層として研磨し平坦化した。
この時、該エッチングストップ層の効果により、上記窪み形状部3a内の非晶質なシリコン膜はオーバー研磨をほとんど生じることなく高い制御性を有して平坦化が可能である。
支点部材4の支点部位の頂点上に残る非晶質シリコン膜の膜厚はおよそ0.2μmとなった。上記窪み形状部3a内に残存する非晶質シリコン膜が上記第1の犠牲層7aである。尚、上記第1の犠牲層7aとしては、上記膜以外にもポリイミド膜や感光性有機膜、一般的に半導体プロセスにて用いられるレジスト膜や、多結晶シリコン膜などを用いることも出来、平坦化の手法としては、熱処理によるリフロー法やドライエッチングによるエッチバック法を用いることも出来る(図75を参照)。
反射手段と板形状部材形成工程(c)において、板形状部材2となる上記シリコン窒化膜2cをプラズマCVD法により厚さ0.2μmで堆積させ、引き続き、反射手段1の上記反射面1aの光反射領域を兼ねる上記導電性領域2bとなる上記アルミニウム系金属膜1bを0.05μmの厚さでスパッタリング技術により堆積させた。その後、上記導電性領域2b、及び、板形状部材2をそれぞれ写真製版法、及び、ドライエッチング法によりパターン化した(図76を参照)。
【0084】
第2の犠牲層形成工程(c)において、非晶質なシリコン膜をスパッタ法により1μm堆積させ、上記第2の犠牲層7bとした。尚、上記第2の犠牲層7bとしては、上記膜以外にもポリイミド膜や感光性有機膜、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることも出来る(図77を参照)。
笠形状部材パターン化工程(c)において、光偏向装置0を個別に分離し、反射手段1を組み合わせ構成する板形状部材2の周囲に、図示しない笠形状部材5を配置するために、写真製版法、及び、ドライエッチング法により、上記第1の犠牲層7a、及び、上記第2の犠牲層7bを同時に、反射手段1を組み合わせ構成する板形状部材2よりやや広くパターン化した(図78を参照)。
笠形状部材形成工程(c)において、笠形状部材5を構成する上記酸化シリコン膜5dをプラズマCVD法により厚さ0.8μmで堆積させ、写真製版法、及び、ドライエッチング法により、パターン化して、笠形状部材5を形成した。尚、笠形状部材5は、図示のような形状に留まらず、図60、又は、図61に図示するような形状を取ることも出来る(図79を参照)。
犠牲層除去工程(c)において、残存する上記第1の犠牲層7a、及び、上記第2の犠牲層7bを、ウェットエッチング技術により開口部を通してエッチング除去し、反射手段1を組み合わせ構成する板形状部材2を可動範囲が制限された空隙(G)に配置して、光偏向装置0が完成する。
尚、笠形状部材5が、板形状部材2の外周に対応して複数個の例えば、各笠形状部材5a1、笠形状部材5a2、笠形状部材5a3、笠形状部材5aを所定の間隔(g)を空けて配置することにより、間隔(g)部には上記犠牲層7の上記第1の犠牲層7a、及び、上記第2の犠牲層7bが露出しているので、エッチングがより短時間で終了できる(図80を参照)。
【0085】
図81において、電子写真プロセスで光書き込みを行なって画像を形成する上記画像形成装置200は、図示の矢印(V)方向に回動可能に保持されて形成画像を担持する画像担持体201のドラム形状の感光体と、帯電手段205で均一に帯電された上記画像担持体201のドラム形状の感光体上を、上記1次元光偏向アレー10の複数個の各光偏向装置0を各々独立に駆動する独立駆動手段101とからなる上記光情報処理装置100からなる上記潜像形成手段202で光書き込みを行なって潜像を形成し、上記潜像形成手段202の上記1次元光偏向アレー10の各光偏向装置0によって形成された潜像を現像手段203で顕像化してトナー画像を形成し、上記現像手段203で形成されたトナー画像を転写手段204で被転写体(P)の転写紙に転写して、被転写体(P)の転写紙に転写されたトナー画像を定着手段206で定着した後に、被転写体(P)の転写紙を排紙トレイ207に排紙して収納される。
他方、トナー画像を上記転写手段204で被転写体(P)の転写紙に転写した後の上記画像担持体201のドラム形状の感光体は、クリーニング手段208でクリーニングされて次工程の画像形成に備えるようになっている。
【0086】
上記潜像形成手段202における上記光情報処理装置100は、光源102からの入射光束(R)は第1のレンズシステム103を介して、上記1次元光偏向アレー10の複数個の各光偏向装置0に照射され、上記1次元光偏向アレー10の複数個の各上記光変調装置0は、上記独立駆動手段101により、画像情報に応じて独立して個々の入射光を反射する反射手段1を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材2を、基板3上に固定することなく基板3上の支点部材4上と笠形状の笠形状部材5間に形成される空隙(G)内に変位が自由の状態で配置して、基板3上の支点部材4の周囲に板形状部材2と対向して配置した電極6に電位を付与して、支点部材4上に傾斜して載置する板形状部材2上の反射手段1で入射光の反射方向を変えて光偏向を行なって、反射手段1を通じて入射光束(R)を第2のレンズシステム104を通じて上記画像担持体201のドラム形状の感光体上の表面に、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、結像する。
尚、上記1次元光偏向アレー10は、シリコンウエハーを基板として、上述の製造方法と同様の方法で形成した。
従って、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と光書込み時のON、及び、OFF等の制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制でき、作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置0を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制する光偏向装置0を具備する上記光情報処理装置100、及び、光書き込み時のON/OFF制御が良好で高速動作が可能で、且つ、長期的な信頼性が高く、低電圧で駆動され、S/N比も向上出来る高速で高精彩な画像を形成する上記画像形成装置200を提供することが出来るようになった。
【0087】
図82において、画像を投影して表示する上記画像投影表示装置300は、投影画像データの入射光束(R)の反射方向を変えて光偏向を行なって画像を投影する、上記2次元光偏向アレー20の複数個の各光偏向装置0を各々独立に駆動する上記独立駆動手段101とからなる上記光情報処理装置100からなる光スイッチ手段301の各上記光変調装置0が画像を投影スクリーン302に投影して表示するようになっている。
上記光スイッチ手段301における上記光情報処理装置100は、上記光源102からの入射光束(R)を上記2次元偏向アレー20に配列された複数個の各光偏向装置0に照射して、上記独立駆動手段101により所望の画像のデータを各々の板形状部材2に組み合わせ構成された反射手段1により反射し、投影レンズ105、及び、絞り106を介して上記投影スクリーン302に、構造と画像投影データの表示、即ち、画素の明暗時のON、及び、OFF等の制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、投影する。
カラー表示を行うためには、上記光源102の前に回転カラーホール107を設けたり、又、性能向上のためにマイクロレンズアレー108を用いることも出来る。
尚、上記2次元光偏向アレー20は、シリコンウエハーを基板として、上述の製造方法と同様の方法で形成した。
従って、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と画像投影データの表示、即ち、画素の明暗時のON、及び、OFF等の制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制でき、作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置0を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制する上記光情報処理装置100、及び、画像の明暗制御時のON/OFF制御が良好で高速動作が可能で、且つ、長期的な信頼性が高く、低電圧で駆動され、コントラスト比も向上出来るので、高輝度でありながら高いコントラストを有する高精細な画像を投影して表示する上記画像投影表示装置300を提供することが出来るようになった。
【0088】
図83において、光信号の光路を決定して出力して伝送する光伝送装置400は、光信号を入力する光信号入力手段401と、上記光信号入力手段401からの光信号の入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行なって、各光信号の光路を決定する上記2次元光偏向アレー20の光偏向装置0からなる光スイッチ手段402と、上記光スイッチ手段402からの光信号を出力する光信号出力手段403とからなり、光信号の光路を決定して出力して伝送するようになっている。
上記光スイッチ手段402は、上記光信号入力手段401が有する1個、又は、複数個の信号入力伝達ポート401a、例えば、信号入力伝達ポート401a、信号入力伝達ポート401a、信号入力伝達ポート401aから入力された光情報信号を、2段に配置された各上記2次元光偏向アレー20の2次元光偏向アレー20aと2次元光偏向アレー20bに配列された複数個の各光偏向装置0により1軸、又は、2軸方向に偏向され、所定の出力ポートを選択し決定して、複数の信号出力伝達ポート403a、例えば、信号出力伝達ポート403a、信号出力伝達ポート403a、信号出力伝達ポート403aを有する上記光信号出力手段403から出力して、構造と出力光情報信号のポートを決定する選択等の制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、伝送する。
上記光スイッチ手段402は、上記2次元光偏向アレー20を2段に配置して、光偏向角を大きく取っているが、選択するポートの数等によっては、上記2次元光偏向アレー20は1個でも良い。
又、各上記2次元光偏向アレー20の2次元光偏向アレー20aと2次元光偏向アレー20bに配列された、複数個の各光偏向装置0を同時に、且つ、独立して駆動制御するための制御装置402aの各制御装置402aと各制御装置402aがそれぞれ具備されている。
従って、入射光の反射方向を1軸、又は、2軸方向に変えて光偏向を行う構造と出力光情報信号のポートを決定する選択等の制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制でき、作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置0を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制し、2軸方向の光偏向を容易に正確に行なうことが出来、各ポートの選択の制御が良好で隣接ポートへの迷光、を抑制して、高速な光路切替が可能で、長期的な信頼性が高く、低電圧で駆動され、同一基板上に集積化が出来るので、小型でありながら高速で誤動作の少ない光信号の光路を決定して出力して伝送する上記光伝送装置400を提供することが出来るようになった。
【0089】
図84は本発明の第16の実施形態を示す光偏向装置の主要部を説明するための平面図である。
図85は図84のA−A’線断面図である。
図において、支点部材4は、板形状部材2に接する支点部位がほぼ点で接する四角錐形状であり、上述のように、上記酸化シリコン膜、又は、上記シリコン窒化膜で形成されているから機械的強度が強くなっている。頂部はとがっていても構わないが、先端部を半球状にしておけば、応力集中が弱められる。
【0090】
図86は本発明の第17の実施形態を示す光偏向装置の主要部を説明するための平面図である。
図87は図86のA−A’線断面図である。
図において、支点部材4は板形状部材2に接する支点部位がほぼ点で接する四角錐形状である点では上記と同様であるが、異なる点は、四角錐の底面の大きさが板形状部材2とほぼ同程度の大きさになっている点である。したがって、板形状部材2が静電力を受けて傾斜したとき、板形状部材2の裏面が支点部材4の4つの斜面の内の1つの斜面に密接し、非常に安定した位置を保つ。
【0091】
図88は本発明の第18の実施形態を示す光偏向装置の主要部を説明するための平面図である。
図において、符号6aないし6aは8つの電極を示す。
光偏向装置0は図43に示した実施形態と同様、外形と板形状部材2が円形に構成されている。この実施形態においては、支点部材4が8角錐に形成されている。8つの電極6a〜6aは8角錐の各斜面に対応して設けられていて、互いに絶縁されている。いま仮に、電極6a〜6a=Y/2(V)、電極6a=Y(V)、6a=Y/2(V)、電極6a=0(V)とすることにより、板形状部材2は電極6aと板形状部材2の間、及び、板形状部材2と電極6aの間に働く静電引力に引かれるが、両者の中間に別の斜面があるため、電極6aの側に傾斜する。
【0092】
8角錐の底面の大きさを板形状部材2の大きさにほぼ等しくしておくと、板形状部材2の裏面が傾斜部に当接密着して光の反射方向が安定する。なお、図43では笠形状部材5が円形の基板の全周に設けられているが、本実施形態では離散的に4カ所に設けられている。どちらにする方がよいかは、アレーに構成する場合の全体の構成の都合で決めればよい。
本実施形態においては、支点部材4は多角錐であれば、例えば6角錐でも、7角錐でも、或いは10角錐でも構わない。6角錐の場合は3つの軸方向に変えて光偏向を行うことができる。同様に、8角錐であれば4軸、10角錐であれば5軸方向に変えて光偏向を行うことができる。
更に言えば、支点部材4は円錐形状であっても、電極6を互いに絶縁された例えば8個のように、任意数の複数の電極に分割すれば、板形状部材2の傾斜位置での安定性に不安はあるが、上記と同じ作用をさせることができる。
【0093】
図89は本発明の第19の実施形態を示す光偏向装置の主要部を説明するための平面図である。
図90は図89のA−A’線断面図である。
本実施形態では、板形状部材2が単層の部材で構成される。例えば、アルミニュウムのように、それ自体反射率の高い材質を用いることによって、別途の反射手段を組み合わせることなく、目的の機能を達成することができる。
【0094】
図91は本発明の第20の実施形態を説明するための図であり、図91(a)は光偏向装置の上面図、図91(b)はそのA−A’線の断面図である。なお、煩雑さを避けるため、断面図は、切断端面のみを示す。以下すべての断面図においても同様である。以下の説明においては、これまで板形状部材と呼んでいた部材を単に板状部材と呼ぶ。また、笠形状部材は規制部材と呼ぶことにする。
【0095】
図91において、符号2100は光偏向装置、符号2101は基板、符号2102は規制部材、符号2103は支点部材、符号2104は板状部材をそれぞれ示す。
基板2101の材質は任意でもよいが、微細化のことを考慮するとシリコンあるいはガラス等、一般に半導体プロセスや液晶プロセスにて用いられているものが望ましい。また、本発明においては後述の駆動系回路と同一基板に形成することを考慮すると(100)面方位を有するシリコン基板が望ましい。規制部材2102は、一端にストッパ2102aを有した形状で複数配置されている。規制部材2102の材質としては、アレー化した時の反射領域の面積割合を最大にするために極力薄膜及び省スペースで構成でき、かつ機械的強度が強いことが望まれる。さらに、規制部材2102によるミラー性能の低下を抑制するために、透光性を有するシリコン酸化膜等が望まれるが、乱反射の原因になるおそれがあるときは、規制部材2102の表面に光吸収性の処理をしてもよい。
【0096】
支点部材2103は円錐体であるが、板状部材2104が変位する時の支点となるので、支点となり得る形状であれば、その形は問わない。支点部材2103の少なくとも板状部材2104と接する頂部2103aは導電性である。支点部材2103の材質としては、導電性及び機械的強度を考慮すると、低抵抗な結晶シリコン膜や多結晶シリコン膜、または金属膜、またはタングステンシリサイドやチタンシリサイドなどの金属シリサイド膜、またはシリコン酸化膜やシリコン窒化膜の絶縁膜と金属膜の積層が望ましい。但し、絶縁膜と金属膜の積層の場合には板状部材2104へ電位を付与するために電位供給線と該金属膜を接続する接続孔が必要となる。板状部材2104は、固定端を有していない。板状部材2104は、基板2101と支点部材2103と規制部材2102およびストッパ2102aとで可動範囲が所定の空間に制限されており、後述する製造方法により形成される。板状部材2104は、部材全体が導電体層である。ただし、後述の静電引力を作用させる都合上、上面または裏面、あるいは部材全体、すなわち、少なくとも一部に、導電性の部材からなる導電体層を有していればよい。
【0097】
板状部材2104の裏面側の少なくとも支点部材2103と接する接触部2104aは導電性である。接触部2104aは前述の導電体層と一体でもよいし、別体でもよい。ただし、別体の場合は双方を電気的に接続しておく必要がある。板状部材2104の材質としては、導電性及び機械的強度を考慮すると、アルミニウムやクロムやチタンや金や銀などの金属膜であることが望ましい。板状部材2104の上面2104b全域を光反射領域にする場合には、反射性能の良好なアルミニウム系金属膜であることが好ましい。また、板状部材2104は前述のように可動範囲を制限されており、ほぼ支点部材2103を中心とした傾斜変位のみが起こるように規制部材2102が配置されている。さらに、板状部材2104は、少なくとも光反射領域2104bにおいて平板であることが望まれる。板状部材2104が平板であることにより光反射領域に入射した光束は反射方向をそろえて反射することが可能で、光偏向装置を画像形成装置や画像投影表示装置、あるいは、光伝送装置に用いる場合は光学的特性を維持する上で重要である。なお、板状部材2104の平面性としては曲率半径Raが数メートル以上であることが望まれる。光反射領域2104bの光反射機能に着目するときは単に光反射面と呼ぶことがある。
【0098】
図92は本発明の第21の実施形態を示す図である。図92(a)は光偏向装置の上面図であり、図92(b)はA−A’線の断面図である。
同図において、符号2100〜2104は第20の実施形態と同様である。板状部材2104は、誘電性を有する部材からなる誘電体層2201と導電性を有する部材からなる導電体層2202の積層により構成され、かつ板状部材2104の少なくとも支点部材2103の頂部2103aと接する接触部2104aにおいては導電体層2202のみにより構成されている。導電体層2202は、図91における板状部材2104と同様な構成で良い。誘電体層2201は、比誘電率が3以上と高い誘電性を有することが望ましく、比誘電率が6〜8と高い誘電性を示しかつ機械的強度が大きいシリコン窒化膜により構成されることが望ましい。符号2203は、誘電体層2201に形成された開口部位を示し、接触部2104aが頂部2103aと接触できるようにしている。開口部位2203は、写真製版技術によるパターン化で形成されている。
【0099】
図93は本発明の第22の実施形態を示す図である。図93(a)は光偏向装置の上面図であり、図93(b)はB−B’線の断面図である。
同図において、符号2100〜2104は第20の実施形態と同様である。図において静電引力を作用させるための電極2301が基板2101上に4個設けられている。電極2301は、支点部材2103に構成された導電性の頂部と電気的に分離されている。電極2301の材質としては、第20の実施形態と同様、後述する製造方法により作製可能であることが望ましく、導電性などを考慮すると、アルミニウム系金属や窒化チタンやチタン等の金属が望ましく、板状部材2104に構成された導電体層の少なくとも一部が電極2301と対向している。それにより基板2101に形成された4個の電極2301のいずれかに与える電位と支点部材2103を経由して付与された板状部材2104の電位との電位差に起因した静電引力を、両者の間に働かせ、板状部材2104を目的の方向へ変位(傾斜)させることが出来る。さらに、引き続き支点部材2103を中心として対向する電極2301の他の部分へ任意の電位を印加することにより、板状部材2104の変位方向を高速で変えることが出来る。さらに、4個の電極2301のそれぞれに与える電位を任意に切り替えることにより板状部材2104の傾斜の向きを2軸方向で高精度に制御することが出来る。
【0100】
図94は本発明の第23の実施形態を示す図である。図94(a)は光偏向装置の上面図であり、図94(b)はB−B’線の断面図である。
図95は支点部材の変型例を示す図である。
図94において、2100〜2102は第20の実施形態と同様である。規制部材2102の配置は第20の実施形態と異なるが基本構成は同じである。図94には支点部材2401が示されている。第22の実施形態までは、支点部材2103が単なる円錐体であったが、本実施形態の支点部材2401は、板状部材2104が支点部材2401に線状で接しており、かつ支点部材2401が斜面を有する尾根形状であり、したがって、板状部材2104は、前記接触線で規定される1軸方向のみの変位が得られる。支点部材2401の材質としては第1の実施例における支点部材2103の材質と同様である。
【0101】
図95(a)に示すように、支点部材2401は鉛直断面が点を頂部とする逆V字型形状の角柱を代表とするが、図95(b)に示すように、頂部近傍が丸みを有する形状でも良い。あるいは図95(c)に示すように断面が5角形であっても差し支えない。要は、板状部材2104と線接触できるような稜を持った柱状体であればよい。図94及び図95に示すように、板状部材2104に接する支点部材2401が線状で接していることから、支点部材2401と板状部材2104の接触面積を低減して板状部材2104の静電引力による1軸方向の傾斜変位を安定して起こすことが出来る。支点部材2401が斜面を有する尾根形状であることから、支点部材2401の機械的強度を強めることが出来る。板状部材1204の変位は、基板上面における板状部材の端部との接触部位2402、もしくは、規制部材2102のストッパ2102aの少なくともいずれか一方で規制されるので、板状部材2104と他部材との接触面積を極力低減して板状部材2104の基板その他への固着を抑制できる。
【0102】
図96は本発明の第24の実施形態を示す図である。図96(a)は光偏向装置の上面図であり、図96(b)はB−B’線の断面図である。
同図において、符号2100〜2102及び2104は第20の実施形態と同様で、符号2301は第22の実施形態と同様である。符号601は支点部材、符号602は導電部材、符号603は絶縁性膜をそれぞれ示す。
光偏向装置2100の支点部材601の斜面が、板状部材2104のほぼ全域に対応して形成され、かつ斜面上に静電引力を作用させるための電極2301を4個有する。支点部材601の材質としては、601の斜面上に電極2301が構成されるため、電極間を電気的に分離する目的で絶縁性であることが望ましい。その場合、板状部材2104に電位を付与するために支点部材601の頂部601aは導電性を有する導電部材602で形成することが必要である。さらに導電部材602は電極2301と同一膜により同時に形成されることが望ましい。
【0103】
電極2301全面に接触して板状部材2104を変位させるため、板状部材2104と電極2301間の電気的短絡を防止する目的で、第21の実施形態に示したように板状部材2104の裏面に誘電体層2201を構成するか、もしくは、電極2301上に絶縁性膜603を構成することが必要である。絶縁性膜603は絶縁性を有するシリコン酸化膜、または、シリコン窒化膜であることが望ましい。さらに、絶縁性膜603は板状部材2104への電位付与を妨げないようにするために、導電部材602の部分にて開口していることが必要となる。図において、頂部601aに近づくにつれ電極2301を板状部材2104に近接して設置でき、それにより、より大きな静電引力を発生させることが出来る。言い換えると、より低電圧で板状部材2104の変位を可能とする。この実施例においては斜面に面接触して板状部材2104を変位させることが出来るので、接触時の衝撃を分散させることが出来る。斜面に面接触して板状部材2104を変位させることにより、板の変位方向の制御が容易となる。
【0104】
図97は本発明の第25の実施形態を示す図である。図97(a)は光偏向装置の上面図であり、図97(b)はB−B’線の断面図である。
図97において、符号2100〜2102及び2104は第20の実施形態と同様である。符号2301は第22の実施形態と同様である。符号601及び602は第24の実施形態と同様である。符号604は斜面上の電極2301を部分的に覆う絶縁性膜を示す。
絶縁性膜604の材質に関しては第24の実施形態に示した絶縁性膜603と同様である。電極上の絶縁性膜604は斜面上の任意の部位において多数の凸部位701を有しており、凸部位701への板状部材2104の接触により光偏向方向が規定される。凸部位701は後述の製造方法により、絶縁性膜603のような絶縁性膜をパターン化して形成されることが望ましい。凸部位701の大きさ及び高さ及び間隔は、板状部材2104が弾性変形により凹部位の電極2301へ接触しない範囲で任意の形状として、静電引力と板状部材の剛性の関係から設計することができる。板状部材2104が充分に硬い材質及び厚膜の場合、板状部材は弾性変形しにくいので、凸部位701の大きさは出来る限り小さくし、高さも低くし、間隔は広くすることができる。それにより板状部材2104との接触面積を極力低減することが出来、長期にわたる駆動時の固着の可能性を低減できる。
【0105】
図98は、本発明の第26の実施形態を示す図である。
この実施形態において、符号2100ないし2103は第20の実施形態と同様である。符号2201〜2203は第21の実施形態と同様である。符号800a、800b、800c、800dは、第22の実施形態に示した電極2301と同等の電極を示す。符号801及び802は支点部材2103の構成要素を示し、符号801は絶縁層、符号802は導電層を示す。電極800a、800b、800c、800dは、誘電体層2201と導電体層2202とからなる板状部材2104に対向して配置されており、材質は第22の実施形態に示した電極2301の材質と同様である。支点部材2103の頂部2103aは、絶縁性のシリコン酸化膜を材質とする絶縁層801と導電性の導電層802との積層により構成されている。導電層802は電極800a、800b、800c、800dと同時にパターン化されて形成された同一材質の部材である。
【0106】
図98(a)は、第26の実施形態に用いる光偏向装置2100の上面図である。図98(b)は、初期状態の光偏向装置2100のA−A’線及びB−B’線の断面図である。図98(c−1)は、リセット動作前の光偏向装置2100のA−A’線上及びC−C’線上の断面図である。図98(c−2)は、リセット動作後の光偏向装置2100のA−A’線上及びC−C’線上の断面図である。図98(d)は一方向へ光偏向した場合の光偏向装置2100のA−A’線上及びC−C’線上の断面図である。図98(e)は、偏向軸を変えて光偏向した場合の光偏向装置2100のA−A’線上及びC−C’線上の断面図を示す。
【0107】
図98(b)において、初期の光偏向装置2100は、板状部材2104が固定端を有していないので、その位置は所定空間内では自由である。そこで、図98(b)においては、電極から最も遠ざかる配置を記載した。この図のように、板状部材2104が基板2101上のすべての電極から等距離にあるとき、板状部材2104と頂部2103aとの接触の有無にかかわらず、板状部材2104は中立位置にあると呼ぶことにする。図98(c−1)には、板状部材2104が支点部材2103に接触前を示してある。また、図98(c−2)には、板状部材2104が支点部材2103に接触後を示してある。初期状態から、板状部材2104を支点部材2103に接触させるために、図98(c−1)及び図98(c−2)におけるリセット動作を行う。
【0108】
リセット動作においては、電極800a、800bの電位をX(V)とし、電極800c、800d 、導電層802の電位を0(V)とする。図98(c−1)の支点部材2103に板状部材2104が接触する前は板状部材が電気的に浮いている状態なので、図98(c−1)における下向きの白抜き矢印で示したような静電引力分布が得られる。以降、白抜き矢印の大きさにより静電引力の大小を模式的に示す。すなわち、電気的に浮いている板状部材2104を経由して電極800a、800bと電極800c、800d間に静電引力が作用し、板状部材2104が基板2101表面に垂直に引き寄せられる。その後、図98(c−2)の支点部材2103に板状部材2104が接触した後は、板状部材2104の電位が支点部材2103の電位と等しくなるため、板状部材2104と電極800c、800dの間には反発力は作用しても静電引力は作用せず、板状部材2104と電極800a、800bの間には強い静電引力が作用する。そのため板状部材2104が電極800a、800bのある側に傾斜し、板状部材2104の端部2104cが基板2101と接触して方向を規制されて、特定の方向に反射光が得られる。この状態をリセット状態とし、このときの反射光の方向をリセット方向と呼ぶ。
【0109】
ここで印加される電位X(V)は、板状部材2104と電極との距離及び静電容量などにより決定され、通常の板状部材2104の変位、すなわち、支点部材2103を中心とした傾斜をひき起こす限界の電圧Z(V)よりやや大きい電圧とする。この電圧(実際には後述のように電位差)をこの実施例における所定の電位差と呼ぶ。次に図98(d)において、電極800a、800bの電位を0(V)、 電極800c、800dの電位をX(V)に切り替えることにより、リセット方向と反対方向に高速に板状部材2104が傾斜変位し、板状部材2104の端部2104dが基板2101と接触して方向を規制されて、図のように”光偏向1”の状態になる。
【0110】
それぞれの電極及び導電層に、正負の極性にかかわらず、同じ値のバイアス電圧を加算しても、各部位の間の電位差が同じなので動作は変わらない。すなわち、静電引力は、電位そのもので発生するのではなく、対向する部材の間に存在する電位差で発生するものである。なお、この例では支点部材2103の導電層802には0(V)の電位を与えたままにして、電極側の電位を切り替えているが、板状部材2104の変位を単にリセット方向と反対方向に切り替えるだけなら、電位の与え方を逆の関係にしても同じ動作が得られる。すなわち、電極800a、800bにはX(V)の電位を、電極800c、800dには0(V)の電位を与えたままにしておき、導電層802にリセット時は0(V)の電位を与えて、”光偏向1”の状態への動作時にはX(V)の電位に切り替えるようにしてもよい。板状部材2104は、電極との間に電位差のある側、もしくは電位差のより大きい側に強い静電引力を受けてその方向に傾斜する。すなわち、支点部材2103を中心として対向する電極へ任意の電位を印加し、導電層802の電位をいずれかの電極の電位と等しくすることにより、板状部材2104の変位方向を高速で変えることが出来る。これらのことは以後の実施例においても同様のことがいえる。
【0111】
次に図98(e)において、電極800a、800c及び支点部材802の電位を0(V)、電極800b、800dの電位をX(V)とすることにより、図98(d)の光偏向とは軸を変えて、高速に板状部材2104が傾斜変位し、板状部材2104の端部2104eが基板2101と接触して方向を規制されて、「光偏向2」の状態になる。この軸方向においても、上記のように電極、あるいは、導電層に与える電位を切り替えることで、板状部材2104を逆方向に反転傾斜させ、「光偏向3」の状態にさせることができる。したがって、板状部材2104は初期位置以外に3つの態位をとることができる。すなわち、板状部材2104の傾斜の向きを2軸方向で高精度に制御することが出来る。以上のように、複数の電極に異なる電位を与えることにより、板状部材2104が静電引力により変位し、すなわち、支点を中心に傾斜し、入射する光束の反射方向を初期位置も含めて合計4方向に変えることが出来る。
【0112】
次に、図98(c−1)のリセット動作時のように電気的に浮いている板状部材2104を、異なる電極800a、800b、800c、800d及び導電層802に異なる電位を与えることにより静電引力を発生させて変位させる原理を、図99に簡単に説明する。なお、図99における説明では、板状部材2104上に導電体層2202を配置した効果も含めて記載する。
【0113】
図99は、図98における光偏向装置2100の、リセット動作時のD−D’線の断面図である。
同図において、電極800bには正電位X(V)が印加され、電極800dには0(V)が印加されている。この時両電極800b、800dと電気的に浮いている板状部材2104の間には静電引力が発生し、板状部材2104を電極側に変位させるのであるが、まず電極800bに印加された正電位により電極800bには正電荷が現れる。そして空隙901を介して誘電体層2201に誘電的に負電荷が発生し、同時に導電体層2202において導電的に効率よく負電荷が広がる。逆に言うと、導電体層2202により効率的に誘電体層2201に負電荷を発生させる。
【0114】
この時、誘電体層2201と導電体層2202は電気的に浮いているので、電極800dに空隙901を介して対向する誘電体層2201と導電体層2202には模式的には正電荷が広がる。その正電荷に対応するように、電極800dには模式的に負電荷が発生する。電極800dは実際には0(V)であるが、模式的に考えた場合はそのようになる。それにより電極800d上部に位置する板状部材においても静電引力が発生する。上記説明は一連の流れにて説明したが、必ずしも一連の流れにより起こる訳ではなく、電極800bと800dの電位差がそれらの現象を同時進行的に発生させる。実際には、電気的に浮いている誘電体層2201と導電体層2202は電極800bと電極800dの間の特定の電位となり、該特定の電位と電極800bの電位差による静電引力及び該特定の電位と電極800dの電位差による静電引力が発生することとなる。この特定の電位は空隙901及び電極800b、800dの面積などの構造的要因により定まる。このようにして発生した静電引力により板状部材2104が電極側に傾斜変位する。
【0115】
図100は、本発明の第8の実施例を示す図である。
図100(a)は、図98(a)同様、第26の実施形態に示したものと同じ光偏向装置2100の上面図である。図100(b)は、図98(b)同様、初期状態の光偏向装置2100のA−A’線及びB−B’線の断面図である。図100(c−1)及び図100(c−2)は、図98(c−1)及び図98(c−2)同様、それぞれリセット動作前と後の光偏向装置2100のA−A’線上及びC−C’線上の断面図である。図100(d)は、一方向へ光偏向した場合の光偏向装置2100のA−A’線上及びC−C’線上の断面図である。図100(e)は、偏向軸を変えて光偏向した場合の光偏向装置2100のA−A’線上及びC−C’線上の断面図である。
【0116】
図100(b)の初期状態及び図100(c−1)、図100(c−2)のリセット動作は図98と似ているが電位の与え方は異ならせてある。電極800aの電位をY(V)、電極800c、800d、及び、導電層802の電位を略Y/2 (V)、電極800bの電位を0(V)とする。板状部材2104が支点部材2103に接触していない場合でも、図98で説明したリセット動作とほぼ同様の現象により、板状部材2104は支点部材2103に接触し、導電層802から略Y/2 (V)の電位が与えられる。
電極800c、800dは板状部材と同じ電位が与えられているので両者の間のは静電引力は働かない。電極800bと板状部材、および、板状部材2104と電極800aの間の電位差はともに略Y/2 (V)となり、電極と板状部材との間に強い静電引力が働き、板状部材2104は電極800a、800bのある側に傾斜する。この状態をリセット状態とする。
【0117】
図100(d)において、電極800cの電位をY(V)、電極800a、800b、及び、導電層802の電位を略Y/2 (V)、電極800dの電位を0(V)とすることにより、リセット方向と反対方向に高速に板状部材2104が傾斜変位し、板状部材2104の端部2104dが基板2101と接触して方向を規制されて、”光偏向1”の状態になる。それぞれの電極及び導電層に、正負の極性にかかわりなく、一定値のバイアス電位を加算しても動作は全く同じである。すなわち隣接する2つの電極へ大小異なる任意の電位を印加し、残りの2つの電極と導電層802には前記大小の電位の中間の電位を与えることにより、板状部材2104の変位方向を高速で変えることが出来る。ここで印加される電位Y(V)は、所定値のことであり、次の条件で定める。すなわち、導電層802に与える電位Y/2(V)が板状部材2104の変位を引き起こす限界の電圧Z(V)よりやや大きい電位となるように設定する。
【0118】
次に図100(e)において、電極800bの電位をY(V)、電極800a、800c、及び、導電層802の電位を略Y/2(V)、800dの電位を0(V)とすることにより、図100(d)の光偏向とは軸を変えて、高速に板状部材2104が傾斜変位し、板状部材2104の端部2104eが基板2101と接触して方向を規制されて、「光偏向2」の状態となる。すなわち、板状部材の傾斜の向きを2軸方向で高精度に制御することが出来る。以上のように、複数の電極間に異なる電位を与えることにより、板状部材2104が静電引力により支点を中心に傾斜し、入射する光束の反射方向を変えることが出来る。以下に、光偏向のための静電引力の作用を、図100(d)を例に簡単に述べると、支点部材802を略Y/2(V)とすることにより板状部材の電位も略Y/2(V)となる。そのため、電極800a、800bに対向する部位においては同電位なので静電引力はほぼ作用しない。それに対し、電極800c、800dに対向する部位においては電位差が略Y/2(V)生じるので、それぞれほぼ同等の静電引力 すなわち略Y/2(V)の電位差に対応する静電引力が作用し、板状部材が”光偏向1”方向へ傾斜する。図100(e)においても、軸が異なるが同様に、板状部材が”光偏向2”方向へ傾斜する。本実施例では、最大電位を与える電極と最小電位を与える電極とが、板状部材の変位の軸となる、支点部材の頂部を通る直線に関して同じ側に存在していることが条件である。電極数が4個の場合は隣接する電極が条件になる。
【0119】
次にこの実施例の光偏向方式の利点を、図100(d)を例に説明する。図100(d)において、電極800c、800dにはそれぞれY(V)、0(V)が印加されているので、仮に板状部材2104が傾斜変位の過程で支点部材2103から離れ、板状部材2104が電気的に浮いた状態となっても、図99に記載のように電極800c、800dに対向する板状部材には静電引力を発生させることが出来る。それにより、目的方向への光偏向を達成できる。すなわち、利点として安定した光偏向を可能とすることが出来る。特に、光偏向装置の使い方が図とは上下が逆であった場合において、この効果は顕著に出る。すなわち、このような使い方の場合は、装置に何も電位が印加されていない場合は、常に板状部材2104が支点部材2103から離れた状態になっているからである。
さらに、他の利点は、後述の第29の実施例と組み合わせることによって得られる。
【0120】
次に、図100(f)を用いて、第27の実施形態の変形実施形態を説明する。電極800aの電位をX(V)、電極800b、800cの電位を略X/2(V)、電極800dの電位を0(V)とし、導電層802の電位を0(V)とする。ここで示す電位X(V)は、第26の実施形態で説明したものと同じである。
板状部材2104は、電極800aとの間に大きな電位差があるため強い静電引力が働き、電極800b、800cとの間には小さい電位差があるため弱い静電引力が働き、電極800dとの間には電位差がないため静電引力が働かない。したがって、板状部材2104は図100(f)のように電極800aの方向に傾斜し、板状部材2104の対角線上の端点2104fにおいて基板2101と接する。すなわち、図100(d)、図100(e)に示す変位方向は、いずれもほぼ正方形で示す板状部材2104の辺の方向への傾斜であったが、変形実施形態で得られる傾斜方向は板状部材2104の対角線方向への傾斜である。この実施形態でも、電極への電位の与え方で4通りの傾斜方向が得られる。
【0121】
実施形態27と変型実施形態は同じ構成で、印加電位の組み合わせ方を変えているだけなので、制御次第で光の反射方向を合計8方向に切り替えることができる。第26の実施形態と変型実施形態を組み合わせた制御を行っても同様の効果が得られる。電極800b、800cに与える略X/2(V)という電位は電位0(V)の板状部材2104との間で弱い静電引力を発生させるので、板状部材2104の剛性が小さい場合はたわみが発生するおそれもある。そのような構成の場合は、電極800b、800cに与える電位を小さくするか、導電層802と同電位の0(V)としてもよいし、あるいは、電源から切り離して、電気的に浮いた状態にしてもよい。電極800b、800cに与える電位を、略X/2(V)とするか、電気的に浮いた状態にした場合は、導電層802に与える電位を0(V)からX(V)に切り換えるだけで板状部材2104の傾斜方向を逆側の電極800d側に反転させることができる。以上述べた各例から分かるように、板状部材2104の光反射面の法線を傾けたい場合、その方向にある電極と、板状部材2104との間の電位差が最大になるように与えることが基本である。このときの電極数は1個の場合と2個の場合があるのは既述の通りである。板状電極2104と隣り合う2個の電極との間に、同時に所定の電位差を与える場合は板状電極2104が辺の方向へ傾斜し、1個の電極との間に所定の電位差を与えれば、対角線方向へ傾斜する。
【0122】
次に、光偏向装置2100の形状について述べる。これまでの説明では理解を容易にするために、板状部材がほぼ正方形である場合について説明してきたが、本発明の構成はこれに限定されるものではない。また、基板上の電極の数も最大4個までで説明してきたが、これも4個に限定されるものではない。
図101は、本発明の第28の実施形態を説明する図である。図101において、外形その他が円形に構成されているが、符号2100ないし2104は第1の実施例と同様である。ただし、支点部材2103は板状部材の直径より小さめの底面を有する円錐体状に示されている。符号800aないし800hは、円錐体状の支点部材2103の側面に分割して設けられた8個の電極であり、各電極は相互に絶縁されている。
【0123】
電極800aの電位をX(V)、電極800eの電位を0(V)とし、その他の電極をたとえば電気的に浮いた状態にしておく。支点部材2103の導電層802に仮に0(V)の電位を与えると、板状部材2104は電極800aとの間の大きな電位差により、電極800aの方向に傾斜する。また、導電層802に仮にX(V)の電位を与えると、板状部材2104は逆に電極800eの方向に傾斜する。このようにして、電極及び導電層に与える電位の組合せで、板状部材2104は、電極のあるすべての方向に傾斜させることが可能になる。したがって、光の反射方向として8方向を選択的に設定することができる。上記説明では支点部材2103を円錐体として説明したが、正8角錐体にしても構わない。第23の実施形態と類似の考え方で、動作時に板状部材2104を支点部材の斜面に沿わせるように構成する場合は、円錐体の側面より角錐体の側面の方が傾斜方向の設定が安定する。本実施例では8個の電極で説明したが、その個数は角錐体が作れる範囲で全く自由である。すなわち、第23の実施形態に用いた柱状体の代わりに、上記に示した角錐体を、板状部材のほぼ全域に対応して斜面を有するように設置し、各斜面には互いに絶縁された電極を斜面の数だけ設ければ、任意の数の偏向方向を有する安定した光偏向装置が得られる。
【0124】
第27の実施形態における電位の与え方は、最大電位を与える電極と最小電位を与える電極とが、板状部材の変位の軸となる支点部材の頂部を通る直線に関して同じ側に存在していることが条件であると述べた。電極数が4個の場合は隣接する電極であることが必須であるが、電極数が6個以上の場合は必ずしも隣接している必要がなくなる。すなわち、最大電位を与える電極と最小電位を与える電極との間に、他の電極が1個以上入っていても構わない。電極数が6個の場合は1個しか間に入り得ないが、電極数が8個の場合は、最大2個まで間に入り得る。このように電位を与えると、板状部材の変位は力関係により、電位差を与えた両電極の中間に向けて傾斜する。間に挟まっている電極数が奇数、すなわち、1個もしくは3個なら、板状部材は中間の電極の斜面に接触して安定する。したがって、この、間に挟まった電極には電位を与えないで電気的に浮いた状態にしておけば、最大の電位差が隣接同士の電極にかかることがなく、放電や、短絡のおそれがなく安定した動作が期待できる。
【0125】
図102は本発明の第29の実施形態を説明する図である。この実施形態では、光偏向装置2100を任意の基板上にアレー状に並べて光偏向アレー1200とした。図102(a)は上面図であり、102(b)はA−A’線の断面図である。図では、1次元に並べた状態を示しているが、2次元に並べても構わない。光偏向装置2100を集積化することにより、光偏向装置2100を同時にかつ独立に駆動制御して光偏向させることができる。このように集積化してアレー状に並べたときの個別の光偏向装置2100を便宜上”素子”と呼ぶことがある。
【0126】
次に、第30の実施形態を説明する。この実施形態における光偏向装置は、第20ないし第29の実施形態における光偏向装置2100の板状部材2104の近傍の雰囲気がほぼ真空である。真空状態を形成する方法としては、光偏向装置2100をパッケージ化する際に、真空封止することにより達成可能である。図102にほぼ真空状態とする利点を図98に示す光偏向装置2100を複数1次元アレー化した実施例30の場合を例として説明する。前述のように、図102の光偏向アレー1200の各素子において、2101及び2102は図91と同様である。2201〜2203は図92と同様である。800a、800b、800c、800d及び801、802は図98と同様である。図102(a)は、実施形態30の光偏向アレー1200の上面図である。図102(b)は、各素子が任意の光偏向を行っている場合の光偏向アレー1200のA−A’線の断面図である。
【0127】
図102(b)は板状部材2104の近傍の雰囲気が通常の大気である場合を模式的に示している。一つの素子(左端の素子)の板状部材2104が傾斜変位したことにより板状部材2104直下の大気が圧力を受け、隣接する素子(中央の素子)へ浮力を及ぼすことになる。それにより、隣接する素子は白抜き矢印で示した目的の方向への変位を妨げられることになる。板状部材2104の近傍の雰囲気をほぼ真空にすることにより、光偏向アレー1200においては、上記浮力の影響を抑制することができる。単体の光偏光装置においては、空気中の埃などが入らないように装置周囲をカバーで覆うようにパッケージ化した場合、電圧印加による板状部材2104の急速な傾斜の変化に対して雰囲気の気体が粘性抵抗となり、わずかな応答遅れが生ずることを防ぐことができる。
【0128】
次に、第31の実施形態を説明する。この実施形態の光偏向装置2100は、板状部材2104の近傍の雰囲気が不活性な気体である。不活性な気体としては、窒素、アルゴン、ヘリウム、ネオンなどがあり、その中では比較的安価であり安全な窒素が望ましい。不活性な気体雰囲気を形成する方法としては、光偏向装置2100をパッケージ化する際に、不活性気体中において封止することにより達成可能である。板状部材の近傍の雰囲気を該不活性な気体とする利点は、雰囲気中の水分を低減することができ、それにより、板状部材が傾斜変位し基板へ接触した時の接触点及び支点部材と板状部材の接触点における固着を抑制できることである。ただし、封入気体が板状部材2104の変位に対して粘性抵抗となるおそれがあれば、なるべく低圧にして封入することが望ましい。
【0129】
画像投影表示装置に本発明を適用した実施例を、図103を用いて説明する。図103は本発明の光偏向アレー1200を、画像投影表示装置に適用した例を説明する図である。同図において、符号1300は画像投影表示装置、符号1301は光スイッチ手段、符号1302は光源、符号1303はレンズ、符号1304は絞り、符号1305は回転カラーホール、符号1306はマイクロレンズアレー、符号1310は投影スクリーンをそれぞれ示す。
光偏向装置2100または光偏向アレー1200のいずれも、画像投影データの表示(すなわち画素の明暗表示)装置の光スイッチ手段として用いることができる。したがって、画素の明暗制御(すなわち光スイッチのON/OFF制御)が良好で、迷光(反射方向が乱れた時に発生する隣接素子からの反射光)を抑制でき、高速な動作が可能で、長期的な信頼性が高く、低電圧で駆動でき、かつコントラスト比を向上できる。この実施例では光偏向アレー1200を用いている。
【0130】
画像を投影して表示する画像投影表示装置1300は、投影画像データの入射光束(R)の反射方向を変えて光偏向を行なって画像を投影する光偏向アレー1200からなる光スイッチ手段1301が画像を投影スクリーン1310に投影して表示するようになっている。上記光スイッチ手段1301は、光源1302からの入射光束(R)が光偏向アレー1200に照射され、光偏向アレー1200内の各素子の板状部材2104の光反射面により反射し、投影レンズ1303、及び、絞り1304を介して上記投影スクリーン1310に投影する。カラー表示を行うためには、上記光源1302の前に回転カラーホール1305を設けてもよい。性能向上のためにマイクロレンズアレー1306を用いることも出来る。したがって、入射光の反射方向を変えて光偏向を行う、構造が簡単で応答も速く、使用する入射光(R)の波長が制限されることなく、駆動電圧が低く作動が安定で信頼性も高く、製造工程が少なく低コストの光偏向アレー1200を具備する画像投影表示装置1300を提供することが出来るようになった。
【0131】
次に、画像投影表示装置における光偏向アレー1200の好ましい配置の仕方について説明する。すなわち、光偏向アレー1200の各素子の、板状部材2104の中立位置における光反射面の法線方向が重力の作用方向とほぼ同方向になるように配置する。本発明の光偏向アレー1200を画像投影表示装置に用いる場合、このように配置することにより、基板表面2101に形成された支点部材に板状部材2104が接触する場合に板状部材2104に重力が作用するので、どの電極の方向への板状部材2104の傾斜も、重力が均等に作用し、偏りがない。それにより、板状部材2104が傾斜変位する場合にさらに安定した動作、すなわち、長期信頼性や繰り返し再現性のある動作を得ることが出来る。本発明の光偏向装置2100は偏向ミラーに相当する板状部材が固定端を有していないので、より効果的である。なお、図103は一般的な使い方を説明する図であるため、光偏向アレー1200の各素子の板状部材2104の中立位置の向きについて特定の方向を示していないが、この配置を採用する場合は、必要に応じて、中間に反射鏡などを使えば目的を達成することができる。また、光偏向アレーの代わりに光偏向装置を用いる場合でも、同様に上記配置は有効である。
【0132】
画像形成装置に本発明を適用した実施例を、図104を用いて説明する。
図104は、本発明の光偏向アレー1200を複写機等の画像形成装置に適用した例を示す図である。図において、画像形成装置1400 は、主な機能ブロックとして、ドラム形状の感光体の画像担持体1401と、潜像形成手段1402と、現像手段1403と、転写手段1404と、帯電手段1405と、定着手段1406と、排紙トレイ1407と、クリーニング手段1408とからなる。本実施例は、光偏向アレー1200を潜像形成手段1402に組み込むことから、光書込み時のON/OFF制御が良好で、迷光(反射方向が乱れた時に発生する隣接素子からの反射光)を抑制でき、高速な動作が可能で、長期的な信頼性が高く、低電圧で駆動でき、かつS/N比を向上できる。
【0133】
潜像形成手段1402以外は周知の画像形成手段であるので、それらについての詳細な説明は省略する。画像担持体1401は図示の矢印D方向に回転可能に保持されて形成画像を担持する。潜像形成手段1402は本発明の光偏向アレー1200をライン露光型の露光手段として用いる。
帯電手段1405で均一に帯電された感光体上に、潜像形成手段1402で光書き込みが行なわれて潜像が形成される。すなわち、入力された画像データに対応して光偏向アレー1200の各素子のスイッチングが行われ、形成された潜像は現像手段1403で顕像化されトナー画像が形成され、形成されたトナー画像は転写手段1404で被転写体(P)に転写されて、定着手段1406で定着された後に、被転写体(P)は排紙トレイ1407に排紙されて収納される。他方、トナー画像を上記転写手段1404で被転写体(P)に転写した後の上記画像担持体1401のドラム形状の感光体は、クリーニング手段1408でクリーニングされて次工程の画像形成に備えるようになっている。
【0134】
上記潜像形成手段1402は、光源1402aからの入射光束(R)を、第1のレンズシステム1402bを介してアレー状に複数個配置された素子に照射し、各素子は画像情報に応じて、反射手段としての光偏向アレー1200を経て入射光束(R)を第2のレンズシステム1402cを通して画像担持体1401のドラム形状の感光体上の表面に結像させるようになっている。従って、入射光の反射方向を変える光偏向の構造が簡単で応答も速く、使用する入射光の波長が制限されることなく、駆動電圧が低く、作動が安定で信頼性も高く、製造工程が少なく低コストの光偏向アレー1200を具備する画像形成装置1400を提供することが出来るようになった。
【0135】
光伝送装置に本発明を適用した実施例を、図105を用いて説明する。
図105は2次元的に配列された本発明の光偏向アレー1200を光伝送装置に適用した例を示す図である。
図105(a)は複数のポートから複数のポートへの光電送の例、図105(b)は単数のポートから複数のポートへの光電送の例を示す図である。
図105(a)において、光伝送装置1500は、基本構成として、光信号入力部1502と、1段目の光偏向アレー1503と、その制御装置1504と、2段目の光偏向アレー1505と、その制御装置1506と、光信号出力部1507と、信号伝達ポート1508とを有する。
図105(a)において、光偏向アレー1200を、入力光情報信号の反射方向を変えて出力光情報信号のポートを決定する光スイッチ手段として用いることから、2軸方向の光偏向を容易に正確に行うことが出来、それによりポートの選択の制御が良好で、隣接ポートへの迷光を抑制でき、高速な光路切り替えが可能で、長期的な信頼性が高く、低電圧で駆動でき、かつ同一基板上に集積化できる。
【0136】
光情報信号が複数の信号伝達ポート1508を有する光信号入力部1502から本発明の光伝送装置1501に入力され、それが2段の光偏向アレー1503及び1505により2軸方向に偏向され、出力ポートを選択して複数の信号伝達ポート1508を有する光信号出力部1507から出力される。本実施例においては、光偏向角を大きく取るために1段目の光偏向アレー1503及び2段目の光偏向アレー1505の2段としたが、選択するポートの数によっては、光偏向アレーは1個でも良い。光偏向アレー1503及び1505は、それぞれの光偏向アレー内の各素子を同時にかつ独立して駆動制御するための制御装置1504及び1506をそれぞれ具備している。なお、これまでの説明では分かりやすくするため、信号入力部と信号出力部、あるいは、入力ポートと出力ポートは相異なるものとして説明してきたが、光伝送は、通常、双方向伝送が可能なので、実際は”信号入出力部”、あるいは、”入出力ポート”として、信号入力部と信号出力部、あるいは、入力ポートと出力ポートを区別する必要はない。
【0137】
光伝送装置の他の実施例を図105(b)を用いて説明する。この実施例の構成は、1個の入出力ポート1511を有し、単体の光偏向装置2100と、光偏向装置2100の選択可能な反射光の方向の数だけの入出力ポート1514のみを有した信号入出力部1513を有している。図は実施形態26に示す光偏向装置2100を用いる場合を示しているが、この実施形態では、選択可能な反射光の方向は4方向あるので、一方の入出力ポートとして1個であっても、他方の入出力ポートとしては4個まで設定し得る。図の光路を示す実線は、光偏向装置2100によって1つの入出力ポート1514が選択されている場合を示し、破線は他の入出力ポートに切り換えられた場合を示す。図では反射鏡1512を介して入出力ポート1511と光偏向装置2100とを光学的に接続しているが、反射鏡をやめて、入出力ポート1511を信号入出力部1513の中心部に配置することもでき、構造的には非常に簡単になる。さらに、このような組み合わせの入出力ポートのセットを複数セット一体化して用いることもできる。
【0138】
次に、光偏向装置の製造方法について説明する。
図106は光偏向装置2100または光偏向アレーの製造工程を示す図である。
図106(a)〜(h)に、第26の実施形態に示す光偏向装置2100を例に取り、代表的な工程に沿って示した。図106(a)〜(h)は同実施形態におけるB−B’線上の断面概略図である。
シリコン基板上に複数の区画を形成する。区画の並べ方は1次元でも2次元でもよい。単体の光偏向装置を得る目的であれば、各区画の間に切り離しのためのマージンを設けておく。光偏向アレーを得る目的であれば、各区画は密着させて形成する。
【0139】
図106(a):シリコン基板2101上に、支点部材の誘電層801を構成するシリコン酸化膜1601がプラズマCVD法により堆積され、
その後、面積階調を有するパターンを形成したフォトマスクを用いた写真製版法やレジストパターン形成後熱変形させる写真製版法により、支点部材の形状とほぼ同形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法の手法により目的形状の誘電層801が形成される。
図106(b):電極800b、800d及び支点部材の導電層802を窒化チタン(TiN)膜の薄膜で形成する。図に見えない電極800a、800cもこのとき同時に形成される。
TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により成膜し、写真製版法及びドライエッチング法の手法により複数の電極としてパターン化した。
【0140】
図106(c):非晶質のシリコン膜をスパッタ法により堆積させ、CMP技術を用いて処理時間制御にて平坦化した。
残存する非晶質シリコン膜が第1の犠牲層1602である。なお、犠牲層としては上記膜以外にもポリイミド膜や感光性有機膜(一般的に半導体プロセスにて用いられるレジスト膜)や多結晶シリコン膜などを用いることも出来、平坦化の手法としては、熱処理によるリフロー法やドライエッチングによるエッチバック法を用いることも出来る。
図106(d):板状部材の誘電体層2201としてシリコン窒化膜をプラズマCVD法により堆積させ、写真製版法及びドライエッチング法の手法によりパターン化し、開口部2203及び誘電体層2201を形成した。引き続き光反射領域を兼ねる導電体層2202となるアルミニウム系金属膜をスパッタリング技術により堆積させ、写真製版法及びドライエッチング法によりパターン化した。
【0141】
図106(e):非晶質なシリコン膜をスパッタ法により堆積させ、第2の犠牲層1603とした。やはり犠牲層としては上記シリコン膜以外にもポリイミド膜や感光性有機膜(一般的に半導体プロセスにて用いられるレジスト膜)や多結晶シリコン膜などを用いることも出来る。第2の犠牲層1603は第1の犠牲層1602と同じ材質であることが望まれる。
図106(f):光偏向装置2100を個別に分離し、板状部材の周囲に規制部材2102を配置するために、写真製版法及びドライエッチング法により、第1の犠牲層1602及び第2の犠牲層1603を同時に板状部材よりやや広くパターン化した。
図106(g):規制部材2102を構成するシリコン酸化膜をプラズマCVD法により堆積させ、写真製版法及びドライエッチング法により任意の箇所にパターン化し規制部材2102とした。
図106(h):残存する第1の犠牲層1602及び第2の犠牲層1603を、テトラメチルアンモニウムヒドロキシド(TMAH)液によるウェットエッチング技術により、規制部材2102近傍の開口部を通してエッチング除去し、板状部材2104を可動範囲が制限された空間に配置して、本発明の光偏向装置が完成する。
【0142】
次に、第25の実施例における光偏向装置の製造方法について説明する。この製造方法は、光偏向装置2100の製造方法の一部の工程であり、少なくとも、複数の電極上に誘電性薄膜を堆積させる工程を有し、その薄膜をパターン化し凸部位を形成する工程を有する。
図107は光偏向装置2100の支点部材の斜面の凸部位を形成する工程を示す図である。
図107(a)〜(i)に、代表的な工程にを示した。図107(a)〜(i)はB−B’線上の断面概略図である。
【0143】
図107(a):シリコン基板2101上に、支点部材を構成するシリコン酸化膜がプラズマCVD法により堆積され、その後、面積階調を有するパターンを形成したフォトマスクを用いた写真製版法やレジストパターン形成後熱変形させる写真製版法により、支点部材の形状とほぼ同形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法の手法により目的形状の支点部材601が形成される。
図107(b):電極2301及び支点部材の導電性を有する部材602を窒化チタン(TiN)膜の薄膜で形成する。
TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により成膜し、写真製版法及びドライエッチング法の手法により複数の電極としてパターン化した。
【0144】
図107(c):板状部材と電極の電気的短絡を防止するための絶縁膜603としてシリコン酸化膜がプラズマCVD法により堆積され、その後写真製版法及びドライエッチング法の手法により目的形状の凸部位701が任意の箇所にパターン化される。なお、この時同時に板状部材の電位を付与するために支点部材の頂部近傍が開口される。
図107(d):非晶質のシリコン膜をスパッタ法により堆積させ、CMP技術を用いて処理時間制御にて平坦化した。
残存する非晶質シリコン膜が第1の犠牲層1702である。なお、犠牲層としては上記膜以外にもポリイミド膜や感光性有機膜(一般的に半導体プロセスにて用いられるレジスト膜)や多結晶シリコン膜などを用いることも出来、平坦化の手法としては、熱処理によるリフロー法やドライエッチングによるエッチバック法を用いることも出来る。
【0145】
図107(e):板状部材2104として、光反射領域を兼ねて導電性を有するアルミニウム系金属膜をスパッタリング技術により堆積させ、写真製版法及びドライエッチング法によりパターン化した。
図107(f):非晶質のシリコン膜をスパッタ法により堆積させ、第2の犠牲層1703とした。やはり犠牲層としては上記シリコン膜以外にもポリイミド膜や感光性有機膜(一般的に半導体プロセスにて用いられるレジスト膜)や多結晶シリコン膜などを用いることも出来る。第2の犠牲層1703は第1の犠牲層1702と同じ材質であることが望まれる。
【0146】
図107(g):光偏向装置2100を個別に分離し、板状部材の周囲に規制部材2102を配置するために、写真製版法及びドライエッチング法により、第1の犠牲層1702及び第2の犠牲層1703を同時に板状部材2104よりやや広くパターン化した。
図107(h):規制部材2102を構成するシリコン酸化膜をプラズマCVD法により堆積させ、写真製版法及びドライエッチング法により任意の箇所にパターン化し規制部材2102とした。
図107(i):残存する第1の犠牲層1702及び第2の犠牲層1703を、テトラメチルアンモニウムヒドロキシド(TMAH)液によるウェットエッチング技術により、規制部材2102近傍の開口部を通してエッチング除去し、板状部材を可動範囲が制限された空間に配置して、本発明の光偏向装置が完成する。
【0147】
ここで、支点部材2103の形状について、図108、図109を用いて説明する。
図108(a)は基本となる円錐体を示した図である。この図では、円錐体2103の頂部2103aは鋭い尖端となっている。板状部材2104に静電引力が作用したとき、これを支えるに当たって、両部材の接触点に応力が集中するため、該尖端形状を維持しきれなくなるおそれもあるので、図108(b)のように、頂部2103aを小さな球状に形成すると、安定した作動が得られるので良い。図108(a)、(b)どちらの形状の場合も、図108(c)に示すように、円錐体底面の下に該底面の径と同型の底面を有する円柱とを合体させた形状にするとさらによい。すなわち、支点部材の高さを同じにする場合、円錐体の頂角を大きくすることができるので、頂部の強度的安定性が得られる。このような形状にしても、使用上は全く同じに扱える。
【0148】
頂部を球状にする代わりに、平面にしても構わない。図109(a)のように円錐台形状にして、尖端形状をなくすと、応力集中の心配がさらになくなり、支点部材の破損などの危険性がより少なくなる。図108(c)と同様に、円錐台の底面の下に、該底面の径と同型の底面を有する円柱を合体させた図109(b)のような形状でも構わない。効果は図108(c)の場合とほぼ同様である。頂部2103aの面積があまり大きくならなければ図109(c)のように単なる円柱でも一応使うことはできる。この形状は円錐体の部分は無いが、製造が容易である。
【0149】
図110、111に、図97で示した本発明の第25実施形態における凸部位に対する、変形実施形態を示す。
図110において符号2005は凸部位を示す。凸部位2005は、図97に示した実施例の凸部位701と同様の製造方法により得られ、同様の役割を果たすものであるが、その形状が凸部位701とは異なっている。
凸部位2005は絶縁性膜により、4個の電極2301の上に、複数の帯状に配列されている。帯の幅、間隔、長さなどは、前述したとおり、板状部材2104が弾性変形により凹部位の電極2301へ接触しない範囲で任意の形状として、静電引力と板状部材の剛性の関係から設計することができる。凸部位を形成する斜面は、図97に示す尾根状の頂部を有する柱状体の支点部材に限らず、図101の実施例で述べた、多角錐体の斜面でも良い。
凸部位を形成するためのフォトマスクを作成するに際し、これら凸部位の大きさは解像限界に近いため、図97に示した円形のみの構成では精度が低下しやすい。そこで、本実施例のように、帯状に構成することによって面積的に大きくして、精度を出しやすくする。
【0150】
図111において符号2105は凸部位を示す。凸部位2105は、図97に示した実施例の凸部位701とは一部異なる製造方法により形成されるが、その他に関しては上記凸部位2005と同様である。
凸部位2105は、電極2301の上に載っているのではなく、電極と電極の間に突出しているような構成となっている。
【0151】
凸部位2105は、4個の電極を形成する前に、支点部材601の形成時に、所定のパターンによって形成しておく。支点部材601が絶縁性材料で形成されている場合は、支点部材601自身の表面をパターン化すれば良いが、支点部材601が導電性部材の場合は、支点部材601形成後表面に絶縁性膜を施してから、所定のパターンによって帯状の絶縁性凸部位2105を形成する。電極2301は凸部位2105の周囲の平坦部にのみ形成する。ただし、これとは別に、支点部材601の頂部には、板状部材2104に電位を供給するための導電部材602を形成する必要があるが、工程上は、上記電極2301を形成するときに、一緒に形成することができる。電極2301を凸部位以外のところにだけ設ける理由は、凸部位の下に電極がある場合は、凸部位表面に分極による静電荷が発生して、これが板状部材2104を吸着してしまう虞があるからである。この吸着が強くなると、電極に対する印加電圧が消滅した後も、板状部材2104が凸部位に吸着したまま離れない、いわゆる固着現象が発生することもある。
【0152】
図112は、図101に示した第9の実施例の円形の光偏向装置2100を、最稠密状態に並べて2次元的なアレー状に構成する場合の、規制部材の実施形態を示す図である。図は説明を容易にするため、最小の構成を示してあるが、実用上はこのような構成が縦及び横に多数配列されたものが使用される。
図において、符号2102’は2個の光偏向装置に共有された複合規制部材を示す。一般に円を最稠密に並べた場合、1つの円の周囲には6個の円が等間隔に隙間無く並ぶ。したがって、規制部材2102は基板2101の円周上に等間隔に6個形成すると隣接する基板2101と規制部材の位置を一致させることができる。複数の光偏向装置2100を集積化して一度に作る場合、規制部材の位置が一致していると両者を一体化して複合規制部材2102’として形成することができる。特に図示はしないが、1次元アレーの場合でも隣接する基板同士の規制部材を一体化することができるのは同じである。ただし、1次元の場合の規制部材の個数は、図101に示す4個でも構わない。また、2次元アレーであっても、正方マトリクス状に配列する場合は、基板同士は縦、及び、横に連結されるので、規制部材は図101のように4個が丁度良い。
【0153】
図113は規制部材2102の変形実施形態を説明するための斜視図である。図114は上記変形実施形態の規制部材2102を用いた光偏向装置2100の断面図である。
図113(a)に示す規制部材2102は、直立部2102cの頂部に設けられたストッパ2102aの突出方向とは逆方向に突出した延長基部2102bを直立部2102cの下端部に有する。この規制部材2102は、図91、あるいは、図101に示すような、基板2101の周縁部に規制部材を設ける場合に用いる。図114からも分かるように、板状部材2104の可動範囲として規制される空間は、規制部材2102の延長基部2102bの有る分だけ、基板2101よりも小さい範囲に限定される。このようにする理由は、規制部材2102が基板2101と接合する部分の面積があまり小さいと、わずかな応力にも破損しやすくなる虞があるためで、延長基部2102bによって上記接合面積を大きくすることによって、十分な強度が得られるようになる。
【0154】
図113(b)に示す規制部材2102は、図94に示すような角部における規制部材に関して、上記接合面積を大きくしたものである。使用法、及び、効果は上記と同じなので説明を省略する。
【0155】
図115は規制部材の更なる変形実施形態を示す斜視図である。
図116、117は変形実施形態の規制部材の使用例を示す断面図である。
図において、符号2102’は図112と同様、2個の光偏向装置に共有される複合規制部材を示す。複数の光偏向装置を並べてアレー状にして用いる場合、隣接する光偏向装置の連結位置において、規制部材を共有することができる。図102、あるいは、図112にその例が示されている。図115(a)に示す複合規制部材2102’は、図113に示した規制部材2102の変形であり、2個の規制部材の延長基部同士をつきあわせて連結した形の基部2102’bを有している。逆に言えば、隣接する2個の基板2101の境界線K上に、両基板に等分に跨って横たわる平板状の基部2102’bの対向する両端に、直立部2102’cを設け、両直立部2102’cの頂部に、前記境界線Kと逆方向に突出するストッパ2102aをそれぞれ設けた形となっている。
【0156】
図115(b)に示す複合規制部材2102’は、上記と同様な位置において、図91に示す規制部材2102を2個、ストッパの存在しない側の面を、互いに密着させて連結した形になっており、アルファベットのTの字の形に似ている。この構成では、図115(a)に示す直立部2102’cを2枚合わせた厚さ、または、それ以上の厚さとし、基板2101と接合する部分の面積が大きくしてあるので、特に基部としての形状を持たないが、十分な強度を有することになる。
【0157】
図118ないし図127は、本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
図において、符号2802、2803、2804は第1、第2、第3の犠牲層をそれぞれ示す。
基板2101上に支点部材2103を形成する(図118)。
面方位[100]を有するシリコン基板2101上に、支点部材2103を構成する酸化シリコン膜がプラズマCVD法により堆積され、その後、面積階調を有する、パターンを形成したフォトマスクを用いた写真製版法や、レジストパターン形成後熱変形させる写真製版法により、支点部材2103とほぼ同じ形状の任意の膜厚を有するレジストパターンを形成し、その後、ドライエッチング法の手法により目的形状の支点部材2103が形成された。
なお、上記[100]面方位を有するシリコン基板2101上に2μm程度の酸化シリコン膜を形成し、その上層1μm程度にて同様の加工を行っても良い。
また、支点部材2103の頂部2103aの高さはおよそ1μmである。
【0158】
次いで、複数の電極2301を形成する(図119)。
電極2301は窒化チタン(TiN)の薄膜で形成する。TiN薄膜は、TiをターゲットとしたDCマグネトロンスパッタ法により、厚さ0.01μmに成膜し、写真製版法、及び、ドライエッチング法の手法により、複数の、たとえば、4個の電極2301としてパターン化した。
次に、電極2301の上に保護膜2301aを形成する(図120)。
保護膜2301aとしては、プラズマCVD法により、シリコン窒化膜を膜厚0.2μmで形成した。
【0159】
次に、第1の犠牲層2802を形成する(図121)。
第1の犠牲層2802として、非晶質シリコン膜をスパッタ法により2μm堆積させ、CMP技術を用いて処理時間制御にて、支点部材2103の頂部2103aが露出させ、さらに時間をオーバーさせて平坦化させる。このとき、支点部材2103、及び、保護膜2301aとの研磨選択性の高いCMP条件とすることにより、支点部材2103の頂点近傍では、頂部2103aが残存し、非晶質シリコン膜が薄く存在する。支点部材2103の頂点部が約0.2μm突出した。残存する非晶質シリコン膜が第1の犠牲層2802で有る。第1の犠牲層としては、上記以外にも、ポリイミド膜や感光性有機膜、あるいは、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることもできる。また、平坦化の手法としては、ドライエッチングによるエッチバック法を用いることもできる。
【0160】
次いで、第2の犠牲層2803を形成する(図122)。
非晶質シリコン膜をスパッタ法により支点部材2103の先端部まで含めて0.1μm堆積させた。
【0161】
次に、板状部材2104の誘電体層2201と導電体層2202を形成する(図123)。
誘電体層2201となる基材として、シリコン窒化膜をプラズマCVD法により、厚さ0.2μmで堆積させ、引き続き、光反射領域を兼ねる導電体層2202となる、アルミニウム系金属膜を0.05μmの厚さで、スパッタリング技術により堆積させた。その後、上記金属膜と上記シリコン窒化膜を、それぞれ、写真製版法、及び、ドライエッチング法によりパターン化した。後の工程で、基板2101の周縁部に、規制部材2102を形成するためのスペースを残すため、誘電体層2201は基板2101より小さめに形成する。また、導電体層2202は、誘電体層2201の上に載るように、それより小さめに形成する。
【0162】
次に、第3の犠牲層2804を形成する(図124)。
非晶質のシリコン膜をスパッタ法により、1μm堆積させ、第3の犠牲層2904とした。なお、第3の犠牲層としては、上記以外にも、ポリイミド膜や感光性有機膜、あるいは、一般的に半導体プロセスにて用いられるレジスト膜や多結晶シリコン膜などを用いることもできる。
【0163】
次に、規制部材2102を形成するスペースを作る(図125)。
写真製版法、及び、ドライエッチング法により、第1の犠牲層、第2の犠牲層、および第3に犠牲層を同時にパターン化して、基板2101の周縁部に沿った部分を除去し、規制部材2102用のスペースを形成する。このとき、残す犠牲層の大きさは誘電体層2201が露出しないように誘電体層2201の大きさよりも大きくしておく。
【0164】
次に、規制部材2102を形成する(図126)。
酸化シリコン膜をプラズマCVD法により厚さ0.8μmで堆積させ、写真製版法、及び、ドライエッチング法により、パターン化して、規制部材2102を形成した。なお、規制部材2102は図示の形状に限るものではなく、図113、115に示したように種々の変形があり得る。
【0165】
最後に、犠牲層の除去を行う(図127)。
残存する第1ないし第3の犠牲層、2802、2803および2804を、ウェットエッチング技術により、開口部を通してエッチング除去し、反射面を有した板状部材2104の可動範囲が、基板2101と、規制部材2102と、支点部材2103によって所定の空間に規制された光偏向装置2100が得られた。
【0166】
この製造方法では、板状部材2104の裏面の中央部が、支点部材2103と凹凸の関係で組み合わさるようになり、板状部材2104が電極2301から静電引力を受けて傾斜する場合にも、横滑りが生ぜず、中央部が常に一定した位置にあるので、マイクロミラーデバイスとして用いた場合、反射光の方向制御が精度良くできるようになる。
【0167】
本発明の作用効果を全体的に述べると、ミラーの役割をする板状部材が斜面や基板に接触して傾斜角が決まることから、ミラーの偏向角の制御が容易かつ安定である。支点部材を中心として対向する電極に異なる電位を印加することにより高速に板状部材を反転できるので、応答速度が速くできる。板状部材が固定端を有していないのでねじり変形などの変形を伴わず長期的な劣化が少なく低電圧で駆動できる。半導体製造技術により微細で軽量な板状部材を形成できるので、規制部材との衝突による衝撃が少なく、長期的な劣化が少ない。規制部材や板状部材の構成を任意に決めることにより、反射光のON/OFF比(画像機器におけるS/N比、映像機器におけるコントラスト比)を向上できる。半導体製造技術及び装置を使用できるので低コストにて微細化と集積化が可能である。また、支点部材を中心として複数の電極を配置することにより、1軸及び2軸方向の光偏向が可能である。
【0168】
【発明の効果】
本発明は、以上説明したように構成されているので、請求項1の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を、基板上に固定することなく基板上の支点部材上と笠形状の笠形状部材間に形成される空隙内に変位が自由の状態で配置して、基板上の支点部材の周囲に板形状部材と対向して配置した電極に電位を付与して、支点部材上に傾斜して載置する板形状部材上の反射手段で入射光の反射方向を1軸又は2軸方向に変えて光偏向を行うようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向方法を提供することが出来るようになった。
請求項2の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を、基板上に固定することなく基板上の支点部材上と笠形状の笠形状部材間に形成される空隙内に変位が自由の状態で配置して、基板上の支点部材の周囲に板形状部材と対向して配置した電極に電位を付与して、支点部材上に傾斜して載置する板形状部材上の反射手段で入射光の反射方向を1軸又は2軸方向に変えると共に電極は基板上の支点部材の周囲に板形状部材と対向して配列した複数個の各電極に異なる電位を付与して光偏向を行うようにしたので、板形状部材を目的の方向へ変位、又は、変位方向の高速での変更、傾斜の向きを2軸方向で高精度に制御することも出来るようになり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向方法を提供することが出来るようになった。
【0169】
請求項3の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を、基板上に固定することなく基板上の支点部材上と笠形状の笠形状部材間に形成される空隙内に変位が自由の状態で配置して、基板上の支点部材の周囲に板形状部材と対向して配置した電極に電位を付与して、支点部材上に傾斜して載置する板形状部材上の反射手段で入射光の反射方向を1軸又は2軸方向に変えると共に電極に異なる電位を付与して反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を基板上の斜面に接触して入射光の反射方向を接触する位置で規定して変えて光偏向を行うようにしたので、板形状部材の変位による接触時の衝撃を分散し、変位方向の制御が容易になり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向方法を提供することが出来るようになった。
請求項4の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0170】
請求項5の発明によれば、入射光を反射する反射面が平板で形成された反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、光反射領域に入射した光束は反射方向を揃えて反射することが可能で、反射光を拡散することなく目的の反射方向にのみ光変更が可能となり、光偏向装置を各光情報処理装置、画像形成装置、画像投影表示装置及び光伝送装置等に用いる場合にも隣接素子への影響が抑制され、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項6の発明によれば、入射光を反射するアルミニウム系金属膜で形成された反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、反射手段又は板形状部材の少なくとも一部に形成される導電性領域を兼ねて反射性能も良好であり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で更に低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項7の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に板形状部材は支点部材と接する個所の面形状に湾曲形状の湾曲形状部からなるようにしたので、支点部材に対する板形状部材の位置決めが自発的に容易となり、板形状部材の変位時に板形状部材が笠形状部材5側面に接触することを抑制され、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0171】
請求項8の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状で外形が円形状である板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、板形状部材に組み合わされた反射手段の反射面の反射領域にて反射した反射光が円形となり、光偏向装置を具備する上記画像形成装置や画像投影装置等における1画素を円形状として隣接画素の隙間部をドット状に点在させることにより矩形な板形状部材による矩形な画素形状の隣接画素の隙間部が線状の筋となるのと異なり高精彩な画像が得られ、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項9の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状のシリコン窒化膜からなる板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、板形状部材は高い絶縁破壊電圧を有し且つ長期的な劣化即ち繰り返し変位に伴う疲労に対する耐性も高いので極力軽量及び薄膜化できそれにより高い周波数における駆動が可能な即ち数10kHz以上の高速動作が可能となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が更に低く省資源で、微細化と集積化が更に可能で更に低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0172】
請求項10の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に反射手段又は板形状部材は導電性を有する導電性領域を有して導電性領域が電極と対向するようにしたので、複数の電極間に任意に電位差を生じさせることにより、より低い駆動電圧で板形状部材を目的の方向へ変位、又は、引き続き変位方向を高速で変え、又は、傾斜の向きを2軸方向で高精度に制御することが出来るようになり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が更に低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項11の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する窪み形状の窪み形状部からなる基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、笠形状部材の高さが低くなり、歩留まりが向上して、更に、笠形状部材自体の自立安定につながり機械的強度を高め、製造方法により空隙(G)の高さの制御性を向上でき駆動電圧、及び、リセット電圧の制御性が良くなり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0173】
請求項12の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する(100)面方位を有するシリコン基板からなる基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、同一基板内に複雑な駆動系回路を簡単に形成されて、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で更に低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項13の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に支点部材は板形状部材と接する個所の面形状が円形状部であるようにしたので、板形状部材と支点部材の接触面積を低下させて2軸方向の光偏向が容易となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0174】
請求項14の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に支点部材は板形状部材と点で接する円錐形状部であるようにしたので、支点部材の支点部位の基板側の機械的強度を強めることが出来、且つ、板形状部材の変位は、板形状部材の端部における基板の上面との接触部で規定されるので、接触面積を極力低減して板形状部材の基板3への固着や接触帯電を抑制できる、支点部材が板形状部材と接触する領域において点形状を有することから静電引力に作用する方向に対応した任意の方向へ板形状部材を傾斜変位させることが容易に可能となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が更に低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項15の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に支点部材は板形状部材と接する面が長方形の長方形状部であるようにしたので、支点部材の短尺方向への支点部材傾斜変位、即ち、1軸方向の板形状部材の静電引力による傾斜変位が安定して起こり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0175】
請求項16の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に支点部材は板形状部材と線で接する尾根の形状からなる尾根形状部であるようにしたので、支点部材の尾根形状部と板形状部材の接触面積を低減して1軸方向の板形状部材の静電引力による傾斜変位が安定して起こされ、支点部材の尾根形状部が斜面を有することから支点部材の機械的強度を強め、且つ、板形状部材の変位は板形状部材の端部における基板の上面との接触部で規定されるので、接触面積を極力低減して板形状部材の基板への固着や接触帯電が抑制でき、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項17の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に支点部材は板形状部材と接する斜面を有するようにしたので、電極の全面に接触して板形状部材を変位させることが出来るので接触時の衝撃を分散させ変位方向の制御が容易となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0176】
請求項18の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる酸化シリコン膜又はシリコン窒化膜からなる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、支点部材は機械的強度が強くなり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項19の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に笠形状部材は板形状部材の外周に対応して複数個の各笠形状部材を所定間隔を空けて配置するようにしたので、犠牲層のエッチング除去時に要する時間が短縮化され歩留まりも向上して、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で更に低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0177】
請求項20の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に笠形状部材は板形状部材の外周に対応する全領域に配置するようにしたので、板形状部材が機械的に可動範囲を制限された空隙よりはみ出し故障することを極力低減され、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項21の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の絶縁性を有する絶縁膜からなる笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、板形状部材が笠形状部材に接触した場合でも電気的に浮いている板形状部材の電荷が笠形状部材を経由して移動しないので板形状部材の電位が変動することが抑制され、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0178】
請求項22の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の入射光束に対し透光性を有する透光性膜からなる笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、板形状部材と組み合わせ構成される反射手段の反射面の光反射領域の笠形状部材と重なる領域からの反射光も寄与させることが出来るので1素子における反射光の面積及び光量を増加させることが出来るのでON光量が増大して、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項23の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の酸化シリコン膜からなる笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、笠形状部材が高い絶縁性と高い透光性を両立して微細化と集積化の作製も可能となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が更に可能で更に低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。請求項24の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の入射光束に対し遮光性を有する遮光性膜からなる笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、笠形状部材に入射した光束の望まれない方向への反射が抑制されて目的方向への光偏向の迷光が低下してOFF光量が抑制されて、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0179】
請求項25の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の酸化クロム膜からなる笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置するようにしたので、笠形状部材が高い絶縁性と高い遮光性を両立して微細化と集積化の作製が可能となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が更に安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で更に低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項26の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に電極は複数個の各電極からなり板形状部材は電気的に浮いているようにしたので、板形状部材を目的の方向へ変位させて、引き続き変位方向を高速で変えて、更に任意に電位差を生じさせることにより板形状部材の傾斜の向きを2軸方向で高精度に制御されて、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0180】
請求項27の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に電極は板形状部材の裏面と対向した斜面上に配置した複数個の各電極からななり板形状部材は電気的に浮いているようにしたので、板形状部材の変位をより低電圧で駆動可能で、板形状部材の接触時の衝撃が分散され、板形状部材を目的の方向へ変位させて、引き続き変位方向を高速で変えて、更に任意に電位差を生じさせることにより板形状部材の傾斜の向きを2軸方向で高精度に制御されて、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が更に簡単容易で作動が安定で応答も更に速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が更に低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項28の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に1次元アレー状に配列した1次元光偏向アレーを形成するようにしたので、画像形成装置における潜像形成手段等に使用することが出来る、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
【0181】
請求項29の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置すると共に2次元アレー状に配列した2次元光偏向アレーを形成するようにしたので、画像投影表示装置における光スイッチ手段等に使用することが出来る、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を提供することが出来るようになった。
請求項30の発明によれば、基板上に支点部材と電極を形成し、堆積して平坦化した第1の犠牲層を介して反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、第1の犠牲層と第2の犠牲層を除去するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置の製造方法を提供することが出来るようになった。
請求項31の発明によれば、基板上に支点部材と電極を形成し、支点部材を突出させて堆積して平坦化した第1の犠牲層に重ねて堆積して平坦化した第3の犠牲層を介して反射手段を表面に組み合わせ構成する薄膜で形成された湾曲形状の湾曲形状部からなる板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、第1の犠牲層と第2の犠牲層と第3の犠牲層を除去するようにしたので、静電引力により板形状部材が傾斜変位する時に、板形状部材の変位時に湾曲形状部を中心とた変位が可能となり、板形状部材がずれることを抑制し、言い換えると、支点部材に対する板形状部材の位置決めが自発的に容易となり、板形状部材の変位時に、板形状部材が笠形状部材の側面に接触することを抑制して、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が更に安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置の製造方法を提供することが出来るようになった。
【0182】
請求項32の発明によれば、基板上に窪み形状部と窪み形状部内に斜面からなる支点部材と電極を形成し、堆積して平坦化した第1の犠牲層を介して反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、第1の犠牲層と第2の犠牲層を除去するようにしたので、笠形状部材の高さが低くなり、笠形状部材自体の自立安定につながり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が更に少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置の製造方法を提供することが出来るようになった。
請求項33の発明によれば、基板上に支点部材と電極を形成し、堆積して平坦化した第1の犠牲層を介して反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、笠形状部材の複数個の各笠形状部材間を空けて配置した所定間隔から第1の犠牲層と第2の犠牲層を除去するようにしたので、犠牲層のエッチング作業が短縮化して、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で更に低コストで、使用環境も制限されない光偏向装置の製造方法を提供することが出来るようになった。
【0183】
請求項34の発明によれば、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置した光偏向装置を独立駆動手段で各々独立に駆動するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制する光偏向装置を具備する光情報処理装置を提供することが出来るようになった。
請求項35の発明によれば、回動可能に保持されて形成画像を担持する画像担持体上に光書き込みを行なって潜像を形成する、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置した光偏向装置からなる潜像形成手段の上記光偏向装置によって形成された潜像を顕像化してトナー画像を形成する現像手段で形成されたトナー画像を転写手段によって被転写体に転写して画像を形成するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、光書き込み時のON/OFF制御が良好で高速動作が可能で、且つ、長期的な信頼性が高く、低電圧で駆動され、S/N比も向上出来る高速で高精彩な画像を形成する光偏向装置を具備する画像形成装置を提供することが出来るようになった。
【0184】
請求項36の発明によれば、画像投影データの入射光の反射方向を変えて光偏向を行なって画像を投影して表示する、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置した光偏向装置からなる光スイッチ手段が投影スクリーンに画像を投影して表示するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、画像の明暗制御時のON/OFF制御が良好で高速動作が可能で、且つ、長期的な信頼性が高く、低電圧で駆動され、コントラスト比も向上出来るので、高輝度でありながら高いコントラストを有する高精細な画像を投影して表示する光偏向装置を具備する画像投影表示装置を提供することが出来るようになった。
請求項37の発明によれば、光信号を入力する光信号入力手段からの光信号の入射光の反射方向を1軸又は2軸方向に変えて光偏向を行なって、各光信号の光路を決定する、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置した光偏向装置からなる光スイッチ手段からの光信号を光信号出力手段で出力するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を具備して、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、2軸方向の光偏向を容易に正確に行なうことが出来、各ポートの選択の制御が良好で隣接ポートへの迷光、を抑制して、高速な光路切替が可能で、長期的な信頼性が高く、低電圧で駆動され、同一基板上に集積化が出来るので、小型でありながら高速で誤動作の少ない光信号の光路を決定して出力して伝送する光偏向装置を具備する光伝送装置を提供することが出来るようになった。
【0185】
請求項38の発明によれば、光信号を入力する光信号入力手段からの光信号の入射光の反射方向を1軸又は2軸方向に変えて光偏向を行なって、各光信号の光路を決定する、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を固定することなく載置する基板上の傾斜する板形状部材の変位時の支点となる支点部材上に板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材からなり基板上の支点部材の周囲に板形状部材の裏面と対向して電極を配置した複数段の光偏向装置からなる光スイッチ手段からの光信号を光信号出力手段で出力するようにしたので、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易で作動が安定で応答も速く、使用する入射光の波長が制限されることなく、機械的強度が長期間使用時にも変化と劣化が少なく、駆動電圧が低く省資源で、微細化と集積化が可能で低コストで、使用環境も制限されない光偏向装置を具備して、光偏向角が大きく、構造と制御が簡単容易で、且つ、迷光、反射方向が乱れた時に発生する隣接素子からの反射光を抑制して、2軸方向の光偏向を容易に正確に行なうこと出来、各ポートの選択の制御が良好で隣接ポートへの迷光、を抑制して、高速な光路切替が可能で、長期的な信頼性が高く、低電圧で駆動され、同一基板上に集積化が出来るので、小型でありながら高速で誤動作の少ない光信号の光路を決定して出力して伝送する光偏向装置を具備する光伝送装置を提供することが出来るようになった。
請求項39ないし43の発明によれば、支点部材が板形状部材と接触する領域において点形状を有することから静電引力に作用する方向に対応した任意の方向へ板形状部材を傾斜変位させることが容易に可能となり、入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う構造と制御が簡単容易である。
請求項44ないし57の発明によれば、支点部材が板形状部材と接触する領域において点形状を有することから静電引力に作用する方向に対応した任意の方向へ板形状部材を傾斜変位させることが容易に可能となり、入射光の反射方向を複数軸方向に変えて光偏向を行う構造と制御が簡単容易である。
【0186】
請求項58の発明によれば、板状部材と支点部材の互いに接触する部位が導電性であるため、両者の間の接触抵抗を低減でき、低電圧駆動ができる。支点部材を中心とした板状部材の支点を中心とした傾斜を基板に接触するまで行うことにより、ミラーの偏向角の制御が容易かつ安定とすることができる。また、板状部材が固定端を有していないので、ねじり又は変形が生じるようなヒンジ、あるいは、固定梁部が存在せず、長期的な使用における脆性劣化などの劣化が少なく、かつ変形を生じさせることがない分そのための力が不要なので低電圧で駆動できる。また、規制部材により板状部材を任意の空間にほぼ位置付けできるので、リセット動作時のリセット電圧を極力低くすることが出来る。また、板状部材の電位を、支点部材を経由して任意の電位とすることにより、さらに低電圧で安定に駆動することができる。
【0187】
請求項59の発明によれば、入射する光束を最大限利用できる。
請求項60の発明によれば、板状部材が誘電性を有する部材を有することから、板状部材の電位を誘電性を有する部材に保持することが可能となり、板状部材と支点部材の接触が瞬間的に断たれた場合も板状部材の電位を保持できるので、板状部材の傾斜を安定に駆動できる。
請求項61の発明によれば、板状部材の電位を誘電性を有する部材に保持することが容易となり、かつより効率的に誘電することが可能なので、板状部材の傾斜をより安定に低電圧で駆動できる。
【0188】
請求項62の発明によれば、高い比誘電率を確保しながら高い絶縁性を有しかつ高い機械的強度を有するので、板状部材と電極との電気的短絡を抑制でき、板状部材の変位時の破壊を抑制できる。
請求項63の発明によれば、基板に形成された複数の電極と支点部材の頂部の、導電性の部位とが電気的に分離されていることから、板状部材に与える電位は基板上の電極とは独立したものとすることができる。
【0189】
請求項64の発明によれば、板状部材と電極との間に所定値以上の電位差を与えた場合、両者は少なくともその一部が対向しているので、両者の間に静電引力を働かせることができる。
請求項65の発明によれば、板状部材は支点部材の頂部を接触点として、あらゆる方向に変位が可能である。
【0190】
請求項66の発明によれば、あらゆる方向に変位可能な板状部材を複数の斜面のいずれかに接触させることで変位方向を安定的に確定させることができる。
請求項67の発明によれば、板状部材は支点部材と線接触をなすので、接触線を軸とした2方向のみの変位に限定されるが、簡易な装置に用いる場合安定性が非常に高いので精度のよい装置が得られる。
【0191】
請求項68の発明によれば、電極が漸近的に板状部材に近接しているので、より低い電位差でも静電引力による板状部材の変位を引き起こすことができるようになる。
請求項69の発明によれば、板状部材が変位したとき、板状部材の裏面全体が斜面と接触するので、変位状態が非常に安定するとともに、接触時の衝撃を分散させることができ、それにより長期的な強度劣化の少ない光偏向装置を提供することができる。
【0192】
請求項70の発明によれば、板状部材が斜面に接触状態になったときも、板状部材裏面の全面が斜面に接触するのではなく、凸部位のみに接触するので、接触面積を低減して板状部材の基板への固着を抑制でき、高い信頼性を有する光偏向装置を提供することができる。
請求項71の発明によれば、光偏向アレーにおいては、板状部材の近傍の雰囲気がほぼ真空であることから、板状部材の変位時に雰囲気中の気体による浮力を受けることが無いので、隣接する素子間の気体の流入及び流出の問題を解消でき、素子間における板状部材の変位の相互作用をなくすことが出来る。光偏向装置においては、装置周囲をカバーで覆うようにパッケージ化した場合、電圧印加による板状部材の急速な傾斜の変化に対して雰囲気の気体が粘性抵抗となり、わずかな応答遅れが生ずることを防ぐことができる。
【0193】
請求項72の発明によれば、雰囲気中の水分を低減することができ、それにより、板状部材が傾斜変位し基板へ接触した時の接触点及び支点部材と板状部材の接触点における固着を抑制することができる。
請求項73の発明によれば、支点部材の頂部を挟んで対向する電極に与える電位の最大値と最小値の関係を切り替えるか、あるいは、板状部材に与える電位を最大値側と最小値側の間で切り替えることにより板状部材の変位方向を逆側に切り替えることができる。また、電極に与える最大電位、もしくは、最小電位を隣接その他の電極に切り替えることにより、さらに多くの変位方向を得ることができる。
【0194】
請求項74の発明によれば、特に電極の数を6個以上にすれば、最大電位を与える電極と最小電位を与える電極との間に、電気的に浮いた状態の電極を1個以上挟むことが可能になり、隣接する電極同士の間に高い電位差が生じることがなく、安定した動作が得られる。
請求項75の発明によれば、板状部材の残留応力によるミラー面における反りを容易に抑制できるので目的方向以外への反射光を抑制でき、反射光量のS/N比を高めることができる。
【0195】
請求項76の発明によれば、アルミニウム系金属膜の反射率が良好なことから、ミラーとしての反射性能を高くすることが出来る。さらに、アルミニウム系金属膜の電気抵抗が低いことから、支点部材からの電位の付与を効果的に行うことが出来、低電圧で駆動することが出来る。
【0196】
請求項77の発明によれば、複数の素子を同時にかつ独立に駆動制御して光偏向させることが可能になる。
請求項78の発明によれば、光スイッチのON/OFF制御による画素の明暗制御が良好でかつ迷光を抑制でき、高速な動作が可能で、長期的な信頼性が高く、低電圧で駆動でき、コントラスト比を向上できるので、高輝度でありながら高いコントラスト比を有する高精細な画像投影表示装置を提供することができる。請求項79の発明によれば、基板表面に形成された支点部材に板状部材が接触する場合に板状部材に重力が作用するが、どの電極の方向への板状部材の傾斜も、重力が均等に作用し、偏りがない。それにより、板状部材が傾斜変位する場合にさらに安定した動作、すなわち、長期信頼性や繰り返し再現性のある動作を得ることができる。
【0197】
請求項80の発明によれば、光書込み時のON/OFF制御が良好でかつ迷光を抑制でき、高速な動作が可能で、長期的な信頼性が高く、低電圧で駆動でき、S/N比を向上できるので、高速かつ高精彩な画像形成装置を提供することができる。
請求項81の発明によれば、基板表面に形成された支点部材に板状部材が接触する場合に板状部材に重力が作用するが、どの電極の方向への板状部材の傾斜も、重力が均等に作用し、偏りがない。それにより、板状部材が傾斜変位する場合にさらに安定した動作、すなわち、長期信頼性や繰り返し再現性のある動作を得ることができる。
【0198】
請求項82の発明によれば、1個の入出力ポートに対する複数の入出力ポートの選択の制御が良好で、隣接ポートへの迷光を抑制でき、高速な光路切替が可能で、長期的な信頼性が高く、低電圧で駆動でき、同一基板上に集積化できるので、小型でありながら高速かつ誤動作の少ない光伝送装置を提供することができる。
請求項83の発明によれば、一方の入出力部の複数の入出力ポートと他方の入出力部の複数の入出力ポートの選択の制御が良好で、隣接ポートへの迷光を抑制でき、高速な光路切替が可能で、長期的な信頼性が高く、低電圧で駆動でき、同一基板上に集積化できるので、小型でありながら高速かつ誤動作の少ない光伝送装置を提供することができる。
請求項84の発明によれば、基板表面に形成された支点部材に板状部材が接触する場合に板状部材に重力が作用するが、どの電極の方向への板状部材の傾斜も、重力が均等に作用し、偏りがない。それにより、板状部材が傾斜変位する場合にさらに安定した動作、すなわち、長期信頼性や繰り返し再現性のある動作を得ることができる。
【0199】
請求項85の発明によれば、高歩留及び高集積及び微細な光偏向装置を同一基板上に製造することができる。また、微細に本発明の光偏向装置を製造できることから板状部材の重量を低減でき、それにより待機時に板状部材が規制部材に衝突した場合の衝撃や、動作時に板状部材が基板に接触した場合の衝撃を低減でき、高い信頼性を有する光偏向装置を提供することができる。
請求項86の発明によれば、高歩留及び高集積及び微細な光偏向アレーを同一基板上に製造することができる。また、微細に本発明の光偏向アレーを製造できることから板状部材の重量を低減でき、それにより待機時に板状部材が規制部材に衝突した場合の衝撃や、動作時に板状部材が基板に接触した場合の衝撃を低減でき、高い信頼性を有する光偏向アレーを提供することができる。
【0200】
請求項87の発明によれば、任意の大きさの凸部位を形成できるので、板状部材の吸着力を低減し、固着を抑制した、安定した駆動が可能な光偏向装置を、同一基板上に製造することができる。
【0201】
請求項88の発明によれば、円錐体の頂部が球状であることにより、応力集中が避けられ、安定した作動が得られる。
【0202】
請求項89の発明によれば、円錐体の頂角を大きくすることができ、頂部の強度的安定性が得られる。
【0203】
請求項90の発明によれば、支点部材の頂部に尖端形状がないので応力集中による支点部材の破損などの危険性がより少なくなる。
【0204】
請求項91の発明によれば、頂部の強度的安定性が得られる。
【0205】
請求項92の発明によれば、製造容易な支点部材が得られる。
【0206】
請求項93の発明によれば、板状部材と点接触をする多角錐形状の支点部材を用いる光偏向装置において、板状部材が斜面に接触状態になったときも、板状部材裏面の全面が斜面に接触するのではなく、凸部位のみに接触するので、接触面積を低減して板状部材の基板への固着を抑制でき、高い信頼性を有する光偏向装置を提供することができる。また、凸部位のパターニングに際し、フォトマスクの作成が容易になる。
【0207】
請求項94の発明によれば、板状部材と点接触をする多角錐形状の支点部材を用いる光偏向装置において、支点部材の斜面上の凸部位への板状部材の固着現象を予防することができる。
【0208】
請求項95の発明によれば、板状部材と線接触をする角柱形状の支点部材を用いる光偏向装置において、板状部材が斜面に接触状態になったときも、板状部材裏面の全面が斜面に接触するのではなく、凸部位のみに接触するので、接触面積を低減して板状部材の基板への固着を抑制でき、高い信頼性を有する光偏向装置を提供することができる。また、フォトマスクの作成が容易になるほか、凸部位における帯電の可能性が低くなり、板状部材の固着の確率が低くなる。
【0209】
請求項96の発明によれば、板状部材と線接触をする角柱形状の支点部材を用いる光偏向装置において、支点部材の斜面上の凸部位への板状部材の固着現象を予防することができる。
【0210】
請求項97の発明によれば、入射する光束を最大限利用できる。
【0211】
請求項98の発明によれば、板状部材が誘電性を有する部材を有することから、板状部材の電位を誘電性を有する部材に保持することが可能となり、板状部材と支点部材の接触が瞬間的に断たれた場合も板状部材の電位を保持できるので、板状部材の傾斜を安定に駆動できる。
【0212】
請求項99の発明によれば、板状部材の電位を誘電性を有する部材に保持することが容易となり、かつより効率的に誘電することが可能なので、板状部材の傾斜をより安定に低電圧で駆動できる。
【0213】
請求項100の発明によれば、高い比誘電率を確保しながら高い絶縁性を有しかつ高い機械的強度を有するので、板状部材と電極との電気的短絡を抑制でき、板状部材の変位時の破壊を抑制できる。
【0214】
請求項101の発明によれば、基板に形成された複数の電極と支点部材の頂部の、導電性の部位とが電気的に分離されていることから、板状部材に与える電位は基板上の電極とは独立したものとすることができる。
【0215】
請求項102の発明によれば、板状部材と電極との間に所定値以上の電位差を与えた場合、両者は少なくともその一部が対向しているので、両者の間に静電引力を働かせることができる。
【0216】
請求項103の発明によれば、延長基部によって規制部材が基板と接合する部分の接合面積を大きくすることによって、応力等に対し十分な強度が得られるようになる。
【0217】
請求項104の発明によれば、アレー状に配列した複数の光偏向装置の、互いに隣り合う2個の光偏向装置の規制部材の位置を一致させて、一体化させて形成するので、規制部材の強度の安定化が得られる。
【0218】
請求項105の発明によれば、面積の利用効率が最大になり、すべての隣接する光偏向装置において、互いに規制部材を共有した複合規制部材とすることができる。
【0219】
請求項106の発明によれば、隣接する光偏向装置が無い位置においても、規制部材が基板と接合する接合面積を大きくできるので、規制部材の安定した強度が得られる。
【0220】
請求項107の発明によれば、隣接する2個の光偏向装置において共有される複合規制部材の基部において、基板との接合面積が大きくできるので安定した強度が得られる。
【0221】
請求項108の発明によれば、隣接する2個の光偏向装置において共有される複合規制部材の直立部において、基板との接合面積が大きくできるので安定した強度が得られる。
【0222】
請求項109の発明によれば、高歩留及び高集積及び微細な光偏向装置を同一基板上に製造することができる。また、微細に本発明の光偏向装置を製造できることから板状部材の重量を低減でき、それにより待機時に板状部材が規制部材に衝突した場合の衝撃や、動作時に板状部材が基板に接触した場合の衝撃を低減でき、高い信頼性を有する光偏向装置を提供することができる。
【0223】
請求項110の発明によれば、板状部材の裏面の中央部が、支点部材と凹凸の関係で組み合わさるようになり、板状部材が電極から静電引力を受けて傾斜する場合にも、横滑りが生ぜず、中央部が常に一定した位置にあるので、マイクロミラーデバイスとして用いた場合、反射光の方向制御が精度良くできるようになる。
【0224】
請求項111の発明によれば、高歩留及び高集積及び微細な光偏向アレーを同一基板上に製造することができる。また、微細に本発明の光偏向アレーを製造できることから板状部材の重量を低減でき、それにより待機時に板状部材が規制部材に衝突した場合の衝撃や、動作時に板状部材が基板に接触した場合の衝撃を低減でき、高い信頼性を有する光偏向アレーを提供することができる
【0225】
請求項112の発明によれば、光偏向アレーにおいて、板状部材の裏面の中央部が、支点部材と凹凸の関係で組み合わさるようになり、板状部材が電極から静電引力を受けて傾斜する場合にも、横滑りが生ぜず、中央部が常に一定した位置にあるので、マイクロミラーデバイスとして用いた場合、反射光の方向制御が精度良くできるようになる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光偏向装置を説明する図2のA−A線断面図である。
【図2】図1の平面図である。
【図3】本発明の第1の実施形態を示す光偏向装置の主要部の状態を説明する説明図である。
【図4】本発明の第1の実施形態を示す光偏向装置の主要部の他の状態を説明する説明図である。
【図5】本発明の第2の実施形態を示す光偏向装置の主要部を説明する図6のB−B線断面図である。
【図6】図5の平面図である。
【図7】本発明の第2の実施形態を示す光偏向装置の主要部を説明する説明図である。
【図8】図7の変形例の欠点を説明する図である。
【図9】本発明の第3の実施形態を示す光偏向装置の他の主要部を説明する図10のD−D線断面図である。
【図10】図9の平面図である。
【図11】本発明の第3の実施形態を示す光偏向装置の主要部を説明する拡大斜視図である。
【図12】本発明の第3の実施形態の変形例を示す光偏向装置の主要部を説明する拡大斜視図である。
【図13】本発明の第4の実施形態を示す光偏向装置の主要部を説明する図14のE−E線断面図である。
【図14】図13の平面図である。
【図15】本発明の第4の実施形態を示す光偏向装置の主要部を説明する拡大斜視図である。
【図16】本発明の第4の実施形態の変形例を示す光偏向装置の主要部を説明する拡大斜視図である。
【図17】本発明の第5の実施形態を示す光偏向装置の主要部を説明する図18のF−F線断面図である。
【図18】図17の平面図である。
【図19】本発明の第6の実施形態を示す光偏向装置の主要部を説明する図14のG−G線断面図である。
【図20】図19の平面図である。
【図21】本発明の第6の実施形態を示す光偏向装置の主要部を説明する拡大斜視図である。
【図22】本発明の第6の実施形態の変形例を示す光偏向装置の主要部を説明する拡大斜視図である。
【図23】本発明の第7の実施形態を示す光偏向装置の主要部を説明する図24のH−H線断面図である。
【図24】図23の平面図である。
【図25】本発明の第7の実施形態を示す光偏向装置の主要部を説明する図26のI−I線断面図である。
【図26】図25の平面図である。
【図27】本発明の第7の実施形態を示す光偏向装置の他の主要部を説明する平面図である。
【図28】本発明の第7の実施形態を示す光偏向装置の他の主要部の動作を説明する図27のJ−J線断面図である。
【図29】本発明の第7の実施形態を示す光偏向装置の他の主要部の他の動作を説明する図27のJ−J線断面図である。
【図30】本発明の第7の実施形態を示す光偏向装置の他の主要部の他の動作を説明する図27のK−K線断面図である。
【図31】本発明の第7の実施形態を示す光偏向装置の他の主要部の他の動作を説明する図27のJ−J線断面図である。
【図32】本発明の第7の実施形態を示す光偏向装置の他の主要部の他の動作を説明する図27のK−K線断面図である。
【図33】本発明の第7の実施形態を示す光偏向装置の他の主要部の他の動作を説明する図27のJ−J線断面図である。
【図34】本発明の第7の実施形態を示す光偏向装置の他の主要部の他の動作を説明する図27のK−K線断面図である。
【図35】本発明の第7の実施形態を示す光偏向装置における静電力の発生を説明する図27のL−L線断面図である。
【図36】本発明の第8の実施形態を示す光偏向装置の主要部を説明する図37のP−P線断面図である。
【図37】図36の平面図である。
【図38】本発明の第9の実施形態を示す光偏向装置の主要部を説明する図39のQ−Q線断面図である。
【図39】図38の平面図である。
【図40】本発明の第10の実施形態を示す光偏向装置の主要部を説明する図41のR−R線断面図である。
【図41】図40の平面図である。
【図42】本発明の第11の実施形態を示す光偏向装置の主要部を説明する図43のS−S線断面図である。
【図43】図42の平面図である。
【図44】本発明の第11の実施形態を示す光偏向装置の主要部を説明する説明図である。
【図45】本発明の第12の実施形態を示す光偏向装置の主要部を説明する図46のT−T線断面図である。
【図46】図45の平面図である。
【図47】本発明の第13の実施形態を示す光偏向装置の主要部を説明する図48のU−U線断面図である。
【図48】図47の平面図である。
【図49】本発明の第14の実施形態を示す光偏向装置を説明する説明図である。
【図50】本発明の第15の実施形態を示す光偏向装置を説明する説明図である。
【図51】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図52】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図53】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図54】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図55】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図56】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図57】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図58】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図59】本発明の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図60】本発明の実施形態に示す光偏向装置の製造方法の他の主要部の工程を説明する説明図である。
【図61】本発明の実施形態に示す光偏向装置の製造方法の他の主要部の工程を説明する説明図である。
【図62】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図63】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図64】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図65】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図66】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図67】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図68】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図69】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図70】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図71】本発明の他の実施形態に示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図72】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図73】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図74】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図75】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図76】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図77】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図78】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図79】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図80】本発明の更に他の実施形態を示す光偏向装置の製造方法の主要部の工程を説明する説明図である。
【図81】本発明の実施形態に示す光偏向装置を具備する画像形成装置を説明する説明図である。
【図82】本発明の実施形態に示す光偏向装置を具備する画像投影表示装置を説明する説明図である。
【図83】本発明の実施形態に示す光偏向装置を具備する光伝送装置を説明する説明図である。
【図84】本発明の第16の実施形態を示す光偏向装置の主要部を説明するための平面図である。
【図85】図84のA−A’線断面図である。
【図86】本発明の第17の実施形態を示す光偏向装置の主要部を説明するための平面図である。
【図87】図86のA−A’線断面図である。
【図88】本発明の第18の実施形態を示す光偏向装置の主要部を説明するための平面図である。
【図89】本発明の第19の実施形態を示す光偏向装置の主要部を説明するための平面図である。
【図90】図89のA−A’線断面図である。
【図91】本発明の第20の実施形態を説明する図である。
【図92】本発明の第21の実施形態を説明する図である。
【図93】本発明の第22の実施形態を説明する図である。
【図94】本発明の第23の実施形態を説明する図である。
【図95】第23の実施形態に適用する支点部材の変形例を示す図である。
【図96】本発明の第24の実施形態を説明する図である。
【図97】本発明の第25の実施形態をを説明する図である。
【図98】本発明の第26の実施形態をを説明する図である。
【図99】図98における光偏向装置2100の、リセット動作時のD−D’線の断面図である。
【図100】本発明の第27の実施形態を説明する図である。
【図101】本発明の第28の実施形態を説明する図である。
【図102】本発明の第29の実施形態を説明する図である。
【図103】本発明の光偏向アレー1200を、画像投影表示装置に適用した例を説明する図である。
【図104】本発明の光偏向アレー1200を複写機等の画像形成装置に適用した例を示す図である。
【図105】本発明の光偏向アレー1200を光伝送装置に適用した例を示す図である。
【図106】本発明の光偏向装置2100または光偏向アレー1200の製造工程を示す図である。
【図107】第24の実施例の斜面の凸部位を形成する工程を示す図である。
【図108】支点部材の形状について説明するための図である。
【図109】支点部材の形状について説明するための図である。
【図110】本発明の第25実施形態における凸部位に対する、変形実施形態を示す図である。
【図111】本発明の第25実施形態における凸部位に対する、変形実施形態を示す図である。
【図112】規制部材の実施形態を示す図である。
【図113】規制部材の変形実施形態を説明するための斜視図である。
【図114】変形実施形態の規制部材を用いた光偏向装置の断面図である。
【図115】規制部材の更なる変形実施形態を示す斜視図である。
【図116】変形実施形態の規制部材の使用例を示す断面図である。
【図117】変形実施形態の規制部材の使用例を示す断面図である。
【図118】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図119】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図120】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図121】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図122】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図123】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図124】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図125】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図126】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【図127】本発明の他の実施形態に係わる光偏向装置の製造手順を示す図である。
【符号の説明】
0 光偏向装置
1 反射手段
1a 反射面
1b アルミニウム系金属膜
2 板形状部材
2a 湾曲形状部
2b 導電性領域
2c シリコン窒化膜
2d 接触部
3 基板
3a 窪み形状部
3b (100)面方位を有するシリコン基板
3c 絶縁膜
4 支点部材
4a 円形状部
4a 円柱形状
4b 円錐形状部
4b 点形状
4b 丸形状
4c 長方形状部
4d,4d,4d,4d,4d 斜面
4e 尾根形状部
4e 線形状
4e 丸形状
4f 酸化シリコン膜
4g シリコン窒化膜
5 笠形状部材
5a1〜n 笠形状部材
5b 絶縁膜
5c 透光性膜
5d 酸化シリコン膜
5e 遮光性膜
5f 酸化クロム膜
6,6a,6a,6a,6a 電極
6b 保護膜
7 犠牲層
7a 第1の犠牲層
7b 第2の犠牲層
7c 第3の犠牲層
10 1次元光偏向アレー
20,20a,20b 2次元光偏向アレー
100 光情報処理装置
101 独立駆動手段
102 光源
103 第1のレンズシステム
104 第2のレンズシステム
105 投影レンズ
106 絞り
107 回転カラーホール
108 マイクロレンズアレー
200 画像形成装置
201 画像担持体
202 潜像形成手段
203 現像手段
204 転写手段
205 帯電手段
206 定着手段
207 排紙トレイ
208 クリーニング手段
300 画像投影表示装置
301 光スイッチ手段
302 投影スクリーン
400 光伝送装置
401 光信号入力手段
401a,401a,401a 信号入力伝達ポート
402 光スイッチ手段
402a,402a 制御装置
403 光信号出力手段
403a,403a,403a 信号出力伝達ポート
(a) 基板上支点部材形成工程
(a) 電極形成工程
(a) 保護膜形成工程
(a) 第1の犠牲層形成工程
(a) 反射手段と板形状部材形成工程
(a) 第2の犠牲層形成工程
(a) 笠形状部材パターン化工程
(a) 笠形状部材形成工程
(a) 犠牲層除去工程
(b) 基板上支点部材形成工程
(b) 電極形成工程
(b) 保護膜形成工程
(b) 第1の犠牲層形成工程
(b) 第3の犠牲層形成工程
(b) 反射手段と板形状部材形成工程
(b) 第2の犠牲層形成工程
(b) 笠形状部材パターン化工程
(b) 笠形状部材形成工程
(b10) 犠牲層除去工程
(c) 基板上窪み形状部と支点部材形成工程
(c) 電極形成工程
(c) 保護膜形成工程
(c) 第1の犠牲層形成工程
(c) 反射手段と板形状部材形成工程
(c) 第2の犠牲層形成工程
(c) 笠形状部材パターン化工程
(c) 笠形状部材形成工程
(c) 犠牲層除去工程
601   支点部材
602   導電部材
603   絶縁性膜
701   凸部位
800   電極
801   絶縁層
802   導電層
1200   光偏向アレー
1300   画像投影表示装置
1301   光スイッチ手段
1400   画像形成装置
1402   潜像形成手段
1500   光伝送装置
1502   光信号入力部
1503   1段目の光偏向アレー
1505   2段目の光偏向アレー
1507   光信号出力部
2100   光偏向装置
2101   基板
2102   規制部材
2103   支点部材
2104   板状部材
2201   誘電体層
2202   導電体層
2301   電極
2401   支点部材
2402   接触部位
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a light deflecting method, a light deflecting device, a method of manufacturing the light deflecting device, an optical information processing device including the light deflecting device, an image forming apparatus including the light deflecting device, and the light deflecting device. More specifically, the present invention relates to an image projection display device and an optical transmission device including the optical deflection device, and more particularly, to a light deflection method for changing the reflection direction of incident light to one axis or two axes to perform light deflection, and a reflection direction of incident light. Deflecting device that performs optical deflection by changing the direction of light into one or two axes, a method for manufacturing the optical deflecting device, an optical information processing device that includes the optical deflecting device, and that performs optical information processing, and an optical device that uses the optical deflecting device. Image forming apparatus for forming an image by performing optical writing in an electrophotographic process including a deflecting device, image projection display device for projecting and displaying an image including the optical deflecting device, and optical deflecting thereof An optical transmission device to determine the optical path and transmitting the output of the optical signal having a location.
The present invention relates to a configuration of a light deflecting device that changes a direction of outgoing light with respect to incident light. As an application field, there are an image device such as an optical writing device in an electrophotographic process, a video device such as a projector, and an optical communication / optical connection device that replaces electric signal transmission.
[0002]
[Prior art]
In an optical deflecting device that performs optical deflection by changing the reflection direction of incident light of an optical switch device using electrostatic force, a device that bends the cantilever with electrostatic force to change the reflection direction of the incident light, and switches. The light deflection system using the same is already known. In addition, an element that optically switches a diffraction grating by driving it by electrostatic force is also known (for example, see Patent Literature 1, Patent Literature 2, Patent Literature 3, Non-Patent Literature 1, and Non-Patent Literature 2).
Further, an image forming apparatus using an optical deflection system in which "DMDs" generally called digital micromirror devices are arranged one-dimensionally or two-dimensionally is also known (for example, see Patent Document 4).
Further, as the element structure of “DMD” generally called a digital micromirror device, in a torsion beam type or a cantilever beam type, the mirror portion is used at an angle, but the mirror portion is fixed at at least one or more places. The structure has an end.
However, a DMD generally called an optical switch using a cantilever or a digital micromirror device of a cantilever beam type (for example, see Non-Patent Document 3) has difficulty in ensuring beam stability and has a high response speed. slow. In the torsion beam type or cantilever type digital micromirror device shown in Non-Patent Document 3, the mirror portion is used in an inclined manner as in the present invention, but unlike the optical deflector of the present invention, the mirror portion has at least one portion. It has a structure having the above fixed ends.
In a DMD generally called a torsion beam type digital micromirror device, the mechanical strength of the hinge portion of the torsion beam changes during long-term use and deteriorates. In an element that optically switches a diffraction grating by driving it with an electrostatic force, the wavelength of incident light used is limited.
In addition, an element that performs high-speed light deflection by bending a beam fixed at both ends into a cylindrical shape is also known (for example, see Patent Document 5). However, since there is a parallel gap between the electrodes and the fixed beam at both ends is bent on the cylinder by the electrostatic attraction, it can be deformed at high speed and the response speed can be increased, but both ends are Since it is fixed, the driving voltage is higher than that of a cantilever or the like.
[0003]
Then, from the inventor of the same applicant, the electrostatic force applied between the electrodes via the parallel or non-parallel gap deforms the fixed beam at both ends where the mirror is formed, and contacts the opposing substrate via the gap. In a light deflecting device that deflects light by changing the reflection direction of an incident light beam incident on a light reflecting surface, the light deflecting device has a depression on an arbitrary substrate, and at least two or more depressions are present in arbitrary positions of the depression. And a beam having a light reflection area provided on the upper surface of a substrate opposed to the depression and the gap, and the beam is provided. In addition, there has been proposed an optical modulation device in which the light reflection region is electrically floating, that is, is not grounded and is not connected to an arbitrary potential.
However, similarly, the beam stability is ensured and the response speed is high, but the drive voltage is higher than that of a cantilever beam or the like because of the fixed-end beam type.
Further, a two-axis movable mirror and a display device using the same are also known (for example, see Patent Document 6). The above-described two-axis movable mirror, and a display device using the same, fix a pick-up-shaped mirror plate made of a magnetic metal to a mirror base on which a permanent magnet is arranged by a magnetic force with a needle-shaped pivot, A biaxial movable mirror that applies a different voltage to a plurality of electrodes formed on a mirror base to generate a potential difference due to static electricity on the mirror plate, and rotates the mirror plate around a needle-like tip of a pivot so as to approach the electrode direction. Optical scanning mirror. However, the above-described two-axis movable mirror and the display device using the same have a complicated structure in which the mirror plate is fixed to the mirror base at the pivot part by a magnetic force, and is completely free. Not a mirror plate.
Further, since the mirror plate is made of a magnetic metal, and a permanent magnet is provided below the mirror base and a magnetic yoke is arranged so as to surround the mirror base, it is difficult to miniaturize the device. There is a disadvantage that it is not possible to form an array in which a plurality of devices are arranged and individually operated. In addition, since the device is made of a magnetic material, it is easily affected by the magnetic force of the installation environment of the device, so that the use environment is restricted.
On the other hand, in the present invention, since the magnetic material is not actively used, it is hardly affected by the magnetic field.
Therefore, a conventional light deflection method for changing the reflection direction of incident light to one axis or two axes to perform light deflection, a light deflection device, a method of manufacturing the light deflection device, and the light deflection device are described. The optical information processing device provided with the light deflecting device, the image forming device provided with the light deflecting device, the image projection display device provided with the light deflecting device, and the optical transmission device provided with the light deflecting device are provided with incident light. The structure and the control are complicated, the operation is unstable, the response is slow, the wavelength of the incident light to be used is restricted, and the mechanical strength is extended It has been changed and deteriorated, the driving voltage is high and a large amount of energy is required, and miniaturization and integration are difficult, the cost is high, and the use environment is limited.
[0004]
[Patent Document 1]
Japanese Patent No. 2941952
[Patent Document 2]
Japanese Patent No. 3016871
[Patent Document 3]
Japanese Patent Publication No. Hei 10-510374
[Patent Document 4]
JP-A-6-138403
[Patent Document 5]
JP-A-2000-2842
[Patent Document 6]
JP-A-8-220455
[Non-patent document 1]
K. E. FIG. Petersen, "Applied Physics Letters", 1977, Vol. 31, No. 8, pp521 to pp523
[Non-patent document 2]
D. M. Bloom, "Optics Letters", Vol. 7, No. 9, pp688 to pp690
[Non-Patent Document 3]
L. J. Hornbeck, "Proc. SPIE", 1989, Vol. 1150, pp. 86-102
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve such a problem. That is, a structure in which the direction of reflection of incident light is changed to one axis or two axes to perform light deflection is simple and easy to control, the operation is stable and the response is fast, and the wavelength of the incident light to be used is not restricted, Deflecting method, optical deflecting device, and optical deflecting method, which have less change and deterioration in target strength even after long-term use, low drive voltage, resource saving, miniaturization and integration, low cost, and unlimited use environment Device manufacturing method, optical information processing apparatus having the optical deflection device, image forming apparatus having the optical deflection device, image projection display device having the optical deflection device, and optical transmission device having the optical deflection device The purpose is to provide.
[0006]
Briefly stated, the object of the present invention is to easily and stably control the deflection angle of a mirror, to have a fast response speed, to reduce long-term deterioration, to drive at a lower voltage, and to use the ON / OFF ratio of reflected light (image An optical deflecting device that can improve the S / N ratio of the device and the contrast ratio of the video device), can be miniaturized and integrated at low cost, and can deflect light in one or two axes. An object of the present invention is to provide an optical deflection array, an image forming apparatus using the same, an image projection display apparatus, an optical transmission apparatus, and a method of manufacturing the optical deflection apparatus.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a light deflection method for changing the reflection direction of incident light to one axis or two axes and performing light deflection, a reflecting means for reflecting the incident light is provided on a surface. A plate-shaped plate-shaped member formed of a combination of thin films can be freely displaced in a gap formed between a fulcrum member on the substrate and a cap-shaped cap-shaped member without being fixed on the substrate. The potential is applied to an electrode arranged opposite to the plate-shaped member around the fulcrum member on the substrate, and the plate-shaped member is inclined and placed on the fulcrum member. The most main feature is that it is a light deflection method for changing the reflection direction of incident light by the above-mentioned reflection means to perform light deflection.
According to a second aspect of the present invention, in the optical deflecting method according to the first aspect, the electrodes apply different potentials to a plurality of electrodes arranged opposite to the plate-shaped member around the fulcrum member on the substrate. The main feature is that the method is a light deflection method for performing light deflection.
According to a third aspect of the present invention, in the optical deflecting method according to the first or second aspect, different potentials are applied to the electrodes, and the plate-shaped plate-shaped member formed of a thin film configured to combine the reflecting means on the surface is provided. The main feature is that the method is a light deflection method of performing light deflection by defining and changing a reflection direction of incident light at a contact position by contacting an inclined surface on a substrate.
[0008]
According to a fourth aspect of the present invention, in a light deflecting device for performing light deflection by changing the direction of reflection of incident light to one axis or two axes, a reflecting means for reflecting incident light and the reflecting means are combined on a surface. A plate-shaped member formed of a thin film, a substrate on which the plate-shaped member is mounted without being fixed, a fulcrum member serving as a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate, A cap-shaped cap-shaped member forming a gap in which the plate-shaped member is displaced freely on the fulcrum member, and a back surface of the plate-shaped member around the fulcrum member on the substrate around the fulcrum member. The most main feature is that it is a light deflecting device including electrodes arranged.
According to a fifth aspect of the present invention, in the optical deflecting device according to the fourth aspect, the main feature is that the reflecting surface of the reflecting means is an optical deflecting device formed of a flat plate.
According to a sixth aspect of the present invention, in the optical deflecting device according to the fourth or fifth aspect, the main feature is that the reflecting means is an optical deflecting device formed of an aluminum-based metal film.
According to a seventh aspect of the present invention, in the optical deflecting device according to the fourth, fifth or sixth aspect, the plate-shaped member comprises a curved portion having a curved shape in a surface shape in contact with the fulcrum member. It is the main feature.
According to an eighth aspect of the present invention, in the optical deflecting device according to the fourth, fifth, sixth or seventh aspect, the plate-shaped member is a light deflecting device having a circular outer shape. A ninth aspect of the present invention is the optical deflecting device according to the fourth, fifth, sixth, seventh or eighth aspect, wherein the plate-shaped member is an optical deflecting device made of a silicon nitride film.
According to a tenth aspect of the present invention, in the optical deflecting device according to the fourth, fifth, sixth, seventh or ninth aspect, the reflecting means or the plate-shaped member has a conductive region having conductivity. The main feature is that the region is a light deflecting device facing the electrode.
According to an eleventh aspect of the present invention, in the optical deflecting device according to the fourth, fifth, sixth, seventh, eighth, ninth, or tenth aspect, the substrate is an optical deflecting device having a concave portion having a concave shape. Characteristics.
[0009]
According to a twelfth aspect of the present invention, in the optical deflector according to the fourth, fifth, sixth, seventh, eighth, ninth, tenth, or eleventh aspect, the substrate is a silicon substrate having a (100) plane orientation. Is the main feature.
According to a thirteenth aspect of the present invention, in the optical deflecting device according to the fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh or twelfth aspect, the fulcrum member has a circular surface shape at a position where the fulcrum member contacts the plate-shaped member. The main feature is that it is a light deflecting device that is a shaped part.
According to a fourteenth aspect of the present invention, in the light deflecting device according to the fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh or twelfth aspect, the fulcrum member is a conical portion that contacts the plate-shaped member at a point. The main feature is that it is a certain light deflecting device.
According to a fifteenth aspect of the present invention, in the optical deflecting device according to the fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh or twelfth aspect, the fulcrum member has a rectangular shape whose surface in contact with the plate-shaped member is rectangular. The main feature is that the optical deflecting device is a part.
According to a sixteenth aspect of the present invention, in the light deflecting device according to the fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh or twelfth aspect, the fulcrum member is formed from a ridge shape in contact with the plate-shaped member by a line. The main feature is that the light deflecting device is a ridge-shaped portion.
According to a seventeenth aspect of the present invention, in the optical deflecting device according to the fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh or twelfth aspect, the fulcrum member has an inclined surface in contact with the plate-shaped member. Is the main feature.
An eighteenth aspect of the present invention is the optical deflector according to any one of the fourth to seventeenth aspects, wherein the fulcrum member is an optical deflector made of a silicon oxide film or a silicon nitride film. I do.
According to a nineteenth aspect of the present invention, in the optical deflecting device according to any one of the fourth to eighteenth aspects, the cap-shaped member comprises a plurality of cap-shaped members arranged at predetermined intervals corresponding to the outer periphery of the plate-shaped member. The main feature of the present invention is that the light deflecting device is arranged with a space.
[0010]
According to a twentieth aspect of the present invention, in the optical deflector according to any one of the fourth to eighteenth aspects, the cap-shaped member is an optical deflector arranged in an entire area corresponding to the outer periphery of the plate-shaped member. Is the main feature.
According to a twenty-first aspect of the present invention, in the optical deflector according to any one of the fourth to twentieth aspects, the hat-shaped member is an optical deflector made of an insulating film having an insulating property. I do.
According to a twenty-second aspect of the present invention, in the optical deflecting device according to any one of the fourth to twenty-first aspects, the shade member is a light deflecting device comprising a light-transmitting film having a light-transmitting property with respect to an incident light beam. The main feature is that there is.
According to a twenty-third aspect of the present invention, in the optical deflector according to any one of the fourth to twenty-second aspects, the cap-shaped member is an optical deflector made of a silicon oxide film.
According to a twenty-fourth aspect of the present invention, in the optical deflector according to any one of the fourth to twenty-third aspects, the shade-shaped member is a light deflector made of a light-shielding film having a light-shielding property for an incident light beam. Is the main feature.
According to a twenty-fifth aspect of the present invention, in the optical deflector according to any one of the fourth to twenty-fourth aspects, the cap-shaped member is a light deflector made of a chromium oxide film.
According to a twenty-sixth aspect of the present invention, in the optical deflector according to any one of the fourth to twenty-fifth aspects, the electrode comprises a plurality of electrodes, and the plate-shaped member is electrically floating. Is the main feature.
According to a twenty-seventh aspect of the present invention, in the optical deflecting device according to the twenty-sixth aspect, the plurality of electrodes are optical deflecting devices arranged on a slope facing the back surface of the plate-shaped member. I do.
According to a twenty-eighth aspect of the present invention, there is provided the optical deflecting device according to any one of the fourth to twenty-seventh aspects, wherein the one-dimensional optical deflecting array is arranged in a one-dimensional array. Is the main feature.
According to a twenty-ninth aspect of the present invention, in the plurality of light deflecting devices according to any one of the fourth to twenty-eighth aspects, the two-dimensional light deflecting array arranged in a two-dimensional array is formed. It is the main feature.
[0011]
30. The method according to claim 30, wherein the light is deflected by changing the reflection direction of the incident light to one axis or two axes. A fulcrum member and an electrode are formed on the first sacrifice layer, and a plate-shaped plate-shaped member formed of a thin film constituted by combining the above-mentioned reflecting means on the surface is formed via a first sacrificial layer deposited and planarized. A method of manufacturing an optical deflection device for removing a first sacrificial layer and a second sacrificial layer after patterning a shade-shaped member at a predetermined position where the second sacrificial layer is patterned. The most important feature.
According to a thirty-first aspect of the present invention, in the method of manufacturing a light deflecting device according to the thirty-first aspect, a fulcrum member and an electrode are formed on a substrate, and the fulcrum member is protruded, deposited and planarized. A plate-shaped member comprising a curved portion having a curved shape formed of a thin film constituted by combining the above-mentioned reflecting means on the surface through a third sacrificial layer deposited and flattened on the layer is further formed. An optical deflecting device that removes the first sacrifice layer, the second sacrifice layer, and the third sacrifice layer after patterning the hat-shaped member at a predetermined position where the second sacrifice layer is patterned The main feature of this method is that it is a method of manufacturing.
According to a thirty-second aspect of the present invention, in the method of manufacturing a light deflecting device according to the thirtieth aspect, a depression-shaped portion and a fulcrum member and an electrode formed of a slope are formed on the substrate, and are deposited and planarized. A predetermined position where a plate-shaped plate-shaped member formed of a thin film comprising the above-mentioned reflecting means combined with the surface via the first sacrificial layer formed is formed, and the deposited second sacrificial layer is patterned. The main feature is that it is a method for manufacturing an optical deflection device for removing the first sacrifice layer and the second sacrifice layer after patterning the hat-shaped member.
According to a thirty-third aspect of the present invention, in the method of manufacturing an optical deflecting device according to the thirty-third, thirty-first, or thirty-second aspect, the sacrificial layer is removed from a predetermined distance between the plurality of cap-shaped members. The main feature of the present invention is a method of manufacturing a light deflecting device.
A thirty-fourth aspect of the present invention relates to an optical information processing apparatus for processing optical information by using an optical deflecting device that deflects light by changing the reflection direction of incident light into one axis or two axes. The most main feature of the optical information processing apparatus is an optical information processing apparatus including the optical deflector according to any one of Items 4 to 29 and independent driving means for independently driving the plurality of optical deflectors.
[0012]
An image forming apparatus that forms an image by performing optical writing in an electrophotographic process according to a thirty-fifth aspect of the present invention, comprises: an image carrier that is rotatably held and carries a formed image; 30. A latent image forming means comprising the light deflecting device according to any one of claims 4 to 29 for writing and forming a latent image, and a latent image formed by the light deflecting device of the latent image forming means. The most main feature of the image forming apparatus is an image forming apparatus including a developing unit that visualizes the image to form a toner image and a transfer unit that transfers the toner image formed by the developing unit to a transfer target.
According to a thirty-sixth aspect of the present invention, in the image projection display device for projecting and displaying an image, the image is projected and displayed by changing the reflection direction of incident light of the image projection data and performing light deflection. The most main feature of the present invention is an image projection display device comprising an optical switch means comprising the optical deflection device according to any one of the above, and a projection screen for displaying an image projected by the optical switch means.
According to a thirty-seventh aspect of the present invention, in an optical transmission apparatus for determining, outputting, and transmitting an optical path of an optical signal, an optical signal inputting means for inputting an optical signal, and an incident light of the optical signal from the optical signal inputting means. 30. An optical switch means comprising the optical deflecting device according to claim 4, wherein the optical direction is determined by changing the reflection direction to one axis direction or two axis direction to determine the optical path of each optical signal. The most main feature of the present invention is that the optical transmission device includes an optical signal output unit that outputs an optical signal from the optical switch unit.
According to a thirty-eighth aspect of the present invention, in the optical deflecting device according to the thirty-seventh aspect, the optical switch means is an optical transmission device including a plurality of stages of optical deflecting devices.
[0013]
According to a thirty-ninth aspect of the present invention, in the light deflecting device according to any one of the fourth to twelfth aspects, the fulcrum member has a quadrangular pyramid shape that contacts the plate-shaped member at a point. .
According to a forty-ninth aspect of the present invention, in the optical deflecting device of the thirty-ninth aspect, the size of the bottom surface of the fulcrum member in the shape of the quadrangular pyramid is substantially equal to the size of the plate-shaped member.
In the invention according to claim 41, in the optical deflector according to any one of claims 4 to 16, when the plate-shaped member is displaced by electrostatic attraction, the plate-shaped member comes into contact with the substrate at a point or a line. Thus, the reflection direction of the incident light beam is determined.
[0014]
According to the invention described in claim 42, in a light deflector that changes the direction of reflection of incident light into a plurality of axial directions and performs light deflection, a plate-shaped member having a reflection function of reflecting incident light; A substrate to be mounted without fixing the shape member, a fulcrum member serving as a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate, and the plate-shaped member being displaced on the fulcrum member in a free state. It is characterized by comprising a cap-shaped cap-shaped member forming a space to be arranged, and an electrode arranged around the fulcrum member on the substrate so as to face the back surface of the plate-shaped member.
In the invention according to claim 43, in the optical deflecting device according to claim 42, the plate-shaped member is formed of a single-layer thin film.
[0015]
According to a forty-fourth aspect of the present invention, in the optical deflecting device according to the forty-second or forty-third aspects, the reflecting surface of the reflecting means is formed of a flat plate.
According to a forty-fifth aspect of the present invention, in the optical deflecting device according to any one of the forty-second to forty-fourth aspects, the reflecting means is formed of an aluminum-based metal film.
According to the invention described in claim 46, in the optical deflector according to any one of claims 42 to 45, the plate-shaped member is formed of a curved portion having a curved shape in a surface shape in contact with the fulcrum member. It is characterized by.
[0016]
According to a forty-seventh aspect, in the optical deflecting device according to any one of the forty-second to forty-sixth aspects, the plate-shaped member has a circular outer shape. In the invention according to claim 48, in the optical deflector according to any one of claims 42 to 47, the reflecting means or the plate-shaped member has a conductive region having conductivity, and The conductive region is opposed to the electrode.
According to a fifty-ninth aspect of the present invention, in the optical deflecting device according to any one of the twenty-second to forty-eighth aspects, the substrate is formed of a concave portion having a concave shape.
[0017]
According to a fifty aspect of the present invention, in the optical deflecting device according to any one of the twenty-second to forty-ninth aspects, the substrate is made of a silicon substrate having a (100) plane orientation.
According to a fifty-first aspect of the present invention, in the optical deflecting device according to any one of the twenty-second to fifty-second aspects, the fulcrum member has a circular shape at a portion contacting the plate-shaped member. And
In the invention according to claim 52, in the optical deflector according to any one of claims 42 to 50, the fulcrum member is a conical portion that contacts the plate-shaped member at a point.
[0018]
According to a fifty-third aspect of the present invention, in the optical deflecting device according to any one of the twenty-second to fifty-third aspects, the fulcrum member is a rectangular portion whose surface in contact with the plate-shaped member is rectangular. I do.
According to a fifty-fourth aspect of the present invention, in the optical deflector according to any one of the twenty-second to fifty-fifth aspects, the fulcrum member has a quadrangular pyramid shape that contacts the plate-shaped member at a point. .
According to a fifty-fifth aspect of the present invention, in the optical deflecting device according to the fifty-fourth aspect, the size of the bottom surface of the fulcrum member in the shape of the quadrangular pyramid is substantially equal to the size of the plate-shaped member.
[0019]
In the invention according to Claim 56, in the optical deflector according to any one of Claims 42 to 53, when the plate-like member is displaced by electrostatic attraction, the plate-like member contacts the substrate at a point or a line. Thus, the reflection direction of the incident light beam is determined.
According to a fifty-seventh aspect of the present invention, in the optical deflector according to any one of the forty-second to fifty-sixth aspects, the fulcrum member has an inclined surface in contact with the plate-shaped member.
[0020]
According to the fifty-eighth aspect of the present invention, a light beam is deflected by changing the direction of reflection by deflecting a light beam incident on the light reflecting region by being displaced by electrostatic attraction according to a potential applied to the member having the light reflecting region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the said The potential of Jo member, characterized in that provided by contact with the fulcrum member.
[0021]
In the invention according to claim 59, in the light deflecting device according to claim 58, the entire upper surface of the plate-shaped member is the light reflection region.
According to a 60th aspect of the present invention, in the optical deflecting device according to the 58th or 59th aspect, the plate-shaped member is formed by laminating a dielectric layer made of a member having a dielectric property and the conductor layer. It is characterized by having.
[0022]
In the invention according to claim 61, in the optical deflecting device according to claim 60, the relative permittivity of the dielectric layer is 3 or more.
In the invention according to claim 62, in the optical deflection device according to claim 60 or 61, the dielectric layer of the plate-like member is formed of a silicon nitride film.
[0023]
In the invention according to claim 63, in the optical deflector according to any one of claims 58 to 62, a plurality of electrodes are formed on the substrate facing the back side of the plate-shaped member, and the electrodes are The fulcrum member is electrically separated from the top.
According to a sixty-fourth aspect of the present invention, in the optical deflecting device according to the thirty-third aspect, at least a portion of the conductor layer of the plate-like member faces the electrode.
[0024]
In the invention according to claim 65, in the optical deflector according to any one of claims 58 to 64, the plate-like member and the fulcrum member are almost in contact with each other, and the fulcrum member is a cone. It is characterized by being a body.
In the invention according to claim 66, in the optical deflector according to any one of claims 58 to 64, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member has a plurality of fulcrum members. Characterized by a polygonal pyramid having a slope of
[0025]
In the invention according to claim 67, in the optical deflector according to any one of claims 58 to 64, the plate-like member and the fulcrum member are substantially in contact with each other with a line, and the fulcrum member is It is characterized in that it is a columnar body having a slope and a top having a ridge capable of making line contact with the plate-like member.
According to a sixty-eighth aspect of the present invention, in the optical deflecting device according to the sixty-sixth aspect, the slope is formed so as to correspond to substantially the entire area of the plate-shaped member, and an electrostatic attraction is applied to the slope. Characterized by having a plurality of electrodes.
[0026]
In the invention according to claim 69, in the optical deflecting device according to claim 68, the plate-shaped member is displaced by electrostatic attraction from the slope, and the light deflection direction is defined by contacting the slope. It is characterized by the following.
In the invention according to claim 70, in the optical deflecting device according to claim 68, a plurality of convex portions are formed on the slope, and the plate-like member is displaced by electrostatic attraction from the slope. The light deflection direction is defined by contacting the convex portion.
[0027]
According to a seventy-first aspect of the present invention, in the optical deflecting device according to any one of the fifty-eighth to fifty-seventh aspects, an atmosphere near the plate member is substantially vacuum.
In the invention according to claim 72, in the optical deflecting device according to any one of claims 58 to 70, an atmosphere near the plate member is an inert gas atmosphere.
[0028]
In the invention according to claim 73, in the optical deflection device according to any one of claims 63 to 72, an arbitrary potential is applied to each of the plurality of electrodes so that a maximum potential difference is equal to or more than a predetermined value. The potential applied to the top portion is equal to one of a maximum value and a minimum value of the potential applied to the plurality of electrodes.
According to a seventy-fourth aspect of the present invention, in the optical deflector according to any one of the thirty-sixth to thirty-second aspects, of the plurality of electrodes, a straight line passing through the top portion serving as an axis of displacement of the plate-like member is provided. An arbitrary potential is applied to each of the electrodes present on the same side so that the maximum potential difference is equal to or more than a predetermined value, and the potential applied to the top is substantially an intermediate value between the maximum value and the minimum value of the potential applied to the plurality of electrodes. It is characterized by doing.
[0029]
In the invention according to claim 75, in the optical deflection device according to any one of claims 58 to 74, the conductive layer is an aluminum-based metal film.
According to a seventy-sixth aspect, in the light deflecting device according to the seventy-fifth aspect, the light reflecting region is also served by the conductor layer.
According to a seventy-seventh aspect, a plurality of the light deflecting devices according to any one of the fifty-eighth to sixty-sixth aspects are arranged in a one-dimensional or two-dimensional array on an arbitrary substrate.
[0030]
According to the invention as set forth in claim 78, in the image projection display device, the light deflecting device according to any one of claims 58 to 76, or the light deflecting array according to claim 77 is coupled to the incident light according to the image data. It is used as an optical switch for switching a reflection direction, and an image based on the image data is projected on a screen. In the invention according to claim 79, in the image projection display apparatus according to claim 78, the normal direction of the light reflecting surface when the plate-like member of the light deflector is at the neutral position is a direction in which gravity acts. It is characterized by being arranged so as to be substantially in the same direction as.
[0031]
According to an 80th aspect of the present invention, in the image forming apparatus, the light deflection array according to the 77th aspect is used as a line exposure type latent image forming unit.
In the invention according to claim 81, in the image forming apparatus according to claim 80, the normal direction of the light reflecting surface when the plate-like member of the light deflecting device is at the neutral position is the same as the action direction of gravity. It is characterized by being arranged so as to be substantially in the same direction.
[0032]
In the invention according to claim 82, in the optical transmission device, the optical deflecting device according to any one of claims 68 to 76 is used as optical switch means, and transmission of optical information is performed by using one input / output port. It is characterized by switching between any of a plurality of input / output ports.
According to the invention of claim 83, in the optical transmission device, the optical deflection array according to claim 77 is used as an optical switch means, and transmission of optical information is performed among a plurality of input / output ports of one input / output unit. And switching between any one of a plurality of input / output ports of the other input / output unit.
In the invention according to claim 84, in the optical transmission device according to claim 83, the normal direction of the light reflecting surface when the plate-like member of the light deflecting device is at the neutral position is the same as the direction in which gravity acts. It is characterized by being arranged so as to be substantially in the same direction.
[0033]
In the invention according to Claim 85, in the method for manufacturing an optical deflector according to any one of Claims 58 to 76, at least a step of forming the fulcrum member on an arbitrary substrate; And forming a conductive member of the fulcrum member by patterning; depositing and planarizing a first sacrificial layer; patterning the plate-like member made of at least one layer; Depositing a second sacrifice layer, patterning a first sacrifice layer and a second sacrifice layer, and placing the restricting member at an arbitrary position on the patterned first and second sacrifice layers. The method includes a step of patterning, and a step of removing the patterned first and second sacrificial layers by etching.
[0034]
In the invention according to claim 86, in the method of manufacturing an optical deflection array according to claim 77, a plurality of sections are formed on a given substrate in one-dimensional or two-dimensional contact with each other. At least a step of forming the fulcrum member, a step of patterning and forming a plurality of electrodes and a conductive member of the fulcrum member, and a step of depositing and planarizing a first sacrificial layer. Patterning the plate-like member made of a layer, depositing a second sacrificial layer, patterning a first sacrificial layer and a second sacrificial layer, And a step of patterning the restricting member at an arbitrary portion of the second sacrifice layer, and a step of removing the patterned first and second sacrifice layers by etching.
[0035]
In the invention according to claim 87, in the method of manufacturing an optical deflection device according to claim 70, at least a step of depositing a thin film on the plurality of electrodes and a step of patterning the thin film to form a convex portion It is characterized by the following.
[0036]
In the invention according to claim 88, a light beam is deflected by changing the reflection direction of a light beam incident on the light reflection region by being displaced by electrostatic attraction according to a potential applied to a member having the light reflection region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the It has a plurality of electrodes for applying electrostatic attraction to the plate, the potential of the plate-shaped member is applied by contact with the fulcrum member, and the plate-shaped member and the fulcrum member are almost in contact with each other at a point. The fulcrum member is a cone, and the top of the cone is spherical.
[0037]
In the invention according to claim 89, light deflection is performed by displacing the light beam incident on the light reflecting region by changing its reflection direction by displacing by an electrostatic attraction corresponding to the potential applied to the member having the light reflecting region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the said It has a plurality of electrodes for applying electrostatic attraction to the plate, the potential of the plate-shaped member is applied by contact with the fulcrum member, and the plate-shaped member and the fulcrum member are almost in contact with each other at a point. Preferably, the fulcrum member has a shape in which a conical body and a cylinder having a bottom surface having the same diameter as the diameter of the bottom surface are integrated below the bottom surface of the cone body.
[0038]
In the invention according to claim 90, a light beam is deflected by changing a reflection direction by deflecting a light beam incident on the light reflection region by displacing the member by an electrostatic attraction according to a potential applied to a member having the light reflection region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the It has a plurality of electrodes for applying electrostatic attraction to the plate, the potential of the plate-shaped member is applied by contact with the fulcrum member, and the plate-shaped member and the fulcrum member are almost in contact with each other at a point. The fulcrum member has a truncated cone shape.
[0039]
In the invention according to claim 91, light is deflected by changing the reflection direction of a light beam incident on the light reflecting region by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the said It has a plurality of electrodes for applying electrostatic attraction to the plate, the potential of the plate-shaped member is applied by contact with the fulcrum member, and the plate-shaped member and the fulcrum member are almost in contact with each other at a point. The fulcrum member has a shape in which a truncated cone and a cylinder having a bottom surface having the same diameter as the bottom surface of the truncated cone surface are united.
[0040]
In the invention according to claim 92, the light beam is deflected by changing the reflection direction of the light beam incident on the light reflecting region by being displaced by electrostatic attraction according to the potential applied to the member having the light reflecting region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the It has a plurality of electrodes for applying electrostatic attraction to the plate, the potential of the plate-shaped member is applied by contact with the fulcrum member, and the plate-shaped member and the fulcrum member are almost in contact with each other at a point. And the fulcrum member is a column.
[0041]
In the invention according to claim 93, the light beam is deflected by changing the direction of reflection by changing the reflection direction by displacing the light beam incident on the light reflection region by being displaced by electrostatic attraction according to the potential applied to the member having the light reflection region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the The potential of the shape member is applied by contact with the fulcrum member, the plate-like member and the fulcrum member are almost in contact with each other, and the fulcrum member is a polygonal pyramid having a plurality of slopes, The slope is formed corresponding to almost the entire area of the plate-like member, has a plurality of electrodes for applying electrostatic attraction on the slope, and a plurality of convex portions are formed on the slope, The shape member is displaced by electrostatic attraction from the slope, and the light deflection direction is defined by contacting the convex portion, and the convex portion is arranged in a plurality of strips on the electrode. .
[0042]
In the invention according to claim 94, a light beam is deflected by changing a reflection direction by deflecting a light beam incident on the light reflection region by being displaced by electrostatic attraction according to a potential applied to a member having the light reflection region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the The potential of the shape member is applied by contact with the fulcrum member, the plate-like member and the fulcrum member are almost in contact with each other, and the fulcrum member is a polygonal pyramid having a plurality of slopes, The slope is formed corresponding to almost the entire area of the plate-like member, has a plurality of electrodes for applying electrostatic attraction on the slope, and a plurality of convex portions are formed on the slope, The shape member is displaced by electrostatic attraction from the slope, the light deflection direction is defined by contacting the convex portion, the convex portions are arranged in a plurality of strips, and the flat portion around the convex portion is An electrode is formed.
[0043]
In the invention according to claim 95, light is deflected by changing the reflection direction of a light beam incident on the light reflecting region by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the The potential of the plate-shaped member is applied by contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member has a slope and the top is lined with the plate-shaped member. A columnar body having a contactable ridge, wherein the slope is formed so as to correspond to substantially the entire area of the plate-shaped member, and has a plurality of electrodes for applying electrostatic attraction on the slope; A plurality of convex portions are formed, and the plate-like member is displaced by electrostatic attraction from the slope, and a light deflection direction is defined by contacting the convex portions. Are arranged in a strip shape.
[0044]
According to the 96th aspect of the present invention, a light beam is deflected by changing the reflection direction of a light beam incident on the light reflecting region by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in the said The potential of the plate-shaped member is applied by contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member has a slope and the top is lined with the plate-shaped member. A columnar body having a contactable ridge, wherein the slope is formed so as to correspond to substantially the entire area of the plate-shaped member, and has a plurality of electrodes for applying electrostatic attraction on the slope; A plurality of convex portions are formed, the plate-like member is displaced by electrostatic attraction from the slope, and a light deflection direction is defined by contacting the convex portions, and the convex portions are arranged in a plurality of strips. The electrode is formed on a flat part around the convex part.
[0045]
In the invention described in Item 97, in the light deflector according to any one of Items 88 to 96, the entire upper surface of the plate-shaped member is the light reflection region.
[0046]
In the invention according to claim 98, in the optical deflecting device according to any one of claims 88 to 97, the plate-shaped member is formed by a dielectric layer made of a member having a dielectric property and the conductive layer. It is characterized by being constituted by lamination.
[0047]
In the invention according to claim 99, in the optical deflecting device according to claim 98, the relative permittivity of the dielectric layer is 3 or more.
[0048]
In the invention according to claim 100, in the optical deflecting device according to claim 98 or 99, the dielectric layer of the plate member is formed of a silicon nitride film.
[0049]
In the invention according to Claim 101, in the optical deflector according to any one of Claims 88 to 100, the electrode is provided at a position facing a back side of the plate-shaped member, and the electrode is The fulcrum member is electrically separated from the top.
[0050]
The invention according to claim 102 is the optical deflection device according to claim 101, wherein at least a part of the conductor layer of the plate-like member faces the electrode.
[0051]
In the invention according to claim 103, in the optical deflector according to any one of claims 88 to 102, the regulating member has an extended base portion projecting in a direction opposite to a projecting direction of a stopper at a top portion at a lower end portion. It is characterized by having.
[0052]
In the invention according to claim 104, the light beam is deflected by changing the reflection direction by deflecting the light beam incident on the light reflection region by displacing by the electrostatic attraction according to the potential applied to the member having the light reflection region. In the device, a substrate, a plurality of regulating members, a fulcrum member, and a plate-shaped member, the plurality of regulating members each have a stopper on the upper portion, each provided at a plurality of ends of the substrate, The fulcrum member has a top portion made of a conductive member, is provided on the upper surface of the substrate, the plate-like member does not have a fixed end, has the light reflection region on the upper surface, at least a part A conductive layer made of a member having conductivity, at least a contact point in contact with the top portion of the back surface is made of a member having conductivity, and is movable in a space between the substrate, the fulcrum member, and the stopper. Placed in front A plurality of light deflecting devices for applying the potential of the plate-shaped member by contact with the fulcrum member are arranged in a one-dimensional or two-dimensional array on an arbitrary substrate, and the substrate of the light deflecting device is formed in a circular shape and is adjacent to the substrate. The positions of the regulating members on the substrates are matched with each other, and both regulating members are integrated to form a composite regulating member.
[0053]
In the invention according to claim 105, in the optical deflection array according to claim 104, six regulating members or compound regulating members are arranged at equal intervals on the circumference of the substrate, and the light deflecting device is arranged in two. It is characterized by being arranged in the densest dimensionally.
[0054]
In the invention according to claim 106, in the optical deflection array according to claim 104 or 105, the regulating member has an extension base portion at a lower end portion projecting in a direction opposite to a projecting direction of a stopper at a top portion. I do.
[0055]
In the invention according to claim 107, in the optical deflection array according to any one of claims 104 to 106, the composite regulating member is divided equally between the two substrates on a boundary between two adjacent substrates. Upright portions are provided at opposite ends of a flat base lying on the substrate over the straddle, and stoppers protruding in the opposite direction to the boundary line are provided at the tops of both upright portions, respectively. .
[0056]
In the invention according to claim 108, in the optical deflection array according to any one of claims 104 to 106, the composite regulating member is divided equally between the two substrates on a boundary between two adjacent substrates. An upright portion is provided on the substrate over the straddle, and a stopper that protrudes in both directions is provided at the top of the upright portion.
[0057]
In the invention according to claim 109, at least a step of forming the fulcrum member on an arbitrary substrate, a step of forming a plurality of electrodes and a conductive member of the fulcrum member by patterning, Depositing and planarizing a sacrifice layer, patterning the plate-like member made of at least one layer, depositing a second sacrifice layer, and a first sacrifice layer and a second sacrifice layer. Patterning, patterning the restricting member at any part of the patterned first and second sacrificial layers, and etching the patterned first and second sacrificial layers. 145. The method of manufacturing an optical deflecting device according to any one of claims 128 to 143, comprising:
[0058]
According to a tenth aspect of the present invention, in the method of manufacturing the optical deflecting device according to the tenth aspect, a top portion of the fulcrum member protrudes from the flattened first sacrificial layer.
[0059]
In the invention according to claim 111, a step of forming a plurality of sections on a given substrate in one-dimensional or two-dimensional contact with each other and forming at least the fulcrum member for each section; A step of patterning and forming a conductive member of the electrode and the fulcrum member; a step of depositing and planarizing a first sacrificial layer; and a step of patterning the plate-shaped member comprising at least one layer. Depositing a second sacrifice layer, patterning the first sacrifice layer and the second sacrifice layer, and providing the regulating member at an arbitrary position on the patterned first and second sacrifice layers. 148. The method of manufacturing an optical deflection array according to any one of claims 144 to 148, comprising the steps of: patterning a substrate; and removing the patterned first and second sacrificial layers by etching. Features.
[0060]
In the invention according to claim 112, in the method of manufacturing an optical deflection array according to claim 111, a top of the fulcrum member protrudes from the flattened first sacrificial layer.
[0061]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are a cross-sectional view and a plan view, respectively, of an optical deflecting device according to a first embodiment of the present invention, in which the direction of reflection of incident light is changed to one axis or two axes to perform light deflection. The light deflecting device 0 includes a reflecting unit 1 having a reflecting surface that reflects incident light, a plate-shaped plate-shaped member 2 formed of a thin film that is configured by combining the reflecting unit 1 on the surface, and fixing the plate-shaped member 2. It becomes a fulcrum at the time of displacement of the silicon substrate 3b having the (100) plane orientation of the substrate 3 mounted thereon and the inclined plate-shaped member 2 on the silicon substrate 3b having the (100) plane orientation of the substrate 3 placed thereon. The fulcrum member 4, the cap-shaped cap member 5 forming a gap (G) in which the plate-shaped member 2 is disposed on the fulcrum member 4 in a freely displaceable state, and the (100) plane orientation of the substrate 3 The back surface of the plate-shaped member 2 around the fulcrum member 4 on the silicon substrate 3b having The reflection means 1 and the plate-shaped member 2 are composed of the electrodes 6 arranged to face each other, and the (100) plane orientation of the substrate 3 is not fixed on the silicon substrate 3 b having the (100) plane orientation of the substrate 3. The silicon substrate having the (100) plane orientation of the substrate 3 is disposed in a state where the displacement is free in a gap (G) formed between the fulcrum member 4 and the shade member 5 on the silicon substrate 3b having the An electric potential is applied to an electrode 6 arranged around the fulcrum member 4 on the support member 3 so as to oppose the plate-shaped member 2, and the reflected light is incident on the reflection means 1 on the plate-shaped member 2 placed on the fulcrum member 4 at an angle. Since light deflection is performed by changing the direction of light reflection, a structure that performs light deflection by changing the direction of reflection of incident light to one axis or two axes is simple, easy to control, stable in operation, and responsive. Fast, no restriction on the wavelength of incident light used, mechanical strength There little change deterioration in long-term use, resource saving low driving voltage, with miniaturization and integration possible yield is high cost, is not used environment restrictions.
[0062]
The plate-shaped plate-shaped member 2 formed of a thin film, which is formed by combining the reflection means 1 on the surface, is formed of a thin film as described later. The optical deflecting device 0, which has a reduced impact when it collides with the shape member 5 and an impact when the plate-shaped member 2 comes into contact with the substrate 3 during operation, and has little change and deterioration in mechanical strength even during long-term use. It can be provided.
Considering miniaturization, the substrate 3 is preferably made of silicon, glass, or the like generally used in a semiconductor process or a liquid crystal process.
Further, the substrate 3 in the light deflecting device 0 is formed on the same substrate as the drive system circuit, and is formed of a silicon substrate 3b having the (100) plane orientation in consideration of a simple configuration and cost reduction.
The hat-shaped member 5 has a hat-shape so as to limit the movable range in which the plate-shaped member 2 is displaced to an arbitrary gap (G), and a plurality of hat-shaped members 5a corresponding to the outer periphery of the plate-shaped member 2. 1 , Shade member 5a 2 , Shade member 5a 3 , Shade member 5a 4 Are arranged at four corners at a predetermined interval (g). Alternatively, although not shown, the hat-shaped member 5 is arranged in the entire area corresponding to the outer periphery of the plate-shaped member 2.
The hat-shaped member 5 is formed of a silicon oxide film 5d or a chromium oxide film 5f. Accordingly, when the light deflecting device 0 is formed into an array such as a one-dimensional light deflecting array 10 or a two-dimensional light deflecting array 20 (not shown), the area ratio of the reflection area of the reflection surface 1a of the reflection means 1 is maximized. Therefore, it can be configured with a thin film and space saving as much as possible, and has high mechanical strength.
The fulcrum member 4 serves as a fulcrum when the plate-shaped member 2 is displaced, and an arbitrary shape is selected according to the performance required of the light deflecting device 0 as described later. Since the fulcrum member 4 is formed of the silicon oxide film 4f or the silicon nitride film 4g, its mechanical strength is high. However, when taking the potential of the plate-shaped member 2 through the fulcrum member 4, it is formed of a conductive material such as various metal films.
[0063]
3 and 4 are explanatory diagrams of the configuration and operation. In the drawings, at least the reflection surface 1a of the light reflection area of the reflection means 1 combined with the surface of the plate-shaped member 2 is formed of a flat plate. FIG. 3 is a schematic diagram of light reflection when the reflection surface 1a of the reflection means 1 is a flat plate, and FIG. 4 shows a case where the reflection surface 1a of the reflection means 1 is convex as shown. FIG. 3 shows a schematic diagram of light reflection.
As shown in FIG. 3, since the reflection surface 1a of the reflection means 1 is a flat plate, the light beam incident on the light reflection area can be reflected in the same reflection direction without diffusing the reflected light. The light can be changed only in the intended reflection direction, and the light deflecting device 0 can be used in each of the optical information processing devices 100, the image forming device 200, the image projection display device 300, and the optical transmission device 400 (not shown). This is important because the influence on adjacent elements is suppressed. The flatness of the reflecting surface 1a of the reflecting means 1 is desirably such that the radius of curvature Ra is several meters or more.
On the other hand, as shown in FIG. 4, if the reflection surface 1a of the reflection means 1 has a convex shape as shown in the figure, the light beam incident on the light reflection area is reflected by diffusing the reflection direction. Therefore, the influence on the adjacent element becomes remarkable. This is particularly noticeable in the case where the reflected light is further optically written and displayed by an enlargement optical system in the image forming apparatus 200 and the image projection display apparatus 300 (not shown). FIGS. 5 to 8 are cross-sectional views, plan views, operation explanatory views, and views showing defects when there is no curved portion in the second embodiment of the present invention. A curved portion 2a having a curved shape is formed in a surface shape at a portion in contact with the fulcrum member 4 (see FIGS. 5 and 6). A method for forming the curved portion 2a will be described later.
By disposing the curved portion 2a on the plate-shaped member 2 near the fulcrum member 4, when the plate-shaped member 2 is inclined and displaced by electrostatic attraction, the curved-shaped portion 2a is displaced when the plate-shaped member 2 is displaced. Displacement about 2a becomes possible, and it can suppress that plate-shaped member 2 shifts. In other words, the positioning of the plate-shaped member 2 with respect to the fulcrum member 4 is spontaneously facilitated.
Thus, as shown in FIG. 7, when the plate-shaped member 2 is displaced, the plate-shaped member 2 is prevented from contacting the side surface of the cap-shaped member 5.
On the other hand, as shown in FIG. 8, if the curved portion 2a is not provided, a problem such as the plate-shaped member 2 being displaced in the direction of the arrow C shown in FIG. However, mechanical wear of the fulcrum member 4 and its portion becomes remarkable, and the mechanical strength decreases.
[0064]
FIGS. 9 to 12 are a cross-sectional view, a plan view, and a perspective view showing a configuration example of a fulcrum member according to the third embodiment of the present invention. Column shape 4a whose surface shape is a circular portion 4a 1 As described above, since the silicon oxide film 4f or the silicon nitride film 4g is formed, the mechanical strength is increased. Similarly, when the potential of the plate-shaped member 2 is taken through the fulcrum member 4, it is formed of a conductive material such as various metal films.
As shown in FIG. 11, the fulcrum member 4 has a cylindrical shape 4a. 1 It is.
However, as shown in FIG. 12, the slope 4d of the slope 4d is closer to the plate-shaped member 2. 1 And a shape in which the contact area of the circular portion 4a is reduced as much as possible.
Therefore, since the fulcrum member 4 has the circular portion 4a in a region where the fulcrum member 4 comes into contact with the plate-shaped member 2, the reflecting means 1 is combined with the surface in any direction corresponding to the direction in which the electrostatic attraction is applied. It is possible to easily displace the plate-shaped plate-shaped member 2 formed of the thin film to be inclined, and to reduce the contact area between the plate-shaped member 2 and the fulcrum member 4 to facilitate light deflection in two axial directions.
13 to 16 are a sectional view, a plan view, and a perspective view showing a configuration example of a fulcrum member according to a fourth embodiment of the present invention. In each of the drawings, a fulcrum member 4 is a fulcrum contacting the plate-shaped member 2. The portion is a conical portion 4b which is almost in contact with a point, and has a high mechanical strength because it is formed of the silicon oxide film 4f or the silicon nitride film 4g as described above. Similarly, when the potential of the plate-shaped member 2 is taken through the fulcrum member 4, it is formed of a conductive material such as various metal films.
As shown in FIG. 15, the conical shape 4b of the fulcrum member 4 has 1 Having.
However, as shown in FIG. 16, in a location near the plate-shaped member 2, the vicinity of the vertex has a round shape 4 b 2 But it's fine.
Therefore, since the fulcrum member 4 is the conical portion 4b as shown in the figure, the mechanical strength of the fulcrum portion of the fulcrum member 4 on the substrate 3 side can be increased, and the displacement of the plate-shaped member 2 is reduced. Is defined by the contact portion 2d at the end of the plate-shaped member 2 with the upper surface of the substrate 3, so that the contact area can be reduced as much as possible and the sticking of the plate-shaped member 2 to the substrate 3 and contact charging can be suppressed.
Similarly, since the fulcrum member 4 has a point shape in a region where the fulcrum member 4 comes into contact with the plate-shaped member 2, the plate-shaped member 2 can be inclinedly displaced in an arbitrary direction corresponding to a direction acting on the electrostatic attraction. It will be easier.
[0065]
17 and 18 are a cross-sectional view and a plan view of a fifth embodiment of the present invention. In FIG. 17, the fulcrum member 4 has a rectangular fulcrum portion in contact with the plate-shaped member 2. The rectangular portion 4c is formed of the silicon oxide film 4f or the silicon nitride film 4g as described above, and therefore has a high mechanical strength. Similarly, when the potential of the plate-shaped member 2 is taken through the fulcrum member 4, it is formed of a conductive material such as various metal films. Therefore, since the rectangular portion 4c of the fulcrum member 4 that is in contact with the plate-shaped member 2 is rectangular, the tilt displacement of the fulcrum member 4 in the short-length direction of the fulcrum member 4, that is, the axial displacement of the plate-shaped member 2 in one axis direction. The tilt displacement due to the electrostatic attraction can be stably generated.
FIGS. 19 to 22 are a sectional view, a plan view, and a perspective view showing a configuration example of a fulcrum member according to the sixth embodiment of the present invention. The fulcrum member 4 is a fulcrum of the fulcrum member 4 in contact with the plate-shaped member 2. Slope 4d of the above-mentioned slope 4d whose part is almost in contact with a line 2 This is a ridge-shaped portion 4e having the shape of a ridge having, as described above, the mechanical strength is increased because it is formed of the silicon oxide film 4f or the silicon nitride film 4g as described above. Similarly, when the potential of the plate-shaped member 2 is taken through the fulcrum member 4, it is formed of a conductive material such as various metal films.
As shown in FIG. 21, the fulcrum portion of the ridge-shaped portion 4e of the fulcrum member 4 has a line shape 4e having a line as a vertex. 1 However, as shown in FIG. 2 But it's fine.
Since the fulcrum portion of the ridge-shaped portion 4e of the fulcrum member 4 in contact with the plate-shaped member 2 is almost in contact with the line, the contact area between the ridge-shaped portion 4e of the fulcrum member 4 and the plate-shaped member 2 is reduced. The inclination displacement of the plate-shaped member 2 in the axial direction due to the electrostatic attraction can be stably caused.
Further, the ridge-shaped portion 4e of the fulcrum member 4 is formed by the slope 4d of the slope 4d. 2 , The mechanical strength of the fulcrum member 4 is increased, and the displacement of the plate-shaped member 2 is defined by the contact portion 2 d at the end of the plate-shaped member 2 with the upper surface of the substrate 3. Therefore, the contact area can be reduced as much as possible, and the sticking of the plate-shaped member 2 to the substrate 3 and the contact charging can be suppressed.
[0066]
23 and 24, at least two or more electrodes 6 for applying electrostatic attraction, for example, as shown in FIG. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 Are formed on the substrate 3 on which the fulcrum member 4 facing the back side of the plate-shaped member 2 is formed, and the plate-shaped member 2 is electrically floating. Electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 As a material of the metal, a metal such as an aluminum-based metal, titanium nitride, or titanium is preferable in consideration of conductivity and the like.
As shown, two or more, for example, electrodes 6a formed on the substrate 3 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 Of the plate-shaped member 2 and each electrode 6a of the electrode 6 through the plate-shaped member 2 in a dielectric manner. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 And the plate-shaped member 2 can be displaced in a desired direction.
Further, each of the electrodes 6a of the electrode 6 with the fulcrum member 4 facing the center around the center 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 By applying an arbitrary voltage to, the displacement direction of the plate-shaped member 2 can be changed at high speed.
Further, a plurality of electrodes 6a of the electrode 6 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 A potential difference can be arbitrarily generated between the two members, whereby the direction of inclination of the plate-shaped member 2 can be controlled with high accuracy in two axial directions. Response can be even faster.
25 and 26, a light-reflecting region of the reflecting surface 1a of the reflecting means 1 or a conductive region 2b having conductivity is formed on at least a part of the plate-shaped member 2, and the conductive region 2b At least partially faces the electrode 6. The material of the conductive region 2b is preferably an aluminum-based metal or a metal such as titanium nitride or titanium in consideration of conductivity or the like. Further, when the conductive region 2b also serves as a light reflection region of the reflection surface 1a of the reflection means 1 to reduce the cost, it is desirable that the reflection performance is good. The base metal 1b is desirable.
As shown, two or more, for example, a plurality of electrodes 6a of the electrodes 6 formed on the substrate 3 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 The electrostatic attraction caused by the potential difference between the plate-shaped member 2 and the plurality of electrodes 6a of the electrode 6 is transmitted via the conductive region 2b. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 The plate-shaped member 2 can be displaced in a target direction with a lower driving voltage by acting in between.
Further, a plurality of opposing electrodes 6a of the electrode 6 continue around the fulcrum portion of the fulcrum member 4. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 By applying an arbitrary voltage to, the displacement direction of the plate-shaped member 2 can be changed at high speed.
Furthermore, a plurality of opposing electrodes 6a of the electrodes 6 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 A potential difference can be arbitrarily generated between the two, whereby the direction of inclination of the plate-shaped member 2 can be controlled with high accuracy in two axial directions.
[0067]
27 and 28, a light deflecting device 0 includes a reflecting means 1 for reflecting incident light, a plate-shaped plate-shaped member 2 formed of a thin film which is configured by combining the reflecting means 1 on a surface, and a plate-shaped member 2 And a fulcrum member 4 serving as a fulcrum at the time of displacement of the inclined plate-shaped member 2 on the substrate 3, and the plate-shaped member 2 on the fulcrum member 4 in a state where the displacement is free. A cap-shaped member 5a of a cap-shaped cap-shaped member 5 forming a gap (G) to be arranged 1 , Shade member 5a 2 , Shade member 5a 3 , Shade member 5a 4 And an electrode 6a arranged around the fulcrum member 4 on the substrate 3 so as to face the back surface of the plate-shaped member 2. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 (See FIG. 27).
In the optical deflector 0, since the plate-shaped member 2 does not have a fixed end, its initial position is set on the fulcrum member 4 on the substrate 3 and the cap-shaped member 5 of the cap-shaped cap-shaped member 5. 5a 1 , Shade member 5a 2 , Shade member 5a 3 , Shade member 5a 4 Since the displacement is free because it is restricted within the gap (G) formed between the electrodes 6a, 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 The furthest away arrangement is described (see FIG. 28).
29 and 30, the light deflecting device 0 performs a reset operation from the initial state in order to install the plate-shaped member 2 on the fulcrum member 4.
In the reset operation, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 Is applied to each electrode 6a 1 = X (V), electrode 6a 2 = 0 (V), electrode 6a 3 = X / 2 (V), electrode 6a 4 By setting = X / 2 (V), an electrostatic attractive force distribution as shown by the outlined arrow line was obtained, and the magnitude of the electrostatic attractive force was indicated by the size of the outlined arrow line.
The plate-shaped member 2 is inclined in the illustrated arrow M direction, and at least a part of the plate-shaped member 2, for example, the contact portion 2 d at the end of the plate-shaped member 2 comes into contact with the substrate 3, and the direction is as illustrated. And reflected light is obtained in the reset direction.
Here, X (V) applied here is the value of the plate-shaped member 2 and each electrode 6a. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 And a voltage slightly larger than a voltage Y (V) which is determined by a distance between the fulcrum member 2 and the capacitance, and causes a tilt of the fulcrum member 4 around the fulcrum part, that is, a displacement of the normal plate-shaped member 2. Become.
[0068]
31 and 32, next, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 Is applied to each electrode 6a 1 = Y / 2 (V), electrode 6a 2 = Y / 2 (V), electrode 6a 3 = Y (V), electrode 6a 4 By setting = 0 (V), the plate-shaped member 2 inclines at a high speed in the direction opposite to the reset direction in the direction of the arrow N, and at least a part of the plate-shaped member 2, for example, an end of the plate-shaped member 2. The contact portion 2d contacts the substrate 3 to define a direction as shown in FIG.
That is, the electrodes 6a facing each other around the fulcrum portion of the fulcrum member 4 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 By applying an arbitrary voltage to, the displacement direction of the plate-shaped member 2 can be changed at high speed.
33 and 34, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 Potential of each of the electrodes 6a 1 = Y / 2 (V), electrode 6a 2 = 0 (V), electrode 6a 3 = Y / 2 (V), electrode 6a 4 = Y (V), the axis of the light deflection (1) in FIGS. 31 and 32 is changed, and the plate-shaped member 2 is tilted and displaced in the direction of the arrow O in FIG. At least a portion, for example, the contact portion 2d at the end of the plate-shaped member 2 comes into contact with the substrate 3 to define the direction and perform the light deflection (2).
That is, the direction of the inclination of the plate-shaped member 2 can be controlled with high accuracy in the biaxial directions.
As described above, two or more electrodes 6a of the electrode 6 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 By applying different potentials between them, the plate-shaped member 2 is displaced by electrostatic attraction, that is, tilted around the fulcrum portion of the fulcrum member 4, and the incident light beam can change the reflection direction.
The plate-shaped member 2 is brought into contact with at least a part of the not-shown inclined surface 4d of the fulcrum member 4 to deflect the light. Can be alleviated. In addition, the inclination direction of the plate-shaped member 2 can be defined by the not-shown inclined surface 4d of the fulcrum member 4, thereby improving the controllability and stability of the inclination.
[0069]
In FIG. 35, next, a different electrode 6, for example, electrode 6a 1 And electrode 6a 2 The principle of the generation of electrostatic attraction by applying different potentials between them, including the effect of arranging the conductive region 2b on the plate-shaped member 2, will be described by taking a reset operation as an example. Electrode 6a 1 Is applied with a positive potential X (V), and the electrode 6a 2 Is applied with 0 (V). At this time, both electrodes 6a 1 And electrode 6a 2 An electrostatic attraction is generated between the plate-shaped member 2 electrically floating and the plate-shaped member 2 to be displaced to the electrode side. 1 6a due to the positive potential applied to 1 Has a positive charge. Then, a negative charge is generated dielectrically in the plate-shaped member 2 via the gap (G), and at the same time, the negative charge spreads efficiently and conductively in the conductive region 2b. In other words, the conductive region 2b efficiently generates negative charges on the plate-shaped member 2. At this time, since the plate-shaped member 2 and the conductive region 2b are electrically floating, the electrodes 6a 2 A positive charge is typically spread on the plate-shaped member 2 and the conductive region 2b opposed to each other via the gap (G). In order to correspond to the positive charge, the electrode 6a 2 The electrode 6a in which a negative charge is typically generated 2 Is actually grounded, but this is the case when considered schematically. Thereby, the electrode 6a 2 Electrostatic attraction is also generated in the plate-shaped member 2 located at the upper part.
Although the above description has been made with reference to a series of flows, it does not necessarily occur with a series of flows. 1 And electrode 6a 2 Causes these phenomena to occur simultaneously.
Note that, in practice, the electrically floating plate-shaped member 2 and the conductive region 2b are connected to the electrode 6a. 1 And electrode 6a 2 Between the potential and the electrode 6a 1 Attraction due to the potential difference between the electrodes and any potential and the electrode 6a 2 , An electrostatic attraction is generated due to the potential difference.
This arbitrary potential is determined by the gap (G) and the electrode 6a. 1 And electrode 6a 2 Depends on structural factors such as the area of Due to the electrostatic attraction generated in this way, the plate-shaped member 2 is 1 Or the electrode 6a 2 Displace to the side.
[0070]
36 and 37, in the light deflecting device 0, the slope 4d of the slope 4d of the fulcrum member 4 is used. 3 Are formed so as to cover almost the entire area of the plate-shaped member 2, and the slope 4d of the slope 4d 3 At least two or more of the electrodes 6 for applying electrostatic attraction, for example, the electrodes 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 Having. The slope 4d of the slope 4d 3 Similarly, the material of the upper fulcrum member 4 is the silicon oxide film 4f or the silicon nitride film 4g.
As shown in the drawing, as the fulcrum portion of the fulcrum member 4 is approached, the electrode 6 can be installed closer to the plate-shaped member 2, whereby a larger electrostatic attraction can be generated. In other words, the plate-shaped member 2 can be displaced at a lower voltage.
Also, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 The plate-shaped member 2 can be displaced by contacting the entire surface of the substrate, so that the impact at the time of contact can be dispersed, and the mechanical strength is less changed and deteriorated even after long-term use. Also, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 By displacing the plate-shaped member 2 by contacting the entire surface of the plate-shaped member 2, the displacement direction of the plate-shaped member 2 can be easily controlled, and the operation is more stable and the response is further faster.
38 and 39, in the light deflector 0, the light reflecting area of the reflecting surface 1a of the reflecting means 1 or the conductive area 2b having conductivity is formed on at least a part of the plate-shaped member 2, In addition, at least a part of the conductive region 2b is the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 And is facing.
The material of the conductive region 2b is preferably an aluminum-based metal or a metal such as titanium nitride or titanium in consideration of conductivity or the like.
Two or more of the electrodes 6 formed on the substrate 3, for example, the electrodes 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 The electrostatic attraction caused by the potential difference between the plate-shaped member 2 and the electrode 6, for example, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 The plate-shaped member 2 can be displaced in a target direction with a lower driving voltage by acting in between.
Further, the electrodes 6 facing each other around the fulcrum portion of the fulcrum member 4, for example, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 By applying an arbitrary voltage to, the displacement direction of the plate-shaped member 2 can be changed at high speed.
Furthermore, a plurality of electrodes 6, for example, electrodes 6a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 A potential difference can be arbitrarily generated between them.
[0071]
40 and 41, the light deflecting device 0 has a recessed portion 3a having a recessed shape formed on the substrate 3, and the inclined surface 4d of the fulcrum member 4 is provided at an arbitrary position of the recessed portion 3a. The above slope 4d 4 And the electrode 6, for example, the electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 And the cap-shaped member 5 is provided above the plane of the substrate 5 and the plate-shaped member 2 is provided in a gap (G) formed by the cap-shaped member 5 and the recessed portion 3a. In addition, the plate-shaped member 2 is electrically floating, and a portion where the fulcrum member 4 and the plate-shaped member 2 come into contact, that is, the vertex of the fulcrum member 4 is lower than the upper surface of the substrate 3 toward the recessed portion 3a. Is formed.
The recess 3a and the fulcrum member 4 are formed by etching the substrate 3. Alternatively, the insulating film 3c may be formed on the substrate 3 and then processed. The apex of the fulcrum member 4, that is, the fulcrum portion of the displacement of the plate-shaped member 2 can be formed lower than the surface of the substrate 3 during the above processing.
Although a method of manufacturing the light deflecting device 0 will be described later, since the lower part of the gap (G) that limits the movable range of the plate-shaped member 2 is formed in the recessed part 3a of the substrate 3, The height of the shape member 5 can be reduced.
The cap-shaped member 5 receives an impact such as a collision in order to keep the plate-shaped member 2 in the gap (G).
For this reason, it is important to increase the mechanical strength, and forming the cap-shaped member 5 low leads to the self-supporting stability of the cap-shaped member 5 itself, thereby increasing the mechanical strength.
Further, the yield is improved by a manufacturing method described later, and the gap (G) of the light deflecting device 0 is defined by the depth of the concave portion 3a formed in the substrate 3 and the thickness of the second sacrificial layer 7b (not shown). This does not greatly depend on the flattening ratio of the first sacrificial layer 7a (not shown). However, flattening to the substrate 3 is at least necessary, and the controllability of the height of the gap (G) can be improved, and the driving can be performed. The controllability of the voltage and the reset voltage has been improved.
[0072]
FIGS. 42 to 44 are a sectional view, a plan view, and a plan view showing an assembled state of one unit of the optical deflector according to the eleventh embodiment of the present invention. In each drawing, in the light deflecting device 0, the plate-shaped member 2 has a circular outer shape as shown (see FIG. 43).
Since the plate-shaped member 2 is circular as shown in the figure, the light reflected on the reflection area of the reflection surface 1a of the reflection means 1 combined with the plate-shaped member 2 becomes circular, and the light deflector 0 is One pixel in the image forming apparatus 200 (not shown) and the image projecting apparatus 300 (not shown) can be circular. As a result, the gaps between adjacent pixels can be dotted in a dot shape (see FIG. 44). Therefore, unlike the case where the gap between adjacent pixels having a rectangular pixel shape by the rectangular plate-shaped member 2 forms a linear streak, a high-definition image can be obtained.
45 and 46 are a cross-sectional view and a plan view of another embodiment. In this optical deflector 0, the cap-shaped member 5 is provided at an arbitrary position corresponding to the outer periphery of the plate-shaped member 2, for example, Shade-shaped member 5a 1 , Shade member 5a 2 , Shade member 5a 3 , Shade member 5a 4 Are provided at intervals (g). Since it is possible to start the etching removal of the sacrificial layer 7 (not shown) from a plurality of intervals (g) in the method of manufacturing the optical deflector 0 described later, the time required for the etching removal of the sacrificial layer 7 (not shown) can be shortened. it can.
At the time of the etching removal, the plate-shaped member 2 and the substrate 3 are exposed to the etching solution, so that the etching time is shortened, thereby improving the yield.
[0073]
47 and 48 are a cross-sectional view and a plan view of the thirteenth embodiment. In the light deflector 0, the cap-shaped member 5 is installed in the entire area corresponding to the outer periphery of the plate-shaped member 2. I have. Since the cap-shaped member 5 is continuously arranged over the entire circumference of the plate-shaped member 2, the plate-shaped member 2 protrudes from the gap (G) whose mechanical movable range is mechanically limited, and the light deflecting device 0 is moved. Since the failure is reduced as much as possible, the operation is more stable, and the mechanical strength can be further reduced and deteriorated even after long-term use.
Next, the cap-shaped member 5 in the light deflecting device 0 is formed of an insulating film 5b having an insulating property. As described above, the cap-shaped member 5 comes into contact with the plate-shaped member 2 in order to keep the plate-shaped member 2 in an arbitrary space (G). Therefore, when the shade member 5 is conductive, there is a high risk that the potential of the electrically floating plate-shaped member 2 fluctuates. That is, even when the plate-shaped member 2 comes into contact with the cap-shaped member 5, the electric floating of the plate-shaped member 2 does not move via the cap-shaped member 5, so that the potential of the plate-shaped member 2 fluctuates. Can be suppressed.
Next, in the light deflecting device 0, the hat-shaped member 5 is formed of a light-transmitting film 5c having a light-transmitting property with respect to an incident light beam, and is particularly formed of the silicon oxide film 5d. By using the translucent film 5c for the cap-shaped member 5, the light reflected from the area of the light-reflecting area of the reflecting surface 1a of the reflecting means 1 combined with the plate-shaped member 2 that overlaps the cap-shaped member 5 is also reduced. Since it can contribute, the area and the amount of reflected light in one element can be increased. That is, since the amount of ON light is increased, the structure for performing light deflection and the control are simpler and easier, the operation is more stable, and the response is faster.
Further, by using the silicon oxide film 5d as the shade member 5, the shade member 5 having both high insulation properties and high translucency can be provided. Integration can be made, the structure and control are simpler and easier, the operation is more stable, the response is faster, the miniaturization and integration are possible, and the cost can be further reduced.
[0074]
Next, the hat-shaped member 5 in the light deflector 0 is formed of a light-shielding film 5e having a light-shielding property for an incident light beam, and in particular, is formed of a chromium oxide film 5f. By using the light-shielding film 5e as the shade member 5, reflection of the light beam incident on the shade member 5 in an undesired direction can be suppressed. Thereby, stray light of light deflection in the target direction can be reduced. The stray light is a component that is generated even when the light is not deflected in the target direction. Therefore, the amount of OFF light is suppressed, the structure for performing the light deflection is simpler and easier to control, and the operation is more stable.
Further, by using the chromium oxide film 5f as the shade member 5, the shade member 5 having both high insulation properties and high light-shielding properties can be provided. In addition, the structure for performing light deflection and the control are simpler and easier, the operation is more stable, the response is faster, and the cost is lower.
Next, in the light deflecting device 0, the plate-shaped member 2 is formed of the silicon nitride film 2c, and the light-reflecting area of the reflecting surface 1a of the reflecting means 1 combined with the plate-shaped member 2 has high conductivity. And the highly reflective aluminum-based metal film 1b.
The plate-shaped member 2 of the silicon nitride film 2c has a high dielectric breakdown voltage and a high resistance to long-term deterioration, that is, fatigue due to repeated displacement, so that it can be made as lightweight and thin as possible. Driving at a high frequency is possible, that is, high-speed operation of several tens of kHz or more is possible.
In addition, the light reflection area of the reflection surface 1a of the reflection means 1 is made of the aluminum-based metal film 1b which achieves both high reflection performance and high conductivity, so that it can also serve as the conductive area 2b. The light deflecting operation of the light deflecting device 0, that is, the displacement of the plate-shaped member 2 can be performed at a low voltage while obtaining a higher reflected light amount.
[0075]
49 and 50, a light deflecting device 0 is used as a one-dimensional light deflecting array 10 in which a plurality is arranged in a one-dimensional array shape, such as a latent image forming means 202 (not shown) in the image forming device 200 (not shown). (See FIG. 49). Furthermore, a plurality of the one-dimensional light deflection arrays 10 can be combined and used as a two-dimensional light deflection array 20 arranged in a two-dimensional array shape, such as the optical switch means 301 in the image projection display device 300 (not shown) ( See FIG. 50).
[0076]
51 to 59, the light deflecting device 0 includes a fulcrum member 4 and a plurality of electrodes 6 such as an electrode 6a on a substrate 3 as follows. 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 Is formed, and a plate-shaped plate-shaped member 2 formed of a thin film configured by combining the reflection means 1 on the surface is formed via the first sacrifice layer 7a that has been deposited and flattened. After the shade-shaped member 5 is patterned at a predetermined position where the second sacrifice layer 7b is patterned, the first sacrifice layer 7a and the second sacrifice layer 7b are removed by etching. A structure that performs light deflection by changing the direction of reflection of light into one or two axes, is easy to control, has stable operation, has a fast response, and does not limit the wavelength of incident light to be used. Can provide a method of manufacturing the optical deflecting device 0 that has little change and deterioration even after long-term use, has low driving voltage, saves resources, can be miniaturized and integrated, is low-cost, and is not limited in use environment. It became so.
Step of forming a fulcrum member on a substrate (a 1 5), the silicon oxide film 4f constituting the fulcrum member 4 is deposited on the substrate 3 of the silicon substrate 3b having the (100) plane orientation by a plasma CVD method, and thereafter, a pattern having an area gradation is formed. A photolithography method using a photomask or a photolithography method in which a resist pattern is formed and then thermally deformed after forming a resist pattern to form a resist pattern having an arbitrary film thickness substantially the same as the shape of the fulcrum member 4, and then a dry etching method Thereby, the fulcrum member 4 having the target shape is formed.
Incidentally, a silicon oxide film of about 2 μm may be formed on the silicon substrate 3b having the (100) plane orientation, and the same processing may be performed on the upper layer of about 1 μm.
The height at the vertex of the fulcrum portion of the fulcrum member 4 is approximately 1 μm (see FIG. 51).
[0077]
Electrode forming step (a 2 ), A plurality of electrodes 6, for example, electrodes 6 a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 Is formed as a thin film of a titanium nitride (TiN) film.
The TiN thin film is formed to a thickness of 0.01 μm by a DC magnetron sputtering method using Ti as a target, and a plurality of, for example, electrodes 6a are formed by a photolithography method and a dry etching method. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 (See FIG. 52).
Protective film forming step (a 3 ), A plurality of electrodes 6, for example, electrodes 6 a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 As a protective film 6b, a silicon nitride film was formed to a thickness of 0.2 μm by a plasma CVD method (see FIG. 53).
First sacrificial layer forming step (a 4 In (2), an amorphous silicon film was deposited to a thickness of 2 μm by a sputtering method, and planarized by processing time control using a CMP technique. At this time, the processing was performed in such a time that the thickness of the amorphous silicon film remaining on the apex of the fulcrum member 4 became 0.1 μm. The remaining amorphous silicon film is the first sacrificial layer 7a.
In addition, as the first sacrificial layer 7a, a polyimide film or a photosensitive organic film, a resist film or a polycrystalline silicon film generally used in a semiconductor process can be used in addition to the above film. As a method, a reflow method by heat treatment or an etch-back method by dry etching can also be used (see FIG. 54).
Reflection means and plate-shaped member forming step (a 5 2), the silicon nitride film 2c to be the plate-shaped member 2 is deposited to a thickness of 0.2 μm by a plasma CVD method, and the silicon nitride film 2c and the conductive region 2b serving also as the light reflection region of the reflection surface 1a of the reflection means 1 are continuously formed. The resulting aluminum-based metal film 1b was deposited to a thickness of 0.05 μm by a sputtering technique. Thereafter, the conductive region 2b and the plate-shaped member 2 were patterned by a photoengraving method and a dry etching method, respectively (see FIG. 55).
[0078]
Second sacrificial layer forming step (a 6 2), an amorphous silicon film was deposited to a thickness of 1 μm by a sputtering method to form the second sacrificial layer 7b. Incidentally, as the second sacrificial layer 7b, a polyimide film or a photosensitive organic film, a resist film or a polycrystalline silicon film generally used in a semiconductor process can be used in addition to the above film (FIG. 56). See).
Shaft-shaped member patterning process (a 7 2), the light deflecting device 0 is individually separated, and a cap-shaped member 5 (not shown) is arranged around the plate-shaped member 2 which is configured by combining the reflection means 1 by photolithography and dry etching. The first sacrifice layer 7a and the second sacrifice layer 7b were simultaneously patterned a little wider than the plate-shaped member 2 configured by combining the reflection means 1 (see FIG. 57).
Shaping member forming step (a 8 5), the silicon oxide film 5d constituting the cap member 5 is deposited to a thickness of 0.8 μm by plasma CVD and patterned by photoengraving and dry etching to form the cap member 5. did. Note that the cap-shaped member 5 is not limited to the shape shown in the figure, but may take the shape shown in FIG. 60 or FIG. 61 (see FIG. 58).
Sacrificial layer removing step (a 9 2), the remaining first sacrifice layer 7a and the second sacrifice layer 7b are removed by etching through an opening by wet etching technology, and the movable range of the plate-shaped member 2 combined with the reflection means 1 is changed. The light deflecting device 0 is completed by arranging in the limited space (G).
It should be noted that a plurality of, for example, each cap-shaped member 5a correspond to the outer periphery of the plate-shaped member 2. 1, Shade-shaped member 5a 2, Shade-shaped member 5a 3, Shade-shaped member 5a 4 Are arranged at a predetermined interval (g) so that the first sacrifice layer 7a and the second sacrifice layer 7b of the sacrifice layer 7 are three-dimensionally arranged at the interval (g). Since it is exposed, the etching can be completed in a shorter time (see FIG. 59).
[0079]
FIGS. 62 to 71 are views showing a manufacturing procedure of an optical deflecting device according to another embodiment of the present invention. The optical deflecting device 0 includes a plurality of fulcrum members 4 and electrodes 6 on a substrate 3 as follows. Individual, for example, electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 And the reflecting means 1 is combined with the surface via the third sacrificial layer 7c, which is deposited and flattened on the first sacrificial layer 7a, which is deposited by projecting the fulcrum member 4 and flattened. The plate-shaped member 2 composed of the curved portion 2a having a curved shape formed of a thin film to be formed is formed, and further, the cap-shaped member 5 is placed at a predetermined position where the deposited second sacrificial layer 7b is patterned. After patterning, the first sacrifice layer 7a, the second sacrifice layer 7b, and the third sacrifice layer 7c of the sacrifice layer 7 are removed by etching. When the plate-shaped member 2 is displaced, the plate-shaped member 2 can be displaced around the curved portion 2a when the plate-shaped member 2 is displaced, and the displacement of the plate-shaped member 2 is suppressed. Spontaneously facilitated, board A structure in which, when the plate-shaped member 2 is displaced, the plate-shaped member 2 is prevented from contacting the side surface of the shade-shaped member 5, and the direction of reflection of incident light is changed to one axis or two axes to perform light deflection. Simple control, easy operation, more stable operation, quick response, no restriction on the wavelength of incident light to be used, less change and deterioration in mechanical strength even after long-term use, low driving voltage, low resource consumption Thus, it is possible to provide a method of manufacturing the optical deflecting device 0 that can be miniaturized and integrated, is low in cost, and is not restricted in the use environment.
Supporting point member forming step on substrate (b 1 5), the silicon oxide film 4f constituting the fulcrum member 4 is deposited on the substrate 3 of the silicon substrate 3b having the (100) plane orientation by a plasma CVD method, and thereafter, a pattern having an area gradation is formed. A photolithography method using a photomask or a photolithography method in which a resist pattern is formed and then thermally deformed after forming a resist pattern to form a resist pattern having an arbitrary film thickness substantially the same as the shape of the fulcrum member 4, and then a dry etching method Thereby, the fulcrum member 4 having the target shape is formed.
Incidentally, a silicon oxide film of about 2 μm may be formed on the silicon substrate 3b having the (100) plane orientation, and the same processing may be performed on the upper layer of about 1 μm.
The height at the vertex of the fulcrum portion of the fulcrum member 4 is approximately 1 μm (see FIG. 62).
[0080]
Electrode forming step (b 2 ), A plurality of electrodes 6, for example, electrodes 6 a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 Is formed as a thin film of a titanium nitride (TiN) film.
The TiN thin film is formed to a thickness of 0.01 μm by a DC magnetron sputtering method using Ti as a target, and a plurality of, for example, electrodes 6a are formed by a photolithography method and a dry etching method. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 (See FIG. 63).
Protective film forming step (b 3 ), A plurality of electrodes 6, for example, electrodes 6 a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 As the protective film 6b, a silicon nitride film having a thickness of 0.2 μm was formed by a plasma CVD method (see FIG. 64).
First sacrificial layer forming step (b 4 In (2), an amorphous silicon film was deposited to a thickness of 2 μm by a sputtering method, the fulcrum member 4 was exposed using a CMP technique, and was further flattened for a long time. At this time, the fulcrum member 4 and the protective film 6b are subjected to the CMP condition with high polishing selectivity, so that the fulcrum portion remains near the vertex of the fulcrum member 4 and the amorphous silicon film remains slightly lower. . The fulcrum portion of the fulcrum member 4 protruded by about 0.2 μm. The remaining amorphous silicon film is the first sacrificial layer 7a. In addition, as the first sacrificial layer 7a, a polyimide film or a photosensitive organic film, a resist film or a polycrystalline silicon film generally used in a semiconductor process can be used in addition to the above film. As a method of this, an etch-back method by dry etching can be used (see FIG. 65).
[0081]
Third sacrificial layer forming step (b 5 ), An amorphous silicon film was deposited to a thickness of 0.1 μm by a sputtering method to form the third sacrificial layer 7c (see FIG. 66).
Reflection means and plate-shaped member forming step (b 6 2), the silicon nitride film 2c to be the plate-shaped member 2 is deposited to a thickness of 0.2 μm by a plasma CVD method, and the silicon nitride film 2c and the conductive region 2b serving also as the light reflection region of the reflection surface 1a of the reflection means 1 are continuously formed. The resulting aluminum-based metal film 1b was deposited to a thickness of 0.05 μm by a sputtering technique. Thereafter, the conductive region 2b and the plate-shaped member 2 were patterned by a photoengraving method and a dry etching method, respectively (see FIG. 67).
Second sacrificial layer forming step (b 7 2), an amorphous silicon film was deposited to a thickness of 1 μm by a sputtering method to form the second sacrificial layer 7b. In addition, as the second sacrificial layer 7b, a polyimide film or a photosensitive organic film, a resist film or a polycrystalline silicon film generally used in a semiconductor process can be used in addition to the above-described film (FIG. 68). See).
Shading member patterning process (b 8 2), the light deflecting device 0 is individually separated, and a cap-shaped member 5 (not shown) is arranged around the plate-shaped member 2 which is configured by combining the reflection means 1 by photolithography and dry etching. The first sacrifice layer 7a, the second sacrifice layer 7b, and the third sacrifice layer 7c were simultaneously patterned slightly wider than the plate-shaped member 2 configured by combining the reflection means 1 (see FIG. 69). reference).
Shaping member forming step (b 9 5), the silicon oxide film 5d constituting the cap member 5 is deposited to a thickness of 0.8 μm by plasma CVD and patterned by photoengraving and dry etching to form the cap member 5. did. Note that the cap-shaped member 5 is not limited to the shape shown in the figure, but may take the shape shown in FIG. 60 or FIG. 61 (see FIG. 70).
Sacrificial layer removing step (b 10 2), the remaining first sacrifice layer 7a, second sacrifice layer 7b, and third sacrifice layer 7c are removed by etching through an opening by a wet etching technique, and the reflection means 1 is combined. The plate-shaped member 2 is arranged in the gap (G) in which the movable range is limited, and the light deflecting device 0 is completed. It should be noted that a plurality of, for example, each cap-shaped member 5a correspond to the outer periphery of the plate-shaped member 2. 1 , Shade member 5a 2 , Shade member 5a 3 , Shade member 5a 4 Are arranged at predetermined intervals (g), so that the first sacrifice layer 7a, the second sacrifice layer 7b, and the third sacrifice layer of the sacrifice layer 7 are provided at the interval (g). Since the layer 7c is three-dimensionally exposed, the etching can be completed in a shorter time (see FIG. 71).
[0082]
FIGS. 72 to 80 are views showing a manufacturing procedure of an optical deflecting device according to still another embodiment of the present invention. The optical deflecting device 0 includes the above-described concave shape portion 3a on the substrate 3 as follows. The slope 4d of the slope 4d is formed in the recess 3a. 4 Fulcrum member 4 and a plurality of electrodes 6, for example, electrode 6a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 Is formed, and a plate-shaped plate-shaped member 2 formed of a thin film configured by combining the reflection means 1 on the surface is formed via the first sacrifice layer 7a that has been deposited and flattened. After the cap member 5 is patterned at a predetermined position where the second sacrifice layer 7b is patterned, the first sacrifice layer 7a and the second sacrifice layer 7b are removed by etching. The height of the member 5 is reduced, and the cap-shaped member 5 itself becomes self-supporting and stable. The light is deflected by changing the reflection direction of the incident light to one axis or two axes, and the control is simple, easy, and easy to operate. Stable and fast response, the wavelength of incident light used is not limited, the mechanical strength is less changed and deteriorated even after long-term use, drive voltage is low, resource saving, miniaturization and integration are possible Optical deflector with low cost and unlimited use environment 0 method of manufacturing has become possible to provide.
Step of forming concave portion on substrate and supporting member (c) 1 5), the depression-shaped portion 3a and the recessed portion 3a are formed by a photoengraving method using a photomask in which a pattern having an area gradation or a density gradation is formed on the substrate 3 of the silicon substrate 3b having the (100) plane orientation. Then, a resist pattern having an arbitrary thickness substantially the same as the shape of the fulcrum member 4 is formed, and then the silicon substrate 3b having the (100) plane orientation is etched on the substrate 3 by a dry etching method. . After that, the silicon oxide film 4f constituting the fulcrum member 4 is deposited by a plasma CVD method of about 1 μm so that the silicon substrate 3b having the (100) plane orientation is insulated from the substrate 3. Through the steps described above, the above-mentioned dent-shaped portion 3a and the fulcrum member 4 having the target shape are formed.
Incidentally, a silicon oxide film of about 2 μm may be formed on the silicon substrate 3b having the (100) plane orientation, and the same processing may be performed on the upper layer of about 1 μm. The maximum depth of the concave portion 3a is about 3 μm, and the depth at the vertex of the fulcrum portion of the fulcrum member 4 is about 0.3 μm (see FIG. 72).
[0083]
Electrode forming step (c 2 ), A plurality of electrodes 6, for example, electrodes 6 a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 Is formed as a thin film of a titanium nitride (TiN) film. The TiN thin film is formed to a thickness of 0.01 μm by a DC magnetron sputtering method using Ti as a target, and a plurality of, for example, electrodes 6a are formed by a photolithography method and a dry etching method. 1 , Electrode 6a 2 , Electrode 6a 3 , Electrode 6a 4 (See FIG. 73).
Protective film forming step (c 3 ), A plurality of electrodes 6, for example, electrodes 6 a 1 , Electrode 6a 2 , Electrode 6a 3 Or the electrode 6a 4 As the above protective film 6b, a silicon nitride film having a thickness of 0.2 μm was formed by a plasma CVD method (see FIG. 74).
First sacrificial layer forming step (c 4 2), an amorphous silicon film is deposited to a thickness of 2 μm by a plasma CVD method, and is polished by a CMP technique using the substrate 3 of the silicon substrate 3b having the (100) plane orientation and the protective film 6b as an etching stop layer. And flattened.
At this time, due to the effect of the etching stop layer, the amorphous silicon film in the recessed portion 3a can be flattened with high controllability with almost no overpolishing.
The thickness of the amorphous silicon film remaining on the apex of the fulcrum portion of the fulcrum member 4 was about 0.2 μm. The amorphous silicon film remaining in the concave portion 3a is the first sacrificial layer 7a. In addition, as the first sacrificial layer 7a, a polyimide film or a photosensitive organic film, a resist film generally used in a semiconductor process, a polycrystalline silicon film, or the like can be used in addition to the above film. As a technique for the formation, a reflow method by heat treatment or an etch-back method by dry etching can be used (see FIG. 75).
Reflecting means and plate-shaped member forming step (c 5 2), the silicon nitride film 2c to be the plate-shaped member 2 is deposited to a thickness of 0.2 μm by a plasma CVD method, and the silicon nitride film 2c and the conductive region 2b serving also as the light reflection region of the reflection surface 1a of the reflection means 1 are continuously formed. The resulting aluminum-based metal film 1b was deposited to a thickness of 0.05 μm by a sputtering technique. Thereafter, the conductive region 2b and the plate-shaped member 2 were patterned by photolithography and dry etching, respectively (see FIG. 76).
[0084]
Second sacrificial layer forming step (c 6 2), an amorphous silicon film was deposited to a thickness of 1 μm by a sputtering method to form the second sacrificial layer 7b. Incidentally, as the second sacrificial layer 7b, a polyimide film or a photosensitive organic film, a resist film or a polycrystalline silicon film generally used in a semiconductor process can be used in addition to the above-mentioned film (FIG. 77). See).
Shading member patterning process (c 7 2), the light deflecting device 0 is individually separated, and a cap-shaped member 5 (not shown) is arranged around the plate-shaped member 2 which is configured by combining the reflection means 1 by photolithography and dry etching. The first sacrifice layer 7a and the second sacrifice layer 7b were simultaneously patterned a little wider than the plate-shaped member 2 configured by combining the reflection means 1 (see FIG. 78).
Shade-shaped member forming step (c 8 5), the silicon oxide film 5d constituting the cap member 5 is deposited to a thickness of 0.8 μm by plasma CVD and patterned by photoengraving and dry etching to form the cap member 5. did. Note that the cap-shaped member 5 is not limited to the shape shown in the figure, but may take the shape shown in FIG. 60 or FIG. 61 (see FIG. 79).
Sacrificial layer removing step (c 9 2), the remaining first sacrifice layer 7a and the second sacrifice layer 7b are removed by etching through an opening by wet etching technology, and the movable range of the plate-shaped member 2 combined with the reflection means 1 is changed. The light deflecting device 0 is completed by arranging in the limited space (G).
It should be noted that a plurality of, for example, each cap-shaped member 5a correspond to the outer periphery of the plate-shaped member 2. 1, Shade-shaped member 5a 2, Shade-shaped member 5a 3, Shade-shaped member 5a 4 Are arranged with a predetermined space (g) therebetween, so that the first sacrifice layer 7a and the second sacrifice layer 7b of the sacrifice layer 7 are exposed in the space (g). The etching can be completed in a shorter time (see FIG. 80).
[0085]
In FIG. 81, the image forming apparatus 200 that forms an image by performing optical writing in an electrophotographic process is a drum of an image carrier 201 that is held rotatably in a direction indicated by an arrow (V) in FIG. Each of the plurality of light deflecting devices 0 of the one-dimensional light deflecting array 10 is independently driven on the photosensitive member having the shape and the drum-shaped photosensitive member of the image carrier 201 uniformly charged by the charging means 205. The latent image forming means 202 comprising the optical information processing apparatus 100 comprising the above-mentioned independent driving means 101 performs optical writing to form a latent image, and each of the one-dimensional light deflection arrays 10 of the latent image forming means 202 comprises The latent image formed by the light deflecting device 0 is visualized by a developing unit 203 to form a toner image, and the toner image formed by the developing unit 203 is transferred by a transfer unit 204 to a transfer target (P). After the toner image transferred to the transfer paper of the transfer target (P) is fixed by the fixing unit 206, the transfer paper of the transfer target (P) is discharged to the discharge tray 207. Stored.
On the other hand, the drum-shaped photosensitive member of the image carrier 201 after the toner image has been transferred onto the transfer paper of the transfer-receiving member (P) by the transfer unit 204 is cleaned by the cleaning unit 208 and used for image formation in the next step. To be prepared.
[0086]
In the optical information processing apparatus 100 in the latent image forming means 202, the incident light beam (R) from the light source 102 is transmitted through the first lens system 103 to the plurality of light deflecting devices of the one-dimensional light deflecting array 10. 0, and the plurality of light modulators 0 of the one-dimensional light deflection array 10 are individually driven by the independent driving means 101 so that the reflecting means 1 which reflects the respective incident light independently according to the image information. A gap formed between the fulcrum member 4 on the substrate 3 and the cap-shaped cap-shaped member 5 without fixing the plate-shaped plate-shaped member 2 formed of a thin film combined with the surface on the substrate 3 G), a potential is applied to an electrode 6 disposed around the fulcrum member 4 on the substrate 3 so as to face the plate-shaped member 2 so that the electrode 6 is tilted on the fulcrum member 4. The reflection means 1 on the plate-shaped member 2 on which The light is deflected by changing the direction of light reflection, and the incident light beam (R) is reflected by the reflecting means 1 on the surface of the image bearing member 201 on the drum-shaped photosensitive member through the second lens system 104, and the structure and control are performed. An image is formed easily and easily, while suppressing stray light and reflected light from adjacent elements generated when the reflection direction is disturbed.
The one-dimensional light deflection array 10 was formed using a silicon wafer as a substrate by the same method as the above-described manufacturing method.
Therefore, a structure in which the reflection direction of incident light is changed to one axis or two axes to perform light deflection, and ON and OFF control during optical writing are easy and easy, and stray light and the reflection direction are disturbed. The reflected light from the adjacent elements generated when the light is reflected can be suppressed, the operation is stable and the response is fast, the wavelength of the incident light to be used is not limited, and the mechanical strength is less changed and deteriorated even when used for a long time, Equipped with an optical deflecting device 0 with low driving voltage, resource saving, miniaturization and integration, low cost, and unlimited use environment, the structure and control are simple and easy, and stray light and reflection direction are disturbed. The optical information processing apparatus 100 including the optical deflecting device 0 that suppresses the reflected light from the adjacent element generated when the light is written. The ON / OFF control at the time of optical writing is good, high-speed operation is possible, and long-term operation is possible. High reliability, driven at low voltage, N ratio also has become possible to provide the image forming apparatus 200 for forming a high-definition image at high speed can be improved.
[0087]
In FIG. 82, the image projection display device 300 for projecting and displaying an image is a two-dimensional light deflection array for projecting an image by changing the reflection direction of an incident light beam (R) of projected image data and performing light deflection. Each of the light modulators 0 of the optical switch means 301 of the optical information processing device 100 comprising the independent driving means 101 for independently driving the plurality of light deflecting devices 0 of 20 respectively. They are projected and displayed.
The optical information processing apparatus 100 in the optical switch means 301 irradiates the plurality of optical deflecting devices 0 arranged in the two-dimensional deflection array 20 with the incident light beam (R) from the light source 102, and The desired image data is reflected by the reflecting means 1 combined with each plate-shaped member 2 by the driving means 101, and the structure and image projection data are reflected on the projection screen 302 via the projection lens 105 and the aperture 106. , That is, control of ON and OFF of the pixel at the time of light and dark is easy and easy, and stray light and reflected light from adjacent elements generated when the reflection direction is disturbed are projected.
In order to perform color display, a rotating color hole 107 may be provided in front of the light source 102, or a microlens array 108 may be used for improving performance.
The two-dimensional light deflection array 20 was formed using a silicon wafer as a substrate by the same method as the above-described manufacturing method.
Therefore, the structure for performing light deflection by changing the reflection direction of incident light to one axis or two axes and displaying image projection data, that is, controlling ON and OFF of pixels when light and dark are simple and easy. In addition, stray light and reflected light from adjacent elements generated when the reflection direction is disturbed can be suppressed, the operation is stable, the response is fast, the wavelength of incident light to be used is not limited, and the mechanical strength is long. Less change and deterioration during use, low driving voltage, resource saving, miniaturization and integration possible, low cost, equipped with optical deflecting device 0 that is not restricted in use environment, the structure and control are simple and easy. And the optical information processing apparatus 100 for suppressing reflected light from an adjacent element generated when stray light or a reflected direction is disturbed, and good ON / OFF control at the time of image light / dark control to enable high-speed operation, And high long-term reliability at low voltage Is dynamic, since it improves the contrast ratio, it has become possible to provide the image projection display apparatus 300 for displaying by projecting high-definition images having a high contrast while a high luminance.
[0088]
In FIG. 83, an optical transmission device 400 that determines an optical path of an optical signal, outputs the optical signal, and transmits the optical signal includes an optical signal input unit 401 that inputs an optical signal, and a reflection of an incident light of the optical signal from the optical signal input unit 401. An optical switch means 402 comprising an optical deflecting device 0 of the two-dimensional optical deflection array 20 for changing the direction to one axis or two axes and performing optical deflection to determine an optical path of each optical signal; An optical signal output means 403 for outputting an optical signal from the means 402 determines an optical path of the optical signal, and outputs and transmits the optical signal.
The optical switch means 402 includes one or a plurality of signal input transmission ports 401a of the optical signal input means 401, for example, the signal input transmission port 401a. 1 , Signal input transmission port 401a 2 , Signal input transmission port 401a 3 The optical information signals input from the two-dimensional light deflection arrays 20a and 20b of the two-dimensional light deflection arrays 20 are arranged in two stages by a plurality of light deflection devices 0 arranged in the two-dimensional light deflection array 20b. It is deflected in one-axis or two-axis direction, selects and determines a predetermined output port, and outputs a plurality of signal output transmission ports 403a, for example, signal output transmission ports 403a. 1 , Signal output transmission port 403a 2 , Signal output transmission port 403a 3 The output from the optical signal output means 403 having the above, the control such as selection for determining the structure and the port of the output optical information signal is easy and easy, and the stray light and the reflection from the adjacent element generated when the reflection direction is disturbed. Suppress light and transmit.
The optical switch means 402 arranges the two-dimensional light deflection array 20 in two stages to increase the light deflection angle. However, depending on the number of ports to be selected, the two-dimensional light deflection array 20 has one. Individuals are fine.
Also, a plurality of light deflecting devices 0 arranged in the two-dimensional light deflecting array 20a and the two-dimensional light deflecting array 20b of each of the two-dimensional light deflecting arrays 20 are simultaneously and independently driven. Each control device 402a of the control device 402a 1 And each control device 402a 1 Are respectively provided.
Therefore, it is easy to control the structure such as changing the direction of reflection of the incident light to one axis or two axes to perform light deflection, and to select and determine the port of the output optical information signal. The reflected light from adjacent elements generated when disturbed can be suppressed, the operation is stable and the response is fast, the wavelength of the incident light used is not limited, and the mechanical strength is less changed and deteriorated even after long use. It has a low driving voltage, resource saving, miniaturization and integration, low cost, and an optical deflecting device 0 that is not restricted in the use environment. The structure and control are simple and easy. It suppresses reflected light from adjacent elements generated when disturbed, enables easy and accurate biaxial light deflection, and controls the selection of each port with good control of stray light to adjacent ports. High-speed optical path switching enables high long-term reliability The optical transmission device 400 which is driven at a low voltage and can be integrated on the same substrate can determine the optical path of an optical signal which is small, has high speed, and has few malfunctions, and outputs and transmits the optical signal. Became.
[0089]
FIG. 84 is a plan view for explaining main parts of an optical deflecting device according to a sixteenth embodiment of the present invention.
FIG. 85 is a sectional view taken along line AA ′ of FIG.
In the figure, the fulcrum member 4 is a quadrangular pyramid in which the fulcrum part in contact with the plate-shaped member 2 is almost in contact with the point, and is formed of the silicon oxide film or the silicon nitride film as described above. Target strength is increasing. The top may be pointed, but if the tip is hemispherical, stress concentration is reduced.
[0090]
FIG. 86 is a plan view for explaining main parts of an optical deflecting device according to a seventeenth embodiment of the present invention.
FIG. 87 is a sectional view taken along line AA ′ of FIG.
In the drawing, the fulcrum member 4 is the same as the above in that the fulcrum portion in contact with the plate-shaped member 2 has a quadrangular pyramid shape almost in contact with the point, but the difference is that the size of the bottom surface of the quadrangular pyramid is the plate-shaped member 2. It is about the same size as. Therefore, when the plate-shaped member 2 is inclined by receiving the electrostatic force, the back surface of the plate-shaped member 2 comes into close contact with one of the four slopes of the fulcrum member 4 and maintains a very stable position.
[0091]
FIG. 88 is a plan view for explaining main parts of an optical deflection device according to an eighteenth embodiment of the present invention.
In the figure, reference numeral 6a 1 Or 6a 8 Indicates eight electrodes.
The light deflecting device 0 has a circular outer shape and a plate-shaped member 2 as in the embodiment shown in FIG. In this embodiment, the fulcrum member 4 is formed in an octagonal pyramid. 8 electrodes 6a 1 ~ 6a 8 Are provided corresponding to the slopes of the octagonal pyramid, and are insulated from each other. Now suppose that the electrode 6a 1 ~ 6a 5 = Y / 2 (V), electrode 6a 6 = Y (V), 6a 7 = Y / 2 (V), electrode 6a 8 = 0 (V), so that the plate-shaped member 2 6 Between the plate-shaped member 2 and between the plate-shaped member 2 and the electrode 6a 8 Is attracted by the electrostatic attractive force acting between the electrodes 6a. 7 Incline to the side.
[0092]
When the size of the bottom surface of the octagonal pyramid is made substantially equal to the size of the plate-shaped member 2, the back surface of the plate-shaped member 2 abuts and adheres to the inclined portion to stabilize the light reflection direction. In FIG. 43, the cap-shaped members 5 are provided on the entire circumference of the circular substrate. However, in this embodiment, they are provided discretely at four locations. Which should be determined may be determined depending on the convenience of the entire configuration in the case of forming an array.
In the present embodiment, if the fulcrum member 4 is a polygonal pyramid, for example, it may be a hexagonal pyramid, a seven-sided pyramid, or a ten-sided pyramid. In the case of a hexagonal pyramid, light can be deflected in three axial directions. Similarly, light deflection can be performed by changing the direction to four axes in the case of an octagonal pyramid and in the direction of five axes in the case of a ten-sided pyramid.
Furthermore, even if the fulcrum member 4 has a conical shape, if the electrode 6 is divided into an arbitrary number of plural electrodes such as eight insulated from each other, the plate-shaped member 2 can be stabilized at an inclined position. There is anxiety about gender, but it can have the same effect as above.
[0093]
FIG. 89 is a plan view for explaining main parts of an optical deflecting device according to a nineteenth embodiment of the present invention.
FIG. 90 is a sectional view taken along line AA ′ of FIG.
In the present embodiment, the plate-shaped member 2 is formed of a single-layer member. For example, by using a material having a high reflectance by itself, such as aluminum, a desired function can be achieved without combining a separate reflecting means.
[0094]
FIG. 91 is a view for explaining the twentieth embodiment of the present invention. FIG. 91 (a) is a top view of the light deflecting device, and FIG. 91 (b) is a cross-sectional view taken along the line AA ′. . In addition, in order to avoid complexity, a cross-sectional view shows only a cut end surface. The same applies to all the cross-sectional views below. In the following description, a member which has been called a plate-shaped member until now is simply called a plate-shaped member. Also, the cap-shaped member will be referred to as a regulating member.
[0095]
91, reference numeral 2100 denotes an optical deflecting device, reference numeral 2101 denotes a substrate, reference numeral 2102 denotes a regulating member, reference numeral 2103 denotes a fulcrum member, and reference numeral 2104 denotes a plate-shaped member.
The material of the substrate 2101 may be arbitrary, but in view of miniaturization, a material generally used in a semiconductor process or a liquid crystal process, such as silicon or glass, is desirable. In addition, in the present invention, a silicon substrate having a (100) plane orientation is preferable in consideration of being formed on the same substrate as a drive circuit described later. A plurality of regulating members 2102 are arranged in a shape having a stopper 2102a at one end. It is desired that the regulating member 2102 be made of a thin film and space-saving as much as possible and have high mechanical strength in order to maximize the area ratio of the reflection region when the array is formed. Further, in order to suppress a decrease in mirror performance due to the restricting member 2102, a silicon oxide film or the like having a light transmitting property is desired. May be performed.
[0096]
Although the fulcrum member 2103 is a conical body, the fulcrum member 2103 is a fulcrum when the plate-like member 2104 is displaced. At least the top 2103a of the fulcrum member 2103 which is in contact with the plate member 2104 is conductive. In consideration of conductivity and mechanical strength, the material of the fulcrum member 2103 is a low-resistance crystalline silicon film or polycrystalline silicon film, a metal film, a metal silicide film such as tungsten silicide or titanium silicide, or a silicon oxide film. It is desirable to stack an insulating film of a silicon nitride film and a metal film. However, in the case of stacking an insulating film and a metal film, a connection hole for connecting a potential supply line and the metal film is required to apply a potential to the plate-like member 2104. The plate member 2104 does not have a fixed end. The movable range of the plate member 2104 is limited to a predetermined space by the substrate 2101, the fulcrum member 2103, the regulating member 2102, and the stopper 2102a, and is formed by a manufacturing method described later. The entire plate-like member 2104 is a conductor layer. However, for convenience of applying an electrostatic attraction described later, it is sufficient that the upper or lower surface, or the entire member, that is, at least a part of the member has a conductor layer made of a conductive member.
[0097]
At least a contact portion 2104a in contact with the fulcrum member 2103 on the back side of the plate-like member 2104 is conductive. The contact portion 2104a may be integral with the above-described conductor layer or may be separate from the conductor layer. However, if they are separate, they must be electrically connected. The material of the plate member 2104 is desirably a metal film of aluminum, chromium, titanium, gold, silver, or the like in consideration of conductivity and mechanical strength. When the entire upper surface 2104b of the plate-like member 2104 is used as the light reflection region, it is preferable that the aluminum-based metal film has good reflection performance. Further, the movable range of the plate member 2104 is limited as described above, and the restricting member 2102 is arranged so that almost only the tilt displacement about the fulcrum member 2103 occurs. Further, the plate-like member 2104 is desirably a flat plate at least in the light reflection region 2104b. Since the plate-like member 2104 is a flat plate, the light beam incident on the light reflection area can be reflected in the same reflection direction, and the light deflector is used for an image forming apparatus, an image projection display apparatus, or an optical transmission apparatus. This is important in maintaining the optical characteristics. Note that the flatness of the plate-like member 2104 is desired to have a radius of curvature Ra of several meters or more. When focusing on the light reflection function of the light reflection region 2104b, it may be simply referred to as a light reflection surface.
[0098]
FIG. 92 is a diagram showing a twenty-first embodiment of the present invention. FIG. 92A is a top view of the light deflecting device, and FIG. 92B is a cross-sectional view taken along line AA ′.
In the figure, reference numerals 2100 to 2104 are the same as in the twentieth embodiment. The plate-like member 2104 is formed by laminating a dielectric layer 2201 made of a dielectric member and a conductor layer 2202 made of a conductive member, and is in contact with at least the top 2103a of the fulcrum member 2103 of the plate-like member 2104. The contact portion 2104a is constituted only by the conductor layer 2202. The conductor layer 2202 may have the same configuration as the plate-like member 2104 in FIG. The dielectric layer 2201 desirably has a high dielectric constant of 3 or more, and is formed of a silicon nitride film having a high dielectric constant of 6 to 8 and a high mechanical strength. desirable. Reference numeral 2203 denotes an opening portion formed in the dielectric layer 2201 so that the contact portion 2104a can contact the top portion 2103a. The opening portion 2203 is formed by patterning using a photoengraving technique.
[0099]
FIG. 93 is a diagram showing a twenty-second embodiment of the present invention. FIG. 93A is a top view of the light deflecting device, and FIG. 93B is a cross-sectional view taken along line BB ′.
In the figure, reference numerals 2100 to 2104 are the same as in the twentieth embodiment. In the figure, four electrodes 2301 for applying electrostatic attraction are provided on a substrate 2101. The electrode 2301 is electrically separated from the conductive top formed on the fulcrum member 2103. As in the twentieth embodiment, the material of the electrode 2301 is preferably a material that can be manufactured by a manufacturing method described later. In consideration of conductivity and the like, a metal such as an aluminum-based metal or titanium nitride or titanium is preferable. At least a part of the conductor layer included in the shape member 2104 faces the electrode 2301. Accordingly, an electrostatic attraction caused by a potential difference between a potential applied to any of the four electrodes 2301 formed on the substrate 2101 and a potential of the plate member 2104 applied via the fulcrum member 2103 is applied between the two. The plate member 2104 can be displaced (inclined) in a target direction. Furthermore, by continuously applying an arbitrary potential to another portion of the electrode 2301 facing the fulcrum member 2103 as a center, the direction of displacement of the plate member 2104 can be changed at high speed. Furthermore, by arbitrarily switching the potential applied to each of the four electrodes 2301, the direction of the inclination of the plate-like member 2104 can be controlled with high accuracy in two axial directions.
[0100]
FIG. 94 is a diagram showing a twenty-third embodiment of the present invention. FIG. 94A is a top view of the light deflecting device, and FIG. 94B is a cross-sectional view taken along line BB ′.
FIG. 95 is a view showing a modified example of the fulcrum member.
94, reference numerals 2100 to 2102 are the same as those in the twentieth embodiment. The arrangement of the regulating member 2102 is different from that of the twentieth embodiment, but the basic configuration is the same. FIG. 94 shows a fulcrum member 2401. Up to the twenty-second embodiment, the fulcrum member 2103 is a simple cone, but the fulcrum member 2401 of this embodiment has a plate-like member 2104 in linear contact with the fulcrum member 2401, and The plate-like member 2104 has a ridge shape having a slope, so that the displacement in only one axial direction defined by the contact line can be obtained. The material of the fulcrum member 2401 is the same as the material of the fulcrum member 2103 in the first embodiment.
[0101]
As shown in FIG. 95 (a), the fulcrum member 2401 is typically an inverted V-shaped prism having a point at the top in a vertical cross section, but as shown in FIG. 95 (b), the vicinity of the top is rounded. The shape may have. Alternatively, the cross section may be a pentagon as shown in FIG. 95 (c). In short, any columnar body having a ridge capable of making line contact with the plate-like member 2104 may be used. As shown in FIGS. 94 and 95, since the fulcrum member 2401 in contact with the plate-like member 2104 is in linear contact, the contact area between the fulcrum member 2401 and the plate-like member 2104 is reduced, and the static state of the plate-like member 2104 is reduced. It is possible to stably cause the tilt displacement in the one axis direction due to the electric attractive force. Since the fulcrum member 2401 has a ridge shape having a slope, the mechanical strength of the fulcrum member 2401 can be increased. The displacement of the plate member 1204 is restricted by at least one of the contact portion 2402 of the upper surface of the substrate with the end portion of the plate member or the stopper 2102a of the restricting member 2102. Can be reduced as much as possible to prevent the plate-like member 2104 from sticking to the substrate or the like.
[0102]
FIG. 96 is a diagram showing a twenty-fourth embodiment of the present invention. FIG. 96A is a top view of the light deflecting device, and FIG. 96B is a cross-sectional view taken along line BB ′.
In the figure, reference numerals 2100 to 2102 and 2104 are the same as in the twentieth embodiment, and reference numeral 2301 is the same as in the twenty-second embodiment. Reference numeral 601 denotes a fulcrum member, reference numeral 602 denotes a conductive member, and reference numeral 603 denotes an insulating film.
The slope of the fulcrum member 601 of the light deflecting device 2100 is formed so as to correspond to almost the entire area of the plate-like member 2104, and has four electrodes 2301 for applying electrostatic attraction on the slope. Since the electrode 2301 is formed on the slope of the fulcrum member 601, it is desirable that the fulcrum member 601 be insulative in order to electrically separate the electrodes. In that case, in order to apply a potential to the plate-like member 2104, the top 601a of the fulcrum member 601 needs to be formed of a conductive member 602 having conductivity. Further, it is desirable that the conductive member 602 be formed simultaneously with the electrode 2301 by the same film.
[0103]
Since the plate-like member 2104 is displaced by contacting the entire surface of the electrode 2301, the back surface of the plate-like member 2104 as shown in the twenty-first embodiment is used for the purpose of preventing an electrical short circuit between the plate-like member 2104 and the electrode 2301. It is necessary to form the dielectric layer 2201 or to form the insulating film 603 on the electrode 2301. It is preferable that the insulating film 603 is a silicon oxide film or a silicon nitride film having an insulating property. Further, the insulating film 603 needs to be open at the conductive member 602 in order not to hinder application of a potential to the plate-like member 2104. In the figure, the electrode 2301 can be placed closer to the plate-like member 2104 as it approaches the top 601a, so that a larger electrostatic attraction can be generated. In other words, the displacement of the plate-like member 2104 can be performed at a lower voltage. In this embodiment, since the plate-like member 2104 can be displaced in surface contact with the slope, the impact at the time of contact can be dispersed. By displacing the plate-shaped member 2104 in surface contact with the slope, it is easy to control the displacement direction of the plate.
[0104]
FIG. 97 is a diagram showing a twenty-fifth embodiment of the present invention. FIG. 97A is a top view of the light deflecting device, and FIG. 97B is a cross-sectional view taken along line BB ′.
In FIG. 97, reference numerals 2100 to 2102 and 2104 are the same as in the twentieth embodiment. Reference numeral 2301 is the same as in the twenty-second embodiment. Reference numerals 601 and 602 are the same as in the twenty-fourth embodiment. Reference numeral 604 denotes an insulating film that partially covers the electrode 2301 on the slope.
The material of the insulating film 604 is the same as that of the insulating film 603 shown in the twenty-fourth embodiment. The insulating film 604 on the electrode has a large number of convex portions 701 at arbitrary portions on the slope, and the light deflection direction is defined by the contact of the plate-like member 2104 with the convex portions 701. It is desirable that the convex portion 701 be formed by patterning an insulating film such as the insulating film 603 by a manufacturing method described later. The size, height, and spacing of the protruding portions 701 are designed as an arbitrary shape within a range in which the plate-shaped member 2104 does not contact the electrode 2301 in the recessed position due to elastic deformation, and are designed from the relationship between the electrostatic attraction and the rigidity of the plate-shaped member. be able to. When the plate-like member 2104 is made of a sufficiently hard material and thick film, the plate-like member is not easily elastically deformed, so that the size of the convex portion 701 can be made as small as possible, the height can be made small, and the interval can be widened. Thereby, the contact area with the plate member 2104 can be reduced as much as possible, and the possibility of sticking during long-term driving can be reduced.
[0105]
FIG. 98 is a diagram showing a twenty-sixth embodiment of the present invention.
In this embodiment, reference numerals 2100 to 2103 are the same as in the twentieth embodiment. Reference numerals 2201 to 2203 are the same as in the twenty-first embodiment. Reference numerals 800a, 800b, 800c, and 800d indicate electrodes equivalent to the electrode 2301 shown in the twenty-second embodiment. Reference numerals 801 and 802 indicate constituent elements of the fulcrum member 2103, reference numeral 801 indicates an insulating layer, and reference numeral 802 indicates a conductive layer. The electrodes 800a, 800b, 800c, and 800d are arranged so as to face a plate-like member 2104 composed of a dielectric layer 2201 and a conductor layer 2202, and are made of the same material as the electrode 2301 shown in the twenty-second embodiment. The same is true. The top 2103a of the fulcrum member 2103 is formed by laminating an insulating layer 801 made of an insulating silicon oxide film and a conductive conductive layer 802. The conductive layer 802 is a member of the same material formed by patterning simultaneously with the electrodes 800a, 800b, 800c, and 800d.
[0106]
FIG. 98A is a top view of the light deflecting device 2100 used in the twenty-sixth embodiment. FIG. 98B is a cross-sectional view of the light deflector 2100 taken along line AA ′ and line BB ′ in an initial state. FIG. 98 (c-1) is a cross-sectional view of the optical deflector 2100 taken along line AA ′ and line CC ′ before the reset operation. FIG. 98 (c-2) is a cross-sectional view of the optical deflector 2100 taken along the line AA 'and the line CC' after the reset operation. FIG. 98D is a cross-sectional view taken along line AA ′ and line CC ′ of the light deflector 2100 when light is deflected in one direction. FIG. 98 (e) is a cross-sectional view taken along line AA ′ and line CC ′ of the light deflector 2100 when the light is deflected while changing the deflection axis.
[0107]
In FIG. 98 (b), the position of the initial light deflection device 2100 is free in a predetermined space because the plate-like member 2104 does not have a fixed end. Therefore, in FIG. 98 (b), the arrangement farthest from the electrode is described. As shown in this figure, when the plate member 2104 is equidistant from all the electrodes on the substrate 2101, the plate member 2104 is in the neutral position regardless of the presence or absence of contact between the plate member 2104 and the top 2103a. I will call it. FIG. 98 (c-1) shows a state before the plate member 2104 comes into contact with the fulcrum member 2103. FIG. 98 (c-2) shows the state after the plate member 2104 has come into contact with the fulcrum member 2103. In order to bring the plate member 2104 into contact with the fulcrum member 2103 from the initial state, the reset operation in FIGS. 98 (c-1) and 98 (c-2) is performed.
[0108]
In the reset operation, the potentials of the electrodes 800a and 800b are set to X (V), and the potentials of the electrodes 800c and 800d and the conductive layer 802 are set to 0 (V). Before the plate-like member 2104 comes into contact with the fulcrum member 2103 in FIG. 98 (c-1), the plate-like member is in an electrically floating state, and is indicated by a downward white arrow in FIG. 98 (c-1). Such an electrostatic attraction distribution is obtained. Hereinafter, the magnitude of the electrostatic attraction is schematically shown by the size of the white arrow. That is, electrostatic attraction acts between the electrodes 800a and 800b and the electrodes 800c and 800d via the electrically floating plate member 2104, and the plate member 2104 is drawn vertically to the surface of the substrate 2101. After that, after the plate member 2104 comes into contact with the fulcrum member 2103 in FIG. 98 (c-2), the potential of the plate member 2104 becomes equal to the potential of the fulcrum member 2103, so that the plate member 2104 and the electrodes 800c and 800d Even though a repulsive force acts between them, no electrostatic attraction acts, and a strong electrostatic attraction acts between the plate-like member 2104 and the electrodes 800a and 800b. Therefore, the plate-like member 2104 is inclined to the side where the electrodes 800a and 800b are located, and the end 2104c of the plate-like member 2104 comes into contact with the substrate 2101 so that the direction is regulated and reflected light is obtained in a specific direction. This state is referred to as a reset state, and the direction of the reflected light at this time is referred to as a reset direction.
[0109]
The potential X (V) applied here is determined by the distance between the plate-like member 2104 and the electrode, the capacitance, and the like, and the normal displacement of the plate-like member 2104, that is, the inclination about the fulcrum member 2103, is determined. The voltage is set to be slightly higher than the limit voltage Z (V). This voltage (actually, a potential difference as described later) is referred to as a predetermined potential difference in this embodiment. Next, in FIG. 98 (d), by switching the potentials of the electrodes 800a and 800b to 0 (V) and the potentials of the electrodes 800c and 800d to X (V), the plate-like member 2104 is moved at a high speed in the direction opposite to the reset direction. It is tilted and displaced, and the end 2104d of the plate member 2104 comes into contact with the substrate 2101 and the direction is regulated, and the state becomes “light deflection 1” as shown in the figure.
[0110]
Even if a bias voltage of the same value is added to each electrode and the conductive layer regardless of the positive or negative polarity, the operation does not change because the potential difference between the parts is the same. That is, the electrostatic attraction is not generated by the potential itself, but by a potential difference existing between the opposing members. Note that in this example, the potential on the electrode side is switched while the potential of 0 (V) is applied to the conductive layer 802 of the fulcrum member 2103, but the displacement of the plate member 2104 is simply changed in the direction opposite to the reset direction. , The same operation can be obtained even if the way of applying the potential is reversed. That is, the potential of X (V) is applied to the electrodes 800a and 800b, and the potential of 0 (V) is applied to the electrodes 800c and 800d. When the conductive layer 802 is reset, the potential of 0 (V) is applied. In addition, the potential may be switched to the potential of X (V) when operating to the state of “light deflection 1”. The plate-shaped member 2104 receives a strong electrostatic attraction on a side having a potential difference with the electrode or on a side having a larger potential difference, and is inclined in that direction. That is, by applying an arbitrary potential to the electrode facing the fulcrum member 2103 as the center and making the potential of the conductive layer 802 equal to the potential of any of the electrodes, the displacement direction of the plate member 2104 can be changed at high speed. I can do it. The same can be said for the following embodiments.
[0111]
Next, in FIG. 98 (e), the potentials of the electrodes 800a and 800c and the fulcrum member 802 are set to 0 (V), and the potentials of the electrodes 800b and 800d are set to X (V). By changing the axis, the plate member 2104 is inclinedly displaced at a high speed, and the end 2104e of the plate member 2104 comes into contact with the substrate 2101 and the direction is regulated, and the state becomes the “light deflection 2”. Also in this axial direction, by switching the potential applied to the electrode or the conductive layer as described above, the plate-like member 2104 can be inverted and inclined in the opposite direction to be in the “light deflection 3” state. Therefore, the plate member 2104 can take three positions other than the initial position. That is, the direction of the inclination of the plate-like member 2104 can be controlled with high accuracy in the biaxial directions. As described above, by applying different potentials to the plurality of electrodes, the plate-like member 2104 is displaced by electrostatic attraction, that is, tilted around the fulcrum, and the reflection direction of the incident light flux including the initial position is totaled. It can be changed in four directions.
[0112]
Next, the electrically floating plate-like member 2104 as in the reset operation in FIG. 98 (c-1) is made static by applying different potentials to the different electrodes 800a, 800b, 800c, 800d and the conductive layer 802. FIG. 99 briefly describes the principle of displacing by generating an attraction force. Note that the description in FIG. 99 includes the effect of disposing the conductor layer 2202 on the plate-like member 2104.
[0113]
FIG. 99 is a cross-sectional view of the optical deflector 2100 in FIG. 98 taken along the line DD ′ during a reset operation.
In the figure, a positive potential X (V) is applied to the electrode 800b, and 0 (V) is applied to the electrode 800d. At this time, an electrostatic attraction is generated between the electrodes 800b and 800d and the electrically floating plate-like member 2104 to displace the plate-like member 2104 to the electrode side. Due to the positive potential, a positive charge appears on the electrode 800b. Then, negative charges are generated dielectrically in the dielectric layer 2201 through the gaps 901, and at the same time, the negative charges are spread efficiently and conductively in the conductive layer 2202. In other words, negative charges are efficiently generated in the dielectric layer 2201 by the conductive layer 2202.
[0114]
At this time, since the dielectric layer 2201 and the conductive layer 2202 are electrically floating, a positive charge is typically spread on the dielectric layer 2201 and the conductive layer 2202 which are opposed to the electrode 800d via the gap 901. . A negative charge is typically generated on the electrode 800d so as to correspond to the positive charge. The electrode 800d is actually 0 (V), but this is the case when considered schematically. As a result, an electrostatic attraction is generated also in the plate member located above the electrode 800d. Although the above description has been made with reference to a series of flows, it does not always occur with the series of flows, and the potential difference between the electrodes 800b and 800d causes those phenomena to occur simultaneously. Actually, the electrically floating dielectric layer 2201 and conductive layer 2202 have a specific potential between the electrode 800b and the electrode 800d, and the electrostatic attraction due to the potential difference between the specific potential and the electrode 800b and the specific potential. An electrostatic attraction is generated due to the potential difference between the potential and the electrode 800d. This specific potential is determined by structural factors such as the area of the air gap 901 and the electrodes 800b and 800d. The plate-like member 2104 is inclinedly displaced toward the electrode due to the electrostatic attraction generated in this manner.
[0115]
FIG. 100 is a diagram showing an eighth embodiment of the present invention.
FIG. 100 (a) is a top view of the same light deflector 2100 as that shown in the twenty-sixth embodiment, similarly to FIG. 98 (a). FIG. 100B is a cross-sectional view of the optical deflector 2100 in the initial state along the line AA ′ and the line BB ′, as in FIG. 98B. FIGS. 100 (c-1) and 100 (c-2) show AA ′ of the optical deflector 2100 before and after the reset operation, respectively, as in FIGS. 98 (c-1) and 98 (c-2). It is sectional drawing on a line and a CC 'line. FIG. 100D is a cross-sectional view taken along line AA ′ and line CC ′ of the light deflector 2100 when light is deflected in one direction. FIG. 100E is a cross-sectional view of the optical deflector 2100 taken along line AA ′ and line CC ′ when the light is deflected while changing the deflection axis.
[0116]
The initial state in FIG. 100 (b) and the reset operation in FIGS. 100 (c-1) and 100 (c-2) are similar to those in FIG. 98, but the way of applying the potential is different. The potential of the electrode 800a is Y (V), the potential of the electrodes 800c and 800d, the potential of the conductive layer 802 is approximately Y / 2 (V), and the potential of the electrode 800b is 0 (V). Even when the plate-like member 2104 does not contact the fulcrum member 2103, the plate-like member 2104 contacts the fulcrum member 2103 by substantially the same phenomenon as the reset operation described with reference to FIG. (V) potential is applied.
Since the electrodes 800c and 800d are given the same potential as the plate-like member, no electrostatic attraction acts between them. The potential difference between the electrode 800b and the plate-shaped member and the potential difference between the plate-shaped member 2104 and the electrode 800a are both substantially Y / 2 (V), and a strong electrostatic attraction acts between the electrode and the plate-shaped member. 2104 is inclined to the side where the electrodes 800a and 800b are. This state is referred to as a reset state.
[0117]
In FIG. 100D, the potential of the electrode 800c is Y (V), the potential of the electrodes 800a and 800b, and the potential of the conductive layer 802 are approximately Y / 2 (V), and the potential of the electrode 800d is 0 (V). Accordingly, the plate member 2104 is inclinedly displaced at a high speed in a direction opposite to the reset direction, and the end 2104d of the plate member 2104 comes into contact with the substrate 2101 to regulate the direction, and the state becomes “light deflection 1”. The operation is exactly the same even if a constant bias potential is added to each electrode and the conductive layer regardless of the positive or negative polarity. That is, by applying an arbitrary potential that is different in magnitude to two adjacent electrodes, and applying an intermediate potential between the large and small potentials to the remaining two electrodes and the conductive layer 802, the displacement direction of the plate member 2104 can be changed at high speed. Can be changed. The potential Y (V) applied here is a predetermined value and is determined under the following conditions. That is, the potential Y / 2 (V) applied to the conductive layer 802 is set to be slightly higher than the limit voltage Z (V) that causes the displacement of the plate member 2104.
[0118]
Next, in FIG. 100E, the potential of the electrode 800b is Y (V), the potential of the electrodes 800a and 800c and the conductive layer 802 is substantially Y / 2 (V), and the potential of 800d is 0 (V). As a result, the axis of the plate-like member 2104 is inclined and displaced at a high speed with the axis changed from the light deflection shown in FIG. The state becomes “light deflection 2”. That is, the direction of the inclination of the plate member can be controlled with high accuracy in the biaxial directions. As described above, by applying different potentials between the plurality of electrodes, the plate-like member 2104 is inclined around the fulcrum by electrostatic attraction, and the direction of reflection of the incident light beam can be changed. The action of the electrostatic attraction for light deflection will be briefly described below with reference to FIG. 100 (d) as an example. By setting the fulcrum member 802 to substantially Y / 2 (V), the potential of the plate-like member is also substantially reduced. Y / 2 (V). Therefore, the portions facing the electrodes 800a and 800b have the same potential, so that almost no electrostatic attraction acts. On the other hand, since a potential difference is substantially Y / 2 (V) at a portion facing the electrodes 800c and 800d, substantially the same electrostatic attractive force, that is, an electrostatic attractive force corresponding to a substantially Y / 2 (V) potential difference acts. Then, the plate member is inclined in the “light deflection 1” direction. Also in FIG. 100 (e), although the axes are different, the plate member is similarly inclined in the “light deflection 2” direction. In the present embodiment, it is a condition that the electrode that gives the maximum potential and the electrode that gives the minimum potential are on the same side with respect to a straight line passing through the top of the fulcrum member, which is the axis of displacement of the plate member. When the number of electrodes is four, adjacent electrodes are required.
[0119]
Next, the advantage of the light deflection system of this embodiment will be described with reference to FIG. In FIG. 100 (d), since Y (V) and 0 (V) are applied to the electrodes 800c and 800d, respectively, the plate-like member 2104 is temporarily separated from the fulcrum member 2103 in the process of tilt displacement, Even if the 2104 is in an electrically floating state, an electrostatic attraction can be generated in the plate-like member facing the electrodes 800c and 800d as shown in FIG. Thereby, light deflection in the target direction can be achieved. That is, stable light deflection can be achieved as an advantage. In particular, this effect is remarkable when the use of the light deflecting device is upside down from the figure. That is, in such a usage, when no potential is applied to the device, the plate member 2104 is always separated from the fulcrum member 2103.
Further, another advantage can be obtained by combining with a twenty-ninth embodiment described later.
[0120]
Next, a modification of the twenty-seventh embodiment will be described with reference to FIG. The potential of the electrode 800a is X (V), the potential of the electrodes 800b and 800c is approximately X / 2 (V), the potential of the electrode 800d is 0 (V), and the potential of the conductive layer 802 is 0 (V). The potential X (V) shown here is the same as that described in the twenty-sixth embodiment.
The plate-like member 2104 exerts a strong electrostatic attraction due to a large potential difference with the electrode 800a, and a weak electrostatic attraction due to a small potential difference with the electrodes 800b and 800c. Has no potential difference, so no electrostatic attraction works. Therefore, the plate member 2104 is inclined in the direction of the electrode 800a as shown in FIG. 100 (f), and comes into contact with the substrate 2101 at a diagonal end point 2104f of the plate member 2104. That is, the displacement directions shown in FIG. 100 (d) and FIG. 100 (e) are both inclined in the direction of the sides of the plate-like member 2104 shown as substantially square, but the inclined directions obtained in the modified embodiment are This is the inclination of the plate member 2104 in the diagonal direction. Also in this embodiment, four kinds of inclination directions can be obtained depending on how the potential is applied to the electrodes.
[0121]
The twenty-seventh embodiment and the modified embodiment have the same configuration and only change the combination of applied potentials, so that the light reflection direction can be switched to a total of eight directions depending on the control. Similar effects can be obtained by performing control in which the twenty-sixth embodiment and the modified embodiment are combined. Since the potential of approximately X / 2 (V) applied to the electrodes 800b and 800c generates a weak electrostatic attraction between the plate member 2104 having the potential of 0 (V), the deflection occurs when the rigidity of the plate member 2104 is small. May occur. In the case of such a structure, the potential applied to the electrodes 800b and 800c may be reduced, or may be set to 0 (V), which is the same potential as the conductive layer 802, or may be separated from a power source to be in an electrically floating state. You may. When the potential applied to the electrodes 800b and 800c is set to approximately X / 2 (V), or when the electrode is electrically floating, the potential applied to the conductive layer 802 is simply switched from 0 (V) to X (V). Thus, the inclination direction of the plate-like member 2104 can be reversed to the opposite electrode 800d side. As can be seen from the above-described examples, when it is desired to incline the normal line of the light reflecting surface of the plate-like member 2104, the potential difference between the electrode in that direction and the plate-like member 2104 is given so as to be maximum. Is the basis. As described above, the number of electrodes at this time may be one or two. When a predetermined potential difference is simultaneously applied between the plate electrode 2104 and two adjacent electrodes, the plate electrode 2104 is inclined in the direction of the side, and a predetermined potential difference is applied between the plate electrode 2104 and one electrode. , Inclined diagonally.
[0122]
Next, the shape of the light deflecting device 2100 will be described. In the above description, the case where the plate member is substantially square has been described for easy understanding, but the configuration of the present invention is not limited to this. Also, although the number of electrodes on the substrate has been described as being up to four, this is not limited to four.
FIG. 101 is a view for explaining the twenty-eighth embodiment of the present invention. In FIG. 101, the outer shape and the like are configured to be circular, but reference numerals 2100 to 2104 are the same as in the first embodiment. However, the fulcrum member 2103 is shown in a conical shape having a bottom surface smaller than the diameter of the plate member. Reference numerals 800a to 800h denote eight electrodes provided on the side surface of the conical fulcrum member 2103, and the electrodes are mutually insulated.
[0123]
The potential of the electrode 800a is set to X (V), the potential of the electrode 800e is set to 0 (V), and the other electrodes are kept electrically floating, for example. If a potential of 0 (V) is applied to the conductive layer 802 of the fulcrum member 2103, the plate member 2104 is inclined in the direction of the electrode 800a due to a large potential difference between the plate 800 and the electrode 800a. If a potential of X (V) is applied to the conductive layer 802, the plate member 2104 is inclined in the direction of the electrode 800e. In this manner, the combination of the potentials applied to the electrodes and the conductive layer allows the plate member 2104 to be tilted in all directions where the electrodes are located. Therefore, eight directions can be selectively set as the light reflection directions. In the above description, the fulcrum member 2103 has been described as a cone, but may be a regular octagonal pyramid. When the plate-like member 2104 is configured so as to be along the slope of the fulcrum member during operation in a manner similar to that of the twenty-third embodiment, the setting of the inclination direction is more stable on the side surface of the pyramid than on the side surface of the cone. I do. Although the present embodiment has been described with eight electrodes, the number of electrodes is completely free within a range in which a pyramid can be formed. That is, instead of the columnar body used in the twenty-third embodiment, the pyramid shown above was installed so as to have a slope corresponding to almost the entire area of the plate member, and each slope was insulated from each other. By providing the same number of electrodes as the number of slopes, a stable light deflector having an arbitrary number of deflection directions can be obtained.
[0124]
The method of applying a potential in the twenty-seventh embodiment is such that the electrode that provides the maximum potential and the electrode that provides the minimum potential are on the same side with respect to a straight line passing through the top of the fulcrum member, which is the axis of displacement of the plate member. That is the condition. When the number of electrodes is four, it is indispensable that the electrodes are adjacent to each other. However, when the number of electrodes is six or more, it is not always necessary to be adjacent. That is, one or more other electrodes may be provided between the electrode that gives the maximum potential and the electrode that gives the minimum potential. When the number of electrodes is six, only one can be interposed, but when the number of electrodes is eight, up to two can be interposed. When an electric potential is applied in this manner, the displacement of the plate-like member is inclined toward the middle between the two electrodes that have applied the electric potential difference due to a force relationship. If the number of electrodes sandwiched therebetween is an odd number, that is, one or three, the plate-shaped member is in contact with the slope of the middle electrode and is stable. Therefore, if the electrode sandwiched between the electrodes is left floating without applying a potential, the maximum potential difference does not apply to adjacent electrodes, and there is no danger of electric discharge or short circuit. Expected behavior.
[0125]
FIG. 102 is a view for explaining the twenty-ninth embodiment of the present invention. In this embodiment, the light deflecting device 2100 is arranged in an array on an arbitrary substrate to form a light deflecting array 1200. FIG. 102A is a top view and FIG. 102B is a cross-sectional view taken along line AA ′. Although the figure shows a state in which they are arranged one-dimensionally, they may be arranged in two dimensions. By integrating the light deflecting device 2100, the light deflecting device 2100 can be driven and controlled simultaneously and independently to deflect light. The individual light deflectors 2100 thus integrated and arranged in an array may be referred to as “elements” for convenience.
[0126]
Next, a thirtieth embodiment will be described. In the optical deflector of this embodiment, the atmosphere near the plate member 2104 of the optical deflector 2100 of the twentieth to twenty-ninth embodiments is substantially vacuum. A method for forming a vacuum state can be achieved by vacuum sealing when packaging the optical deflecting device 2100. FIG. 102 illustrates the advantage of the substantially vacuum state, taking as an example the embodiment 30 in which the optical deflector 2100 shown in FIG. 98 is formed into a plurality of one-dimensional arrays. As described above, in each element of the light deflection array 1200 in FIG. 102, 2101 and 2102 are the same as those in FIG. Reference numerals 2201 to 2203 are the same as those in FIG. 800a, 800b, 800c, 800d and 801 and 802 are the same as those in FIG. FIG. 102A is a top view of the optical deflection array 1200 according to the thirtieth embodiment. FIG. 102B is a cross-sectional view taken along the line AA ′ of the light deflection array 1200 when each element performs an arbitrary light deflection.
[0127]
FIG. 102B schematically shows a case where the atmosphere in the vicinity of the plate member 2104 is a normal atmosphere. When the plate-like member 2104 of one element (the leftmost element) is tilted and displaced, the air immediately below the plate-like member 2104 receives pressure and exerts buoyancy on an adjacent element (the central element). As a result, adjacent elements are prevented from being displaced in the target direction indicated by the white arrow. By making the atmosphere near the plate-like member 2104 substantially vacuum, the influence of the buoyancy can be suppressed in the optical deflection array 1200. In the case of a single optical polarization device, if the device is packaged so as to cover the periphery of the device with a cover to prevent dust and the like in the air from entering, the gas in the atmosphere may be affected by a rapid change in the inclination of the plate-like member 2104 due to voltage application. Becomes viscous resistance, which can prevent a slight response delay from occurring.
[0128]
Next, a thirty-first embodiment will be described. In the light deflector 2100 of this embodiment, the atmosphere near the plate member 2104 is an inert gas. Examples of the inert gas include nitrogen, argon, helium, and neon. Of these, relatively inexpensive and safe nitrogen is desirable. A method of forming an inert gas atmosphere can be achieved by sealing in an inert gas when packaging the optical deflection device 2100. The advantage of using the inert gas in the atmosphere near the plate-like member is that the moisture in the atmosphere can be reduced, whereby the contact point and the fulcrum member when the plate-like member is inclined and displaced and comes into contact with the substrate. And the plate-like member can be prevented from sticking at the contact point. However, if there is a possibility that the filled gas may become a viscous resistance to the displacement of the plate-shaped member 2104, it is preferable to fill the gas at a pressure as low as possible.
[0129]
An embodiment in which the present invention is applied to an image projection display device will be described with reference to FIG. FIG. 103 is a view for explaining an example in which the light deflection array 1200 of the present invention is applied to an image projection display device. In the figure, reference numeral 1300 denotes an image projection display device, reference numeral 1301 denotes an optical switch means, reference numeral 1302 denotes a light source, reference numeral 1303 denotes a lens, reference numeral 1304 denotes an aperture, reference numeral 1305 denotes a rotating color hole, reference numeral 1306 denotes a microlens array, and reference numeral 1310. Indicates a projection screen, respectively.
Either the light deflecting device 2100 or the light deflecting array 1200 can be used as an optical switch means of a device for displaying image projection data (that is, displaying light and dark pixels). Therefore, the brightness control of the pixels (that is, ON / OFF control of the optical switch) is good, stray light (reflected light from an adjacent element generated when the reflection direction is disturbed) can be suppressed, high-speed operation is possible, and long-term operation is possible. High reliability, can be driven at a low voltage, and can improve the contrast ratio. In this embodiment, a light deflection array 1200 is used.
[0130]
An image projection display apparatus 1300 for projecting and displaying an image uses an optical switch means 1301 comprising a light deflection array 1200 for projecting an image by changing the reflection direction of an incident light beam (R) of projection image data and projecting an image. Is projected on the projection screen 1310 and displayed. The optical switch means 1301 irradiates the light deflecting array 1200 with the incident light beam (R) from the light source 1302 and reflects it by the light reflecting surface of the plate member 2104 of each element in the light deflecting array 1200. Then, the light is projected on the projection screen 1310 via the stop 1304. In order to perform color display, a rotating color hole 1305 may be provided in front of the light source 1302. A microlens array 1306 can be used to improve performance. Therefore, the light is deflected by changing the reflection direction of the incident light, the structure is simple and the response is fast, the wavelength of the incident light (R) to be used is not limited, the driving voltage is low, the operation is stable and the reliability is high. It has become possible to provide an image projection display device 1300 having an optical deflection array 1200 which is expensive, requires few manufacturing steps, and is low in cost.
[0131]
Next, a preferred arrangement of the light deflection array 1200 in the image projection display device will be described. That is, the elements of the light deflection array 1200 are arranged such that the normal direction of the light reflecting surface at the neutral position of the plate member 2104 is substantially the same as the direction of gravity. When the light deflection array 1200 of the present invention is used in an image projection display device, by arranging in this way, when the plate member 2104 comes into contact with a fulcrum member formed on the substrate surface 2101, gravity is applied to the plate member 2104. Therefore, the inclination of the plate-like member 2104 in any direction of the electrodes is equally acted by gravity, and there is no deviation. This makes it possible to obtain a more stable operation when the plate-like member 2104 is inclinedly displaced, that is, an operation with long-term reliability and reproducibility. The light deflecting device 2100 of the present invention is more effective because the plate member corresponding to the deflecting mirror has no fixed end. Since FIG. 103 is a diagram for explaining a general use, a specific direction of the neutral position of the plate-like member 2104 of each element of the optical deflection array 1200 is not shown. If necessary, the object can be achieved by using a reflecting mirror or the like in the middle. The above arrangement is also effective when an optical deflection device is used instead of the optical deflection array.
[0132]
An embodiment in which the present invention is applied to an image forming apparatus will be described with reference to FIG.
FIG. 104 is a diagram showing an example in which the light deflection array 1200 of the present invention is applied to an image forming apparatus such as a copying machine. In the figure, an image forming apparatus 1400 includes, as main functional blocks, an image carrier 1401 of a drum-shaped photoreceptor, a latent image forming unit 1402, a developing unit 1403, a transfer unit 1404, a charging unit 1405, and a fixing unit. A cleaning unit 1408, a discharge tray 1407, and a cleaning unit 1408. In this embodiment, since the light deflection array 1200 is incorporated in the latent image forming means 1402, ON / OFF control at the time of optical writing is good, and stray light (reflected light from an adjacent element generated when the reflection direction is disturbed) is reduced. It can be suppressed, can operate at high speed, has high long-term reliability, can be driven at a low voltage, and can improve the S / N ratio.
[0133]
Since the components other than the latent image forming unit 1402 are well-known image forming units, a detailed description thereof will be omitted. The image carrier 1401 is held rotatably in the direction of arrow D shown in FIG. The latent image forming means 1402 uses the light deflection array 1200 of the present invention as a line exposure type exposure means.
Optical writing is performed by the latent image forming unit 1402 on the photosensitive member uniformly charged by the charging unit 1405 to form a latent image. That is, switching of each element of the light deflection array 1200 is performed in accordance with the input image data, the formed latent image is visualized by the developing unit 1403 to form a toner image, and the formed toner image is After being transferred to the transfer target (P) by the transfer unit 1404 and fixed by the fixing unit 1406, the transfer target (P) is discharged to the discharge tray 1407 and stored. On the other hand, the drum-shaped photoconductor of the image carrier 1401 after the toner image is transferred to the transfer target (P) by the transfer unit 1404 is cleaned by the cleaning unit 1408 so as to be ready for the next image formation. Has become.
[0134]
The latent image forming means 1402 irradiates an incident light beam (R) from a light source 1402a to a plurality of elements arranged in an array via a first lens system 1402b. An incident light beam (R) passes through a second lens system 1402c via a light deflecting array 1200 as a reflection means, and forms an image on the surface of a drum-shaped photosensitive member of the image carrier 1401. Therefore, the structure of the light deflection for changing the reflection direction of the incident light is simple and the response is fast, the wavelength of the incident light to be used is not limited, the driving voltage is low, the operation is stable and the reliability is high, and the manufacturing process is improved. It is possible to provide an image forming apparatus 1400 including the light deflection array 1200 with low cost.
[0135]
An embodiment in which the present invention is applied to an optical transmission device will be described with reference to FIG.
FIG. 105 is a diagram showing an example in which the optical deflection array 1200 of the present invention arranged two-dimensionally is applied to an optical transmission device.
FIG. 105A is a diagram illustrating an example of photoelectric transmission from a plurality of ports to a plurality of ports, and FIG. 105B is a diagram illustrating an example of photoelectric transmission from a single port to a plurality of ports.
In FIG. 105 (a), the optical transmission device 1500 has, as a basic configuration, an optical signal input unit 1502, a first-stage optical deflection array 1503, a control device 1504 thereof, a second-stage optical deflection array 1505, It has a controller 1506, an optical signal output unit 1507, and a signal transmission port 1508.
In FIG. 105 (a), the optical deflection array 1200 is used as optical switch means for determining the port of the output optical information signal by changing the reflection direction of the input optical information signal, so that the optical deflection in the two axial directions can be easily and accurately performed. Control of port selection is good, stray light to adjacent ports can be suppressed, high-speed optical path switching is possible, long-term reliability is high, low-voltage driving is possible, and the same Can be integrated on a substrate.
[0136]
An optical information signal is input to an optical transmission device 1501 of the present invention from an optical signal input unit 1502 having a plurality of signal transmission ports 1508, and is deflected in two axial directions by two-stage optical deflection arrays 1503 and 1505. Is output from an optical signal output unit 1507 having a plurality of signal transmission ports 1508. In this embodiment, the first stage of the light deflection array 1503 and the second stage of the light deflection array 1505 are used in order to increase the light deflection angle. However, depending on the number of ports to be selected, the light deflection array may be different. One may be sufficient. The light deflection arrays 1503 and 1505 are provided with controllers 1504 and 1506, respectively, for simultaneously and independently driving and controlling the respective elements in the respective light deflection arrays. In the above description, for simplicity, the signal input unit and the signal output unit, or the input port and the output port have been described as being different from each other. However, since optical transmission is normally bidirectional transmission, Actually, it is not necessary to distinguish between a signal input unit and a signal output unit, or an input port and an output port, as “signal input / output unit” or “input / output port”.
[0137]
Another embodiment of the optical transmission device will be described with reference to FIG. The configuration of this embodiment has one input / output port 1511, and has only a single optical deflector 2100 and only the input / output ports 1514 in the number of selectable reflected light directions of the optical deflector 2100. A signal input / output unit 1513 is provided. The figure shows a case where the optical deflector 2100 shown in Embodiment 26 is used. However, in this embodiment, since there are four selectable reflected light directions, even if only one input / output port is used as one of the input / output ports. The other input / output port can be set up to four. The solid line indicating the optical path in the figure indicates a case where one input / output port 1514 is selected by the optical deflector 2100, and the broken line indicates a case where the input / output port is switched to another input / output port. In the figure, the input / output port 1511 and the optical deflector 2100 are optically connected via the reflecting mirror 1512, but the reflecting mirror is stopped and the input / output port 1511 is arranged at the center of the signal input / output unit 1513. Can be done, and it becomes very simple in structure. Further, a plurality of such input / output port sets can be integrated and used.
[0138]
Next, a method for manufacturing the optical deflecting device will be described.
FIG. 106 is a diagram showing a manufacturing process of the light deflecting device 2100 or the light deflecting array.
106 (a) to 106 (h) show the optical deflecting device 2100 shown in the twenty-sixth embodiment as an example and along a representative process. FIGS. 106A to 106H are schematic cross-sectional views taken along line BB ′ in the same embodiment.
A plurality of sections are formed on a silicon substrate. The arrangement of the sections may be one-dimensional or two-dimensional. For the purpose of obtaining a single light deflection device, a margin for separation is provided between the sections. For the purpose of obtaining an optical deflection array, the sections are formed in close contact.
[0139]
FIG. 106A: A silicon oxide film 1601 constituting a dielectric layer 801 as a fulcrum member is deposited on a silicon substrate 2101 by a plasma CVD method.
Thereafter, a photolithography method using a photomask having a pattern having an area gradation and a photolithography method in which a resist pattern is formed and then thermally deformed to form a resist pattern having an arbitrary film thickness substantially the same as the shape of the fulcrum member. After that, a dielectric layer 801 having a target shape is formed by a dry etching method.
FIG. 106B: The electrodes 800b and 800d and the conductive layer 802 of the fulcrum member are formed of a thin film of a titanium nitride (TiN) film. Electrodes 800a and 800c, which are not shown, are also formed at this time.
The TiN thin film was formed by a DC magnetron sputtering method using Ti as a target, and was patterned into a plurality of electrodes by photolithography and dry etching.
[0140]
FIG. 106 (c): An amorphous silicon film was deposited by a sputtering method, and planarized by processing time control using a CMP technique.
The remaining amorphous silicon film is the first sacrificial layer 1602. In addition, as the sacrificial layer, a polyimide film, a photosensitive organic film (a resist film generally used in a semiconductor process), a polycrystalline silicon film, or the like can be used in addition to the above film. A reflow method by heat treatment or an etch-back method by dry etching can also be used.
FIG. 106D: A silicon nitride film is deposited as a plate-shaped dielectric layer 2201 by a plasma CVD method, and is patterned by a photolithography method and a dry etching method to form an opening 2203 and a dielectric layer 2201. . Subsequently, an aluminum-based metal film serving as the conductor layer 2202 also serving as a light reflection region was deposited by a sputtering technique, and patterned by a photolithography method and a dry etching method.
[0141]
FIG. 106E: An amorphous silicon film is deposited by a sputtering method to form a second sacrificial layer 1603. Also, as the sacrificial layer, a polyimide film, a photosensitive organic film (a resist film generally used in a semiconductor process), a polycrystalline silicon film, or the like can be used other than the silicon film. It is desirable that the second sacrifice layer 1603 be made of the same material as the first sacrifice layer 1602.
FIG. 106 (f): The first sacrificial layer 1602 and the second sacrificial layer 1602 are separated by photolithography and dry etching in order to separate the light deflecting device 2100 and arrange the regulating member 2102 around the plate member. The sacrifice layer 1603 was simultaneously patterned slightly wider than the plate-like member.
FIG. 106 (g): A silicon oxide film constituting the regulating member 2102 was deposited by a plasma CVD method, and was patterned at an arbitrary position by a photoengraving method and a dry etching method to form the regulating member 2102.
FIG. 106 (h): The remaining first sacrifice layer 1602 and second sacrifice layer 1603 are removed by etching through an opening near the regulating member 2102 by a wet etching technique using a tetramethylammonium hydroxide (TMAH) solution. The plate-like member 2104 is arranged in the space where the movable range is limited, and the light deflecting device of the present invention is completed.
[0142]
Next, a method of manufacturing the optical deflecting device according to the twenty-fifth embodiment will be described. This manufacturing method is a part of the method of manufacturing the optical deflection device 2100, and includes at least a step of depositing a dielectric thin film on a plurality of electrodes, and a step of patterning the thin film to form a convex portion. Have.
FIG. 107 is a view showing a step of forming a convex portion of the slope of the fulcrum member of the light deflecting device 2100.
107 (a) to 107 (i) show typical steps. FIGS. 107A to 107I are schematic cross-sectional views taken along line BB ′.
[0143]
FIG. 107A: A silicon oxide film constituting a fulcrum member is deposited on a silicon substrate 2101 by a plasma CVD method, and thereafter, a photolithography method using a photomask having a pattern having an area gradation and a resist pattern A resist pattern having an arbitrary thickness substantially the same as the shape of the fulcrum member is formed by a photoengraving method in which the fulcrum member is thermally deformed after the formation, and thereafter, the fulcrum member 601 having a target shape is formed by a dry etching method.
FIG. 107B: The electrode 2301 and the member 602 having conductivity as a fulcrum member are formed of a thin film of a titanium nitride (TiN) film.
The TiN thin film was formed by a DC magnetron sputtering method using Ti as a target, and was patterned into a plurality of electrodes by photolithography and dry etching.
[0144]
FIG. 107 (c): A silicon oxide film is deposited by a plasma CVD method as an insulating film 603 for preventing an electrical short circuit between the plate-shaped member and the electrode, and thereafter, a projection of a target shape is formed by a photolithography method and a dry etching method. A part 701 is patterned at an arbitrary position. At the same time, the vicinity of the top of the fulcrum member is opened to apply the potential of the plate member.
FIG. 107D: An amorphous silicon film is deposited by a sputtering method, and is planarized by controlling a processing time using a CMP technique.
The remaining amorphous silicon film is the first sacrificial layer 1702. In addition, as the sacrificial layer, a polyimide film, a photosensitive organic film (a resist film generally used in a semiconductor process), a polycrystalline silicon film, or the like can be used in addition to the above film. A reflow method by heat treatment or an etch-back method by dry etching can also be used.
[0145]
FIG. 107E: As the plate-like member 2104, an aluminum-based metal film having conductivity also serving as a light reflection region was deposited by a sputtering technique, and was patterned by photolithography and dry etching.
FIG. 107F: An amorphous silicon film is deposited by a sputtering method to form a second sacrificial layer 1703. Also, as the sacrificial layer, a polyimide film, a photosensitive organic film (a resist film generally used in a semiconductor process), a polycrystalline silicon film, or the like can be used other than the silicon film. It is desirable that the second sacrifice layer 1703 be made of the same material as the first sacrifice layer 1702.
[0146]
FIG. 107 (g): The first sacrificial layer 1702 and the second sacrificial layer 1702 are separated by photolithography and dry etching in order to separate the light deflecting device 2100 and arrange the regulating member 2102 around the plate member. The sacrifice layer 1703 was simultaneously patterned slightly wider than the plate-like member 2104.
FIG. 107 (h): A silicon oxide film constituting the regulating member 2102 was deposited by a plasma CVD method, and was patterned at an arbitrary position by photolithography and dry etching to form the regulating member 2102.
FIG. 107 (i): The remaining first sacrifice layer 1702 and second sacrifice layer 1703 are etched and removed through an opening near the regulating member 2102 by a wet etching technique using a tetramethylammonium hydroxide (TMAH) solution. The plate-like member is arranged in a space where the movable range is restricted, and the light deflecting device of the present invention is completed.
[0147]
Here, the shape of the fulcrum member 2103 will be described with reference to FIGS.
FIG. 108 (a) is a diagram showing a basic cone. In this figure, the top 2103a of the cone 2103 has a sharp point. When an electrostatic attraction is applied to the plate-like member 2104, stress is concentrated on a contact point between the two members when supporting the plate-like member 2104, and therefore, it may be impossible to maintain the pointed shape, as shown in FIG. 108 (b). If the top 2103a is formed in a small spherical shape, stable operation can be obtained. In both cases of FIGS. 108 (a) and (b), as shown in FIG. 108 (c), the shape is such that a cylinder having a bottom surface of the same shape as the diameter of the bottom surface is united below the bottom surface of the cone. Then it is even better. That is, when the height of the fulcrum member is the same, the apex angle of the cone can be increased, so that the strength stability of the apex portion can be obtained. Even with such a shape, it can be handled exactly the same in use.
[0148]
Instead of spherical tops, they may be flat. When the shape is a truncated cone as shown in FIG. 109 (a) and the pointed shape is eliminated, the fear of stress concentration is further reduced, and the danger such as breakage of the fulcrum member is further reduced. Similarly to FIG. 108 (c), a shape as shown in FIG. 109 (b) in which a cylinder having a bottom surface having the same shape as the diameter of the bottom surface is united below the bottom surface of the truncated cone may be used. The effect is almost the same as in the case of FIG. If the area of the top 2103a does not become too large, a simple column can be used as shown in FIG. 109 (c). This shape has no conical portion but is easy to manufacture.
[0149]
FIGS. 110 and 111 show modified embodiments of the convex portion in the twenty-fifth embodiment of the present invention shown in FIG. 97.
In FIG. 110, reference numeral 2005 indicates a convex portion. The convex portion 2005 is obtained by the same manufacturing method as the convex portion 701 of the embodiment shown in FIG. 97 and plays a similar role, but the shape is different from the convex portion 701.
The convex portions 2005 are arranged in a plurality of strips on the four electrodes 2301 by an insulating film. As described above, the width, interval, length, and the like of the band may be any shape within a range in which the plate-like member 2104 does not contact the electrode 2301 in the recessed position due to elastic deformation. Can be designed. The slope forming the convex part is not limited to the fulcrum member of the columnar body having the ridge-shaped top shown in FIG. 97, and may be the slope of the polygonal pyramid described in the embodiment of FIG.
When creating a photomask for forming the convex portions, the size of these convex portions is close to the resolution limit, and therefore, the accuracy is likely to be reduced in the configuration of only a circle shown in FIG. 97. Therefore, as in the present embodiment, the area is increased by forming the belt shape, thereby facilitating the accuracy.
[0150]
In FIG. 111, reference numeral 2105 denotes a convex portion. The convex portion 2105 is formed by a method partially different from that of the convex portion 701 of the embodiment shown in FIG. 97, but is otherwise the same as the above-mentioned convex portion 2005.
The convex portion 2105 is configured not to be placed on the electrode 2301 but to protrude between the electrodes.
[0151]
The convex portion 2105 is formed by a predetermined pattern when forming the fulcrum member 601 before forming the four electrodes. When the fulcrum member 601 is formed of an insulating material, the surface of the fulcrum member 601 itself may be patterned, but when the fulcrum member 601 is a conductive member, an insulating film is formed on the surface after the fulcrum member 601 is formed. Then, a band-shaped insulating convex portion 2105 is formed by a predetermined pattern. The electrode 2301 is formed only on a flat portion around the convex portion 2105. However, apart from this, it is necessary to form a conductive member 602 for supplying a potential to the plate-like member 2104 on the top of the fulcrum member 601. However, when forming the electrode 2301, Can be formed together. The reason that the electrode 2301 is provided only in a portion other than the convex portion is that, when the electrode is provided under the convex portion, an electrostatic charge due to polarization is generated on the surface of the convex portion, and this may attract the plate-like member 2104. Because there is. If the suction becomes strong, a so-called sticking phenomenon may occur, in which the plate-like member 2104 does not separate from the convex portion even after the voltage applied to the electrode is extinguished.
[0152]
FIG. 112 is a diagram showing an embodiment of a regulating member when the circular light deflecting devices 2100 of the ninth embodiment shown in FIG. 101 are arranged in a close-packed state to form a two-dimensional array. . Although the figure shows a minimum configuration for ease of explanation, a configuration in which many such configurations are arranged vertically and horizontally is used in practice.
In the figure, reference numeral 2102 'denotes a composite regulating member shared by two light deflectors. In general, when circles are arranged in the closest density, six circles are arranged at equal intervals around a circle without any gap. Therefore, if six regulating members 2102 are formed at equal intervals on the circumference of the substrate 2101, the positions of the regulating members and the adjacent substrate 2101 can be matched. When a plurality of light deflecting devices 2100 are integrated and made at once, if the positions of the regulating members match, both can be integrated to form a composite regulating member 2102 '. Although not particularly shown, even in the case of a one-dimensional array, it is the same that the regulating members of adjacent substrates can be integrated. However, the number of regulating members in the one-dimensional case may be four as shown in FIG. Even in the case of a two-dimensional array, when arranged in a square matrix, the substrates are connected vertically and horizontally, so that four regulating members are just good as shown in FIG.
[0153]
FIG. 113 is a perspective view for explaining a modified embodiment of the regulating member 2102. FIG. 114 is a cross-sectional view of an optical deflecting device 2100 using the regulating member 2102 of the modified embodiment.
The restricting member 2102 shown in FIG. 113A has an extension base 2102b at the lower end of the upright portion 2102c, which protrudes in a direction opposite to the direction in which the stopper 2102a protrudes from the top of the upright portion 2102c. This restricting member 2102 is used when a restricting member is provided on the peripheral portion of the substrate 2101 as shown in FIG. 91 or FIG. As can be seen from FIG. 114, the space regulated as the movable range of the plate-like member 2104 is limited to a range smaller than the substrate 2101 by the extension base 2102b of the regulation member 2102. The reason for this is that if the area of the portion where the regulating member 2102 is joined to the substrate 2101 is too small, there is a risk that the portion may be easily damaged by even a slight stress. Therefore, the joining area is increased by the extension base 2102b. Thereby, sufficient strength can be obtained.
[0154]
The regulating member 2102 shown in FIG. 113 (b) has a larger joint area than the regulating member at the corner as shown in FIG. The usage and effects are the same as described above, and a description thereof will be omitted.
[0155]
FIG. 115 is a perspective view showing a further modified embodiment of the regulating member.
FIGS. 116 and 117 are cross-sectional views showing examples of use of the regulating member of the modified embodiment.
In the figure, reference numeral 2102 'denotes a composite regulating member shared by the two light deflectors as in FIG. When a plurality of light deflecting devices are arranged and used in an array, the regulating member can be shared at the connection position of the adjacent light deflecting devices. FIG. 102 or FIG. 112 shows an example thereof. The composite restricting member 2102 'shown in FIG. 115A is a modification of the restricting member 2102 shown in FIG. 113, and has a base 2102'b in which two extended bases of the two restricting members are connected to each other. are doing. Conversely, on the boundary K between two adjacent substrates 2101, upright portions 2102 ′ c are provided at opposite ends of a flat base 2102 ′ b lying equally over both substrates. At the top of the upright portion 2102'c, stoppers 2102a protruding in a direction opposite to the boundary line K are provided.
[0156]
The composite restricting member 2102 ′ shown in FIG. 115 (b) has a shape in which two restricting members 2102 shown in FIG. And resembles the shape of the letter T in the alphabet. In this configuration, the upright portion 2102'c shown in FIG. 115 (a) is made to have a thickness equal to or greater than two, and the area to be joined to the substrate 2101 is increased. , But has sufficient strength.
[0157]
FIG. 118 to FIG. 127 are views showing the procedure for manufacturing an optical deflection device according to another embodiment of the present invention.
In the figure, reference numerals 2802, 2803, and 2804 indicate first, second, and third sacrificial layers, respectively.
A fulcrum member 2103 is formed on the substrate 2101 (FIG. 118).
A silicon oxide film forming a fulcrum member 2103 is deposited on a silicon substrate 2101 having a plane orientation of [100] by a plasma CVD method, and thereafter, a photoengraving method using a patterned photomask having an area gradation is used. Alternatively, a resist pattern having an arbitrary thickness substantially the same shape as the fulcrum member 2103 is formed by a photoengraving method in which a resist pattern is formed and then thermally deformed. Was done.
Note that a silicon oxide film of about 2 μm may be formed on the silicon substrate 2101 having the [100] plane orientation, and the same processing may be performed on the upper layer of about 1 μm.
The height of the top 2103a of the fulcrum member 2103 is about 1 μm.
[0158]
Next, a plurality of electrodes 2301 are formed (FIG. 119).
The electrode 2301 is formed of a thin film of titanium nitride (TiN). The TiN thin film is formed to a thickness of 0.01 μm by a DC magnetron sputtering method using Ti as a target, and is patterned into a plurality of, for example, four electrodes 2301 by a photolithography method and a dry etching method. It has become.
Next, a protective film 2301a is formed on the electrode 2301 (FIG. 120).
As the protective film 2301a, a silicon nitride film having a thickness of 0.2 μm was formed by a plasma CVD method.
[0159]
Next, a first sacrificial layer 2802 is formed (FIG. 121).
As the first sacrifice layer 2802, an amorphous silicon film is deposited to a thickness of 2 μm by a sputtering method, and the top portion 2103a of the fulcrum member 2103 is exposed by processing time control using a CMP technique, and is further flattened for an additional time. Let it. At this time, the top 2103a is left near the apex of the fulcrum member 2103 and a thin amorphous silicon film is present near the apex of the fulcrum member 2103 by using CMP conditions with high polishing selectivity with the fulcrum member 2103 and the protective film 2301a. The vertex of the fulcrum member 2103 protruded by about 0.2 μm. The remaining amorphous silicon film is the first sacrificial layer 2802. In addition to the above, a polyimide film, a photosensitive organic film, a resist film, a polycrystalline silicon film, or the like generally used in a semiconductor process can be used as the first sacrificial layer. Further, as a flattening method, an etch-back method by dry etching can be used.
[0160]
Next, a second sacrificial layer 2803 is formed (FIG. 122).
An amorphous silicon film was deposited to a thickness of 0.1 μm including the tip of the fulcrum member 2103 by a sputtering method.
[0161]
Next, a dielectric layer 2201 and a conductor layer 2202 of the plate member 2104 are formed (FIG. 123).
As a base material to be the dielectric layer 2201, a silicon nitride film is deposited to a thickness of 0.2 μm by a plasma CVD method, and subsequently, an aluminum-based metal film to be a conductive layer 2202 also serving as a light reflection region is formed to a thickness of 0.05 μm. And deposited by a sputtering technique. Thereafter, the metal film and the silicon nitride film were patterned by a photoengraving method and a dry etching method, respectively. In a later step, the dielectric layer 2201 is formed to be smaller than the substrate 2101 in order to leave a space for forming the regulating member 2102 at the peripheral edge of the substrate 2101. Further, the conductor layer 2202 is formed to be smaller than the dielectric layer 2201 so as to be placed on the dielectric layer 2201.
[0162]
Next, a third sacrificial layer 2804 is formed (FIG. 124).
An amorphous silicon film was deposited to a thickness of 1 μm by a sputtering method to form a third sacrificial layer 2904. In addition, as the third sacrificial layer, other than the above, a polyimide film, a photosensitive organic film, a resist film or a polycrystalline silicon film generally used in a semiconductor process can also be used.
[0163]
Next, a space for forming the regulating member 2102 is created (FIG. 125).
The first sacrifice layer, the second sacrifice layer, and the third sacrifice layer are simultaneously patterned by a photoengraving method and a dry etching method, and a portion along the peripheral portion of the substrate 2101 is removed. A space for 2102 is formed. At this time, the size of the sacrificial layer to be left is larger than the size of the dielectric layer 2201 so that the dielectric layer 2201 is not exposed.
[0164]
Next, a regulating member 2102 is formed (FIG. 126).
A silicon oxide film was deposited to a thickness of 0.8 μm by a plasma CVD method, and was patterned by a photoengraving method and a dry etching method to form a regulating member 2102. The shape of the restricting member 2102 is not limited to the illustrated shape, and may have various modifications as shown in FIGS.
[0165]
Finally, the sacrificial layer is removed (FIG. 127).
The remaining first to third sacrificial layers, 2802, 2803, and 2804, are removed by etching through an opening by wet etching, and the movable range of the plate-like member 2104 having a reflective surface is changed to the substrate 2101 and the regulating member. 2102 and the optical deflecting device 2100 restricted to a predetermined space by the fulcrum member 2103 were obtained.
[0166]
In this manufacturing method, the central portion of the back surface of the plate member 2104 is combined with the fulcrum member 2103 in an uneven relationship, and even when the plate member 2104 is inclined by receiving electrostatic attraction from the electrode 2301, Since side slip does not occur and the center portion is always at a fixed position, when used as a micromirror device, the direction of reflected light can be controlled with high accuracy.
[0167]
Generally speaking, the function and effect of the present invention are as follows. Since the inclination angle is determined by the contact of the plate-like member serving as the mirror with the slope or the substrate, the control of the deflection angle of the mirror is easy and stable. By applying different potentials to the electrodes facing each other with the fulcrum member as the center, the plate-like member can be inverted at a high speed, and the response speed can be increased. Since the plate-shaped member does not have a fixed end, it can be driven at low voltage with little long-term deterioration without deformation such as torsional deformation. Since a fine and lightweight plate-like member can be formed by the semiconductor manufacturing technology, impact due to collision with the regulating member is small, and long-term deterioration is small. By arbitrarily determining the configuration of the regulating member and the plate-like member, the ON / OFF ratio of reflected light (S / N ratio in an image device, contrast ratio in a video device) can be improved. Since semiconductor manufacturing technology and equipment can be used, miniaturization and integration can be achieved at low cost. In addition, by arranging a plurality of electrodes around the fulcrum member, light deflection in one-axis and two-axis directions is possible.
[0168]
【The invention's effect】
Since the present invention is configured as described above, according to the invention of claim 1, a plate-shaped plate-shaped member formed of a thin film configured by combining a reflection unit for reflecting incident light on the surface, Displacement is freely arranged in the gap formed between the fulcrum member on the substrate and the cap-shaped cap member without being fixed on the substrate, and the plate-shaped member is arranged around the fulcrum member on the substrate. An electric potential is applied to the electrodes arranged opposite to each other, and the light is deflected by changing the reflection direction of the incident light into one axis or two axes by the reflection means on the plate-shaped member which is inclined and mounted on the fulcrum member. As a result, a structure in which the direction of reflection of incident light is changed to one or two axes to deflect light is simple, control is easy, operation is stable, response is fast, and the wavelength of incident light to be used is limited. No change in mechanical strength even after long-term use Low resource saving, low cost and can be miniaturized and integrated, has become possible to provide a light deflection method using environment is also not limited.
According to the second aspect of the present invention, a plate-shaped plate-shaped member formed of a thin film, which is configured by combining a reflecting means for reflecting incident light on the surface, is not fixed on the substrate, but on the fulcrum member on the substrate and the shade. Displacement is freely arranged in a gap formed between the hat-shaped members, and a potential is applied to an electrode disposed around the fulcrum member on the substrate so as to face the plate-shaped member. The direction of reflection of the incident light is changed to one axis or two axes by the reflection means on the plate-shaped member which is slopingly mounted thereon, and the electrodes are arranged around the fulcrum member on the substrate so as to face the plate-shaped member. Since different potentials are applied to the plurality of electrodes to perform light deflection, the plate-shaped member is displaced in a target direction, or the displacement direction is changed at a high speed, and the inclination direction is increased in the biaxial directions. It is also possible to control with high accuracy, so that the reflection direction of the incident light is uniaxial or A structure that performs light deflection by changing the direction of two axes, control is simpler and easier, operation is stable, response is faster, the wavelength of incident light to be used is not limited, and the mechanical strength changes over a long period of use. Thus, it has become possible to provide an optical deflecting method which can be miniaturized and integrated, can be miniaturized and integrated at a low cost, and is not restricted in the use environment, with little deterioration, low drive voltage and resource saving.
[0169]
According to the third aspect of the present invention, a plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is formed on the fulcrum member on the substrate and the cap without fixing on the substrate. Displacement is freely arranged in a gap formed between the hat-shaped members, and a potential is applied to an electrode disposed around the fulcrum member on the substrate so as to face the plate-shaped member. A reflecting means on a plate-shaped member which is placed on an inclined surface changes the direction of reflection of incident light in one axis or two axes, and applies a different potential to the electrode to form a thin film in which the reflecting means is combined with the surface. The deflection of the plate-shaped member made in contact with the inclined surface on the substrate and the reflection direction of the incident light is defined and changed at the contact position so that light deflection is performed. Disperses impact, facilitates control of displacement direction, A structure in which the light is deflected by changing the reflection direction to one or two axes, the control is simpler, the operation is more stable, the response is faster, the wavelength of the incident light used is not restricted, and the mechanical It is possible to provide an optical deflection method in which the intensity is less changed and deteriorated even after long-term use, the drive voltage is low, resources are saved, miniaturization and integration are possible, the cost is low, and the use environment is not limited. Was.
According to the fourth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. Since the electrodes are arranged in such a way, the light is deflected by changing the direction of reflection of the incident light to one or two axes, the control is simple, the operation is easy, the operation is stable, and the response is fast. Light deflection without limitation of wavelength, little change and deterioration of mechanical strength even after long-term use, low drive voltage, resource saving, miniaturization and integration possible, low cost, and unlimited use environment Equipment can now be provided
[0170]
According to the fifth aspect of the present invention, there is provided a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflection means formed of a flat plate with a reflection surface for reflecting incident light on a surface is fixed. A plate-shaped member is formed on a fulcrum member serving as a fulcrum at the time of displacement of the upper inclined plate-shaped member. Since the electrodes are arranged so as to face the rear surface of the plate-shaped member, the light beam incident on the light reflection area can be reflected in the same reflection direction, and the desired reflection direction can be achieved without diffusing the reflected light. When the light deflection device is used for each optical information processing device, image forming device, image projection display device, optical transmission device, etc., the influence on the adjacent elements is suppressed, and the reflection direction of the incident light is changed. In one or two axes Deflection structure and control are simpler and easier to operate, operation is more stable and response is faster, the wavelength of incident light to be used is not limited, mechanical strength is less changed and deteriorated even after long-term use, and drive voltage It is possible to provide an optical deflecting device which is low in cost, saves resources, can be miniaturized and integrated, is low in cost, and is not limited in use environment.
According to the invention of claim 6, a substrate on which a plate-shaped plate-shaped member formed of a thin film constituted by combining a reflecting means formed of an aluminum-based metal film for reflecting incident light on the surface is fixed without fixing. A plate-shaped member is formed on a fulcrum member serving as a fulcrum at the time of displacement of the upper inclined plate-shaped member. Since the electrodes are arranged so as to face the back surface of the plate-shaped member, the reflection performance is also good as the reflection means or the conductive region formed in at least a part of the plate-shaped member, and the reflection of incident light is good. A structure that performs light deflection by changing the direction to one axis or two axes, easy to control, easy to operate, stable in response and fast in response, the wavelength of the incident light used is not limited, and the mechanical strength is used for a long time Even with little change and deterioration Voltage is low resource saving, in miniaturization and further low cost integration possible, has become possible to provide an optical deflecting device using environment is also not limited.
According to the seventh aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. In addition, the plate-shaped member is formed of a curved portion having a curved shape at a portion in contact with the fulcrum member, so that the positioning of the plate-shaped member with respect to the fulcrum member is spontaneously facilitated, and When the member is displaced, the plate-shaped member is prevented from coming into contact with the side surface of the shade-shaped member 5, and the light is deflected by changing the reflection direction of the incident light to one axis or two axes. More stable and faster response The wavelength of incident light to be used is not limited, the mechanical strength is less changed and deteriorated even after long-term use, the driving voltage is low, resource saving, miniaturization and integration are possible, and the cost is low. It has become possible to provide an optical deflecting device whose environment is not restricted.
[0171]
According to the invention of claim 8, a plate-like member having a circular outer shape in a plate shape formed of a thin film configured by combining a reflection means for reflecting incident light on the surface is mounted on the substrate on which the plate-like member is mounted without being fixed. A plate-shaped member is formed on a fulcrum member serving as a fulcrum when the inclined plate-shaped member is displaced. Since the electrodes are arranged so as to face the back surface of the shape member, the light reflected on the reflection area of the reflection surface of the reflection means combined with the plate shape member becomes circular, and the image provided with the light deflector is provided. In a forming apparatus, an image projecting apparatus, or the like, one pixel is formed in a circular shape, and gaps between adjacent pixels are dotted, so that a gap between adjacent pixels in a rectangular pixel shape formed by a rectangular plate-shaped member forms a linear streak. High spirits unlike The structure that performs light deflection by changing the reflection direction of incident light to one axis or two axes direction is simpler and easier to control, the operation is stable and the response is faster, and the wavelength of the incident light used is limited. Provided is an optical deflecting device whose mechanical strength is less changed and deteriorated even after long-term use, has low driving voltage, saves resources, can be miniaturized and integrated, is low-cost, and is not limited in use environment. I can do it.
According to the ninth aspect of the present invention, the inclination on the substrate on which the plate-shaped member made of the silicon nitride film in the form of a thin film formed by combining the reflection means for reflecting the incident light on the surface is fixed without being fixed. A plate-shaped member is formed on a fulcrum member serving as a fulcrum when the plate-shaped member is displaced. Since the electrodes are arranged so as to face the back surface of the member, the plate-shaped member has a high dielectric breakdown voltage and is highly resistant to long-term deterioration, that is, fatigue caused by repeated displacement. As a result, driving at a high frequency, that is, high-speed operation of several tens of kHz or more is possible, and a structure in which the direction of reflection of incident light is changed to one-axis or two-axis to perform light deflection is simple and easy to control, and operation is further cheaper. The response is even faster, the wavelength of the incident light used is not limited, the mechanical strength is less changed and deteriorated even after long-term use, the driving voltage is lower, the resource is saved, and miniaturization and integration are achieved. It has become possible to provide an optical deflecting device which is possible and at a lower cost and whose use environment is not restricted.
[0172]
According to the tenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining reflection means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely arranged. In addition, since the electrode is arranged and the reflection means or the plate-shaped member has a conductive region having conductivity and the conductive region is opposed to the electrode, it is possible to arbitrarily generate a potential difference between the plurality of electrodes. Thereby, the plate-shaped member can be displaced in a target direction with a lower driving voltage, or the displacement direction can be continuously changed at a high speed, or the direction of the inclination can be controlled with high accuracy in two axial directions, and the incidence can be improved. One axis of light reflection direction Has a structure that performs light deflection by changing the direction of the two axes, and is simpler and easier to control, has a stable operation, and has a faster response. The wavelength of the incident light used is not limited, and the mechanical strength can be maintained for a long time. It has become possible to provide an optical deflecting device that is less likely to change and deteriorate, has lower driving voltage, saves resources, can be miniaturized and integrated, is lower in cost, and is not restricted in its use environment.
According to the eleventh aspect of the present invention, there is provided a substrate having a concave-shaped concave portion for mounting without fixing a plate-shaped plate-shaped member formed of a thin film and comprising a reflecting means for reflecting incident light on the surface. A plate-shaped member is formed on a fulcrum member serving as a fulcrum at the time of displacement of the upper inclined plate-shaped member. Since the electrodes are arranged opposite to the back surface of the plate-shaped member, the height of the hat-shaped member is reduced, the yield is improved, and the cap-shaped member itself is self-standing and mechanical strength is improved. The controllability of the height of the gap (G) can be improved by the manufacturing method, the controllability of the drive voltage and the reset voltage can be improved, and the light deflection direction can be changed by changing the reflection direction of the incident light to one or two axes. The structure and control to be performed are simpler and easier Is stable and has a fast response, the wavelength of incident light to be used is not limited, the mechanical strength is less changed and deteriorated even after long-term use, the driving voltage is low, resource saving, miniaturization and integration It has become possible to provide a light deflecting device that is possible, at low cost, and whose use environment is not limited.
[0173]
According to the twelfth aspect of the present invention, a silicon substrate having a (100) plane orientation on which a plate-shaped member formed of a thin film and configured by combining a reflection means for reflecting incident light on the surface is mounted without being fixed. A fulcrum on the substrate, comprising a cap-shaped cap-shaped member forming a gap in which the plate-shaped member is arranged in a freely displaceable manner on a fulcrum member serving as a fulcrum when the inclined plate-shaped member on the substrate is displaced Since the electrodes are arranged around the member in opposition to the back surface of the plate-shaped member, a complicated drive system circuit can be easily formed on the same substrate, and the reflection direction of the incident light can be uniaxial or biaxial. The structure that performs light deflection instead of simplifies control, is easy to operate, has a stable response, has a fast response, and does not limit the wavelength of incident light to be used. , Low driving voltage, resource saving, fine In reduction and further low cost integration possible, it has become possible to provide an optical deflecting device using environment is also not limited.
According to the thirteenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. The electrode is arranged and the fulcrum member has a circular shape at the point of contact with the plate-shaped member. Therefore, the contact area between the plate-shaped member and the fulcrum member is reduced, and light deflection in two axial directions is reduced. It is easy to control, the structure to perform the light deflection by changing the reflection direction of the incident light to one axis or two axes direction, the control is easier, the operation is stable and the response is fast, and the wavelength of the incident light to be used is not limited. , Mechanical strength changes even after long-term use Less deterioration, the driving voltage is low resource saving, low cost and can be miniaturized and integrated, has become possible to provide an optical deflecting device using environment is also not limited.
[0174]
According to the fourteenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflection means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. The electrode is arranged and the fulcrum member is a conical portion which is in contact with the plate-shaped member at a point, so that the mechanical strength of the fulcrum portion of the fulcrum member on the substrate side can be enhanced, and Since the displacement of the member is defined by a contact portion between the end of the plate-shaped member and the upper surface of the substrate, the contact area can be reduced as much as possible to prevent the plate-shaped member from sticking to the substrate 3 and suppressing contact charging. In the area where Due to the point shape, the plate-shaped member can be easily tilted and displaced in any direction corresponding to the direction acting on the electrostatic attraction, and the direction of reflection of incident light is changed to one or two axes to change the light. Deflection structure and control are simple and easy, operation is more stable and response is faster, the wavelength of incident light to be used is not limited, mechanical strength is less changed and deteriorated even after long-term use, and drive voltage However, it has become possible to provide an optical deflecting device which can be miniaturized and integrated, can be miniaturized, can be integrated at a low cost, and is not limited in use environment.
According to the fifteenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining reflection means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. In addition, the fulcrum member is arranged such that the surface in contact with the plate-shaped member is a rectangular portion having a rectangular shape. Therefore, the fulcrum member is inclinedly displaced in the short direction of the fulcrum member, that is, the plate-shaped member is uniaxial. The tilt displacement caused by the electrostatic attraction occurs stably, the light is deflected by changing the reflection direction of the incident light to one or two axes, and the control is simple and easy, the operation is more stable and the response is faster, and it is used. The wavelength of the incident light is not limited It is possible to provide an optical deflecting device whose mechanical strength is less changed and deteriorated even after long-term use, has low driving voltage, saves resources, can be miniaturized and integrated, is low-cost, and is not limited in use environment. It became so.
[0175]
According to the sixteenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface without fixing is mounted. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. The electrodes are arranged and the fulcrum member is made to be a ridge-shaped portion having a ridge shape in contact with the plate-shaped member at a line, so that the contact area between the ridge-shaped portion of the fulcrum member and the plate-shaped member is reduced. The tilt displacement of the plate-shaped member in the uniaxial direction due to the electrostatic attraction is stably caused, and the ridge-shaped portion of the fulcrum member has a slope, so that the mechanical strength of the fulcrum member is increased, and the displacement of the plate-shaped member is Of the board at the end of the plate-shaped member Since it is defined by the contact portion with the surface, the contact area can be reduced as much as possible, and the sticking of the plate-shaped member to the substrate and the contact charging can be suppressed, and the reflection direction of the incident light is changed to one axis or two axes to deflect light. The structure is simpler and easier to control, the operation is more stable and the response is faster, the wavelength of the incident light to be used is not limited, the mechanical strength is less likely to change and deteriorate over a long period of use, and the driving voltage It is possible to provide an optical deflecting device which is low in cost, saves resources, can be miniaturized and integrated, is low in cost, and is not limited in use environment.
According to the seventeenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on a surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely arranged. The electrode is arranged and the fulcrum member has a slope in contact with the plate-shaped member, so that the plate-shaped member can be displaced by contacting the entire surface of the electrode. It is easy to control, and the structure which performs light deflection by changing the reflection direction of incident light to one axis or two axes direction is simple and easy to control, the operation is more stable and the response is faster, and the wavelength of the incident light used is limited. Without mechanical strength Can provide an optical deflecting device that has little change and deterioration even after long-term use, has low driving voltage, saves resources, can be miniaturized and integrated, is low in cost, and is not restricted in use environment. .
[0176]
According to the eighteenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on a surface is mounted without being fixed. A plate-shaped member is formed on a fulcrum member made of a silicon oxide film or a silicon nitride film as a fulcrum at the time of displacement. Since the electrodes are arranged around the periphery of the plate-shaped member so as to face the back surface, the fulcrum member has a high mechanical strength, and performs light deflection by changing the reflection direction of incident light to one axis or two axes. Simple structure and easy control, stable operation, fast response, no restriction on the wavelength of incident light used, less change and deterioration in mechanical strength even after long-term use, low driving voltage, resource saving Enables miniaturization and integration Cost, has become possible to provide an optical deflecting device using environment is also not limited.
According to the nineteenth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely arranged. The electrodes are arranged and the cap-shaped members are arranged at predetermined intervals corresponding to the outer periphery of the plate-shaped members, so the time required for etching and removing the sacrificial layer is reduced. And the yield is improved, and the structure that performs light deflection by changing the direction of reflection of the incident light to one or two axes is simple, easy to control, stable in operation, quick in response, and limits the wavelength of the incident light used. Mechanical strength Period is also changed and with less deterioration in use, saving resources low driving voltage, with miniaturization and further low cost integration possible, has become possible to provide an optical deflecting device using environment is also not limited.
[0177]
According to the twentieth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. In addition, the cap-shaped member is arranged in the entire area corresponding to the outer periphery of the plate-shaped member, so that the plate-shaped member protrudes from the gap where the movable range is mechanically limited. Reduced, the structure that performs light deflection by changing the direction of reflection of incident light to one axis or two axes, easy to control, more stable operation, faster response, and without limiting the wavelength of incident light used , Mechanical strength used for a long time To change the degradation further smaller, the driving voltage is low resource saving, low cost and can be miniaturized and integrated, has become possible to provide an optical deflecting device using environment is also not limited.
According to the twenty-first aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film, which is configured by combining a reflecting means for reflecting incident light on a surface, is mounted without being fixed. A plate-shaped member is placed on a fulcrum member serving as a fulcrum at the time of displacement. A cap-shaped member made of an insulating film having a cap-shaped insulating property is formed to form a gap where the displacement is free. Around the fulcrum member on the substrate Since the electrodes are arranged opposite to the back surface of the plate-shaped member, even when the plate-shaped member comes into contact with the hat-shaped member, the electric charge of the electrically floating plate-shaped member passes through the hat-shaped member. Since it does not move, the potential of the plate-shaped member is suppressed from fluctuating, and the structure for performing light deflection by changing the direction of reflection of incident light into one or two axes is simpler and easier to control, and more stable and responsive. Fast, the wavelength of incident light used is controlled Provided is an optical deflecting device whose mechanical strength is less changed and deteriorated even after long-term use, driving voltage is low, resource saving, miniaturization and integration are possible, cost is low, and usage environment is not limited. Now you can do it.
[0178]
According to the twenty-second aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. Since the electrode is arranged around the fulcrum member on the substrate so as to face the back surface of the plate-shaped member, an area overlapping with the shade-shaped member of the light reflection area of the reflection surface of the reflection means combined with the plate-shaped member Since the reflected light from the light source can also contribute, the area and the amount of the reflected light in one element can be increased, the ON light amount increases, and the light is reflected by changing the reflection direction of the incident light to one axis or two axes. Deflection structure and control Is simpler, easier to operate, more stable and quicker to respond, the wavelength of the incident light to be used is not limited, the mechanical strength is less likely to change and deteriorate over a long period of use, the driving voltage is low, and resources are saved. It has become possible to provide an optical deflecting device that can be miniaturized and integrated, is low in cost, and is not restricted in the use environment.
According to the invention of claim 23, the inclined plate-shaped member on the substrate on which the plate-shaped plate-shaped member formed of a thin film is formed by combining the reflecting means for reflecting the incident light on the surface without fixing is mounted. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. A cap-shaped member made of a silicon oxide film in the shape of a cap that forms a gap where the displacement is free. A plate-shaped member around the fulcrum member on the substrate Since the electrodes are arranged so as to face the back surface of the member, the shade-shaped member has both high insulation and high translucency, making it possible to manufacture finer and integrated devices, and to adjust the direction of reflection of incident light. A structure in which light is deflected by changing the direction of one axis or two axes, the control is simpler and easier, the operation is more stable, the response is faster, the wavelength of the incident light used is not limited, and the mechanical strength is long. There is little change and deterioration during use, and the drive voltage is In Ku resource saving, in miniaturization and integration can further lower cost is further possible, has become possible to provide an optical deflecting device using environment is also not limited. According to the twenty-fourth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is formed on a fulcrum member serving as a fulcrum at the time of displacement. Since the electrodes are arranged around the fulcrum member in opposition to the back surface of the plate-shaped member, the reflection of the light beam incident on the shade-shaped member in an undesired direction is suppressed, and the light deflection in the target direction is suppressed. A structure in which stray light is reduced, the amount of OFF light is suppressed, and the direction of reflection of incident light is changed to one or two axes to perform light deflection, control is simpler, operation is more stable, response is faster, and use is made. Without limiting the wavelength of the incident light, It is possible to provide an optical deflecting device whose mechanical strength is less likely to change and deteriorate even after long-term use, has low driving voltage, saves resources, can be miniaturized and integrated, is low-cost, and is not limited in use environment. Became.
[0179]
According to the twenty-fifth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. Since the electrodes are arranged so as to face the back surface of the member, the hat-shaped member achieves both high insulating properties and high light-shielding properties, making it possible to manufacture finer and integrated devices, and make the reflection direction of incident light uniaxial. Or a structure that performs light deflection by changing the direction of the two axes, control is simpler and easier, operation is more stable and response is faster, the wavelength of incident light to be used is not limited, and the mechanical strength is long-term use. Low change and deterioration, low drive voltage Saving resources, with miniaturization and further low cost integration possible, it has become possible to provide an optical deflecting device using environment is also not limited.
According to the twenty-sixth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflection means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. In addition, the electrodes are arranged and the electrodes are composed of a plurality of electrodes. The plate-shaped member is made to float electrically, so the plate-shaped member is displaced in the desired direction, and the displacement direction is continuously changed at high speed. Further, by arbitrarily generating a potential difference, the inclination direction of the plate-shaped member is controlled with high accuracy in the biaxial direction, and the light is deflected by changing the reflection direction of the incident light to the uniaxial or biaxial direction. Control is simpler and easier to operate. The response is even faster, the wavelength of the incident light to be used is not limited, the mechanical strength does not change or deteriorate over a long period of use, the driving voltage is low, resource saving, miniaturization and integration are possible. It has become possible to provide an optical deflecting device which is low in cost and whose use environment is not restricted.
[0180]
According to the twenty-seventh aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on a surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. In addition, the electrodes are arranged and the electrodes are composed of a plurality of electrodes arranged on a slope facing the back surface of the plate-shaped member. The plate-shaped member is made to float electrically, so that the displacement of the plate-shaped member is performed. Can be driven at a lower voltage, the impact at the time of contact of the plate-shaped member is dispersed, the plate-shaped member is displaced in the desired direction, and the displacement direction is subsequently changed at a high speed to further generate an arbitrary potential difference Direction of the plate-shaped member Is controlled with high precision in two axes, and the structure of performing light deflection by changing the direction of reflection of incident light to one or two axes is simpler and easier to control, stable in operation and faster in response. The wavelength of the incident light is not limited, the mechanical strength is less changed and deteriorated even after long-term use, the driving voltage is lower, the resource is saved, the miniaturization and integration are possible, the cost is low, and the usage environment is low. Thus, it is possible to provide an optical deflecting device which is not limited.
According to the twenty-eighth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film is formed by combining a reflecting means for reflecting incident light on a surface without fixing the plate-shaped member. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. In this case, the electrodes are arranged and a one-dimensional light deflection array arranged in a one-dimensional array is formed, so that the direction of reflection of incident light, which can be used for a latent image forming means in an image forming apparatus, is one. A structure that performs optical deflection by changing the direction of the axis or two axes, easy to control, easy to operate, stable in response, quick response, the wavelength of the incident light used is not limited, and the mechanical strength changes over a long period of use And deterioration In low resource saving, low cost and can be miniaturized and integrated, has become possible to provide an optical deflecting device using environment is also not limited.
[0181]
According to the twenty-ninth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining reflection means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. The two-dimensional light deflecting array arranged in a two-dimensional array is formed by arranging the electrodes so that the direction of reflection of incident light which can be used for an optical switch means or the like in an image projection display device is one. A structure that performs optical deflection by changing the direction of the axis or two axes, easy to control, easy to operate, stable in response, quick response, the wavelength of the incident light used is not limited, and the mechanical strength changes over a long period of use And less degradation Dynamic voltage is low resource saving, low cost and can be miniaturized and integrated, has become possible to provide an optical deflecting device using environment is also not limited.
According to the thirty-first aspect of the present invention, a fulcrum member and an electrode are formed on a substrate, and a plate-like member formed of a thin film in which a reflecting means is combined with a surface via a first sacrificial layer deposited and planarized is formed. After forming the plate-shaped member and patterning the shade-shaped member at a predetermined position where the further deposited second sacrificial layer is patterned, the first sacrificial layer and the second sacrificial layer are removed. As a result, the structure for performing light deflection by changing the reflection direction of the incident light to one axis or two axes direction is simple and easy to control, the operation is stable and the response is fast, and the wavelength of the incident light to be used is not limited. Provided is a method for manufacturing an optical deflecting device in which mechanical strength is less changed and deteriorated even after long-term use, drive voltage is low, resources are saved, miniaturization and integration are possible, cost is low, and use environment is not limited. Is now available.
According to the thirty-first aspect of the present invention, the fulcrum member and the electrode are formed on the substrate, the fulcrum member is protruded, deposited and planarized on the first sacrificial layer, and the third sacrificial layer is deposited and planarized. Forming a plate-shaped member composed of a curved portion having a curved shape formed of a thin film configured by combining a reflecting means on the surface via a layer, and further depositing the second sacrificial layer at a predetermined position patterned Since the first sacrifice layer, the second sacrifice layer, and the third sacrifice layer are removed after patterning the cap member, the plate member is tilted and displaced by electrostatic attraction. When the displacement of the plate-shaped member becomes possible, the displacement of the plate-shaped member is suppressed, and in other words, the positioning of the plate-shaped member with respect to the fulcrum member is spontaneously facilitated. The plate-shaped member contacts the side of the shade-shaped member And a structure in which the direction of reflection of the incident light is changed to one or two axes to deflect the light. The control is simple and easy, the operation is more stable and the response is faster, and the wavelength of the incident light to be used is limited. The optical deflection device has a mechanical strength with less change and deterioration even after long-term use, low driving voltage, resource saving, miniaturization and integration, low cost, and unlimited use environment. It has become possible to provide a manufacturing method.
[0182]
According to the thirty-second aspect of the present invention, the reflecting means is formed on the surface through the first sacrificial layer formed and flattened on the substrate by forming the depression-shaped portion and the fulcrum member and the electrode in the depression-shaped portion. After forming a plate-shaped plate-shaped member formed of a combination of thin films and patterning the cap-shaped member at a predetermined position where the deposited second sacrificial layer is patterned, the first sacrificial layer is formed. And the second sacrificial layer are removed, so that the height of the hat-shaped member is reduced, which leads to the self-stability of the hat-shaped member itself, and the direction of reflection of incident light is changed to one-axis or two-axis direction. Deflection structure and control are simple and easy, operation is stable and response is fast, the wavelength of incident light to be used is not limited, mechanical strength is less changed and deteriorated even after long-term use, and drive voltage is lower. Low resource saving, miniaturization and integration possible and low cost Use environment has become possible to provide a manufacturing method of the optical deflection device which is not limited.
According to the invention of claim 33, a fulcrum member and an electrode are formed on the substrate, and a plate-shaped member formed of a thin film in which the reflecting means is combined with the surface via the first sacrificial layer deposited and flattened. After forming the plate-shaped member and patterning the cap-shaped member at a predetermined position where the further deposited second sacrificial layer is patterned, a plurality of cap-shaped members of the cap-shaped member are arranged with a space therebetween. Since the first sacrificial layer and the second sacrificial layer are removed from the predetermined interval, the etching of the sacrificial layer can be shortened, and the direction of reflection of incident light can be changed to one-axis or two-axis direction to deflect light. The structure is simple and easy to control, the operation is stable and the response is fast, the wavelength of the incident light to be used is not limited, the mechanical strength is not changed or deteriorated over a long period of use, the driving voltage is low and the driving voltage is low. With resources, miniaturization and integration are possible, Environment has become possible to provide a manufacturing method of the optical deflection device which is not limited.
[0183]
According to the thirty-fourth aspect of the present invention, an inclined plate-shaped member on a substrate on which a plate-shaped plate-shaped member formed of a thin film and configured by combining a reflecting means for reflecting incident light on the surface is mounted without being fixed. A plate-shaped member is placed on a fulcrum member that serves as a fulcrum at the time of displacement. It is composed of a cap-shaped cap-shaped member that forms a gap in which the displacement is freely placed. The back surface of the plate-shaped member faces the fulcrum member on the substrate. Since the light deflecting devices on which the electrodes are arranged are independently driven by independent driving means, the structure for performing light deflection by changing the reflection direction of incident light to one or two axes is simple and easy. The operation is stable and the response is fast, the wavelength of the incident light to be used is not limited, the mechanical strength does not change or deteriorate over a long period of use, the driving voltage is low, resource saving, miniaturization and integration Possible, low cost and unlimited use environment Provided is an optical information processing apparatus including an optical deflecting device, having an optical deflecting device that is simple and easy to structure and control, and that suppresses reflected light from an adjacent element which is generated when stray light or a reflected direction is disturbed. I can do it.
According to the thirty-fifth aspect of the present invention, a reflecting means for reflecting incident light, which forms a latent image by performing optical writing on an image carrier which is rotatably held and carries a formed image, is combined with the surface. The plate-shaped member having a plate shape formed of a thin film is fixed on a fulcrum member serving as a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate on which the plate-shaped member is placed without being fixed. A latent image forming means comprising a light-deflecting device comprising a light-deflecting device formed of a light-shielding member having a light-shielding shape and forming a gap around the fulcrum member on the substrate and facing the back surface of the plate-shaped member. Since the toner image formed by the developing unit that visualizes the formed latent image to form a toner image is transferred to the transfer target body by the transfer unit to form the image, the reflection direction of the incident light is set to one. Change the light in the axis or biaxial direction Direction structure, easy control, easy operation, stable operation, fast response, no restriction on the wavelength of incident light to be used, mechanical strength with little change and deterioration even after long-term use, low driving voltage Equipped with an optical deflector that saves resources, can be miniaturized and integrated, is low-cost, and has no restriction on the operating environment, is simple and easy to structure and control, and is adjacent when stray light or reflected directions are disturbed. By suppressing reflected light from the device, ON / OFF control during optical writing is good, high-speed operation is possible, long-term reliability is high, driving is performed at a low voltage, and the S / N ratio can be improved. It has become possible to provide an image forming apparatus including an optical deflecting device that forms a high-resolution image at high speed.
[0184]
According to the thirty-sixth aspect of the present invention, an image projection data is formed by a thin film configured by combining a reflection means for reflecting incident light on a surface of the image projection data to change the direction of reflection of the incident light and perform light deflection to project and display the image. A gap where the plate-shaped member is arranged in a state where the plate-shaped member can be freely displaced on a fulcrum member which becomes a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate on which the plate-shaped member is placed without fixing it. An optical switch means comprising an optical deflection device in which an electrode is disposed around a fulcrum member on the substrate and opposed to the back surface of the plate-shaped member, and an image is projected and displayed on a projection screen. As a result, a structure in which the direction of reflection of incident light is changed to one or two axes to deflect light is simple, control is easy, operation is stable, response is fast, and the wavelength of incident light to be used is limited. No mechanical strength for a long time Less change and deterioration during use, low drive voltage, resource saving, miniaturization and integration possible, low cost, equipped with an optical deflecting device that is not restricted in use environment, structure and control are simple and easy, In addition, by suppressing stray light and reflected light from adjacent elements generated when the reflection direction is disturbed, ON / OFF control during image light / dark control is good, high-speed operation is possible, and long-term reliability is improved. Since it is driven at a high voltage with a low voltage and the contrast ratio can be improved, it is possible to provide an image projection display device including an optical deflector for projecting and displaying a high-definition image having high brightness and high contrast. It became so.
According to the thirty-seventh aspect of the present invention, the optical path of each optical signal is changed by changing the reflection direction of the incident light of the optical signal from the optical signal input means for inputting the optical signal to one axis or two axes to perform optical deflection. It is a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate to be mounted without fixing the plate-shaped plate-shaped member formed of a thin film, which is configured by combining the reflecting means for reflecting the incident light on the surface. A plate-shaped member is formed on a fulcrum member. The electrode is disposed around the fulcrum member on the substrate, facing the back surface of the plate-shaped member. Since the optical signal output from the optical switch means comprising the optical deflector is output by the optical signal output means, the structure and control for performing the light deflection by changing the reflection direction of the incident light to one axis or two axes is simple. Easy to use, stable operation, fast response, and use The wavelength of light is not limited, the mechanical strength is less changed and deteriorated even after long-term use, the driving voltage is low, the resource is saved, the miniaturization and integration are possible, the cost is low, and the usage environment is not limited. Equipped with a deflecting device, the structure and control are simple and easy, and the stray light and the reflected light from adjacent elements generated when the reflecting direction is disturbed are suppressed to easily and accurately perform the biaxial light deflection. Control of each port is good, stray light to adjacent ports is suppressed, high-speed optical path switching is possible, long-term reliability is high, driving at low voltage, and on the same substrate Since integration is possible, it is possible to provide an optical transmission device including an optical deflection device that determines an optical path of an optical signal that is small in size, has high speed, and has few malfunctions, outputs the optical path, and transmits the optical signal.
[0185]
According to the thirty-eighth aspect of the present invention, the direction of reflection of the incident light of the optical signal from the optical signal input means for inputting the optical signal is changed to one axis direction or two axis direction, and the light is deflected to change the optical path of each optical signal. It is a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate to be mounted without fixing the plate-shaped plate-shaped member formed of a thin film, which is configured by combining the reflecting means for reflecting the incident light on the surface. A plate-shaped member is formed on a fulcrum member. The electrode is disposed around the fulcrum member on the substrate, facing the back surface of the plate-shaped member. Since the optical signal output from the optical switch means composed of a plurality of stages of optical deflectors is output by the optical signal output means, a structure in which the direction of reflection of incident light is changed to one axis or two axes to perform light deflection. Easy to control, stable operation, quick response and use The wavelength of the incident light is not limited, the mechanical strength is less likely to change and deteriorate over long periods of use, the driving voltage is low, resources are saved, miniaturization and integration are possible, the cost is low, and the operating environment is low. Equipped with an unrestricted light deflecting device, the light deflection angle is large, the structure and control are simple and easy, and the stray light and the reflected light from the adjacent element generated when the reflection direction is disturbed are suppressed, and the biaxial direction is achieved. Light deflection can be easily and accurately performed, the selection of each port is well controlled, stray light to adjacent ports is suppressed, high-speed optical path switching is possible, long-term reliability is high, and low voltage And an optical transmission device having an optical deflection device that determines, outputs, and transmits an optical path of an optical signal that is small, high-speed, and has few malfunctions because it can be integrated on the same substrate. I can do it.
According to the invention of Claims 39 to 43, since the fulcrum member has a point shape in a region where the fulcrum member is in contact with the plate-shaped member, the plate-shaped member is inclinedly displaced in an arbitrary direction corresponding to a direction acting on electrostatic attraction. Can be easily performed, and the structure and the control for performing light deflection by changing the reflection direction of the incident light to one or two axes are simple and easy.
According to the invention of claims 44 to 57, since the fulcrum member has a point shape in a region where the fulcrum member is in contact with the plate-shaped member, the plate-shaped member is inclinedly displaced in an arbitrary direction corresponding to a direction acting on the electrostatic attraction. And a structure for performing light deflection by changing the reflection direction of the incident light into a plurality of axial directions, and the control is simple and easy.
[0186]
According to the invention of claim 58, since the portions of the plate-shaped member and the fulcrum member that are in contact with each other are conductive, the contact resistance between the two can be reduced, and low-voltage driving can be performed. By tilting the plate-shaped member about the fulcrum about the fulcrum until it comes into contact with the substrate, the deflection angle of the mirror can be easily and stably controlled. In addition, since the plate-shaped member does not have a fixed end, there is no hinge or fixed beam that causes torsion or deformation, and there is little deterioration such as brittle deterioration in long-term use and deformation. Since no force is required for the generation, the device can be driven at a low voltage. In addition, since the plate-like member can be positioned almost in any space by the regulating member, the reset voltage at the time of the reset operation can be minimized. Further, by setting the potential of the plate member to an arbitrary potential via the fulcrum member, it is possible to more stably drive at a lower voltage.
[0187]
According to the fifty-ninth aspect, the incident light flux can be used to the maximum.
According to the 60th aspect of the present invention, since the plate-shaped member has the dielectric member, the potential of the plate-shaped member can be held by the dielectric member, and the contact between the plate-shaped member and the fulcrum member can be maintained. Can be maintained even if the current is cut off momentarily, so that the inclination of the plate member can be driven stably.
According to the invention of claim 61, it is easy to hold the electric potential of the plate-like member on the member having the dielectric property, and it is possible to conduct the dielectric more efficiently, so that the inclination of the plate-like member can be more stably reduced. It can be driven by voltage.
[0188]
According to the invention of claim 62, since it has a high insulating property and a high mechanical strength while securing a high relative permittivity, it is possible to suppress an electrical short circuit between the plate member and the electrode, Destruction at the time of displacement can be suppressed.
According to the invention of claim 63, since the plurality of electrodes formed on the substrate and the conductive portion at the top of the fulcrum member are electrically separated, the potential applied to the plate member is It can be independent of the electrodes.
[0189]
According to the invention of claim 64, when a potential difference equal to or more than a predetermined value is given between the plate-like member and the electrode, since at least a part thereof is opposed to each other, an electrostatic attraction is exerted between the two. be able to.
According to the invention of claim 65, the plate-like member can be displaced in all directions with the top of the fulcrum member as a contact point.
[0190]
According to the invention of claim 66, the displacement direction can be stably determined by bringing the plate-like member displaceable in all directions into contact with any one of the plurality of slopes.
According to the invention of claim 67, since the plate-shaped member makes line contact with the fulcrum member, displacement is limited to only two directions around the contact line. However, when used in a simple device, the stability is extremely high. Since it is high, an accurate device can be obtained.
[0191]
According to the invention of claim 68, since the electrode is asymptotically close to the plate-like member, the displacement of the plate-like member due to electrostatic attraction can be caused even with a lower potential difference.
According to the invention of claim 69, when the plate-like member is displaced, the entire back surface of the plate-like member comes into contact with the slope, so that the displacement state is very stable, and the impact at the time of contact can be dispersed, Thus, it is possible to provide an optical deflecting device with less long-term strength deterioration.
[0192]
According to the invention of claim 70, even when the plate-shaped member comes into contact with the slope, the entire back surface of the plate-shaped member does not come into contact with the slope, but comes into contact only with the convex portion, so that the contact area is reduced. Thus, the fixation of the plate member to the substrate can be suppressed, and a highly reliable optical deflection device can be provided.
According to the invention of claim 71, in the optical deflection array, since the atmosphere near the plate member is substantially vacuum, there is no buoyancy due to the gas in the atmosphere when the plate member is displaced. The problem of inflow and outflow of gas between the elements can be solved, and the interaction of displacement of the plate member between the elements can be eliminated. When the optical deflector is packaged so that the periphery of the device is covered with a cover, the gas in the atmosphere becomes viscous resistance to a rapid change in the inclination of the plate-like member due to voltage application, and a slight response delay occurs. Can be prevented.
[0193]
According to the invention of claim 72, the moisture in the atmosphere can be reduced, whereby the contact point when the plate member is inclinedly displaced and comes into contact with the substrate and the contact point between the fulcrum member and the plate member at the contact point Can be suppressed.
According to the invention of claim 73, the relationship between the maximum value and the minimum value of the potential applied to the electrodes opposed to each other across the top of the fulcrum member is switched, or the potential applied to the plate-like member is set to the maximum value side and the minimum value side. By switching between the two, the displacement direction of the plate member can be switched to the opposite side. Further, by switching the maximum potential or the minimum potential applied to the electrode to an adjacent other electrode, more displacement directions can be obtained.
[0194]
According to the seventy-fourth aspect, in particular, when the number of electrodes is set to six or more, one or more electrodes in an electrically floating state are sandwiched between the electrode that gives the maximum potential and the electrode that gives the minimum potential. It is possible to obtain a stable operation without generating a high potential difference between adjacent electrodes.
According to the seventy-fifth aspect, warpage on the mirror surface due to residual stress of the plate member can be easily suppressed, so that reflected light in directions other than the target direction can be suppressed, and the S / N ratio of the reflected light amount can be increased.
[0195]
According to the invention of claim 76, since the reflectance of the aluminum-based metal film is good, the reflection performance as a mirror can be enhanced. Furthermore, since the electrical resistance of the aluminum-based metal film is low, the potential can be effectively applied from the fulcrum member, and the film can be driven at a low voltage.
[0196]
According to the invention of claim 77, it becomes possible to drive and control a plurality of elements simultaneously and independently to deflect light.
According to the invention of claim 78, it is possible to control the brightness of the pixel by ON / OFF control of the optical switch, suppress stray light, perform high-speed operation, have long-term reliability, and drive at low voltage. Since the contrast ratio can be improved, a high-definition image projection display device having a high contrast ratio while having high luminance can be provided. According to the invention of claim 79, when the plate-shaped member contacts the fulcrum member formed on the substrate surface, gravity acts on the plate-shaped member. Work evenly and there is no bias. This makes it possible to obtain a more stable operation when the plate-shaped member is displaced in an inclined manner, that is, an operation with long-term reliability and reproducibility.
[0197]
According to the invention of claim 80, ON / OFF control at the time of optical writing is good, stray light can be suppressed, high-speed operation is possible, long-term reliability is high, driving at low voltage is possible, and S / N Since the ratio can be improved, a high-speed and high-definition image forming apparatus can be provided.
According to the invention of claim 81, when the plate member comes into contact with the fulcrum member formed on the surface of the substrate, gravity acts on the plate member. Work evenly and there is no bias. This makes it possible to obtain a more stable operation when the plate-shaped member is displaced in an inclined manner, that is, an operation with long-term reliability and reproducibility.
[0198]
According to the invention of claim 82, the control of selection of a plurality of input / output ports for one input / output port is good, stray light to an adjacent port can be suppressed, high-speed optical path switching is possible, and long-term reliability is achieved. Since the optical transmission device has high performance, can be driven at a low voltage, and can be integrated over the same substrate, it is possible to provide an optical transmission device which is small in size, has high speed, and has few malfunctions.
According to the invention of claim 83, the selection of the plurality of input / output ports of one input / output section and the selection of the plurality of input / output ports of the other input / output section are well controlled, stray light to adjacent ports can be suppressed, and It is possible to provide an optical transmission device that is small in size, has high speed, and has few malfunctions, because it can switch optical paths, has high long-term reliability, can be driven at low voltage, and can be integrated on the same substrate.
According to the 84th aspect of the invention, when the plate-shaped member comes into contact with the fulcrum member formed on the substrate surface, gravity acts on the plate-shaped member. Work evenly and there is no bias. This makes it possible to obtain a more stable operation when the plate-shaped member is displaced in an inclined manner, that is, an operation with long-term reliability and reproducibility.
[0199]
According to the invention of claim 85, a high yield, a high integration, and a fine optical deflection device can be manufactured on the same substrate. In addition, since the light deflecting device of the present invention can be manufactured minutely, the weight of the plate-shaped member can be reduced, whereby the impact when the plate-shaped member collides with the regulating member during standby or the plate-shaped member contacts the substrate during operation. In this case, an impact can be reduced, and a highly reliable optical deflection device can be provided.
According to the invention of claim 86, a high yield, a high integration, and a fine optical deflection array can be manufactured on the same substrate. In addition, since the light deflection array of the present invention can be manufactured minutely, the weight of the plate-shaped member can be reduced, so that when the plate-shaped member collides with the regulating member during standby, or when the plate-shaped member contacts the substrate during operation. In this case, an impact can be reduced, and a highly reliable optical deflection array can be provided.
[0200]
According to the invention of claim 87, since a convex portion having an arbitrary size can be formed, an optical deflecting device capable of stably driving with reduced adsorption force of the plate-like member and suppressed sticking is provided on the same substrate. Can be manufactured.
[0201]
According to the invention of claim 88, since the apex of the cone is spherical, stress concentration can be avoided and stable operation can be obtained.
[0202]
According to the invention of claim 89, the apex angle of the cone can be increased, and the strength stability of the apex can be obtained.
[0203]
According to the invention of claim 90, since there is no pointed shape at the top of the fulcrum member, there is less danger of damage to the fulcrum member due to stress concentration.
[0204]
According to the nineteenth aspect, the strength stability of the top portion can be obtained.
[0205]
According to the ninety-second aspect, a fulcrum member that is easy to manufacture can be obtained.
[0206]
According to the invention of Claim 93, in the optical deflector using the fulcrum member having a polygonal pyramid shape that makes point contact with the plate-like member, even when the plate-like member comes into contact with the inclined surface, the entire surface of the plate-like member back surface Since the contact does not come into contact with the inclined surface but only with the convex portion, the contact area can be reduced, the sticking of the plate member to the substrate can be suppressed, and a highly reliable light deflecting device can be provided. Further, when patterning the convex portion, it is easy to form a photomask.
[0207]
According to the invention of claim 94, in a light deflector using a fulcrum member having a polygonal pyramid shape that makes point contact with the platy member, it is possible to prevent a phenomenon in which the platy member is fixed to a convex portion on a slope of the fulcrum member. Can be.
[0208]
According to the invention of claim 95, in the optical deflector using the prism-shaped fulcrum member that makes a line contact with the plate member, even when the plate member comes into contact with the slope, the entire back surface of the plate member is Since the contact is made not with the slope but only with the convex portion, the contact area can be reduced, the sticking of the plate member to the substrate can be suppressed, and a highly reliable light deflecting device can be provided. Further, in addition to facilitating the preparation of the photomask, the possibility of electrification at the convex portion is reduced, and the probability of sticking of the plate member is reduced.
[0209]
According to the 96th aspect of the present invention, in the optical deflector using the prism-shaped fulcrum member that makes a line contact with the plate-shaped member, it is possible to prevent the sticking phenomenon of the plate-shaped member to the convex portion on the slope of the fulcrum member. it can.
[0210]
According to the invention of claim 97, it is possible to make maximum use of the incident light flux.
[0211]
According to the invention of claim 98, since the plate-shaped member has the dielectric member, the potential of the plate-shaped member can be held by the dielectric member, and the contact between the plate-shaped member and the fulcrum member can be maintained. Can be maintained even if the current is cut off momentarily, so that the inclination of the plate member can be driven stably.
[0212]
According to the invention of claim 99, it is easy to hold the electric potential of the plate-shaped member on the member having the dielectric property, and it is possible to more efficiently conduct the dielectric, so that the inclination of the plate-shaped member can be more stably reduced. It can be driven by voltage.
[0213]
According to the invention of claim 100, since it has a high insulating property and a high mechanical strength while securing a high relative permittivity, it is possible to suppress an electrical short circuit between the plate-shaped member and the electrode, Destruction at the time of displacement can be suppressed.
[0214]
According to the invention of claim 101, since the plurality of electrodes formed on the substrate and the conductive portion on the top of the fulcrum member are electrically separated from each other, the potential applied to the plate member is It can be independent of the electrodes.
[0215]
According to the invention of Claim 102, when a potential difference equal to or more than a predetermined value is given between the plate-shaped member and the electrode, since at least a part thereof is opposed to each other, an electrostatic attraction is exerted between the two. be able to.
[0216]
According to the invention of claim 103, by increasing the joint area of the portion where the regulating member is joined to the substrate by the extension base, sufficient strength against stress or the like can be obtained.
[0217]
According to the invention of Claim 104, since the positions of the regulating members of the two light deflecting devices adjacent to each other of the plurality of light deflecting devices arranged in an array are aligned and formed integrally, the regulating members are formed. Is obtained.
[0218]
According to the invention of Claim 105, the utilization efficiency of the area is maximized, and all the adjacent light deflecting devices can be a composite regulating member sharing the regulating member with each other.
[0219]
According to the invention of claim 106, even at a position where there is no adjacent light deflector, the joining area of the regulating member to the substrate can be increased, so that a stable strength of the regulating member can be obtained.
[0220]
According to the invention of claim 107, since the joint area with the substrate can be increased at the base of the composite regulating member shared by the two adjacent light deflecting devices, stable strength can be obtained.
[0221]
According to the invention of claim 108, since the joint area with the substrate can be increased in the upright portion of the composite regulating member shared by the two adjacent light deflection devices, stable strength can be obtained.
[0222]
According to the invention of claim 109, a high-yield, high-integration, and fine optical deflection device can be manufactured on the same substrate. In addition, since the light deflecting device of the present invention can be manufactured minutely, the weight of the plate-shaped member can be reduced, whereby the impact when the plate-shaped member collides with the regulating member during standby or the plate-shaped member contacts the substrate during operation. In this case, an impact can be reduced, and a highly reliable optical deflection device can be provided.
[0223]
According to the invention of claim 110, the central portion of the back surface of the plate-shaped member comes to be combined with the fulcrum member in an uneven relationship, even when the plate-shaped member is inclined by receiving electrostatic attraction from the electrode, Since side slip does not occur and the center portion is always at a fixed position, when used as a micromirror device, the direction of reflected light can be controlled with high accuracy.
[0224]
According to the invention of claim 111, a high yield, a high integration, and a fine optical deflection array can be manufactured on the same substrate. In addition, since the light deflection array of the present invention can be manufactured minutely, the weight of the plate-shaped member can be reduced, so that when the plate-shaped member collides with the regulating member during standby, or when the plate-shaped member contacts the substrate during operation. Impact can be reduced, and a highly reliable optical deflection array can be provided.
[0225]
According to the invention of claim 112, in the light deflection array, the central portion of the back surface of the plate-shaped member is combined with the fulcrum member in an uneven relationship, and the plate-shaped member is inclined by receiving electrostatic attraction from the electrode. Also in this case, no side slip occurs, and the central portion is always at a constant position. Therefore, when used as a micromirror device, the direction control of reflected light can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a sectional view taken along line AA of FIG. 2 for explaining an optical deflecting device according to a first embodiment of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is an explanatory diagram illustrating a state of a main part of the light deflecting device according to the first embodiment of the present invention.
FIG. 4 is an explanatory diagram illustrating another state of a main part of the light deflecting device according to the first embodiment of the present invention.
FIG. 5 is a sectional view taken along the line BB of FIG. 6, illustrating a main part of an optical deflecting device according to a second embodiment of the present invention.
FIG. 6 is a plan view of FIG. 5;
FIG. 7 is an explanatory diagram illustrating a main part of an optical deflecting device according to a second embodiment of the present invention.
FIG. 8 is a diagram for explaining a defect of the modification of FIG. 7;
FIG. 9 is a sectional view taken along line DD of FIG. 10 for explaining another main part of the light deflecting device according to the third embodiment of the present invention.
FIG. 10 is a plan view of FIG. 9;
FIG. 11 is an enlarged perspective view illustrating a main part of an optical deflecting device according to a third embodiment of the present invention.
FIG. 12 is an enlarged perspective view illustrating a main part of an optical deflector showing a modification of the third embodiment of the present invention.
FIG. 13 is a sectional view taken along line EE of FIG. 14 illustrating a main part of an optical deflecting device according to a fourth embodiment of the present invention.
FIG. 14 is a plan view of FIG.
FIG. 15 is an enlarged perspective view illustrating a main part of an optical deflecting device according to a fourth embodiment of the present invention.
FIG. 16 is an enlarged perspective view illustrating a main part of an optical deflecting device according to a modification of the fourth embodiment of the present invention.
FIG. 17 is a sectional view taken along line FF of FIG. 18 illustrating a main part of an optical deflecting device according to a fifth embodiment of the present invention.
18 is a plan view of FIG.
FIG. 19 is a sectional view taken along line GG of FIG. 14 for explaining a main part of an optical deflecting device according to a sixth embodiment of the present invention.
FIG. 20 is a plan view of FIG. 19;
FIG. 21 is an enlarged perspective view illustrating a main part of an optical deflecting device according to a sixth embodiment of the present invention.
FIG. 22 is an enlarged perspective view illustrating a main part of an optical deflector showing a modification of the sixth embodiment of the present invention.
FIG. 23 is a sectional view taken along the line HH of FIG. 24, illustrating a main part of an optical deflecting device according to a seventh embodiment of the present invention.
FIG. 24 is a plan view of FIG. 23;
FIG. 25 is a sectional view taken along line II of FIG. 26, illustrating a main part of an optical deflecting device according to a seventh embodiment of the present invention.
FIG. 26 is a plan view of FIG. 25.
FIG. 27 is a plan view illustrating another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 28 is a sectional view taken along the line JJ of FIG. 27 for explaining the operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 29 is a sectional view taken along the line JJ of FIG. 27 for explaining another operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 30 is a sectional view taken along the line KK in FIG. 27 for explaining another operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 31 is a sectional view taken along line JJ of FIG. 27 for explaining another operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 32 is a sectional view taken along the line KK in FIG. 27 for explaining another operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 33 is a sectional view taken along line JJ of FIG. 27 for explaining another operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 34 is a sectional view taken along the line KK of FIG. 27 for explaining another operation of another main part of the light deflecting device according to the seventh embodiment of the present invention.
FIG. 35 is a sectional view taken along line LL of FIG. 27 for explaining generation of electrostatic force in the optical deflection device according to the seventh embodiment of the present invention.
FIG. 36 is a cross-sectional view taken along the line PP of FIG. 37, illustrating a main part of an optical deflecting device according to an eighth embodiment of the present invention.
FIG. 37 is a plan view of FIG. 36.
FIG. 38 is a sectional view taken along line QQ of FIG. 39, illustrating a main part of an optical deflecting device according to a ninth embodiment of the present invention.
FIG. 39 is a plan view of FIG. 38.
FIG. 40 is a sectional view taken along line RR of FIG. 41, illustrating a main part of an optical deflecting device according to a tenth embodiment of the present invention.
FIG. 41 is a plan view of FIG. 40.
FIG. 42 is a sectional view taken along the line S--S in FIG. 43, illustrating a main part of the optical deflector according to the eleventh embodiment of the present invention.
FIG. 43 is a plan view of FIG. 42.
FIG. 44 is an explanatory diagram illustrating a main part of an optical deflecting device according to an eleventh embodiment of the present invention.
FIG. 45 is a sectional view taken along the line TT of FIG. 46, illustrating a main part of the optical deflecting device according to the twelfth embodiment of the present invention.
FIG. 46 is a plan view of FIG. 45.
FIG. 47 is a sectional view taken along the line U-U in FIG. 48 illustrating a main part of an optical deflecting device according to a thirteenth embodiment of the present invention.
FIG. 48 is a plan view of FIG. 47.
FIG. 49 is an explanatory diagram illustrating an optical deflection device according to a fourteenth embodiment of the present invention.
FIG. 50 is an explanatory diagram illustrating an optical deflecting device according to a fifteenth embodiment of the present invention.
FIG. 51 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 52 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 53 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 54 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 55 is an explanatory diagram illustrating main steps of a method for manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 56 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 57 is an explanatory diagram illustrating main steps of a method for manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 58 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 59 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to the embodiment of the present invention.
FIG. 60 is an explanatory diagram for explaining a step of another main part of the method for manufacturing the optical deflection device shown in the embodiment of the present invention;
FIG. 61 is an explanatory diagram illustrating a process of another main part of the method for manufacturing the optical deflection device according to the embodiment of the present invention;
FIG. 62 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention.
FIG. 63 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention.
FIG. 64 is an explanatory diagram for explaining main steps of a method for manufacturing the optical deflector shown in another embodiment of the present invention;
FIG. 65 is an explanatory diagram for explaining main steps of a method for manufacturing the optical deflector shown in another embodiment of the present invention;
FIG. 66 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention;
FIG. 67 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention;
FIG. 68 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention;
FIG. 69 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention;
FIG. 70 is an explanatory diagram illustrating main steps of a method of manufacturing the optical deflection device according to another embodiment of the present invention;
FIG. 71 is an explanatory diagram illustrating main steps of a method for manufacturing the optical deflection device according to another embodiment of the present invention.
FIG. 72 is an explanatory diagram illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 73 is an explanatory view illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 74 is an explanatory diagram for explaining main steps of a method of manufacturing an optical deflecting device according to still another embodiment of the present invention.
FIG. 75 is an explanatory view illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 76 is an explanatory view illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 77 is an explanatory diagram illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 78 is an explanatory diagram illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 79 is an explanatory view illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 80 is an explanatory diagram illustrating main steps of a method of manufacturing an optical deflection device according to still another embodiment of the present invention.
FIG. 81 is an explanatory diagram illustrating an image forming apparatus including the light deflecting device according to the embodiment of the present invention.
FIG. 82 is an explanatory diagram illustrating an image projection display device including the light deflecting device according to the embodiment of the present invention.
FIG. 83 is an explanatory diagram illustrating an optical transmission device including the optical deflection device according to the embodiment of the present invention.
FIG. 84 is a plan view for describing the main part of the optical deflection device according to the sixteenth embodiment of the present invention.
85 is a sectional view taken along line AA ′ of FIG. 84.
FIG. 86 is a plan view for explaining main parts of the light deflecting device according to the seventeenth embodiment of the present invention.
87 is a sectional view taken along line AA ′ of FIG. 86.
FIG. 88 is a plan view for explaining main parts of an optical deflecting device according to an eighteenth embodiment of the present invention.
FIG. 89 is a plan view for explaining main parts of an optical deflecting device according to a nineteenth embodiment of the present invention.
90 is a sectional view taken along line AA ′ of FIG. 89.
FIG. 91 is a view for explaining a twentieth embodiment of the present invention;
FIG. 92 is a view for explaining a twenty-first embodiment of the present invention;
FIG. 93 is a diagram illustrating a twenty-second embodiment of the present invention.
FIG. 94 is a view for explaining a twenty-third embodiment of the present invention;
FIG. 95 is a view showing a modification of the fulcrum member applied to the twenty-third embodiment;
FIG. 96 is a view for explaining a twenty-fourth embodiment of the present invention;
FIG. 97 is a view for explaining a twenty-fifth embodiment of the present invention;
FIG. 98 is a figure for explaining a twenty-sixth embodiment of the present invention;
FIG. 99 is a cross-sectional view of the optical deflector 2100 of FIG. 98 taken along the line DD ′ during a reset operation.
FIG. 100 is a view for explaining a twenty-seventh embodiment of the present invention;
FIG. 101 is a view for explaining a twenty-eighth embodiment of the present invention;
FIG. 102 is a figure for explaining a twenty-ninth embodiment of the present invention;
FIG. 103 is a diagram illustrating an example in which the light deflection array 1200 of the present invention is applied to an image projection display device.
FIG. 104 is a diagram showing an example in which the light deflection array 1200 of the present invention is applied to an image forming apparatus such as a copying machine.
FIG. 105 is a diagram showing an example in which the optical deflection array 1200 of the present invention is applied to an optical transmission device.
FIG. 106 is a diagram showing a manufacturing process of the optical deflecting device 2100 or the optical deflecting array 1200 of the present invention.
FIG. 107 is a view showing a step of forming a convex portion on the slope in the twenty-fourth embodiment;
FIG. 108 is a diagram for describing a shape of a fulcrum member.
FIG. 109 is a diagram for describing the shape of the fulcrum member.
FIG. 110 is a view showing a modified embodiment with respect to a convex portion in the twenty-fifth embodiment of the present invention.
FIG. 111 is a view showing a modified embodiment with respect to a convex portion in the twenty-fifth embodiment of the present invention.
FIG. 112 is a diagram showing an embodiment of a regulating member.
FIG. 113 is a perspective view for explaining a modified embodiment of the regulating member.
FIG. 114 is a sectional view of an optical deflector using a regulating member according to a modified embodiment.
FIG. 115 is a perspective view showing a further modified embodiment of the regulating member.
FIG. 116 is a cross-sectional view showing an example of use of a regulating member according to a modified embodiment.
FIG. 117 is a cross-sectional view illustrating an example of use of a regulating member according to a modified embodiment.
FIG. 118 is a view showing the procedure of manufacturing the optical deflecting device according to another embodiment of the present invention.
FIG. 119 is a view showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
FIG. 120 is a view showing the procedure of manufacturing the optical deflecting device according to another embodiment of the present invention.
FIG. 121 is a view showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
FIG. 122 is a view showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
FIG. 123 is a view showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
FIG. 124 is a diagram showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
FIG. 125 is a view showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
FIG. 126 is a view showing the procedure of manufacturing the optical deflecting device according to another embodiment of the present invention.
FIG. 127 is a view showing a manufacturing procedure of the optical deflecting device according to another embodiment of the present invention.
[Explanation of symbols]
0 Optical deflector
1 Reflecting means
1a Reflective surface
1b Aluminum metal film
2 Plate-shaped members
2a curved shape part
2b conductive area
2c silicon nitride film
2d contact part
3 substrate
3a Depressed shape
3b Silicon substrate having (100) plane orientation
3c insulating film
4 fulcrum members
4a circular part
4a 1 Cylindrical shape
4b Conical part
4b 1 Point shape
4b 2 Round shape
4c rectangular part
4d, 4d 1 , 4d 2 , 4d 3 , 4d 4 Slope
4e ridge shape part
4e 1 Line shape
4e 2 Round shape
4f silicon oxide film
4g silicon nitride film
5 Shade-shaped members
5a 1 to n Shade-shaped member
5b insulating film
5c translucent film
5d silicon oxide film
5e Light-shielding film
5f chromium oxide film
6,6a 1 , 6a 2 , 6a 3 , 6a 4 electrode
6b Protective film
7 Sacrificial layer
7a First sacrificial layer
7b Second sacrificial layer
7c Third sacrificial layer
10 One-dimensional light deflection array
20, 20a, 20b Two-dimensional light deflection array
100 Optical information processing device
101 Independent driving means
102 light source
103 First lens system
104 Second lens system
105 Projection lens
106 Aperture
107 rotating color hole
108 micro lens array
200 Image forming apparatus
201 Image carrier
202 latent image forming means
203 developing means
204 transfer means
205 charging means
206 fixing means
207 Output tray
208 Cleaning means
300 Image projection display device
301 Optical switch means
302 projection screen
400 Optical transmission device
401 Optical signal input means
401a, 401a 1 , 401a 2 Signal input transmission port
402 Optical switch means
402a, 402a 1 Control device
403 Optical signal output means
403a, 403a 1 , 403a 2 Signal output transmission port
(A 1 ) Supporting point forming process on substrate
(A 2 ) Electrode formation process
(A 3 ) Protective film formation process
(A 4 ) First sacrificial layer forming step
(A 5 Reflection means and plate-shaped member forming process
(A 6 ) Second sacrificial layer forming step
(A 7 ) Shading shape patterning process
(A 8 ) Shade-shaped member forming process
(A 9 ) Sacrificial layer removal process
(B 1 ) Supporting point forming process on substrate
(B 2 ) Electrode formation process
(B 3 ) Protective film formation process
(B 4 ) First sacrificial layer forming step
(B 5 ) Third sacrifice layer forming step
(B 6 Reflection means and plate-shaped member forming process
(B 7 ) Second sacrificial layer forming step
(B 8 ) Shading shape patterning process
(B 9 ) Shade-shaped member forming process
(B 10 ) Sacrificial layer removal process
(C 1 ) Depressed part on substrate and supporting member forming process
(C 2 ) Electrode formation process
(C 3 ) Protective film formation process
(C 4 ) First sacrificial layer forming step
(C 5 Reflection means and plate-shaped member forming process
(C 6 ) Second sacrificial layer forming step
(C 7 ) Shading shape patterning process
(C 8 ) Shade-shaped member forming process
(C 9 ) Sacrificial layer removal process
601 fulcrum member
602 conductive member
603 insulating film
701 convex part
800 electrodes
801 insulation layer
802 conductive layer
1200 Optical deflection array
1300 Image projection display device
1301 Optical switch means
1400 Image forming apparatus
1402 latent image forming means
1500 Optical transmission device
1502 Optical signal input section
1503 First stage light deflection array
1505 Second stage light deflection array
1507 Optical signal output unit
2100 Optical deflection device
2101 substrate
2102 Regulation member
2103 fulcrum member
2104 Plate member
2201 dielectric layer
2202 conductor layer
2301 electrode
2401 fulcrum member
2402 Contact Site

Claims (112)

入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向方法において、入射光を反射する反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を、基板上に固定することなく上記基板上の支点部材上と笠形状の笠形状部材間に形成される空隙内に変位が自由の状態で配置して、上記基板上の上記支点部材の周囲に上記板形状部材と対向して配置した電極に電位を付与して、上記支点部材上に傾斜して載置する上記板形状部材上の上記反射手段で入射光の反射方向を変えて光偏向を行うことを特徴とする光偏向方法。In a light deflecting method of performing light deflection by changing a reflection direction of incident light to a uniaxial or biaxial direction, a plate-shaped plate-shaped member formed of a thin film configured to combine a reflection unit for reflecting incident light on a surface is provided. Displacement is freely arranged in a gap formed between the fulcrum member on the substrate and the cap-shaped cap member without being fixed on the substrate, and the displacement is provided around the fulcrum member on the substrate. An electric potential is applied to an electrode arranged opposite to the plate-shaped member, and light is deflected by changing the reflection direction of incident light by the reflection means on the plate-shaped member which is placed on the fulcrum member at an angle. A light deflecting method characterized in that: 請求項1に記載の光偏向方法において、電極は、基板上の支点部材の周囲に板形状部材と対向して配列した複数個の各電極に異なる電位を付与して光偏向を行うことを特徴とする光偏向方法。2. The light deflection method according to claim 1, wherein the electrodes perform light deflection by applying different potentials to a plurality of electrodes arranged around the fulcrum member on the substrate so as to face the plate-shaped member. Light deflection method. 請求項1又は2に記載の光偏向方法において、電極に異なる電位を付与して、反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を基板上の斜面に接触して、入射光の反射方向を接触する位置で規定して変えて光偏向を行なうことを特徴とする光偏向方法。3. The light deflecting method according to claim 1 or 2, wherein different potentials are applied to the electrodes, and a plate-shaped plate-shaped member formed of a thin film configured by combining the reflection means on the surface is brought into contact with the slope on the substrate. A light deflecting method, wherein the light deflecting is performed by changing the reflection direction of the incident light at a contact position. 入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向装置において、入射光を反射する反射手段と、上記反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材と、上記板形状部材を固定することなく載置する基板と、上記基板上の傾斜する上記板形状部材の変位時の支点となる支点部材と、上記支点部材上に上記板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材と、上記基板上の上記支点部材の周囲に上記板形状部材の裏面と対向して配置した電極とからなることを特徴とする光偏向装置。In a light deflecting device that performs light deflection by changing the reflection direction of incident light to one axis direction or two axis direction, a plate-shaped plate formed of a reflecting means for reflecting the incident light and a thin film configured by combining the reflecting means on a surface is provided. A plate-shaped member, a substrate on which the plate-shaped member is mounted without being fixed, a fulcrum member serving as a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate, and the plate-shaped member on the fulcrum member A cap-shaped cap-shaped member forming a gap in which the displacement is arranged in a free state, and an electrode disposed around the fulcrum member on the substrate so as to face the back surface of the plate-shaped member. Characteristic light deflection device. 請求項4に記載の光偏向装置において、反射手段の反射面は、平板で形成されていることを特徴とする光偏向装置。5. The light deflecting device according to claim 4, wherein the reflecting surface of the reflecting means is formed of a flat plate. 請求項4又は5に記載の光偏向装置において、反射手段は、アルミニウム系金属膜で形成されていることを特徴とする光偏向装置。The optical deflector according to claim 4, wherein the reflection unit is formed of an aluminum-based metal film. 請求項4、5又は6に記載の光偏向装置において、板形状部材は、支点部材と接する個所の面形状に湾曲形状の湾曲形状部からなることを特徴とする光偏向装置。7. The optical deflector according to claim 4, wherein the plate-shaped member is formed of a curved portion having a curved shape at a portion in contact with the fulcrum member. 請求項4、5、6又は7に記載の光偏向装置において、板形状部材は、外形が円形状であることを特徴とする光偏向装置。8. The optical deflector according to claim 4, wherein the plate-shaped member has a circular outer shape. 請求項4、5、6、7又は8に記載の光偏向装置において、板形状部材は、シリコン窒化膜からなることを特徴とする光偏向装置。9. The optical deflector according to claim 4, wherein the plate-shaped member is made of a silicon nitride film. 請求項4、5、6、7、8又は9に記載の光偏向装置において、反射手段又は板形状部材は、導電性を有する導電性領域を有して、上記導電性領域が電極と対向することを特徴とする光偏向装置。The light deflecting device according to claim 4, 5, 6, 7, 8, or 9, wherein the reflecting means or the plate-shaped member has a conductive region having conductivity, and the conductive region faces the electrode. A light deflecting device characterized by the above-mentioned. 請求項4、5、6、7、8、9又は10に記載の光偏向装置において、基板は、窪み形状の窪み形状部からなることを特徴とする光偏向装置。11. The optical deflector according to claim 4, 5, 6, 7, 8, 9, or 10, wherein the substrate comprises a concave portion having a concave shape. 請求項4、5、6、7、8、9、10又は11に記載の光偏向装置において、基板は、(100)面方位を有するシリコン基板からなることを特徴とする光偏向装置。The optical deflector according to claim 4, 5, 6, 7, 8, 9, 10, or 11, wherein the substrate is formed of a silicon substrate having a (100) plane orientation. 請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と接する個所の面形状が円形状部であることを特徴とする光偏向装置。The optical deflecting device according to any one of claims 4, 5, 6, 7, 8, 9, 10, 11 and 12, wherein the fulcrum member has a circular shape at a portion in contact with the plate-shaped member. Light deflecting device. 請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と点で接する円錐形状部であることを特徴とする光偏向装置。13. The optical deflection device according to claim 4, wherein the fulcrum member is a conical portion that contacts the plate-shaped member at a point. apparatus. 請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と接する面が長方形の長方形状部であることを特徴とする光偏向装置。The optical deflecting device according to any one of claims 4, 5, 6, 7, 8, 9, 10, 11, and 12, wherein the fulcrum member is a rectangular portion having a rectangular surface in contact with the plate-shaped member. Light deflection device. 請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と線で接する尾根の形状からなる尾根形状部であることを特徴とする光偏向装置。The optical deflecting device according to claim 4, 5, 6, 7, 8, 9, 10, 11, or 12, wherein the fulcrum member is a ridge-shaped portion having a shape of a ridge contacting the plate-shaped member by a line. Characteristic light deflection device. 請求項4、5、6、7、8、9、10、11又は12に記載の光偏向装置において、支点部材は、板形状部材と接する斜面を有することを特徴とする光偏向装置。13. The light deflector according to claim 4, 5, 6, 7, 8, 9, 10, 11, or 12, wherein the fulcrum member has an inclined surface in contact with the plate-shaped member. 請求項4乃至17の何れか一項に記載の光偏向装置において、支点部材は、酸化シリコン膜又はシリコン窒化膜からなることを特徴とする光偏向装置。18. The optical deflector according to claim 4, wherein the fulcrum member is made of a silicon oxide film or a silicon nitride film. 請求項4乃至18の何れか一項に記載の光偏向装置において、笠形状部材は、板形状部材の外周に対応して複数個の各笠形状部材を所定間隔を空けて配置したことを特徴とする光偏向装置。19. The light deflecting device according to claim 4, wherein the cap-shaped member has a plurality of cap-shaped members arranged at predetermined intervals corresponding to the outer periphery of the plate-shaped member. Light deflecting device. 請求項4乃至18の何れか一項に記載の光偏向装置において、笠形状部材は、板形状部材の外周に対応する全領域に配置したことを特徴とする光偏向装置。19. The optical deflector according to claim 4, wherein the cap-shaped member is arranged in an entire region corresponding to an outer periphery of the plate-shaped member. 請求項4乃至20の何れか一項に記載の光偏向装置において、笠形状部材は、絶縁性を有する絶縁膜からなることを特徴とする光偏向装置。21. The optical deflector according to claim 4, wherein the cap-shaped member is made of an insulating film having an insulating property. 請求項4乃至21の何れか一項に記載の光偏向装置において、笠形状部材は、入射光束に対し透光性を有する透光性膜からなることを特徴とする光偏向装置。22. The light deflecting device according to claim 4, wherein the hat-shaped member is formed of a light-transmitting film having a light-transmitting property with respect to an incident light beam. 請求項4乃至22の何れか一項に記載の光偏向装置において、笠形状部材は、酸化シリコン膜からなることを特徴とする光偏向装置。23. The optical deflector according to claim 4, wherein the cap-shaped member is made of a silicon oxide film. 請求項4乃至23の何れか一項に記載の光偏向装置において、笠形状部材は、入射光束に対し遮光性を有する遮光性膜からなることを特徴とする光偏向装置。24. The optical deflector according to claim 4, wherein the cap-shaped member is formed of a light-shielding film having a light-shielding property for an incident light beam. 請求項4乃至24の何れか一項に記載の光偏向装置において、笠形状部材は、酸化クロム膜からなることを特徴とする光偏向装置。25. The optical deflector according to claim 4, wherein the cap-shaped member is made of a chromium oxide film. 請求項4乃至25の何れか一項に記載の光偏向装置において、電極は、複数個の各電極からなり、板形状部材は電気的に浮いていることを特徴とする光偏向装置。26. The optical deflector according to claim 4, wherein the electrode comprises a plurality of electrodes, and the plate-shaped member is electrically floating. 請求項26に記載の光偏向装置において、複数個の各電極は、板形状部材の裏面と対向した斜面上に配置したことを特徴とする光偏向装置。27. The optical deflector according to claim 26, wherein the plurality of electrodes are arranged on a slope facing the back surface of the plate-shaped member. 請求項4乃至27の何れか一項に記載の複数個の光偏向装置において、1次元アレー状に配列した1次元光偏向アレーを形成したことを特徴とする光偏向装置。28. The optical deflecting device according to claim 4, wherein a plurality of one-dimensional optical deflecting arrays are arranged in a one-dimensional array. 請求項4乃至28の何れか一項に記載の複数個の光偏向装置においては、2次元アレー状に配列した2次元光偏向アレーを形成したことを特徴とする光偏向装置。29. The plurality of light deflecting devices according to claim 4, wherein a two-dimensional light deflecting array arranged in a two-dimensional array is formed. 入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う請求項4乃至29の何れか一項に記載の光偏向装置の製造方法において、基板上に支点部材と電極を形成し、堆積して平坦化した第1の犠牲層を介して上記反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、上記第1の犠牲層と上記第2の犠牲層を除去することを特徴とする光偏向装置の製造方法。30. The method of manufacturing a light deflecting device according to claim 4, wherein the light deflecting is performed by changing the reflection direction of the incident light into one axis or two axes. Forming a plate-shaped plate-shaped member formed of a thin film composed of a combination of the above-mentioned reflecting means on the surface via a first sacrificial layer deposited and flattened, and further forming a second sacrificial layer with the deposited second sacrificial layer; A method of manufacturing an optical deflecting device, comprising: removing a first sacrificial layer and a second sacrificial layer after patterning a shade-shaped member at a predetermined patterned position. 請求項30に記載の光偏向装置の製造方法において、基板上に支点部材と電極を形成し、上記支点部材を突出させて堆積して平坦化した第1の犠牲層に重ねて堆積して平坦化した第3の犠牲層を介して上記反射手段を表面に組み合わせ構成する薄膜で形成された湾曲形状の湾曲形状部からなる板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、上記第1の犠牲層と上記第2の犠牲層と上記第3の犠牲層を除去することを特徴とする光偏向装置の製造方法。31. The method of manufacturing a light deflecting device according to claim 30, wherein a fulcrum member and an electrode are formed on the substrate, and the fulcrum member is protruded and deposited on the flattened first sacrificial layer. A plate-shaped member composed of a curved portion having a curved shape formed of a thin film constituted by combining the above-mentioned reflecting means on the surface via the third sacrificial layer formed is further formed. A method of manufacturing a light deflecting device, comprising: removing a first sacrificial layer, a second sacrificial layer, and a third sacrificial layer after patterning a shade-shaped member at a predetermined patterned position. . 請求項30に記載の光偏向装置の製造方法において、基板上に窪み形状部と上記窪み形状部内に斜面からなる支点部材と電極を形成し、堆積して平坦化した第1の犠牲層を介して上記反射手段を表面に組み合わせ構成する薄膜で形成された板形状の板形状部材を形成して、更に堆積した第2の犠牲層とをパターン化した所定の位置に笠形状部材をパターン化した後に、上記第1の犠牲層と第2の犠牲層を除去することを特徴とする光偏向装置の製造方法。31. The method of manufacturing an optical deflector according to claim 30, wherein a recessed portion and a fulcrum member and an electrode formed of a slope are formed on the substrate, and the first sacrificial layer is deposited and flattened. In this manner, a plate-shaped plate-shaped member formed of a thin film constituted by combining the above-mentioned reflecting means on the surface was formed, and the cap-shaped member was patterned at a predetermined position where the deposited second sacrificial layer was patterned. A method of manufacturing an optical deflecting device, wherein the first and second sacrifice layers are removed later. 請求項30、31又は32に記載の光偏向装置の製造方法において、笠形状部材の複数個の各笠形状部材間を空けて配置した所定間隔から犠牲層を除去することを特徴とする光偏向装置の製造方法。33. The method of manufacturing a light deflector according to claim 30, 31 or 32, wherein the sacrificial layer is removed from a predetermined distance between the plurality of cap members in the cap member. Device manufacturing method. 入射光の反射方向を1軸又は2軸方向に変えて光偏向を行う光偏向装置を使用して光情報の処理を行なう光情報処理装置において、複数の上記請求項4乃至29の何れか一項に記載の光偏向装置と、複数の上記光偏向装置を各々独立に駆動する独立駆動手段とからなることを特徴とする光情報処理装置。30. An optical information processing apparatus for processing optical information using an optical deflecting device that deflects light by changing the direction of reflection of incident light into one axis or two axes, wherein a plurality of optical information processing apparatuses according to claim 4. An optical information processing apparatus, comprising: the optical deflector described in the above section; and independent driving means for independently driving the plurality of the optical deflectors. 電子写真プロセスで光書き込みを行なって画像を形成する画像形成装置において、回動可能に保持されて形成画像を担持する画像担持体と、上記画像担持体上に光書き込みを行なって潜像を形成する上記請求項4乃至29の何れか一項に記載の光偏向装置からなる潜像形成手段と、上記潜像形成手段の上記光偏向装置によって形成された潜像を顕像化してトナー画像を形成する現像手段と、上記現像手段で形成されたトナー画像を被転写体に転写する転写手段。In an image forming apparatus that forms an image by performing optical writing in an electrophotographic process, an image carrier that is rotatably held and carries a formed image, and forms a latent image by performing optical writing on the image carrier A latent image forming means comprising the light deflecting device according to any one of claims 4 to 29, and a latent image formed by the light deflecting device of the latent image forming means is visualized to form a toner image. Developing means for forming; and transferring means for transferring the toner image formed by the developing means to a transfer target. 画像を投影して表示する画像投影表示装置において、画像投影データの入射光の反射方向を変えて光偏向を行なって画像を投影して表示する請求項4乃至29の何れか一項に記載の光偏向装置からなる光スイッチ手段と、上記光スイッチ手段が投影する画像を表示する投影スクリーンとからなることを特徴とする画像投影表示装置。30. The image projection display device according to claim 4, wherein the image projection display device projects and displays the image by changing the reflection direction of the incident light of the image projection data and performing light deflection to project the image. An image projection display device comprising: an optical switch means comprising a light deflecting device; and a projection screen for displaying an image projected by the optical switch means. 光信号の光路を決定して出力して伝送する光伝送装置において、光信号を入力する光信号入力手段と、上記光信号入力手段からの光信号の入射光の反射方向を1軸又は2軸方向に変えて光偏向を行なって、各光信号の光路を決定する請求項4乃至29の何れか一項に記載の光偏向装置からなる光スイッチ手段と、上記光スイッチ手段からの光信号を出力する光信号出力手段とからなることを特徴とする光伝送装置。In an optical transmission device for determining an optical path of an optical signal, outputting the optical signal, and transmitting the optical signal, an optical signal input means for inputting the optical signal, and a reflection direction of the incident light of the optical signal from the optical signal input means is set to one axis or two axes. 30. An optical switch comprising the optical deflecting device according to claim 4, wherein the optical path is determined by changing the direction, and the optical path of each optical signal is determined. An optical transmission device comprising: an optical signal output unit for outputting. 請求項37に記載の光偏向装置において、光スイッチ手段は、複数段の光偏向装置からなることを特徴とする光伝送装置。38. The optical transmission device according to claim 37, wherein the optical switch means comprises a plurality of stages of optical deflection devices. 請求項4ないし12のいずれか1つに記載の光偏向装置において、前記支点部材は前記板形状部材と点で接触する4角錐形状であることを特徴とする光偏向装置。13. The optical deflector according to claim 4, wherein the fulcrum member has a quadrangular pyramid shape that contacts the plate-shaped member at a point. 請求項39に記載の光偏向装置において、前記4角錐形状の支点部材の底面の大きさは、前記板形状部材の大きさにほぼ等しいことを特徴とする光偏向装置。40. The optical deflector according to claim 39, wherein a size of a bottom surface of the fulcrum member in the shape of the quadrangular pyramid is substantially equal to a size of the plate-shaped member. 請求項4ないし16のいずれか1つに記載の光偏向装置において、前記板形状部材が静電引力により変位したとき、前記基板と点または線で接触することにより、入射光束の反射方向を決定することを特徴とする光偏向装置。The light deflecting device according to any one of claims 4 to 16, wherein when the plate-shaped member is displaced by electrostatic attraction, the reflection direction of the incident light beam is determined by contacting the substrate with a point or a line. An optical deflecting device, comprising: 入射光の反射方向を複数の軸方向に変えて光偏向を行う光偏向装置において、入射光を反射する反射機能を有する板形状の板形状部材と、上記板形状部材を固定することなく載置する基板と、上記基板上の傾斜する上記板形状部材の変位時の支点となる支点部材と、上記支点部材上に上記板形状部材を変位が自由の状態で配置される空隙を形成する笠形状の笠形状部材と、上記基板上の上記支点部材の周囲に上記板形状部材の裏面と対向して配置した電極とからなることを特徴とする光偏向装置。In a light deflector that performs light deflection by changing the reflection direction of incident light into a plurality of axial directions, a plate-shaped member having a reflection function of reflecting incident light, and the plate-shaped member are mounted without being fixed. Substrate, a fulcrum member serving as a fulcrum at the time of displacement of the inclined plate-shaped member on the substrate, and a hat-shape forming a gap on the fulcrum member in which the plate-shaped member is arranged in a state where displacement is free. An optical deflecting device comprising: a cap-shaped member; and electrodes arranged around the fulcrum member on the substrate so as to face the back surface of the plate-shaped member. 請求項42に記載の光偏向装置において、前記板形状部材は単層薄膜で形成されていることを特徴とする光偏向装置。43. The light deflector according to claim 42, wherein the plate-shaped member is formed of a single-layer thin film. 請求項42または43に記載の光偏向装置において、反射手段の反射面は、平板で形成されていることを特徴とする光偏向装置。44. The light deflector according to claim 42, wherein the reflection surface of the reflection means is formed of a flat plate. 請求項42ないし44のいずれか1つに記載の光偏向装置において、反射手段は、アルミニウム系金属膜で形成されていることを特徴とする光偏向装置。45. The optical deflector according to claim 42, wherein the reflection means is formed of an aluminum-based metal film. 請求項42ないし45のいずれか1つに記載の光偏向装置において、板形状部材は、支点部材と接する個所の面形状に湾曲形状の湾曲形状部からなることを特徴とする光偏向装置。The optical deflector according to any one of claims 42 to 45, wherein the plate-shaped member comprises a curved portion having a curved shape in a surface shape in contact with the fulcrum member. 請求項42ないし46のいずれか1つにに記載の光偏向装置において、板形状部材は、外形が円形状であることを特徴とする光偏向装置。The optical deflector according to any one of claims 42 to 46, wherein the plate-shaped member has a circular outer shape. 請求項42ないし47のいずれか1つにに記載の光偏向装置において、反射手段又は板形状部材は、導電性を有する導電性領域を有して、上記導電性領域が電極と対向することを特徴とする光偏向装置。48. The light deflecting device according to any one of claims 42 to 47, wherein the reflecting means or the plate-shaped member has a conductive region having conductivity, and the conductive region faces the electrode. Characteristic light deflection device. 請求項42ないし48のいずれか1つにに記載の光偏向装置において、基板は、窪み形状の窪み形状部からなることを特徴とする光偏向装置。49. The optical deflecting device according to claim 42, wherein the substrate comprises a concave portion having a concave shape. 請求項42ないし49のいずれか1つにに記載の光偏向装置において、基板は、(100)面方位を有するシリコン基板からなることを特徴とする光偏向装置。50. The optical deflector according to claim 42, wherein the substrate comprises a silicon substrate having a (100) plane orientation. 請求項42ないし50のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と接する個所の面形状が円形状部であることを特徴とする光偏向装置。The optical deflector according to any one of claims 42 to 50, wherein the fulcrum member has a circular shape in a surface shape of a portion in contact with the plate-shaped member. 請求項42ないし50のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と点で接する円錐形状部であることを特徴とする光偏向装置。The optical deflector according to any one of claims 42 to 50, wherein the fulcrum member is a conical portion that contacts the plate-shaped member at a point. 請求項42ないし50のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と接する面が長方形の長方形状部であることを特徴とする光偏向装置。The light deflecting device according to any one of claims 42 to 50, wherein the fulcrum member is a rectangular portion having a rectangular surface in contact with the plate-shaped member. 請求項42ないし50のいずれか1つに記載の光偏向装置において、前記支点部材は前記板状部材と点で接触する4角錐形状であることを特徴とする光偏向装置。The optical deflector according to any one of claims 42 to 50, wherein the fulcrum member has a quadrangular pyramid shape that contacts the plate-shaped member at a point. 請求項54に記載の光偏向装置において、前記4角錐形状の支点部材の底面の大きさは、前記板状部材の大きさにほぼ等しいことを特徴とする光偏向装置。55. The light deflector according to claim 54, wherein the size of the bottom surface of the fulcrum member in the shape of the quadrangular pyramid is substantially equal to the size of the plate-shaped member. 請求項42ないし53のいずれか1つに記載の光偏向装置において、前記板状部材が静電引力により変位したとき、前記基板と点または線で接触することにより、入射光束の反射方向を決定することを特徴とする光偏向装置。54. The light deflecting device according to claim 42, wherein when the plate-like member is displaced by electrostatic attraction, the reflection direction of the incident light beam is determined by contacting the substrate with a point or a line. An optical deflecting device, comprising: 請求項42ないし56のいずれか1つにに記載の光偏向装置において、支点部材は、板形状部材と接する斜面を有することを特徴とする光偏向装置。57. The optical deflector according to claim 42, wherein the fulcrum member has an inclined surface in contact with the plate-shaped member. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位を前記支点部材との接触により付与することを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A body layer, and a contact point in contact with at least the top portion of the back surface is made of a conductive member, and is movably arranged in a space between the substrate, the fulcrum member, and the stopper, Apply the potential to the fulcrum member Optical deflecting device, which comprises applying by contact. 請求項59に記載の光偏向装置において、前記板状部材の上面全域が前記光反射領域であることを特徴とする光偏向装置。The light deflecting device according to claim 59, wherein the entire upper surface of the plate-like member is the light reflecting region. 請求項58または59に記載の光偏向装置において、前記板状部材が誘電性を有する部材からなる誘電体層と、前記導電体層との積層により構成されていることを特徴とする光偏向装置。60. The optical deflector according to claim 58, wherein the plate-like member is formed by laminating a dielectric layer made of a member having a dielectric property and the conductor layer. . 請求項60に記載の光偏向装置において、前記誘電体層の比誘電率が3以上であることを特徴とする光偏向装置。61. The optical deflector according to claim 60, wherein the dielectric layer has a relative permittivity of 3 or more. 請求項60または61に記載の光偏向装置において、前記板状部材の前記誘電体層はシリコン窒化膜により構成されることを特徴とする光偏向装置。62. The optical deflecting device according to claim 60, wherein the dielectric layer of the plate-like member is formed of a silicon nitride film. 請求項58ないし62のいずれか1つに記載の光偏向装置において、前記板状部材の裏面側に対向する前記基板上に電極が複数形成され、該電極は前記支点部材の前記頂部と電気的に分離されていることを特徴とする光偏向装置。63. The optical deflecting device according to claim 58, wherein a plurality of electrodes are formed on the substrate facing the back side of the plate member, and the electrodes are electrically connected to the top of the fulcrum member. An optical deflecting device characterized in that it is separated into 請求項63に記載の光偏向装置において、前記板状部材の前記導電体層の少なくとも一部が前記電極と対向していることを特徴とする光偏向装置。64. The light deflector according to claim 63, wherein at least a part of the conductor layer of the plate member faces the electrode. 請求項58ないし64のいずれか1つに記載の光偏向装置において、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が、円錐体であることを特徴とする光偏向装置。65. The light deflector according to claim 58, wherein the plate-shaped member and the fulcrum member are substantially in contact with each other at a point, and the fulcrum member is a cone. Deflection device. 請求項58ないし64のいずれか1つに記載の光偏向装置において、前記板状部材と前記支点部材とがほぼ点で接しており、かつ前記支点部材が、複数の斜面を有する多角錐体であることを特徴とする光偏向装置。65. The optical deflector according to any one of claims 58 to 64, wherein the plate member and the fulcrum member are substantially in contact with each other at a point, and the fulcrum member is a polygonal pyramid having a plurality of slopes. An optical deflecting device, comprising: 請求項58ないし64のいずれか1つに記載の光偏向装置において、前記板状部材と前記支点部材とがほぼ線で接しており、かつ前記支点部材が、斜面を有し頂部が前記板状部材と線接触可能な稜を有する柱状体であることを特徴とする光偏向装置。65. The optical deflector according to claim 58, wherein the plate-like member and the fulcrum member are substantially in contact with each other at a line, and the fulcrum member has an inclined surface and the top is the plate-like shape. An optical deflecting device, which is a columnar body having a ridge capable of making line contact with a member. 請求項66または67に記載の光偏向装置において、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有することを特徴とする光偏向装置。67. The optical deflector according to claim 66 or 67, wherein the slope is formed so as to correspond to substantially the entire area of the plate-shaped member, and has a plurality of electrodes for applying electrostatic attraction on the slope. Light deflecting device. 請求項68に記載の光偏向装置において、前記板状部材が前記斜面からの静電引力により変位し、前記斜面へ接触することにより光偏向方向が規定されることを特徴とする光偏向装置。69. The optical deflecting device according to claim 68, wherein the plate-like member is displaced by electrostatic attraction from the slope and contacts the slope to define a light deflection direction. 請求項68に記載の光偏向装置において、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定されることを特徴とする光偏向装置。The light deflecting device according to claim 68, wherein a plurality of convex portions are formed on the slope, and the plate-like member is displaced by electrostatic attraction from the slope and contacts the convex portion to generate light. An optical deflecting device, wherein a deflecting direction is defined. 請求項68ないし70のいずれか1つに記載の光偏向装置において、前記板状部材の近傍の雰囲気がほぼ真空であることを特徴する光偏向装置。71. The optical deflector according to claim 68, wherein the atmosphere near the plate member is substantially vacuum. 請求項68ないし70のいずれか1つに記載の光偏向装置において、前記板状部材の近傍の雰囲気が不活性な気体の雰囲気であることを特徴する光偏向装置。71. The optical deflector according to any one of claims 68 to 70, wherein the atmosphere near the plate member is an inert gas atmosphere. 請求項63ないし72のいずれか1つに記載の光偏向装置において、前記複数の電極に最大電位差が所定値以上になるようにそれぞれ任意の電位を与え、前記頂部に与える電位を、前記複数の電極に与える電位の最大値と最小値のいずれか一方の値と等しくすることを特徴とする光偏向装置。73. The optical deflector according to claim 63, wherein an arbitrary potential is applied to each of the plurality of electrodes so that a maximum potential difference is equal to or more than a predetermined value, and the potential applied to the top is set to the plurality of electrodes. An optical deflecting device, wherein one of a maximum value and a minimum value of a potential applied to an electrode is made equal. 請求項63ないし72のいずれか1つに記載の光偏向装置において、前記複数の電極のうち、前記板状部材の変位の軸となる前記頂部を通る直線に関して、同じ側に存在する電極において最大電位差が所定値以上になるようにそれぞれ任意の電位を与え、前記頂部に与える電位を、前記複数の電極に与える電位の最大値と最小値の略中間値とすることを特徴とする光偏向装置。73. The optical deflector according to any one of claims 63 to 72, wherein, among the plurality of electrodes, with respect to a straight line passing through the apex serving as an axis of displacement of the plate-like member, a maximum of electrodes located on the same side. An optical deflecting device, wherein an arbitrary potential is applied so that a potential difference becomes equal to or more than a predetermined value, and the potential applied to the top is set to a substantially intermediate value between the maximum value and the minimum value of the potential applied to the plurality of electrodes. . 請求項58ないし74のいずれか1つに記載の光偏向装置において、前記導電体層はアルミニウム系金属膜であることを特徴とする光偏向装置。75. The optical deflector according to claim 58, wherein the conductive layer is an aluminum-based metal film. 請求項75に記載の光偏向装置において、前記光反射領域は前記導電体層が兼ねることを特徴とする光偏向装置。The light deflecting device according to claim 75, wherein the conductive layer also serves as the light reflecting region. 請求項58ないし76のいずれか1つに記載の光偏向装置を複数、任意の基板上に1次元又は2次元アレー状に配置したことを特徴とする光偏向アレー。77. An optical deflecting array, wherein a plurality of the optical deflecting devices according to claim 58 are arranged in a one-dimensional or two-dimensional array on an arbitrary substrate. 請求項58ないし76のいずれか一つに記載の光偏向装置、または請求項77に記載の光偏向アレーを、画像データに従って入射光の反射方向を切り替える光スイッチ手段として用い、スクリーン上に前記画像データによる画像を投影することを特徴とする画像投影表示装置。78. The optical deflecting device according to any one of claims 58 to 76, or the optical deflecting array according to claim 77 is used as optical switch means for switching a reflection direction of incident light according to image data, and the image is displayed on a screen. An image projection display device for projecting an image based on data. 請求項78に記載の画像投影表示装置において、前記光偏向装置の前記板状部材が中立位置にあるときの光反射面の法線方向が、重力の作用方向とほぼ同方向になるように配置することを特徴とする画像投影表示装置。79. The image projection display device according to claim 78, wherein the normal direction of the light reflecting surface when the plate-like member of the light deflector is at the neutral position is substantially the same as the direction of action of gravity. An image projection display device. 請求項77に記載の光偏向アレーを、ライン露光型の潜像形成手段として用いることを特徴とする画像形成装置。An image forming apparatus using the light deflection array according to claim 77 as a line exposure type latent image forming unit. 請求項80に記載の画像形成装置において、前記光偏向装置の前記板状部材が中立位置にあるときの光反射面の法線方向が、重力の作用方向とほぼ同方向になるように配置することを特徴とする画像形成装置。81. The image forming apparatus according to claim 80, wherein the normal direction of the light reflecting surface when the plate-like member of the light deflecting device is at the neutral position is substantially the same as the direction in which gravity acts. An image forming apparatus comprising: 請求項58ないし76のいずれか1つに記載の光偏向装置を光スイッチ手段として用い、光情報の伝送を、1個の入出力ポートと複数の入出力ポート中の任意のポートとの間で切り替えることを特徴とする光伝送装置。77. The optical deflector according to claim 58 is used as optical switch means, and transmission of optical information is performed between one input / output port and any one of a plurality of input / output ports. An optical transmission device characterized by switching. 請求項77に記載の光偏向アレーを光スイッチ手段として用い、光情報の伝送を、一方の入出力部の複数の入出力ポートの中の任意のポートと他方の入出力部の複数の入出力ポート中の任意のポートとの間でそれぞれ切り替えることを特徴とする光伝送装置。80. The optical deflection array according to claim 77, which is used as an optical switch means, and transmits optical information to an arbitrary one of a plurality of input / output ports of one input / output unit and a plurality of input / outputs of the other input / output unit. An optical transmission device for switching between any of the ports. 請求項83に記載の光伝送装置において、前記光偏向装置の前記板状部材が中立位置にあるときの光反射面の法線方向が、重力の作用方向とほぼ同方向になるように配置することを特徴とする光伝送装置。84. The optical transmission device according to claim 83, wherein the normal direction of the light reflecting surface when the plate-like member of the light deflecting device is at the neutral position is substantially the same as the direction of gravity. An optical transmission device, comprising: 任意の基板上に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有することを特徴とする請求項58ないし76のいずれか1つに記載の光偏向装置の製造方法。At least a step of forming the fulcrum member on an arbitrary substrate, a step of patterning and forming a plurality of electrodes and a conductive member of the fulcrum member, and depositing and planarizing a first sacrificial layer. A step of patterning the plate-shaped member comprising at least one layer; a step of depositing a second sacrificial layer; a step of patterning a first sacrificial layer and a second sacrificial layer; Patterning the restricting member at arbitrary portions of the patterned first and second sacrificial layers, and removing the patterned first and second sacrificial layers by etching. The method for manufacturing an optical deflector according to any one of claims 58 to 76, characterized in that: 任意の基板上に複数の区画を、1次元または2次元状に密着させて形成し、各区画毎に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有することを特徴とする請求項77に記載の光偏向アレーの製造方法。Forming a plurality of sections on an arbitrary substrate in one-dimensional or two-dimensional contact with each other, and forming at least the fulcrum member for each section, and conducting the plurality of electrodes and the conductivity of the fulcrum member. Forming a member having a pattern, depositing and planarizing a first sacrificial layer, patterning the plate-shaped member made of at least one layer, and depositing a second sacrificial layer. Patterning a first sacrificial layer and a second sacrificial layer; patterning the restricting member at arbitrary locations on the patterned first and second sacrificial layers; 78. The method according to claim 77, further comprising the step of removing the first and second sacrificed layers by etching. 少なくとも、複数の電極上に薄膜を堆積させる工程と、該薄膜をパターン化し凸部位を形成する工程を有することを特徴とする請求項110に記載の光偏向装置の製造方法。The method for manufacturing an optical deflector according to claim 110, comprising at least a step of depositing a thin film on the plurality of electrodes and a step of patterning the thin film to form a convex portion. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円錐体であり、該円錐体の頂部が球状であることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A contact point in contact with at least the top portion of the back surface has a body layer and is made of a conductive member. The contact point is movably arranged in a space between the substrate, the fulcrum member, and the stopper, and is statically placed on the substrate. Applying attractive force The plate-shaped member is provided with a contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member is a cone. An optical deflecting device, wherein the cone has a spherical top. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が、円錐体と、該円錐体底面の下に該底面の径と同径の底面を有する円柱とを合体させた形状であることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A contact point in contact with at least the top portion of the back surface has a body layer, and is made of a conductive member. Applying attractive force A plurality of electrodes, the potential of the plate-shaped member is applied by contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member is a cone. And a cylinder having a bottom surface having the same diameter as the diameter of the bottom surface below the bottom surface of the conical body. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円錐台形状であることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A contact point in contact with at least the top portion of the back surface has a body layer, and is made of a conductive member. Applying attractive force The plate-shaped member is provided with a contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member has a truncated cone shape. An optical deflecting device, characterized in that: 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円錐台と、該円錐台底面の下に該底面の径と同径の底面を有する円柱とを合体させた形状であることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A contact point in contact with at least the top portion of the back surface has a body layer, and is made of a conductive member. Applying attractive force A plurality of electrodes, the potential of the plate-shaped member is applied by contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member is a truncated cone. An optical deflector having a shape in which a cylinder having a bottom surface having the same diameter as the diameter of the bottom surface is united below the bottom surface of the truncated cone. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記基板上に静電引力を作用させるための複数の電極を有し、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、前記支点部材が円柱であることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A contact point in contact with at least the top portion of the back surface has a body layer, and is made of a conductive member. Applying attractive force The plate-shaped member is provided with a contact with the fulcrum member, the plate-shaped member and the fulcrum member are almost in contact with each other, and the fulcrum member is a column. A light deflecting device characterized by the above-mentioned. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、かつ前記支点部材が、複数の斜面を有する多角錐体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は、電極上に複数の帯状に配列されていることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A body layer, and a contact point in contact with at least the top portion of the back surface is made of a conductive member, and is movably arranged in a space between the substrate, the fulcrum member, and the stopper, The potential is the fulcrum member The plate-shaped member and the fulcrum member are substantially in contact with each other at a point, and the fulcrum member is a polygonal pyramid having a plurality of slopes, and the slope is substantially the entire area of the plate-shaped member. Has a plurality of electrodes for applying electrostatic attraction on the slope, a plurality of convex portions are formed on the slope, and the plate-shaped member The light deflector is displaced by an attractive force and comes into contact with the convex portion to define a light deflection direction, and the convex portion is arranged in a plurality of bands on the electrode. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ点で接しており、かつ前記支点部材が、複数の斜面を有する多角錐体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は複数の帯状に配列され、該凸部位の周囲の平坦部に前記電極を形成することを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A body layer, and a contact point in contact with at least the top portion of the back surface is made of a conductive member, and is movably arranged in a space between the substrate, the fulcrum member, and the stopper, The potential is the fulcrum member The plate-shaped member and the fulcrum member are substantially in contact with each other at a point, and the fulcrum member is a polygonal pyramid having a plurality of slopes, and the slope is substantially the entire area of the plate-shaped member. Has a plurality of electrodes for applying electrostatic attraction on the slope, a plurality of convex portions are formed on the slope, and the plate-shaped member Displaced by attractive force, the light deflection direction is defined by contacting the convex portion, the convex portion is arranged in a plurality of strips, and the electrode is formed on a flat portion around the convex portion. Light deflection device. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ線で接しており、かつ前記支点部材が、斜面を有し頂部が前記板状部材と線接触可能な稜を有する柱状体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は、電極上に複数の帯状に配列されていることを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A body layer, and a contact point in contact with at least the top portion of the back surface is made of a conductive member, and is movably arranged in a space between the substrate, the fulcrum member, and the stopper, The potential is the fulcrum member The plate-shaped member and the fulcrum member are substantially in contact with each other at a line, and the fulcrum member is a columnar body having a slope and a top having a ridge capable of line-contacting the plate-shaped member. The slope is formed corresponding to almost the entire area of the plate-like member, has a plurality of electrodes for applying electrostatic attraction on the slope, a plurality of convex portions are formed on the slope. The plate-like member is displaced by electrostatic attraction from the slope, the light deflection direction is defined by contacting the convex portion, and the convex portion is arranged in a plurality of strips on the electrode. Characteristic light deflection device. 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位は前記支点部材との接触により付与され、前記板状部材と前記支点部材とがほぼ線で接しており、かつ前記支点部材が、斜面を有し頂部が前記板状部材と線接触可能な稜を有する柱状体であり、前記斜面が前記板状部材のほぼ全域に対応して形成され、前記斜面上に静電引力を作用させるための電極を複数有し、前記斜面上に複数の凸部位が形成されており、前記板状部材が前記斜面からの静電引力により変位し、前記凸部位へ接触することにより光偏向方向が規定され、前記凸部位は複数の帯状に配列され、該凸部位の周囲の平坦部に前記電極を形成することを特徴とする光偏向装置。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A body layer, and a contact point in contact with at least the top portion of the back surface is made of a conductive member, and is movably arranged in a space between the substrate, the fulcrum member, and the stopper, The potential is the fulcrum member The plate-shaped member and the fulcrum member are substantially in contact with each other at a line, and the fulcrum member is a columnar body having a sloping surface and an apex having a ridge capable of linearly contacting the plate-shaped member. The slope is formed corresponding to almost the entire area of the plate-like member, has a plurality of electrodes for applying electrostatic attraction on the slope, a plurality of convex portions are formed on the slope. The plate-like member is displaced by electrostatic attraction from the slope, and the light deflection direction is defined by contacting the convex portion, the convex portions are arranged in a plurality of strips, and the flat portion around the convex portion is flat. An optical deflecting device, wherein the electrode is formed in a portion. 請求項88ないし96のいずれか1つに記載の光偏向装置において、前記板状部材の上面全域が前記光反射領域であることを特徴とする光偏向装置。97. The optical deflector according to claim 88, wherein an entire upper surface of the plate-like member is the light reflecting area. 請求項88ないし97のいずれか1つに記載の光偏向装置において、前記板状部材が誘電性を有する部材からなる誘電体層と、前記導電体層との積層により構成されていることを特徴とする光偏向装置。The optical deflecting device according to any one of claims 88 to 97, wherein the plate-like member is formed by laminating a dielectric layer made of a member having a dielectric property and the conductor layer. Light deflecting device. 請求項98に記載の光偏向装置において、前記誘電体層の比誘電率が3以上であることを特徴とする光偏向装置。The optical deflecting device according to claim 98, wherein the dielectric layer has a relative permittivity of 3 or more. 請求項98または99に記載の光偏向装置において、前記板状部材の前記誘電体層はシリコン窒化膜により構成されることを特徴とする光偏向装置。The optical deflecting device according to claim 98 or 99, wherein the dielectric layer of the plate member is formed of a silicon nitride film. 請求項88ないし100のいずれか1つに記載の光偏向装置において、前記電極は、前記板状部材の裏面側に対向する位置に設けられ、該電極は前記支点部材の前記頂部と電気的に分離されていることを特徴とする光偏向装置。The optical deflecting device according to any one of claims 88 to 100, wherein the electrode is provided at a position facing the back side of the plate member, and the electrode is electrically connected to the top of the fulcrum member. An optical deflector characterized by being separated. 請求項101に記載の光偏向装置において、前記板状部材の前記導電体層の少なくとも一部が前記電極と対向していることを特徴とする光偏向装置。The optical deflecting device according to claim 101, wherein at least a part of the conductor layer of the plate-like member faces the electrode. 請求項88ないし102のいずれか1つに記載の光偏向装置において、前記規制部材は頂部のストッパの突出方向とは逆方向に突出した延長基部を下端部に有することを特徴とする光偏向装置。103. The optical deflector according to any one of claims 88 to 102, wherein the regulating member has an extension base at a lower end protruding in a direction opposite to a direction in which a stopper at a top projects. . 光反射領域を有する部材に与えられる電位に応じた静電引力により変位することにより、該光反射領域に入射する光束が反射方向を変えて偏向される光偏向装置において、基板と、複数の規制部材と、支点部材と、板状部材とを有し、前記複数の規制部材はそれぞれ上部にストッパを有し、前記基板の複数の端部にそれぞれ設けられ、前記支点部材は導電性を有する部材で構成される頂部を有し、前記基板の上面に設けられ、前記板状部材は固定端を持たず、上面に前記光反射領域を有し、少なくとも一部に導電性を有する部材からなる導電体層を有し、裏面の少なくとも前記頂部と接する接触点が導電性を有する部材からなり、前記基板と前記支点部材と前記ストッパの間の空間内で可動的に配置され、前記板状部材の電位を前記支点部材との接触により付与する光偏向装置を複数、任意の基板上に1次元又は2次元アレー状に配置し、前記光偏向装置の前記基板を円形とし、隣接する基板同士の前記規制部材の位置を一致させ、両規制部材を一体化して複合規制部材とすることを特徴とする光偏向アレー。In a light deflecting device in which a light beam incident on the light reflecting region is deflected by changing its reflection direction by being displaced by electrostatic attraction according to a potential applied to a member having the light reflecting region, a substrate and a plurality of restriction members are provided. A member, a fulcrum member, and a plate-like member, the plurality of regulating members each having a stopper at an upper portion, and provided at a plurality of ends of the substrate, and the fulcrum member having conductivity. The plate-shaped member is provided on the upper surface of the substrate, has no fixed end, has the light reflection region on the upper surface, and has at least a portion formed of a conductive member. A body layer, and a contact point in contact with at least the top portion of the back surface is made of a conductive member, and is movably arranged in a space between the substrate, the fulcrum member, and the stopper, Apply the potential to the fulcrum member A plurality of light deflecting devices to be applied by contact are arranged in a one-dimensional or two-dimensional array on an arbitrary substrate, the substrate of the light deflecting device is made circular, and the positions of the regulating members of adjacent substrates coincide with each other. An optical deflecting array, wherein the two regulating members are integrated to form a composite regulating member. 請求項104に記載の光偏向アレーにおいて、前記規制部材もしくは複合規制部材を、前記基板の円周上に等間隔に6個配置し、前記光偏向装置を2次元的に最稠密に配列したことを特徴とする光偏向アレー。105. The optical deflection array according to claim 104, wherein six of the restricting members or the composite restricting members are arranged at equal intervals on the circumference of the substrate, and the optical deflectors are two-dimensionally and densely arranged. A light deflection array characterized by the following. 請求項104または105に記載の光偏向アレーにおいて、前記規制部材は頂部のストッパの突出方向とは逆方向に突出した延長基部を下端部に有することを特徴とする光偏向アレー。106. The optical deflection array according to claim 104 or 105, wherein the regulating member has an extended base at a lower end protruding in a direction opposite to a direction in which a stopper at a top projects. 請求項104ないし106のいずれか1つに記載の光偏向アレーにおいて、前記複合規制部材は、隣接する2個の基板の境界線上に、両基板に等分に跨って基板上に横たわる平板状の基部の対向する両端に、直立部を設け、両直立部の頂部に、前記境界線と逆方向に突出するストッパをそれぞれ設けた形であることを特徴とする光偏向アレー。107. The optical deflection array according to any one of claims 104 to 106, wherein the composite restricting member has a flat plate-like shape lying on a substrate so as to equally lie on both substrates on a boundary between two adjacent substrates. An optical deflecting array, wherein upright portions are provided at opposite ends of a base portion, and stoppers protruding in a direction opposite to the boundary line are provided at the top portions of the upright portions. 請求項104ないし106のいずれか1つに記載の光偏向アレーにおいて、前記複合規制部材は、隣接する2個の基板の境界線上に、両基板に等分に跨って基板上に直立部を設け、該直立部の頂部に、双方向に突出するストッパを有することを特徴とする光偏向アレー。107. In the optical deflection array according to any one of claims 104 to 106, the compound regulating member has an upright portion provided on a substrate so as to equally lie over both substrates on a boundary between two adjacent substrates. A light deflecting array having a stopper protruding in both directions at the top of the upright portion. 任意の基板上に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有することを特徴とする請求項88ないし103のいずれか1つに記載の光偏向装置の製造方法。At least a step of forming the fulcrum member on an arbitrary substrate, a step of patterning and forming a plurality of electrodes and a conductive member of the fulcrum member, and depositing and planarizing a first sacrificial layer. A step of patterning the plate-shaped member comprising at least one layer; a step of depositing a second sacrificial layer; a step of patterning a first sacrificial layer and a second sacrificial layer; Patterning the restricting member at arbitrary portions of the patterned first and second sacrificial layers, and removing the patterned first and second sacrificial layers by etching. The method for manufacturing an optical deflector according to any one of claims 88 to 103, wherein: 請求項109に記載の光偏向装置の製造方法において、前記支点部材の頂部は、前記平坦化された第1の犠牲層より突出していることを特徴とする光偏向装置の製造方法。110. The method of manufacturing an optical deflector according to claim 109, wherein a top portion of the fulcrum member protrudes from the flattened first sacrificial layer. 任意の基板上に複数の区画を、1次元または2次元状に密着させて形成し、各区画毎に、少なくとも、前記支点部材を形成する工程と、複数の電極及び前記支点部材の導電性を有する部材をパターン化して形成する工程と、第1の犠牲層を堆積及び平坦化する工程と、少なくとも1層からなる前記板状部材をパターン化する工程と、第2の犠牲層を堆積する工程と、第1の犠牲層及び第2の犠牲層をパターン化する工程と、該パターン化された第1及び第2の犠牲層の任意の個所に前記規制部材をパターン化する工程と、該パターン化された第1及び第2の犠牲層をエッチングにより除去する工程と、を有することを特徴とする請求項104ないし108のいずれか1つに記載の光偏向アレーの製造方法。Forming a plurality of sections on an arbitrary substrate in one-dimensional or two-dimensional contact with each other, and forming at least the fulcrum member for each section, and conducting the plurality of electrodes and the conductivity of the fulcrum member. Forming a member having a pattern, depositing and planarizing a first sacrificial layer, patterning the plate-shaped member made of at least one layer, and depositing a second sacrificial layer. Patterning a first sacrificial layer and a second sacrificial layer; patterning the restricting member at arbitrary locations on the patterned first and second sacrificial layers; 109. The method of manufacturing an optical deflection array according to claim 104, further comprising: removing the first and second sacrificed layers by etching. 請求項111に記載の光偏向アレーの製造方法において、前記支点部材の頂部は、前記平坦化された第1の犠牲層より突出していることを特徴とする光偏向アレーの製造方法。112. The method of manufacturing an optical deflection array according to claim 111, wherein a top portion of the fulcrum member protrudes from the flattened first sacrificial layer.
JP2002282858A 2001-11-14 2002-09-27 Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus Expired - Fee Related JP4307813B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002282858A JP4307813B2 (en) 2001-11-14 2002-09-27 Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus
US10/294,033 US6900915B2 (en) 2001-11-14 2002-11-14 Light deflecting method and apparatus efficiently using a floating mirror
US11/092,841 US7064878B2 (en) 2001-11-14 2005-03-30 Light deflecting method and apparatus efficiently using a floating mirror
US11/098,722 US7099060B2 (en) 2001-11-14 2005-04-05 Light deflecting method and apparatus efficiently using a floating mirror
US11/404,866 US7215452B2 (en) 2001-11-14 2006-04-17 Light deflecting method and apparatus efficiently using a floating mirror
US11/411,849 US7342702B2 (en) 2001-11-14 2006-04-27 Light deflecting method and apparatus efficiently using a floating mirror
US11/683,284 US7333256B2 (en) 2001-11-14 2007-03-07 Light deflecting method and apparatus efficiently using a floating mirror
US11/952,771 US7538923B2 (en) 2001-11-14 2007-12-07 Light deflecting method and apparatus efficiently using a floating mirror
US12/014,570 US7457019B2 (en) 2001-11-14 2008-01-15 Light deflecting method and apparatus efficiently using a floating mirror
US12/398,033 US7697179B2 (en) 2001-11-14 2009-03-04 Light deflecting method and apparatus efficiently using a floating mirror

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001349415 2001-11-14
JP2002095973 2002-03-29
JP2002178216 2002-06-19
JP2002282858A JP4307813B2 (en) 2001-11-14 2002-09-27 Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus

Publications (2)

Publication Number Publication Date
JP2004078136A true JP2004078136A (en) 2004-03-11
JP4307813B2 JP4307813B2 (en) 2009-08-05

Family

ID=32034336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282858A Expired - Fee Related JP4307813B2 (en) 2001-11-14 2002-09-27 Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus

Country Status (1)

Country Link
JP (1) JP4307813B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326782A (en) * 2004-05-17 2005-11-24 Ricoh Co Ltd Optical deflector and its driving method
JP2006119254A (en) * 2004-10-20 2006-05-11 Ricoh Co Ltd Optical system, color information display method, light deflection device and image projection display apparatus
JP2006119361A (en) * 2004-10-21 2006-05-11 Ricoh Co Ltd Optical deflector, optical deflection array, optical system, and image projection display apparatus
JP2006133394A (en) * 2004-11-04 2006-05-25 Ricoh Co Ltd Method of driving optical deflection apparatus array, optical deflection apparatus array, optical deflection apparatus, and picture projection display apparatus
JP2006162779A (en) * 2004-12-03 2006-06-22 Ricoh Co Ltd Light deflector, light deflection array, optical system, image projection display apparatus and image forming apparatus
US7277217B1 (en) 2006-03-01 2007-10-02 Ricoh Company, Ltd. Optical deflecting device, optical deflecting device manufacturing method, and optical projecting device
JP2008015174A (en) * 2006-07-05 2008-01-24 Ricoh Co Ltd Method of driving optical deflector, and image projection display
JP2008209719A (en) * 2007-02-27 2008-09-11 Ricoh Co Ltd Light deflector and light deflection array
US7480090B2 (en) 2005-10-20 2009-01-20 Ricoh Company, Ltd. Optical deflecting device, optical deflecting device array, method for driving the optical deflecting device and image projection display apparatus using the device
WO2009060745A1 (en) 2007-11-06 2009-05-14 Nikon Corporation Control device, exposure method, and exposure device
WO2009078223A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009078224A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP2009529429A (en) * 2005-03-18 2009-08-20 シルマック Method and apparatus for moving a drive component using a working component formed by etching a semiconductor material
WO2009125511A1 (en) 2008-04-11 2009-10-15 株式会社ニコン Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
US7607786B2 (en) 2005-04-20 2009-10-27 Ricoh Company, Ltd. Light deflector, light deflection array, optical system, image forming device, and projection type image display apparatus
WO2009145048A1 (en) 2008-05-28 2009-12-03 株式会社ニコン Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method
US7777935B2 (en) 2006-07-18 2010-08-17 Ricoh Company, Ltd. Actuator, and actuator array
WO2010104162A1 (en) 2009-03-13 2010-09-16 Nikon Corporation Exposure apparatus, exposure method, and method of manufacturing device
EP2273304A1 (en) 2007-10-24 2011-01-12 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2278380A1 (en) 2007-09-14 2011-01-26 Nikon Corporation Design and manufacturing method of an optical element
WO2011021444A1 (en) 2009-08-17 2011-02-24 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2011105308A1 (en) 2010-02-25 2011-09-01 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2011105307A1 (en) 2010-02-25 2011-09-01 Nikon Corporation Measuring method and measuring apparatus of pupil transmittance distribution, exposure method and exposure apparatus, and device manufacturing method
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2012519387A (en) * 2009-03-04 2012-08-23 エーエスエムエル ネザーランズ ビー.ブイ. Illumination system, lithographic apparatus and method of forming an illumination mode
EP2498132A1 (en) 2007-10-12 2012-09-12 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2518565A1 (en) 2007-11-08 2012-10-31 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2013502622A (en) * 2009-08-24 2013-01-24 キャベンディッシュ・キネティックス・インコーポレイテッド Manufacture of floating rocker MEMS devices for light modulation
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014063152A (en) * 2012-08-27 2014-04-10 Canon Electronics Inc Rocking element, actuator device, optical scanner, metallic thin film body, and method for producing optical scanner
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
CN109153562A (en) * 2016-03-23 2019-01-04 弗劳恩霍夫应用研究促进协会 Use the method for function element production optical component
EP3547032A1 (en) 2010-06-19 2019-10-02 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
KR20200054763A (en) * 2018-11-12 2020-05-20 한국과학기술원 Active metaphotonic color-imaging device

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005326782A (en) * 2004-05-17 2005-11-24 Ricoh Co Ltd Optical deflector and its driving method
JP4544574B2 (en) * 2004-05-17 2010-09-15 株式会社リコー Optical deflection device
JP4688130B2 (en) * 2004-10-20 2011-05-25 株式会社リコー Optical system, color information display method, light deflection apparatus, and image projection display apparatus
CN100376919C (en) * 2004-10-20 2008-03-26 株式会社理光 Optical system, color information displaying method, optical deflecting device, and image projection displaying apparatus
US7345823B2 (en) 2004-10-20 2008-03-18 Ricoh Company, Ltd. Optical system, color information displaying method, optical deflecting device, and image projection displaying apparatus
JP2006119254A (en) * 2004-10-20 2006-05-11 Ricoh Co Ltd Optical system, color information display method, light deflection device and image projection display apparatus
JP4688131B2 (en) * 2004-10-21 2011-05-25 株式会社リコー Optical deflection apparatus, optical deflection array, optical system, and image projection display apparatus
US7349145B2 (en) 2004-10-21 2008-03-25 Ricoh Company, Ltd. Optical deflection device and image projection display apparatus using the same
JP2006119361A (en) * 2004-10-21 2006-05-11 Ricoh Co Ltd Optical deflector, optical deflection array, optical system, and image projection display apparatus
JP4721255B2 (en) * 2004-11-04 2011-07-13 株式会社リコー Optical deflection device array and image projection display device
JP2006133394A (en) * 2004-11-04 2006-05-25 Ricoh Co Ltd Method of driving optical deflection apparatus array, optical deflection apparatus array, optical deflection apparatus, and picture projection display apparatus
US8014058B2 (en) 2004-11-04 2011-09-06 Ricoh Company, Ltd. Method for driving optical deflecting device array, optical deflecting device array, optical deflecting device, and image projection displaying apparatus
US7408688B2 (en) 2004-11-04 2008-08-05 Ricoh Company, Ltd. Method for driving optical deflecting device array, optical deflecting device array, optical deflecting device, and image projection displaying apparatus
JP4492952B2 (en) * 2004-12-03 2010-06-30 株式会社リコー Optical deflection apparatus, optical deflection array, optical system, image projection display apparatus, and image forming apparatus
JP2006162779A (en) * 2004-12-03 2006-06-22 Ricoh Co Ltd Light deflector, light deflection array, optical system, image projection display apparatus and image forming apparatus
JP2009529429A (en) * 2005-03-18 2009-08-20 シルマック Method and apparatus for moving a drive component using a working component formed by etching a semiconductor material
US7607786B2 (en) 2005-04-20 2009-10-27 Ricoh Company, Ltd. Light deflector, light deflection array, optical system, image forming device, and projection type image display apparatus
US7480090B2 (en) 2005-10-20 2009-01-20 Ricoh Company, Ltd. Optical deflecting device, optical deflecting device array, method for driving the optical deflecting device and image projection display apparatus using the device
US7277217B1 (en) 2006-03-01 2007-10-02 Ricoh Company, Ltd. Optical deflecting device, optical deflecting device manufacturing method, and optical projecting device
JP2008015174A (en) * 2006-07-05 2008-01-24 Ricoh Co Ltd Method of driving optical deflector, and image projection display
US7777935B2 (en) 2006-07-18 2010-08-17 Ricoh Company, Ltd. Actuator, and actuator array
JP2008209719A (en) * 2007-02-27 2008-09-11 Ricoh Co Ltd Light deflector and light deflection array
EP2278380A1 (en) 2007-09-14 2011-01-26 Nikon Corporation Design and manufacturing method of an optical element
EP2631699A1 (en) 2007-09-14 2013-08-28 Nikon Corporation Illumination optical system, configuration and illumination methods
EP2518564A1 (en) 2007-10-12 2012-10-31 Nikon Corporation Illumination optical apparatus and device manufacturing method
EP2515171A1 (en) 2007-10-12 2012-10-24 Nikon Corporation Illumination optical apparatus and device manufacturing method
EP2527920A1 (en) 2007-10-12 2012-11-28 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2498132A1 (en) 2007-10-12 2012-09-12 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2273305A2 (en) 2007-10-24 2011-01-12 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2620801A2 (en) 2007-10-24 2013-07-31 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2620800A2 (en) 2007-10-24 2013-07-31 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2273304A1 (en) 2007-10-24 2011-01-12 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2620799A2 (en) 2007-10-24 2013-07-31 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8094290B2 (en) 2007-11-06 2012-01-10 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9268235B2 (en) 2007-11-06 2016-02-23 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9946162B2 (en) 2007-11-06 2018-04-17 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US9551942B2 (en) 2007-11-06 2017-01-24 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
US10261421B2 (en) 2007-11-06 2019-04-16 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
WO2009060745A1 (en) 2007-11-06 2009-05-14 Nikon Corporation Control device, exposure method, and exposure device
US8792081B2 (en) 2007-11-06 2014-07-29 Nikon Corporation Controller for optical device, exposure method and apparatus, and method for manufacturing device
EP3101478A2 (en) 2007-11-08 2016-12-07 Nikon Corporation Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2518565A1 (en) 2007-11-08 2012-10-31 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2009078223A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009078224A1 (en) 2007-12-17 2009-06-25 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
WO2009125511A1 (en) 2008-04-11 2009-10-15 株式会社ニコン Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
WO2009145048A1 (en) 2008-05-28 2009-12-03 株式会社ニコン Inspection device and inspecting method for spatial light modulator, illuminating optical system, method for adjusting the illuminating optical system, exposure device, and device manufacturing method
JP2012519387A (en) * 2009-03-04 2012-08-23 エーエスエムエル ネザーランズ ビー.ブイ. Illumination system, lithographic apparatus and method of forming an illumination mode
WO2010104162A1 (en) 2009-03-13 2010-09-16 Nikon Corporation Exposure apparatus, exposure method, and method of manufacturing device
US8264666B2 (en) 2009-03-13 2012-09-11 Nikon Corporation Exposure apparatus, exposure method, and method of manufacturing device
WO2011021444A1 (en) 2009-08-17 2011-02-24 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2013502622A (en) * 2009-08-24 2013-01-24 キャベンディッシュ・キネティックス・インコーポレイテッド Manufacture of floating rocker MEMS devices for light modulation
US8786933B2 (en) 2009-08-24 2014-07-22 Cavendish Kinetics, Inc. Fabrication of a floating rocker MEMS device for light modulation
JP2016014888A (en) * 2009-08-24 2016-01-28 キャベンディッシュ・キネティックス・インコーポレイテッドCavendish Kinetics, Inc. Fabrication method and operating method for floating rocker mems device for light modulation
WO2011105308A1 (en) 2010-02-25 2011-09-01 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2011105307A1 (en) 2010-02-25 2011-09-01 Nikon Corporation Measuring method and measuring apparatus of pupil transmittance distribution, exposure method and exposure apparatus, and device manufacturing method
EP3547032A1 (en) 2010-06-19 2019-10-02 Nikon Corporation Illumination optical system, exposure apparatus and device manufacturing method
JP2014063152A (en) * 2012-08-27 2014-04-10 Canon Electronics Inc Rocking element, actuator device, optical scanner, metallic thin film body, and method for producing optical scanner
CN109153562A (en) * 2016-03-23 2019-01-04 弗劳恩霍夫应用研究促进协会 Use the method for function element production optical component
CN109153562B (en) * 2016-03-23 2023-06-02 弗劳恩霍夫应用研究促进协会 Method for producing optical component
KR20200054763A (en) * 2018-11-12 2020-05-20 한국과학기술원 Active metaphotonic color-imaging device
KR102124917B1 (en) 2018-11-12 2020-06-22 한국과학기술원 Active metaphotonic color-imaging device

Also Published As

Publication number Publication date
JP4307813B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP2004078136A (en) Optical deflection method and device, method for manufacturing optical deflecting device, optical information processor provided with the optical deflecting device, image forming device image projecting and display device and optical transmitting device
US7477440B1 (en) Reflective spatial light modulator having dual layer electrodes and method of fabricating same
US7428094B2 (en) Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US7298542B2 (en) Microelectromechanical device with reset electrode
US6046840A (en) Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US7447891B2 (en) Light modulator with concentric control-electrode structure
KR100723549B1 (en) Fabrication of a reflective spatial light modulator
US5835256A (en) Reflective spatial light modulator with encapsulated micro-mechanical elements
US6469821B2 (en) Micromirror structures for orthogonal illumination
US7118234B2 (en) Reflective spatial light modulator
US7245415B2 (en) High contrast spatial light modulator
US8908255B2 (en) Fabrication of a high fill ratio silicon spatial light modulator
KR20040111336A (en) Architecture of a reflective spatial light modulator
US7923789B2 (en) Method of fabricating reflective spatial light modulator having high contrast ratio
US20060239009A1 (en) Light deflector, light deflection array, optical system, image forming device, and projection type image display apparatus
EP1803017B1 (en) Micromirror having offset addressing electrode
US8786933B2 (en) Fabrication of a floating rocker MEMS device for light modulation
US20060050353A1 (en) Micromirrors and hinge structures for micromirror arrays in projection displays
US20230055809A1 (en) Digital micromirror device with reduced stiction
JPH11160635A (en) Optical element and manufacturing method thereof and device using it
JPH11149049A (en) Light deflection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees