Nothing Special   »   [go: up one dir, main page]

JP2004076766A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2004076766A
JP2004076766A JP2002233777A JP2002233777A JP2004076766A JP 2004076766 A JP2004076766 A JP 2004076766A JP 2002233777 A JP2002233777 A JP 2002233777A JP 2002233777 A JP2002233777 A JP 2002233777A JP 2004076766 A JP2004076766 A JP 2004076766A
Authority
JP
Japan
Prior art keywords
inner ring
outer ring
tapered roller
lubricating oil
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233777A
Other languages
Japanese (ja)
Other versions
JP4151347B2 (en
Inventor
Hirobumi Momoji
百々路 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002233777A priority Critical patent/JP4151347B2/en
Publication of JP2004076766A publication Critical patent/JP2004076766A/en
Application granted granted Critical
Publication of JP4151347B2 publication Critical patent/JP4151347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tapered roller bearing of an oil lubrication type to be used with high speed rotation, having reduced stirring torque and less torque loss. <P>SOLUTION: The tapered roller bearing comprises an inner ring 10, an outer ring 20, and a plurality of tapered rollers 30 rotatably held between the inner ring 10 and the outer ring 20 by a cage 40. The inner ring 10 has a small collar portion 11, a large collar portion 12 and an inner ring raceway surface 13. The outer ring 20 has an outer ring raceway surface 21. A cross section area A<SB>1</SB>of a lubricating oil flow path between the axial end of the outer ring 20 at the side of its small diameter and the small collar portion 11 of the inner ring 10, a cross section area A<SB>2</SB>of the lubricating oil flow path between the outer ring 20 on the end face of the tapered roller 30 at the side of its small diameter and the inner ring, and a cross section area A<SB>3</SB>of the lubricating oil flow path between the axial end of the outer ring 20 at the side of its large diameter and the large collar portion 12 of the inner ring 10 are satisfied with a relationship A<SB>1</SB>≤A<SB>2</SB><A<SB>3</SB>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高速回転で使用される油潤滑方式の円すいころ軸受に関する。
【0002】
【従来の技術】
従来より、内輪と外輪の間に、保持器によって回動自在に保持された複数の円すいころを介装させることにより、軸を中心に内輪と外輪を相対回転させる円すいころ軸受がある。
【0003】
円すいころ軸受では、各部における摩擦や焼付きを防止するため、十分に潤滑することが重要となる。特に、高速回転で使用される場合には、潤滑性に優れた油潤滑方式が採用されている。
【0004】
【発明が解決しようとする課題】
油潤滑方式の円すいころ軸受の場合、回転時に潤滑油が、円すいころの小径側の軸受端部から円すいころの大径側の軸受端部へ流れる。
【0005】
軸受中を潤滑油が流れる際に、潤滑油が円すいころの転動によって攪拌される。軸受内部に滞留する潤滑油の量が多くなると、攪拌抵抗が増大し、軸受の損失トルクも大きくなる。
【0006】
【課題を解決するための手段】
本発明の円すいころ軸受は、内輪と、外輪と、前記内輪と前記外輪の間に保持器によって回動自在に保持された複数の円すいころとを含み、前記外輪の小径側における軸方向端部と前記内輪の小鍔部との間の潤滑油流路断面積A、前記円すいころの小径側端面における前記外輪と前記内輪間の潤滑油流路断面積A、前記外輪の大径側における軸方向端部と前記内輪の大鍔部との間の潤滑油流路断面積Aが、A≦A<Aの関係を満たすものである。
【0007】
本発明の円すいころ軸受によると、潤滑油が軸受に入る入口側の潤滑油流路断面積A,Aは、潤滑油が軸受から出る出口側の潤滑油流路断面積Aより小さくなっている。よって、軸受に入る潤滑油の油量が軸受から出る潤滑油の油量より少なくなり、軸受内部に滞留する潤滑油の量が少なくなる。その結果、円すいころの転動によって攪拌される潤滑油の量が少なくなり、軸受の損失トルクが小さくなる。
【0008】
【発明の実施の形態】
以下、本発明の一実施の形態を図1ないし図5を用いて説明する。
【0009】
図1は円すいころ軸受の部分縦断面図、図2は円すいころ軸受のL部分の断面図、図3は円すいころ軸受のL部分の断面図、図4は円すいころ軸受のL部分の断面図、図5は円すいころ軸受の潤滑油流路断面積を示すグラフである。
【0010】
これらの図において、10は内輪、20は外輪、30は円すいころ、40は保持器を示す。
【0011】
内輪10は環状に形成され、軸心Cに沿う方向(軸方向)の一端縁に径方向外向きに突出させた小鍔部11を有し、他端縁には径方向外向きに突出させた大鍔部12を有している。内輪10の外周面(内輪軌道面)13は、小鍔部11から大鍔部12にかけて外径が漸増するテーパ状に形成されている。大鍔部12は径方向外側が厚肉となり、その軸方向内周面12aには円すいころ30の大径側端面32が接触される。
【0012】
外輪20は、内輪10より大径の環状に形成され、内輪10の内輪軌道面13との間に円すいころ30を保持するための間隙を介して対向配置されている。外輪20の内周面(外輪軌道面)21は、軸方向一端から他端にかけて内径が漸増するテーパ状に形成されている。
【0013】
円すいころ30は、小径側端面31と、大径側端面32と、テーパ状の外周面33とを有している。円すいころ30は、大径側端面32の一部を内輪10の大鍔部12の内周面12aに接触させて、内輪軌道面13ならびに外輪軌道面21に転接される。複数の円すいころ30が、周方向に等配されて、保持器40にて回動自在に保持される。
【0014】
保持器40は、各円すいころ30を収納するポケットを有した環状板部41と、円すいころ30の小径側の端縁において環状板部41を径方向内向きに折曲してなるフランジ部42とを有している。
【0015】
円すいころ軸受の回転時に、潤滑油が、円すいころ30の小径側の軸方向端部から円すいころ30の大径側の軸方向端部へ流れる(矢印Q方向)。
【0016】
図2〜図4に、円すいころ軸受の各位置L,L,Lにおける円すいころ30の軸心Mに対し直交する断面における軸受の断面図を示す。
【0017】
図2〜図4中、点々で示した部分が、潤滑油の通る流路部となる。
【0018】
潤滑油流路断面積Aは、小鍔部11において、内輪10と外輪20の間隙における保持器40を除いた断面積に相当する。
【0019】
潤滑油流路断面積Aは、円すいころ30の小径側において、内輪10と外輪20の間隙における保持器40と円すいころ30および小鍔部11の投影面積を除いた断面積に相当する。すなわち、小鍔部11が壁となり、潤滑油流路断面積Aでは小鍔部11の投影面積も減じた流路面積となっている。
【0020】
潤滑油流路断面積Aは、大鍔部12において、内輪10と外輪20の間隙における保持器40と円すいころ30を除いた断面積に相当する。
【0021】
各位置L,L,Lにおける潤滑油流路断面積A,A,Aを図5に示す。図5中、縦軸は潤滑油の流路断面積、横軸は円すいころ軸受の軸心C方向の位置を示している。
【0022】
各位置L,L,Lにおける円すいころ軸受の潤滑油流路断面積A,A,Aの関係は、下記の式(1)のようになる。
【0023】
≦A<A …(1)
式(1)に示す関係となるように、保持器40の形状を設定したり、小鍔部11や大鍔部12の径方向高さを設定したり、潤滑油の入口側である円すいころの小径側における軸方向端部に遮蔽板を設置する。
【0024】
本実施の形態では、小鍔部11と大鍔部12の径方向高さを調整し、保持器40のフランジ部42の径方向長さを調整することで、式(1)に示す関係を満たすようにする。
【0025】
一例として、円すいころ軸受は型番30306DJを用い、円すいころ30のころ数は14個、小鍔部11の外径はφ41.1mm、大鍔部12の外径はφ54mm、保持器40は小鍔部11側の内径が小さくなるように屈曲させてフランジ部42を形成し、当該フランジ部42の内径を小鍔部11の外径と略等しくしたものとする。
【0026】
これにより、各潤滑油流路断面積Aは、下記の値となる。
【0027】
=202.5mm
=257.3mm
=357.3mm
図5について、詳細に説明する。
【0028】
図5中、点aから点bに渡って流路断面積が小さくなっているのは、保持器40のフランジ部42によるものである。
【0029】
点bから点cに渡って流路断面積が大きくなっているのは、小鍔部11を乗り越えて内輪軌道面13に達することによるものである。
【0030】
点cから点dに渡って流路断面積が小さくなっているのは、円すいころ30によるものである。
【0031】
点dから点eに渡って流路断面積が大きくなっているのは、内輪軌道面13と外輪軌道面21の間隙が、テーパ状に広がっていることによる。
【0032】
点eから点fに渡って流路断面積が小さくなっているのは、大鍔部12によるものである。
【0033】
その後、大鍔部12を乗り越えるに伴い、流路断面積が増加する。
【0034】
このように構成された円すいころ軸受によると、潤滑油が軸受に入る入口側の流路断面積A,Aは、潤滑油が軸受から出る出口側の流路断面積Aより小さくなっている。よって、軸受に入る潤滑油の油量Qが軸受から出る潤滑油の油量Qより少なくなり、軸受内部に滞留する潤滑油の量が少なくなる。その結果、円すいころ30の転動によって攪拌される潤滑油の量が少なくなり、軸受の損失トルクが小さくなる。
【0035】
なお、円すいころ軸受の構造は、円すいころの小径側における軸方向端部の軸受開口面積A、円すいころの小径側端面における流路断面積A、円すいころの大径側における軸方向端部の流路断面積Aが、A≦A<Aの関係を満たす構造であればよい。
【0036】
【発明の効果】
本発明の円すいころ軸受によると、撹拌トルクの低減が図れ、軸受の損失トルクが小さくなるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における円すいころ軸受の部分縦断面図である。
【図2】本発明の一実施の形態における円すいころ軸受のL部分の断面図である。
【図3】本発明の一実施の形態における円すいころ軸受のL部分の断面図である。
【図4】本発明の一実施の形態における円すいころ軸受のL部分の断面図である。
【図5】本発明の一実施の形態における円すいころ軸受の潤滑油流路断面積を示すグラフである。
【符号の説明】
10 内輪
11 小鍔部
12 大鍔部
13 内輪軌道面
20 外輪
21 外輪軌道面
30 円すいころ
31 小径側端面
32 大径側端面
40 保持器
,A,A 潤滑油流路断面積
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an oil-lubricated tapered roller bearing used at high speed rotation.
[0002]
[Prior art]
BACKGROUND ART Conventionally, there has been a tapered roller bearing in which a plurality of tapered rollers rotatably held by a retainer are interposed between an inner ring and an outer ring to relatively rotate the inner ring and the outer ring about a shaft.
[0003]
In tapered roller bearings, it is important to provide sufficient lubrication in order to prevent friction and seizure in each part. In particular, when used at high speeds, an oil lubrication system having excellent lubricity is employed.
[0004]
[Problems to be solved by the invention]
In the case of an oil-lubricated tapered roller bearing, lubricating oil flows from the small-diameter bearing end of the tapered roller to the large-diameter bearing end of the tapered roller during rotation.
[0005]
When the lubricating oil flows through the bearing, the lubricating oil is stirred by the rolling of the tapered rollers. When the amount of lubricating oil staying inside the bearing increases, the stirring resistance increases, and the torque loss of the bearing also increases.
[0006]
[Means for Solving the Problems]
The tapered roller bearing of the present invention includes an inner ring, an outer ring, and a plurality of tapered rollers rotatably held by a retainer between the inner ring and the outer ring, and an axial end portion on a small diameter side of the outer ring. lubrication oil flow path cross-sectional area a 1, the lubricating oil flow path cross-sectional area a 2 between the said outer small-diameter side end face of the tapered roller inner ring, the large diameter side of the outer ring between the inner ring of the small rib portion and lubrication oil flow path cross-sectional area a 3 between the inner ring of the large rib portion and the axial end of the can satisfy the relation of a 1 ≦ a 2 <a 3 .
[0007]
According to the tapered roller bearing of the present invention, the lubricating oil flow path cross-sectional areas A 1 and A 2 on the inlet side where the lubricating oil enters the bearing are smaller than the lubricating oil flow path cross-sectional area A 3 on the outlet side where the lubricating oil exits the bearing. Has become. Therefore, the amount of lubricating oil entering the bearing is smaller than the amount of lubricating oil leaving the bearing, and the amount of lubricating oil remaining inside the bearing is reduced. As a result, the amount of lubricating oil stirred by the rolling of the tapered rollers decreases, and the torque loss of the bearing decreases.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
[0009]
Figure 1 is a partial longitudinal sectional view of a tapered roller bearing, cross-sectional view, FIG. 3 is a cross-sectional view, FIG. 4 is L 3 portions of tapered roller bearings of L 2 portion of the tapered roller bearing of L 1 part of 2 tapered roller bearings FIG. 5 is a graph showing the sectional area of the lubricating oil flow path of the tapered roller bearing.
[0010]
In these figures, 10 is an inner ring, 20 is an outer ring, 30 is a tapered roller, and 40 is a retainer.
[0011]
The inner ring 10 is formed in a ring shape, and has a small flange portion 11 protruding radially outward at one end in a direction (axial direction) along the axis C, and protruding radially outward at the other end. It has a large collar portion 12. The outer peripheral surface (inner raceway surface) 13 of the inner ring 10 is formed in a tapered shape whose outer diameter gradually increases from the small flange portion 11 to the large flange portion 12. The large flange portion 12 has a large thickness on the radially outer side, and the large diameter side end surface 32 of the tapered roller 30 contacts the axially inner peripheral surface 12a.
[0012]
The outer ring 20 is formed in an annular shape having a larger diameter than the inner ring 10, and is arranged to face the inner ring raceway surface 13 of the inner ring 10 via a gap for holding the tapered rollers 30. The inner peripheral surface (outer ring raceway surface) 21 of the outer ring 20 is formed in a tapered shape whose inner diameter gradually increases from one end in the axial direction to the other end.
[0013]
The tapered roller 30 has a small-diameter end face 31, a large-diameter end face 32, and a tapered outer peripheral face 33. The tapered roller 30 is brought into contact with the inner raceway surface 13 and the outer raceway surface 21 by bringing a part of the large diameter side end surface 32 into contact with the inner peripheral surface 12a of the large flange portion 12 of the inner race 10. The plurality of tapered rollers 30 are equally arranged in the circumferential direction, and are rotatably held by the holder 40.
[0014]
The retainer 40 includes an annular plate portion 41 having a pocket for accommodating each of the tapered rollers 30, and a flange portion 42 formed by bending the annular plate portion 41 radially inward at the small-diameter side edge of the tapered roller 30. And
[0015]
During rotation of the tapered roller bearing, lubricating oil flows from the small-diameter axial end of the tapered roller 30 to the large-diameter axial end of the tapered roller 30 (in the direction of arrow Q).
[0016]
2 to 4 show sectional views of the tapered roller bearing at respective positions L 1 , L 2 , and L 3 of the tapered roller 30 in a section orthogonal to the axis M of the tapered roller 30.
[0017]
In FIG. 2 to FIG. 4, portions indicated by dots are flow passage portions through which the lubricating oil passes.
[0018]
The lubricating oil flow path cross-sectional area A 1 corresponds to the cross-sectional area of the small flange 11 excluding the retainer 40 in the gap between the inner ring 10 and the outer ring 20.
[0019]
Lubrication oil flow path cross-sectional area A 2, in the small-diameter side of the tapered rollers 30, which corresponds to the cross-sectional area excluding the projected area of the cage 40 and the tapered rollers 30 and Shotsuba portion 11 in the gap of the inner ring 10 and outer ring 20. That is, the small rib portion 11 is a wall, and has a flow area projected area also reduced the lubrication oil flow path cross-sectional area A 2 in the small rib portion 11.
[0020]
Lubrication oil flow path cross-sectional area A 3, in the large rib portion 12, corresponding to the cross-sectional area excluding the retainer 40 and the tapered rollers 30 in the gap of the inner ring 10 and outer ring 20.
[0021]
FIG. 5 shows the sectional areas A 1 , A 2 , and A 3 of the lubricating oil flow paths at the respective positions L 1 , L 2 , and L 3 . 5, the vertical axis indicates the cross-sectional area of the flow path of the lubricating oil, and the horizontal axis indicates the position of the tapered roller bearing in the direction of the axis C.
[0022]
The relationship among the lubricating oil flow path cross-sectional areas A 1 , A 2 , and A 3 of the tapered roller bearings at the respective positions L 1 , L 2 , and L 3 is represented by the following equation (1).
[0023]
A 1 ≦ A 2 <A 3 (1)
The shape of the retainer 40, the radial height of the small flange portion 11 and the large flange portion 12, and the tapered roller on the lubricating oil inlet side are set so as to satisfy the relationship shown in Expression (1). A shielding plate is installed at the end in the axial direction on the small diameter side.
[0024]
In the present embodiment, by adjusting the radial height of the small flange portion 11 and the large flange portion 12 and adjusting the radial length of the flange portion 42 of the retainer 40, the relationship shown in Expression (1) is obtained. Try to meet.
[0025]
As an example, the tapered roller bearing uses a model number 30306DJ, the number of rollers of the tapered roller 30 is 14, the outer diameter of the small flange 11 is φ41.1 mm, the outer diameter of the large flange 12 is φ54 mm, and the retainer 40 is the small flange. The flange 42 is formed by bending the inner diameter of the part 11 side to be small, and the inner diameter of the flange 42 is substantially equal to the outer diameter of the small flange 11.
[0026]
Thus, the cross-sectional area A of each lubricating oil flow channel has the following value.
[0027]
A 1 = 202.5 mm 2
A 2 = 257.3 mm 2
A 3 = 357.3 mm 2
FIG. 5 will be described in detail.
[0028]
In FIG. 5, the flow path cross-sectional area is reduced from point a to point b due to the flange portion 42 of the retainer 40.
[0029]
The reason why the cross-sectional area of the flow channel is increased from the point b to the point c is that the flow path crosses the small flange portion 11 and reaches the inner ring raceway surface 13.
[0030]
The cross-sectional area of the flow passage is reduced from point c to point d due to the tapered rollers 30.
[0031]
The reason that the flow path cross-sectional area increases from point d to point e is that the gap between the inner raceway surface 13 and the outer raceway surface 21 is tapered.
[0032]
The reason why the cross-sectional area of the flow channel is reduced from the point e to the point f is due to the large flange portion 12.
[0033]
Thereafter, as the vehicle gets over the large collar portion 12, the flow path cross-sectional area increases.
[0034]
According to the tapered roller bearing thus configured, the flow passage cross-sectional areas A 1 and A 2 on the inlet side where the lubricating oil enters the bearing are smaller than the flow passage cross-sectional area A 3 on the outlet side where the lubricating oil exits the bearing. ing. Thus, less than the oil quantity Q 2 of the lubricant oil amount to Q 1 lubricant exits from the bearing to enter the bearing, the amount of lubricating oil is reduced staying inside the bearing. As a result, the amount of lubricating oil stirred by the rolling of the tapered rollers 30 decreases, and the torque loss of the bearing decreases.
[0035]
The structure of the tapered roller bearing includes a bearing opening area A 1 at the axial end on the small diameter side of the tapered roller, a flow path cross-sectional area A 2 at the small diameter side end face of the tapered roller, and an axial end on the large diameter side of the tapered roller. part of the flow path cross-sectional area a 3, may be a structure that satisfies the relation of a 1 ≦ a 2 <a 3 .
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the tapered roller bearing of this invention, reduction of stirring torque can be aimed at and the effect that loss torque of a bearing becomes small is acquired.
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view of a tapered roller bearing according to an embodiment of the present invention.
2 is a cross-sectional view of the L 1 portion of the tapered roller bearing in an embodiment of the present invention.
3 is a cross-sectional view of the L 2 portion of the tapered roller bearing in an embodiment of the present invention.
4 is a cross-sectional view of the L 3 portion of the tapered roller bearing in an embodiment of the present invention.
FIG. 5 is a graph showing a sectional area of a lubricating oil flow path of a tapered roller bearing according to an embodiment of the present invention.
[Explanation of symbols]
10 inner ring 11 small rib portion 12 large rib portion 13 the inner ring raceway surface 20 outer ring 21 outer ring raceway surface 30 tapered rollers 31 small diameter side end face 32 large diameter side end face 40 retainer A 1, A 2, A 3 lubrication oil flow path cross-sectional area

Claims (2)

内輪と、外輪と、前記内輪と前記外輪の間に保持器によって回動自在に保持された複数の円すいころとを含み、
前記外輪の小径側における軸方向端部と前記内輪の小鍔部との間の潤滑油流路断面積A、前記円すいころの小径側端面における前記外輪と前記内輪間の潤滑油流路断面積A、前記外輪の大径側における軸方向端部と前記内輪の大鍔部との間の潤滑油流路断面積Aが、
≦A<A
の関係を満たす、ことを特徴とする円すいころ軸受。
An inner ring, an outer ring, and a plurality of tapered rollers rotatably held by a retainer between the inner ring and the outer ring,
Lubricating oil flow path cross-sectional area A 1 between the axial end on the small diameter side of the outer ring and the small flange of the inner ring, and the lubricating oil flow path between the outer ring and the inner ring on the small diameter end face of the tapered roller Area A 2 , the cross-sectional area A 3 of the lubricating oil flow path between the axial end on the large diameter side of the outer ring and the large flange of the inner ring,
A 1 ≦ A 2 <A 3
Tapered roller bearings that satisfy the following relationship:
内輪と、外輪と、前記内輪と前記外輪の間に保持器によって回動自在に保持された複数の円すいころとを含み、
前記内輪は、前記円すいころの小径側における軸方向端縁において径方向外向きに突出させた小鍔部と、前記円すいころの大径側における軸方向端縁において径方向外向きに突出させた大鍔部と、前記小鍔部から前記大鍔部にかけて外径が漸増するテーパ状の外周面からなる内輪軌道面とを有し、
前記外輪は、前記円すいころの小径側における軸方向端部から前記円すいころの大径側における軸方向端部にかけて内径が漸増するテーパ状の内周面からなる外輪軌道面を有し、
前記外輪の小径側における軸方向端部と前記内輪の小鍔部との間の潤滑油流路断面積A、前記円すいころの小径側端面における前記外輪と前記内輪間の潤滑油流路断面積A、前記外輪の大径側における軸方向端部と前記内輪の大鍔部との間の潤滑油流路断面積Aが、
≦A<A
の関係を満たす、ことを特徴とする円すいころ軸受。
An inner ring, an outer ring, and a plurality of tapered rollers rotatably held by a retainer between the inner ring and the outer ring,
The inner ring has a small flange portion protruding radially outward at an axial edge on a small diameter side of the tapered roller, and a radially outward projection at an axial edge on a large diameter side of the tapered roller. A large collar portion, having an inner ring raceway surface composed of a tapered outer peripheral surface having an outer diameter gradually increasing from the small collar portion to the large collar portion,
The outer ring has an outer ring raceway surface formed of a tapered inner peripheral surface whose inner diameter gradually increases from an axial end on a small diameter side of the tapered roller to an axial end on a large diameter side of the tapered roller,
Lubricating oil flow path cross-sectional area A 1 between the axial end on the small diameter side of the outer ring and the small flange of the inner ring, and the lubricating oil flow path between the outer ring and the inner ring on the small diameter end face of the tapered roller Area A 2 , the cross-sectional area A 3 of the lubricating oil flow path between the axial end on the large diameter side of the outer ring and the large flange of the inner ring,
A 1 ≦ A 2 <A 3
Tapered roller bearings that satisfy the following relationship:
JP2002233777A 2002-08-09 2002-08-09 Tapered roller bearing Expired - Fee Related JP4151347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233777A JP4151347B2 (en) 2002-08-09 2002-08-09 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233777A JP4151347B2 (en) 2002-08-09 2002-08-09 Tapered roller bearing

Publications (2)

Publication Number Publication Date
JP2004076766A true JP2004076766A (en) 2004-03-11
JP4151347B2 JP4151347B2 (en) 2008-09-17

Family

ID=32018821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233777A Expired - Fee Related JP4151347B2 (en) 2002-08-09 2002-08-09 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP4151347B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967749A2 (en) 2007-03-05 2008-09-10 JTEKT Corporation Tapered roller bearing with lubrication
US7645074B2 (en) 2005-04-28 2010-01-12 Jtekt Corporation Fluid-lubricated type tapered roller bearing device and vehicle pinion shaft supporting assembly
CN107559312A (en) * 2016-06-30 2018-01-09 株式会社捷太格特 Taper roll bearing
DE102017126917A1 (en) 2016-11-17 2018-05-17 Jtekt Corporation Tapered roller bearings

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212923B2 (en) 2013-04-23 2017-10-18 株式会社ジェイテクト Tapered roller bearing
DE112014005332T5 (en) 2013-11-22 2016-08-04 Jtekt Corporation Tapered roller bearing and power transmission device
JP6492540B2 (en) 2014-10-29 2019-04-03 株式会社ジェイテクト Tapered roller bearing
JP6459396B2 (en) 2014-10-29 2019-01-30 株式会社ジェイテクト Tapered roller bearing
JP6565164B2 (en) 2014-10-29 2019-08-28 株式会社ジェイテクト Cage and tapered roller bearing for tapered roller bearing
JP6459395B2 (en) 2014-10-29 2019-01-30 株式会社ジェイテクト Tapered roller bearing
JP6458447B2 (en) 2014-10-29 2019-01-30 株式会社ジェイテクト Tapered roller bearing
JP6565163B2 (en) 2014-10-29 2019-08-28 株式会社ジェイテクト Tapered roller bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645074B2 (en) 2005-04-28 2010-01-12 Jtekt Corporation Fluid-lubricated type tapered roller bearing device and vehicle pinion shaft supporting assembly
EP1967749A2 (en) 2007-03-05 2008-09-10 JTEKT Corporation Tapered roller bearing with lubrication
US7950856B2 (en) 2007-03-05 2011-05-31 Jtekt Corporation Tapered roller bearing
CN107559312A (en) * 2016-06-30 2018-01-09 株式会社捷太格特 Taper roll bearing
DE102017126917A1 (en) 2016-11-17 2018-05-17 Jtekt Corporation Tapered roller bearings
US10180161B2 (en) 2016-11-17 2019-01-15 Jtekt Corporation Tapered roller bearing

Also Published As

Publication number Publication date
JP4151347B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4103501B2 (en) Tapered roller bearings
JP4314430B2 (en) Tapered roller bearing
WO2009131139A1 (en) Rolling bearing
US9416823B2 (en) Tapered roller bearing
JP2004076766A (en) Tapered roller bearing
JPH0932858A (en) Conical roller bearing
JP2007051715A (en) Tapered roller bearing, tapered roller bearing device, and vehicular pinion shaft supporting device using it
JPH11125256A (en) Retainer of ball bearing
JP2007032612A (en) Roller bearing
JP2017198298A (en) Crown type holder and ball bearing
JP2001116051A (en) Cage for ball bearing and ball bearing
JP2009281585A (en) Rolling bearing
JP4126529B2 (en) Tapered roller bearing
JP2009014044A (en) Tapered roller bearing
US20080063331A1 (en) Lubricating Structure Of Rolling Bearing
US10001171B2 (en) Rolling bearing
JP2010286120A (en) Design method for tapered roller bearing
JP4370907B2 (en) Ball bearing
JP2008223863A (en) Tapered roller bearing
US20090028486A1 (en) Tapered roller bearing
JP2003120683A (en) Thrust roller bearing
JP2008025617A (en) Tapered roller bearing
JP2012102838A (en) Conical rolling bearing
JP2005337349A (en) Bearing device and main spindle device using it
JP2011190859A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Ref document number: 4151347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees