Nothing Special   »   [go: up one dir, main page]

JP2004067837A - α-sialon phosphor - Google Patents

α-sialon phosphor Download PDF

Info

Publication number
JP2004067837A
JP2004067837A JP2002228081A JP2002228081A JP2004067837A JP 2004067837 A JP2004067837 A JP 2004067837A JP 2002228081 A JP2002228081 A JP 2002228081A JP 2002228081 A JP2002228081 A JP 2002228081A JP 2004067837 A JP2004067837 A JP 2004067837A
Authority
JP
Japan
Prior art keywords
sialon
phosphor
light
metal element
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002228081A
Other languages
Japanese (ja)
Other versions
JP4207489B2 (en
Inventor
Takahiko Honma
本間 隆彦
Kazumasa Takatori
鷹取 一雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002228081A priority Critical patent/JP4207489B2/en
Publication of JP2004067837A publication Critical patent/JP2004067837A/en
Application granted granted Critical
Publication of JP4207489B2 publication Critical patent/JP4207489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)

Abstract

【課題】青色光で励起させることができ、かつ青色光と補色関係にあり、発光強度が高く、しかも演色性に優れた蛍光を効率よく発光する結晶質のα−サイアロン蛍光体を提供すること。
【解決手段】本発明に係るα−サイアロン蛍光体は、
一般式:MSi12−(m+n)Al(m+n)16−n
(但し、Mは、Li、Mg、Ca、Y、並びにLa及びCeを除く希土類元素の中から選ばれる1種又は2種以上の金属元素。x=m/δ。δは、金属元素Mの平均価数。0.15<x≦1.5。1.8≦m/n≦2.2。)
で表されるα−サイアロンを母体材料とし、前記α−サイアロンに固溶する前記金属元素Mの一部を、電荷の中性を保ちながらEuで置換したものからなる。
【選択図】 なし
A crystalline α-sialon phosphor that can be excited by blue light, has a complementary color relationship with blue light, has high emission intensity, and efficiently emits fluorescent light with excellent color rendering properties. .
The α-sialon phosphor according to the present invention comprises:
General formula: M x Si 12- (m + n) Al (m + n) O n N 16-n
(Where M is one or more metal elements selected from Li, Mg, Ca, Y, and rare earth elements other than La and Ce. X = m / δ. Δ is the metal element M Average valence: 0.15 <x ≦ 1.5; 1.8 ≦ m / n ≦ 2.2.)
Is used as a base material, and a part of the metal element M solid-dissolved in the α-sialon is replaced with Eu while maintaining the neutrality of the charge.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、α−サイアロン蛍光体に関し、さらに詳しくは、家電製品用の各種表示器、事務機器用の各種光源、車両用灯具、照明用光源、ディスプレイ用光源等に用いられる白色発光ダイオード用の蛍光体として好適なα−サイアロン蛍光体に関する。
【0002】
【従来の技術】
発光ダイオード(LED)は、p型半導体とn型半導体とを接合した半導体固体発光素子である。LEDは、長寿命、優れた耐衝撃性、低消費電力、高信頼性等の長所を有し、しかも小型化、薄型化及び軽量化が可能であることから、各種機器の光源として用いられている。特に、白色LEDは、信頼性が要求される防災照明、小型化・軽量化が好まれる車載照明や液晶バックライト、視認性を必要とする駅の行き先案内板等に使用されており、また、一般家庭の室内照明への応用も期待されている。
【0003】
直接遷移型半導体からなるp−n接合の順方向に電流を流すと、電子と正孔が再結合し、半導体の禁制帯幅に対応するピーク波長を有する光が放出される。LEDの発光スペクトルは、一般にピーク波長の半値幅が狭いので、白色LEDの発光色は、専ら光の混色に関する原理によって得られている。
【0004】
白色を得る方法としては、具体的には、
(1)光の三原色である赤色(R)、緑色(G)及び青色(B)をそれぞれ放出する三種類のLEDを組み合わせ、これらのLED光を混ぜる方法、
(2)紫外線を放出する紫外LEDと、その紫外線によって励起され、それぞれ赤色(R)、緑色(G)及び青色(B)の蛍光を放出する三種類の蛍光体とを組み合わせ、蛍光体から放出される三色の蛍光を混ぜる方法、
(3)青色光を放出する青色LEDと、その青色光によって励起され、青色光と補色の関係にある黄色の蛍光を放出する蛍光体とを組み合わせ、青色のLED光と、蛍光体から放出される黄色光とを混ぜる方法、
等が知られている。
【0005】
複数個のLEDを用いて所定の発光色を得る方法は、各色のバランスをとるために、各LEDの電流を調節するための特別の回路が必要となる。これに対し、LEDと蛍光体とを組み合わせて所定の発光色を得る方法は、このような回路が不要であり、LEDを低コスト化できるという利点がある。そのため、LEDを光源とするこの種の蛍光体について、従来から種々の提案がなされている。
【0006】
例えば、向井孝志他、応用物理、第68巻、第2号(1999)pp.152−155には、(Y、Gd)(Al、Ga)12の組成式で表されるYAG系酸化物母体結晶中にCeをドープしたYAG蛍光体が開示されている。同文献には、InGaN系青色LEDチップの表面にYAG蛍光体を薄くコーティングすることによって、青色LEDから放出される青色光と、この青色光によって励起されたYAG蛍光体から放出されるピーク波長550nmの蛍光とが混ざり、白色光が得られる点が記載されている。
【0007】
また、特開2001−214162号公報には、CaCOをCaOに換算して20〜50mol%、Alを0〜30mol%、SiOを25〜60mol%、AlNを5〜50mol%、希土類酸化物又は遷移金属酸化物を0.1〜20mol%含むオキシ窒化物ガラスを母体材料とした蛍光体が開示されている。同公報には、Eu2+イオンをドープしたCa−Al−Si−O−N系オキシ窒化物ガラスにおいて、窒素含有量を制御すると、励起スペクトルのピーク波長を青色LED光の波長に一致させることができる点が記載されている。
【0008】
また、J.W.H. van Krevel et.al., Journal of Alloys and Compounds, vol.268(1998)pp.272−277には、Y−Si−O−N系酸窒化物結晶にCe3+イオンをドープした蛍光体が開示されている。同文献には、これらの蛍光体の励起スペクトルのピーク波長が400nm未満である点、及び発光スペクトルのピーク波長が423nm〜504nmである点が記載されている。
【0009】
また、特開昭60−206889号公報には、β−サイアロン中のAlの一部をCu、Ag、Zr、Mn、In、Bi及びランタノイドから選ばれる少なくとも1種の活性剤元素で置換した発光窒化物が開示されている。同公報には、この発光窒化物が紫外線によって励起される点、及び発光スペクトルのピーク波長が活性剤の種類に応じて410〜885nmになる点が記載されている。
【0010】
また、特開平8−133780号公報には、リン、酸素及びフッ素を含むガラスに、蛍光剤としてTb又はEuを添加したフツ燐酸塩蛍光ガラスが開示されている。同公報には、このガラスが紫外線で励起され、可視光領域において強く発光する点が記載されている。
【0011】
さらに、特開平10−167755号公報には、ケイ素、ホウ素、酸素を含むガラスに、蛍光剤としてTb又はEuを添加した酸化物蛍光ガラスが開示されている。同公報には、このガラスが紫外線で励起され、可視光領域において強く発光する点が記載されている。
【0012】
【発明が解決しようとする課題】
LEDと蛍光体とを組み合わせた白色LEDは、一般に、LEDの表面を蛍光体を含む樹脂で封止した構造を取る。そのため、紫外LEDを用いた白色LEDは、紫外線によって樹脂が劣化し、耐久性に劣るという問題がある。
【0013】
これに対し、青色LEDを用いた白色LEDには、このような問題がないという利点がある。また、紫外LEDを用いた白色LEDに比して、発光効率が高いという利点もある。
【0014】
しかしながら、CeをドープしたYAG蛍光体は、赤色の光が非常に弱いという特徴がある。そのため、この蛍光体と青色LEDとを組み合わた白色LEDは、赤色の物体にLED光が当たると、物体は黄色味を帯びた赤色に見え、色の再現性(演色性)に劣るという問題がある。
【0015】
一方、特開2001−214162号公報に開示された蛍光体は、オキシ窒化物ガラスを母体材料として用い、母体材料のCa2+イオンの一部をEu2+、Eu3+、Ce3+、Tb3+などの希土類イオン又はCr3+、Mn2+などの遷移金属イオンで置換して合成したものである。この蛍光体は、オキシ窒化物ガラス中の酸素(−2価)の一部を窒素(−3価)に置き換えることによって結合のイオン性や共有結合性の割合が変わり、これによって励起波長及び発光波長を自在に変化させることができるとされている。
【0016】
しかしながら、この蛍光体は、ガラスを母体材料とする。そのため、ガラス特有の発光イオンの配位場から、可視・紫外光領域の広い波長範囲(≦550nm)に励起スペクトルを持つという特徴が見られる反面、結晶性の母体材料に比べて励起強度が不足するという問題がある。
【0017】
さらに、この種の蛍光体には、一般に、発光中心として希土類元素が用いられるが、希土類元素は、高価である。そのため、蛍光体を低コスト化するためには、添加した希土類元素を発光中心として効率よく機能させ、希土類元素の添加量を低減することが望まれる。
【0018】
本発明が解決しようとする課題は、青色光で励起され、青色光と補色関係にある蛍光を発光する結晶質のα−サイアロン蛍光体を提供することにある。また、本発明が解決しようとする他の課題は、発光強度が高く、青色LEDと組み合わせて用いたときに演色性に優れた白色が得られるα−サイアロン蛍光体を提供することにある。さらに、本発明が解決しようとする他の課題は、発光中心となる希土類元素の添加量が微量であっても効率よく発光するα−サイアロン蛍光体を提供することにある。
【0019】
【課題を解決するための手段】
上記課題を解決するために本発明に係るα−サイアロン蛍光体は、
一般式:MSi12−(m+n)Al(m+n)16−n
(但し、Mは、Li、Mg、Ca、Y、並びにLa及びCeを除く希土類元素の中から選ばれる1種又は2種以上の金属元素。x=m/δ。δは、金属元素Mの平均価数。0.15≦x≦1.5。1.8≦m/n≦2.2。)
で表されるα−サイアロンを母体材料とし、前記α−サイアロンに固溶する前記金属元素Mの一部を、電荷の中性を保ちながらEuで置換したものからなる。
【0020】
Euを添加したα−サイアロン蛍光体に青色光を照射すると、Euが青色光で励起され、青色光と補色関係にある蛍光を放出する。この時、α−サイアロン中の(m/n)比を所定の範囲にすると、不純物相が少なくなり、結晶相の単相化が進む。また、α−サイアロンの結晶性も向上する。そのため、発光強度の高い蛍光体が得られる。また、Euの添加量が微量であっても、効率よく発光するので、蛍光体を低コスト化することができる。さらに、この蛍光体から放出される蛍光と青色光とを混色させると、赤みを帯びた温かみのある白色光が得られる。
【0021】
【発明の実施の形態】
以下、本発明の一実施の形態について詳細に説明する。本発明の第1の実施の形態に係るα−サイアロン蛍光体は、次の化1の式に示す一般式で表されるα−サイアロンを母体材料として用いた点を特徴とする。
【0022】
【化1】
Si12−(m+n)Al(m+n)16−n
(但し、Mは、Li、Mg、Ca、Y、並びにLa及びCeを除く希土類元素の中から選ばれる1種又は2種以上の金属元素。x=m/δ。δは、金属元素Mの平均価数。0.15≦x≦1.5。1.8≦m/n≦2.2。)
【0023】
化1の式において、α−サイアロン中に固溶する金属元素Mの固溶量x、金属元素Mの平均価数δ、及びmの間に、「x=m/δ」という関係を必要とするのは、α−サイアロン中の電荷の中性を保つためである。また、蛍光体の母体材料として金属元素Mを固溶したα−サイアロンを用いるのは、金属元素Mを固溶させた方が、高い発光強度及び効率の良い発光が得られるためである。
【0024】
α−サイアロン中の金属元素Mの固溶量xは、0.15以上1.5以下が好ましい。固溶量xが0.15未満である場合、及び固溶量xが1.5を越える場合には、いずれもα相以外の相が形成され、発光強度が低下するので好ましくない。固溶量xの値は、さらに好ましくは、0.3以上0.75以下である。
【0025】
(m/n)比は、1.5以上2.5以下が好ましい。化1の式で表されるα−サイアロンにおいて、(m/n)比をこの範囲に限定すると、不純物相が少なくなり、結晶相の単相化が進む。また、α−サイアロンの結晶性も向上する。そのため、発光強度の高い蛍光体が得られる。(m/n)比は、さらに好ましくは、1.8以上2.2以下である。
【0026】
また、本実施の形態に係るα−サイアロン蛍光体は、化1の式で表されるα−サイアロンに固溶する金属元素Mの一部を、電荷の中性を保ちながらEuで置換したものからなる。α−サイアロン中に固溶したEuは、2価のイオンとなっていると考えられている。また、電荷の中性は、α−サイアロンに含まれる酸素と窒素が所定の元素比となることによって保たれると考えられている。
【0027】
本実施の形態において、Euによる金属元素Mの置換率(以下、これを「M置換率」という。)は、特に限定されるものではない。また、本実施の形態に係るα−サイアロン蛍光体は、金属元素Mとして希土類元素の1種である「Eu」を用い、この金属元素Mの一部をEuで置換したもの(すなわち、Euのみを固溶させたα−サイアロン)も含まれる。
【0028】
一般に、蛍光体に含まれる発光中心の量が多くなるほど、及び/又は発光中心が均一に分散しているほど、発光強度は高くなる。一方、発光中心の量が多すぎると、濃度消光を起こすので、蛍光体の発光強度は、かえって低下する。高い発光強度を得るためには、金属元素MとしてEu以外の元素を用い、M置換率を、2at%以上50at%以下とするのが好ましい。M置換率は、さらに好ましくは、5at%以上40at%以下である。
【0029】
本実施の形態に係るα−サイアロン蛍光体は、種々の用途に供することができるが、LED用の蛍光体として用いる場合には、通常、粉末の状態で使用される。粉末状にした蛍光体は、適当な樹脂と混合され、この混合物がLEDの表面に塗布される。良好な塗布性を得るためには、粉末の重量平均粒径は、0.5μm以上50μm以下が好ましく、さらに好ましくは、2μm以上10μm以下である。
【0030】
上述した本実施の形態に係るα−サイアロン蛍光体の組成は、次の化2の式に示す一般式で表すこともできる。なお、本実施の形態に係るα−サイアロン蛍光体は、理想的には、化2の式で表される相のみから構成されていることが望ましいが、製造過程で混入する不可避的な不純物相(例えば、未反応原料、β相、ガラス相など)が若干含まれていても良い。
【0031】
【化2】
([Mδ+1−y[Eu2+0.5δySi12−(m+n)Al(m+n)16−n
(但し、Mは、Li、Mg、Ca、Y、並びにLa及びCeを除く希土類元素の中から選ばれる1種又は2種以上の金属元素。x=m/δ。δは、金属元素Mの平均価数。0.15≦x≦1.5。0<y<1。1.8≦m/n≦2.2。)
【0032】
次に、本実施の形態に係るα−サイアロン蛍光体の作用について説明する。α−サイアロンは、広い組成範囲を有する化合物であるが、α−サイアロン中の組成(特に、(m/n)比)を所定の範囲に限定すると、不純物相が少なくなり、結晶相(α相)の単相化が進む。また、α−サイアロンの結晶性も向上する。
【0033】
本実施の形態に係る蛍光体は、このような特定の組成を有する結晶質のα−サイアロンを母体材料として用いているので、高い発光強度が得られる。また、Euの添加量が微量であっても効率の良い発光が得られるので、Eu付活剤の使用量を低減することができ、蛍光体を低コスト化することができる。しかも、母体材料としてα−サイアロンを用いているので、熱的・機械的特性及び化学的安定性に優れており、過酷な環境下でも高い耐久性を示す。
【0034】
さらに、本実施の形態に係るα−サイアロン蛍光体は、470±30nmの波長を有する光を含む励起光で励起され、発光スペクトルのピーク波長が590±30nmである蛍光を放出する。従って、この蛍光体を青色LEDの表面に塗布すれば、蛍光体は、青色LEDから照射される青色光によって励起され、青色光と補色関係にある蛍光を放出する。しかも、この蛍光は、従来の蛍光体から放出される蛍光に比して赤色の成分が強い。そのため、青色光と混色させることによって、赤みを帯びた温かみのある白色光が得られる。
【0035】
次に、本発明の第2の実施の形態に係るα−サイアロン蛍光体について説明する。本実施の形態に係るα−サイアロン蛍光体は、次の化3の式に示す一般式で表されるα−サイアロンを母体材料として用いた点を特徴とする。
【0036】
【化3】
CaSi12−(m+n)Al(m+n)16−n
(但し、x=m/2。0.30≦x≦0.75。1.8≦m/n≦2.2。)
【0037】
本実施の形態に係るα−サイアロン蛍光体は、母体材料であるα−サイアロンに固溶させる金属元素MとしてCaを選択した点を特徴とする。上述した金属元素Mの中でも、特にCaは、蛍光体の発光強度を高くする作用がある。
【0038】
α−サイアロン中のCaの固溶量xは、0.30以上0.75以下が好ましい。固溶量xが0.30未満である場合、及び固溶量xが0.75を越える場合には、いずれも発光強度が低下するので好ましくない。固溶量xの値は、さらに好ましくは、0.3以上0.6以下である。
【0039】
(m/n)比は、1.5以上2.5以下が好ましい。化3の式で表されるα−サイアロンにおいて、(m/n)比をこの範囲に限定すると、不純物相が少なくなり、結晶相の単相化が進む。また、α−サイアロンの結晶性も向上する。そのため、発光強度の高い蛍光体が得られる。(m/n)比は、さらに好ましくは、1.8以上2.2以下である。
【0040】
また、本実施の形態に係るα−サイアロン蛍光体は、化3の式で表されるα−サイアロンに固溶するCaの一部を、電荷の中性を保ちながらEuで置換したものからなる。α−サイアロン中に固溶したEuは、2価のイオンとなっていると考えられている。また、電荷の中性は、α−サイアロンに含まれる酸素と窒素が所定の元素比となることによって保たれると考えられている。
【0041】
本実施の形態において、EuによるCaの置換率(以下、これを「Ca置換率」という。)は、2at%以上50at%以下が好ましい。Ca置換率が2at%未満であると、発光中心の量が少ないために、高い発光強度は得られない。一方、Ca置換率が50at%を越えると、発光強度の大きな増加は得られず、むしろ蛍光体の高コスト化を招くので好ましくない。Ca置換率は、さらに好ましくは、5at%以上40at%以下である。
【0042】
さらに、本実施の形態に係る蛍光体を粉末として用いる場合において、良好な塗布性を得るためには、粉末の重量平均粒径は、0.5μm以上50μm以下が好ましく、さらに好ましくは、2μm以上10μm以下である。
【0043】
上述した本実施の形態に係るα−サイアロン蛍光体の組成は、次の化4の式に示す一般式で表すこともできる。なお、本実施の形態に係るα−サイアロン蛍光体は、理想的には、化4の式で表される相のみから構成されていることが望ましいが、製造過程で混入する不可避的な不純物相(例えば、未反応原料、β相、ガラス相など)が若干含まれていても良い。
【0044】
【化4】
([Ca2+1−y[Eu2+Si12−(m+n)Al(m+n)16−n
(但し、x=m/2。0.30≦x≦0.75。0.05≦y≦0.4。1.8≦m/n≦2.2。)
【0045】
次に、本実施の形態に係るα−サイアロン蛍光体の作用について説明する。α−サイアロンを母体材料とする蛍光体において、α−サイアロンの組成(特に、(m/n)比)を所定の範囲に限定することに加えて、金属元素MとしてCaを用いると、発光強度の高い蛍光体が得られる。この理由の詳細については不明であるが、Caを固溶させることによって、さらに組成が均一化しやすくなり、結晶相の単相化及び結晶性の向上が進むこと、及び発光中心が均一に分散しやすくなることなどが考えられる。
【0046】
本実施の形態に係る蛍光体は、このような特定の組成を有する結晶質のα−サイアロンを母体材料として用いているので、高い発光強度が得られる。また、Euの添加量が微量であっても効率の良い発光が得られるので、Eu付活剤の使用量を低減することができ、蛍光体を低コスト化することができる。さらに、母体材料としてα−サイアロンを用いているので、熱的・機械的特性及び化学的安定性に優れており、過酷な環境下でも高い耐久性を示す。
【0047】
さらに、本実施の形態に係るα−サイアロン蛍光体は、470±30nmの波長を有する光を含む励起光で励起され、発光スペクトルのピーク波長が590±30nmである蛍光を放出する。従って、この蛍光体を青色LEDの表面に塗布すれば、蛍光体は、青色LEDから照射される青色光によって励起され、青色光と補色関係にある蛍光を放出する。しかも、この蛍光は、従来の蛍光体から放出される蛍光に比して赤色の成分が強い。そのため、青色光と混色させることによって、赤みを帯びた温かみのある白色光が得られる。
【0048】
次に、本発明に係るα−サイアロン蛍光体の製造方法について説明する。本発明に係るα−サイアロン蛍光体は、成分元素を含む化合物を所定の比率になるように混合し、得られた混合物を所定の条件下で焼成することにより得られる。
【0049】
出発原料には、Si、Al、Eu及び金属元素M(以下、これらを「陽イオン元素」という。)を含む炭酸塩、酸化物、窒化物等の化合物を用いることができる。出発原料には、1種類の陽イオン元素を含む単純化合物を用いても良く、あるいは、2種以上の陽イオン元素を含む複合化合物を用いても良い。
【0050】
出発原料の種類及び配合比率は、作成しようとする蛍光体の組成に応じて選択する。基本的には、陽イオン元素の比率が化2の式に示す範囲内となるように、金属元素Mを含む1種又は2種以上のM供給源と、Euを含む1種又は2種以上のEu供給源と、Siを含む1種又は2種以上のSi供給源と、Alを含む1種又は2種以上のAl供給源とを所定の比率で配合すればよい。また、これらの陽イオン元素供給源の内の少なくとも1以上については、α−サイアロンの生成に必要な量の酸素を供給可能な化合物(例えば、酸化物、炭酸塩、水酸化物、酸窒化物など)を用いる。
【0051】
例えば、出発原料として金属元素Mの酸化物MOδ/2を生成可能な化合物(以下、これを「M化合物」という。)、Eu、Si及びAlNを用いて化2の式で表される組成を有する蛍光体を作成する場合、M化合物をMOδ/2換算で1mol%以上20mol%以下、Euを0.5mol%以上10mol%以下、Siを28mol%以上89mol%以下、AlNを9mol%以上60mol%以下であって、合計100mol%となるように配合するのが好ましい。
【0052】
また、例えば、出発原料としてCaCO、Eu、Si及びAlNを用いて化4の式で表される組成を有する蛍光体を作成する場合、CaCOをCaO換算で3mol%以上12mol%以下、Euを0.15mol%以上2.5mol%以下、Siを51mol%以上77mol%以下、AlNを17mol%以上38mol%以下であって、合計100mol%となるように配合するのが好ましい。他の出発原料を用いる場合も同様である。
【0053】
配合された出発原料は、所定の条件下で焼成する。焼成時の雰囲気は、ゲージ0.1気圧以上の窒素ガス雰囲気が好ましい。窒素ガスの圧力がゲージ0.1気圧未満になると、α−サイアロンの分解が生ずるので好ましくない。窒素ガスの圧力は、さらに好ましくは、ゲージ0.5気圧以上である。
【0054】
焼成温度は、1650℃以上1900℃以下が好ましい。焼成温度が1650℃未満であると、出発原料の固相反応の反応速度が遅くなるので好ましくない。一方、焼成温度が1900℃を越えると、α−サイアロンの分解が生ずるので好ましくない。焼成温度は、さらに好ましくは、1700℃以上1850℃以下である。
【0055】
焼成温度における保持時間(焼成時間)は、0.5時間以上が好ましい。焼成時間が0.5時間未満であると、固相反応が不十分となり、α−サイアロン単相が得られないので好ましくない。焼成時間は、さらに好ましくは、1時間以上である。
【0056】
このような条件下で焼成すると、固相反応によって、所定量の金属元素M及びEuが固溶した粉末状のα−サイアロン蛍光体が得られる。焼成直後は、通常、粉末が凝集した状態となっているので、これをLED用の蛍光体として用いる場合には、合成された粉末状蛍光体を所定の粒度となるように粉砕する。
【0057】
【実施例】
(実施例1〜9)
出発原料としてCaCO、Eu、Si及びAlNを用い、これらを最終組成が化2の式の範囲内となるように秤量し、窒化ケイ素製乳鉢中で混合した。なお、本実施例においては、m=0.5〜3.0、(m/n)比=2.0、Ca置換率y=0.1〜0.38とした。
【0058】
次に、この混合物を約2cm角のMo容器に入れ、黒鉛抵抗加熱式加圧焼結炉を用いて焼成した。焼成は、ゲージ1.0〜8.5気圧の窒素ガス中において、焼成温度:1650℃〜1830℃、焼成時間:2〜4時間の条件下で行った。さらに、得られた粉末を窒化ケイ素製乳鉢中で粉砕し、蛍光体試料とした。
【0059】
(実施例10〜12)
金属元素Mの供給源として、LiCO(実施例10)、MgCO(実施例11)又はY(実施例12)を用い、これらとEu、Si及びAlNとを、最終組成が化2の式の範囲内となるように秤量し、窒化ケイ素製乳鉢中で混合した。なお、本実施例においては、m=0.9、(m/n)比=2.0、M置換率y=0.1とした。
【0060】
次に、この混合物を約2cm角のMo容器に入れ、黒鉛抵抗加熱式加圧焼結炉を用いて焼成した。焼成は、ゲージ1.0気圧の窒素ガス中において、焼成温度:1750℃、焼成時間:2時間の条件下で行った。さらに、得られた粉末を窒化ケイ素製乳鉢中で粉砕し、蛍光体試料とした。
【0061】
(比較例1〜6)
金属元素Mの供給源として、CaCO(比較例1〜5)又はZnO(比較例6)を用い、これらとEu、Si及びAlNとを所定量秤量し、窒化ケイ素製乳鉢中で混合した。なお、本比較例においては、m=0.3〜4.0、n=0.15〜3.0、M置換率y=0.05〜0.43とした。
【0062】
次に、この混合物を約2cm角のMo容器に入れ、黒鉛抵抗加熱式加圧焼結炉を用いて焼成した。焼成は、ゲージ1.0気圧の窒素ガス中において、焼成温度:1750℃、焼成時間:2時間の条件下で行った。さらに、得られた粉末を窒化ケイ素製乳鉢中で粉砕し、蛍光体試料とした。
【0063】
実施例1〜12及び比較例1〜6で得られた蛍光体試料をガラス製サンプル瓶(φ18×40×φ10、6ml)に入れ、その底面に励起光を垂直(距離:30mm)に当てた。蛍光体試料から放出される蛍光を、約30°斜め方向(距離:約150mm)からファイバースコープにより集光し、分光測光装置を用いてその発光スペクトルを評価した。なお、励起光の照射には、砲弾型青色LED(3.5V、20mA、φ5、指向角15°、発光ピーク波長470nm又は450nm)を1個使用した。
【0064】
さらに、これらの蛍光体試料について、X線回折法により生成相を同定し、レーザ回折式粒度分布装置を用いて平均粒径(重量平均粒径)を測定した。表1に、各蛍光体試料の組成、合成条件、粉末特性及び励起・発光特性を示す。
【0065】
【表1】

Figure 2004067837
【0066】
実施例1〜12及び比較例1〜6で得られた蛍光体試料の主たる生成相は、いずれもα相であった。また、平均粒径は、焼成温度を1650℃とした実施例6(3μm)及び焼成温度を1830℃とした実施例9(7μm)を除き、いずれも5μmであった。
【0067】
比較例1、2は、固溶量xが本発明の範囲外にある。また、比較例3〜5は、(m/n)比が本発明の範囲外にある。さらに、比較例6は、金属元素Mとして、Znを用いたものである。これらは、励起光として470nmの青色光を用いた場合に、発光ピーク波長が580〜600nmである発光スペクトルが得られている。しかしながら、発光ピーク強度は、80〜261(任意単位)であった。
【0068】
これに対し、金属元素MとしてCaを用いた実施例1〜9は、励起光として450nm又は470nmの青色光を用いた場合に、発光ピーク波長が587〜604nmである発光スペクトルが得られた。また、発光ピーク強度は、いずれも300(任意単位)を越えていた。
【0069】
同一組成で比較した場合、焼成温度が高くなるほど発光ピーク強度が高くなる傾向が見られ、実施例9では、発光ピーク強度は900(任意単位)を越えていた。また、励起光として450nmの青色光を用いた実施例3、8の場合、発光ピーク強度は、それぞれ、727(任意単位)及び826(任意単位)であり、それぞれ、同一条件下で製造し、かつ励起光として470nmの青色光を用いた実施例2、7より高い値を示した。
【0070】
また、金属元素Mとして、それぞれLi、Mg及びYを用いた実施例10〜12は、励起光として470nmの青色光を用いた場合に、発光ピーク波長が585〜589nmである発光スペクトルが得られた。また、発光ピーク強度は、いずれも300(任意単位)を越えていた。
【0071】
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。
【0072】
例えば、本発明に係る蛍光体は、青色LEDと組み合わせて用いる白色LED用の蛍光体として特に好適であるが、本発明の用途は、これに限定されるものではなく、440nm以下の藍色・紫色、400nm以下の近紫外線・紫外線の励起による蛍光体、Eu以外の発光中心を添加した蛍光体、白色LEDの蛍光体(黄色発光)に添加することで赤み成分を補強するための蛍光体等としても使用することができる。
【0073】
【発明の効果】
本発明に係るα−サイアロン蛍光体は、不純物相が少なく、母体材料の結晶性も高いので、高い発光強度が得られるという効果がある。また、Euの添加量が微量であっても、効率よく発光するので、蛍光体を低コスト化できるという効果がある。さらに、本発明に係るα−サイアロン蛍光体は、青色光によって励起され、赤色の強い黄色光を発光するので、青色光と混色させることによって赤みを帯びた温かみのある白色光が得られるという効果がある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an α-sialon phosphor, and more specifically, for a white light emitting diode used for various displays for home appliances, various light sources for office equipment, vehicle lighting, a light source for lighting, a light source for display, and the like. The present invention relates to an α-sialon phosphor suitable as a phosphor.
[0002]
[Prior art]
A light emitting diode (LED) is a solid-state semiconductor light emitting device in which a p-type semiconductor and an n-type semiconductor are joined. LEDs have advantages such as long life, excellent impact resistance, low power consumption, and high reliability, and can be reduced in size, thickness, and weight. I have. In particular, white LEDs are used for disaster prevention lighting that requires reliability, in-vehicle lighting and liquid crystal backlights that are preferred to be smaller and lighter, destination guide boards for stations that require visibility, and the like. It is also expected to be used for indoor lighting in ordinary homes.
[0003]
When a current flows in the forward direction of a pn junction made of a direct transition semiconductor, electrons and holes recombine, and light having a peak wavelength corresponding to the bandgap of the semiconductor is emitted. Since the emission spectrum of an LED generally has a narrow half-width of a peak wavelength, the emission color of a white LED is obtained exclusively based on the principle of light mixing.
[0004]
As a method of obtaining white, specifically,
(1) A method of combining three types of LEDs that respectively emit red (R), green (G), and blue (B), which are the three primary colors of light, and mixing these LED lights;
(2) An ultraviolet LED that emits ultraviolet light and three types of phosphors that are excited by the ultraviolet light and emit red (R), green (G), and blue (B) fluorescent light, respectively, and emit from the phosphor. How to mix the three colors of fluorescent light,
(3) A combination of a blue LED that emits blue light and a phosphor that emits yellow fluorescent light that is excited by the blue light and has a complementary color relationship with the blue light, and emits blue LED light and light emitted from the phosphor To mix with yellow light,
Etc. are known.
[0005]
The method of obtaining a predetermined emission color using a plurality of LEDs requires a special circuit for adjusting the current of each LED in order to balance each color. On the other hand, a method of obtaining a predetermined luminescent color by combining an LED and a phosphor does not require such a circuit, and has an advantage that the cost of the LED can be reduced. Therefore, various proposals have conventionally been made for this type of phosphor using an LED as a light source.
[0006]
For example, Takashi Mukai et al., Applied Physics, Vol. 68, No. 2, (1999) pp. 152-155 discloses a YAG phosphor in which a YAG-based oxide host crystal represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is doped with Ce. According to the document, a blue light emitted from a blue LED and a peak wavelength of 550 nm emitted from the YAG phosphor excited by the blue light are obtained by coating the surface of an InGaN-based blue LED chip with a thin YAG phosphor. And that white light can be obtained.
[0007]
Japanese Patent Application Laid-Open No. 2001-214162 discloses that, in terms of CaCO 3 , 20 to 50 mol% in terms of CaO, 0 to 30 mol% of Al 2 O 3 , 25 to 60 mol% of SiO, 5 to 50 mol% of AlN, A phosphor using an oxynitride glass containing 0.1 to 20 mol% of an oxide or a transition metal oxide as a base material is disclosed. According to the publication, in a Ca—Al—Si—ON-based oxynitride glass doped with Eu 2+ ions, when the nitrogen content is controlled, the peak wavelength of the excitation spectrum can be matched with the wavelength of the blue LED light. It describes what you can do.
[0008]
Also, J.I. W. H. van Krevel et. al. , Journal of Alloys and Compounds, vol. 268 (1998) pp. 272-277 discloses a phosphor obtained by doping Ce3 + ions into a Y-Si-ON-based oxynitride crystal. The document describes that the peak wavelength of the excitation spectrum of these phosphors is less than 400 nm and that the peak wavelength of the emission spectrum is 423 nm to 504 nm.
[0009]
Japanese Patent Application Laid-Open No. 60-206889 discloses light emission in which a part of Al in β-sialon is replaced with at least one activator element selected from Cu, Ag, Zr, Mn, In, Bi and lanthanoid. Nitride is disclosed. The publication describes that this light-emitting nitride is excited by ultraviolet light and that the peak wavelength of the light emission spectrum is 410 to 885 nm depending on the type of the activator.
[0010]
JP-A-8-133780 discloses a fluorophosphate fluorescent glass in which Tb or Eu is added as a fluorescent agent to a glass containing phosphorus, oxygen and fluorine. The publication describes that this glass is excited by ultraviolet rays and emits strong light in the visible light region.
[0011]
Further, JP-A-10-167755 discloses an oxide fluorescent glass in which Tb or Eu is added as a fluorescent agent to a glass containing silicon, boron, and oxygen. The publication describes that this glass is excited by ultraviolet rays and emits strong light in the visible light region.
[0012]
[Problems to be solved by the invention]
A white LED in which an LED and a phosphor are combined generally has a structure in which the surface of the LED is sealed with a resin containing the phosphor. Therefore, the white LED using the ultraviolet LED has a problem that the resin is deteriorated by ultraviolet rays and the durability is poor.
[0013]
On the other hand, a white LED using a blue LED has an advantage that there is no such a problem. In addition, there is an advantage that luminous efficiency is higher than that of a white LED using an ultraviolet LED.
[0014]
However, Ce-doped YAG phosphors are characterized by very weak red light. For this reason, the white LED obtained by combining the phosphor and the blue LED has a problem that, when the red object is irradiated with the LED light, the object looks yellowish red and is inferior in color reproducibility (color rendering). is there.
[0015]
On the other hand, the phosphor disclosed in Japanese Patent Application Laid-Open No. 2001-214162 uses oxynitride glass as a base material, and partially converts Ca 2+ ions of the base material to Eu 2+ , Eu 3+ , Ce 3+ , Tb 3+, and the like. It is synthesized by substituting rare earth ions or transition metal ions such as Cr 3+ and Mn 2+ . This phosphor changes the ratio of ionicity and covalent bondability by replacing a part of oxygen (-2 valence) in the oxynitride glass with nitrogen (-3 valence), whereby the excitation wavelength and light emission are changed. It is said that the wavelength can be freely changed.
[0016]
However, this phosphor uses glass as a base material. For this reason, the characteristic of having an excitation spectrum in a wide wavelength range (≦ 550 nm) in the visible / ultraviolet light region due to the coordination field of the luminescent ions specific to glass is observed, but the excitation intensity is insufficient compared with the crystalline base material. There is a problem of doing.
[0017]
Further, in this kind of phosphor, a rare earth element is generally used as a luminescent center, but the rare earth element is expensive. Therefore, in order to reduce the cost of the phosphor, it is desired to make the added rare earth element function efficiently as a light emission center and reduce the amount of the rare earth element added.
[0018]
The problem to be solved by the present invention is to provide a crystalline α-sialon phosphor that is excited by blue light and emits fluorescence having a complementary color relationship with blue light. Another object to be solved by the present invention is to provide an α-sialon phosphor which has a high emission intensity and provides white color with excellent color rendering properties when used in combination with a blue LED. Still another object of the present invention is to provide an α-sialon phosphor that emits light efficiently even when a rare earth element serving as a luminescence center is added in a small amount.
[0019]
[Means for Solving the Problems]
Α-Sialon phosphor according to the present invention to solve the above problems,
General formula: M x Si 12- (m + n) Al (m + n) O n N 16-n
(Where M is one or more metal elements selected from Li, Mg, Ca, Y, and rare earth elements other than La and Ce. X = m / δ. Δ is the metal element M Average valence: 0.15 ≦ x ≦ 1.5. 1.8 ≦ m / n ≦ 2.2.)
Is used as a base material, and a part of the metal element M solid-dissolved in the α-sialon is replaced with Eu while maintaining the neutrality of the charge.
[0020]
When blue light is irradiated to the α-sialon phosphor to which Eu is added, Eu is excited by the blue light, and emits fluorescence having a complementary color relationship with the blue light. At this time, when the (m / n) ratio in the α-sialon falls within a predetermined range, the number of impurity phases decreases, and the crystal phase becomes single-phase. Further, the crystallinity of α-sialon is also improved. Therefore, a phosphor with high emission intensity can be obtained. In addition, even if the amount of Eu added is very small, light is efficiently emitted, so that the cost of the phosphor can be reduced. Further, when the fluorescent light emitted from the phosphor is mixed with blue light, reddish warm white light is obtained.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail. The α-sialon phosphor according to the first embodiment of the present invention is characterized in that α-sialon represented by the following general formula 1 is used as a base material.
[0022]
Embedded image
M x Si 12- (m + n ) Al (m + n) O n N 16-n
(Where M is one or more metal elements selected from Li, Mg, Ca, Y, and rare earth elements other than La and Ce. X = m / δ. Δ is the metal element M Average valence: 0.15 ≦ x ≦ 1.5. 1.8 ≦ m / n ≦ 2.2.)
[0023]
In the formula (1), a relation of “x = m / δ” is required between the solid solution amount x of the metal element M dissolved in α-sialon, the average valence δ of the metal element M, and m. The purpose is to maintain the neutrality of the charge in α-sialon. The reason why α-sialon in which the metal element M is dissolved in solid solution is used as the base material of the phosphor is that higher emission intensity and more efficient light emission can be obtained by dissolving the metal element M in solid solution.
[0024]
The solid solution amount x of the metal element M in α-sialon is preferably from 0.15 to 1.5. When the amount x of the solid solution is less than 0.15 and when the amount x of the solid solution exceeds 1.5, a phase other than the α phase is formed, and the emission intensity is undesirably reduced. The value of the solid solution amount x is more preferably 0.3 or more and 0.75 or less.
[0025]
The (m / n) ratio is preferably from 1.5 to 2.5. In the α-sialon represented by the chemical formula 1, when the (m / n) ratio is limited to this range, the number of impurity phases is reduced, and the single phase of the crystal phase is advanced. Further, the crystallinity of α-sialon is also improved. Therefore, a phosphor with high emission intensity can be obtained. The (m / n) ratio is more preferably 1.8 or more and 2.2 or less.
[0026]
The α-sialon phosphor according to the present embodiment is obtained by substituting a part of the metal element M dissolved in α-sialon represented by the formula 1 with Eu while maintaining neutrality of electric charge. Consists of Eu dissolved in α-sialon is considered to be a divalent ion. It is also believed that the neutrality of the charge is maintained when oxygen and nitrogen contained in α-sialon have a predetermined element ratio.
[0027]
In the present embodiment, the substitution rate of the metal element M by Eu (hereinafter, referred to as “M substitution rate”) is not particularly limited. The α-sialon phosphor according to the present embodiment uses “Eu”, which is a rare earth element, as a metal element M, and a part of the metal element M is replaced with Eu (that is, only Eu is used). Α-sialon in which is dissolved as a solid solution.
[0028]
In general, the emission intensity increases as the amount of emission centers contained in the phosphor increases and / or as the emission centers are more uniformly dispersed. On the other hand, if the amount of the luminescent center is too large, concentration quenching occurs, so that the luminescent intensity of the phosphor is rather reduced. In order to obtain high emission intensity, it is preferable to use an element other than Eu as the metal element M, and to set the M substitution rate to 2 at% or more and 50 at% or less. The M substitution ratio is more preferably 5 at% or more and 40 at% or less.
[0029]
The α-sialon phosphor according to the present embodiment can be used for various applications, but when used as a phosphor for an LED, it is usually used in a powder state. The powdered phosphor is mixed with a suitable resin, and the mixture is applied to the surface of the LED. In order to obtain good coatability, the weight average particle diameter of the powder is preferably 0.5 μm or more and 50 μm or less, more preferably 2 μm or more and 10 μm or less.
[0030]
The composition of the α-sialon phosphor according to the present embodiment described above can also be represented by the following general formula (2). It is desirable that the α-sialon phosphor according to the present embodiment is ideally composed of only the phase represented by the formula (2). (For example, unreacted raw materials, β phase, glass phase, etc.).
[0031]
Embedded image
([M δ +] 1- y [Eu 2+] 0.5δy) x Si 12- (m + n) Al (m + n) O n N 16-n
(Where M is one or more metal elements selected from Li, Mg, Ca, Y, and rare earth elements other than La and Ce. X = m / δ. Δ is the metal element M Average valence: 0.15 ≦ x ≦ 1.5. 0 <y <1. 1.8 ≦ m / n ≦ 2.2.)
[0032]
Next, the function of the α-sialon phosphor according to the present embodiment will be described. α-Sialon is a compound having a wide composition range. However, when the composition (particularly, (m / n) ratio) in α-Sialon is limited to a predetermined range, an impurity phase decreases and a crystal phase (α phase) ) Is becoming single-phase. Further, the crystallinity of α-sialon is also improved.
[0033]
Since the phosphor according to the present embodiment uses crystalline α-sialon having such a specific composition as a base material, high emission intensity can be obtained. In addition, since efficient light emission can be obtained even with a small amount of Eu added, the amount of Eu activator used can be reduced, and the cost of the phosphor can be reduced. In addition, since α-Sialon is used as a base material, the material has excellent thermal and mechanical properties and chemical stability, and exhibits high durability even in a severe environment.
[0034]
Further, the α-sialon phosphor according to the present embodiment is excited by excitation light including light having a wavelength of 470 ± 30 nm, and emits fluorescence having a peak wavelength of an emission spectrum of 590 ± 30 nm. Therefore, when the phosphor is applied to the surface of the blue LED, the phosphor is excited by the blue light emitted from the blue LED, and emits a fluorescent light having a complementary color relationship with the blue light. In addition, this fluorescence has a stronger red component than the fluorescence emitted from the conventional phosphor. Therefore, by mixing with blue light, reddish warm white light can be obtained.
[0035]
Next, an α-sialon phosphor according to a second embodiment of the present invention will be described. The α-sialon phosphor according to the present embodiment is characterized in that α-sialon represented by the following general formula 3 is used as a base material.
[0036]
Embedded image
Ca x Si 12- (m + n ) Al (m + n) O n N 16-n
(However, x = m / 2. 0.30 ≦ x ≦ 0.75. 1.8 ≦ m / n ≦ 2.2.)
[0037]
The α-sialon phosphor according to the present embodiment is characterized in that Ca is selected as the metal element M to be dissolved in α-sialon as a base material. Among the metal elements M described above, Ca in particular has an effect of increasing the emission intensity of the phosphor.
[0038]
The solid solution amount x of Ca in α-sialon is preferably from 0.30 to 0.75. When the amount x of the solid solution is less than 0.30, and when the amount x of the solid solution exceeds 0.75, the luminous intensity is lowered, which is not preferable. The value of the solid solution amount x is more preferably 0.3 or more and 0.6 or less.
[0039]
The (m / n) ratio is preferably from 1.5 to 2.5. In the α-sialon represented by the formula (3), when the (m / n) ratio is limited to this range, the number of impurity phases decreases and the single-phase crystal phase proceeds. Further, the crystallinity of α-sialon is also improved. Therefore, a phosphor with high emission intensity can be obtained. The (m / n) ratio is more preferably 1.8 or more and 2.2 or less.
[0040]
Further, the α-sialon phosphor according to the present embodiment is obtained by substituting a part of Ca dissolved in α-sialon represented by Formula 3 with Eu while maintaining neutrality of charge. . Eu dissolved in α-sialon is considered to be a divalent ion. It is also believed that the neutrality of the charge is maintained when oxygen and nitrogen contained in α-sialon have a predetermined element ratio.
[0041]
In the present embodiment, the substitution rate of Ca by Eu (hereinafter, referred to as “Ca substitution rate”) is preferably 2 at% or more and 50 at% or less. If the Ca substitution rate is less than 2 at%, high emission intensity cannot be obtained because the amount of emission centers is small. On the other hand, if the Ca substitution rate exceeds 50 at%, a large increase in the emission intensity cannot be obtained, but rather the cost of the phosphor is increased, which is not preferable. The Ca replacement ratio is more preferably 5 at% or more and 40 at% or less.
[0042]
Furthermore, when the phosphor according to the present embodiment is used as a powder, the weight average particle diameter of the powder is preferably 0.5 μm or more and 50 μm or less, more preferably 2 μm or more, in order to obtain good coatability. It is 10 μm or less.
[0043]
The composition of the α-sialon phosphor according to the present embodiment described above can also be represented by the following general formula (4). Note that, ideally, the α-sialon phosphor according to the present embodiment is desirably composed of only the phase represented by the formula (4). (For example, unreacted raw materials, β phase, glass phase, etc.).
[0044]
Embedded image
([Ca 2+] 1-y [Eu 2+] y) x Si 12- (m + n) Al (m + n) O n N 16-n
(However, x = m / 2. 0.30 ≦ x ≦ 0.75. 0.05 ≦ y ≦ 0.4. 1.8 ≦ m / n ≦ 2.2.)
[0045]
Next, the function of the α-sialon phosphor according to the present embodiment will be described. In a phosphor using α-sialon as a base material, in addition to limiting the composition of α-sialon (particularly, (m / n) ratio) to a predetermined range, when Ca is used as the metal element M, the emission intensity Phosphor with a high level of Although the details of this reason are unclear, the solid solution of Ca makes it easier to homogenize the composition, promotes the formation of a single phase of the crystal phase and improves the crystallinity, and the emission centers are uniformly dispersed. It may be easier.
[0046]
Since the phosphor according to the present embodiment uses crystalline α-sialon having such a specific composition as a base material, high emission intensity can be obtained. In addition, since efficient light emission can be obtained even with a small amount of Eu added, the amount of Eu activator used can be reduced, and the cost of the phosphor can be reduced. Furthermore, since α-Sialon is used as a base material, it has excellent thermal and mechanical properties and chemical stability, and exhibits high durability even in a severe environment.
[0047]
Further, the α-sialon phosphor according to the present embodiment is excited by excitation light including light having a wavelength of 470 ± 30 nm, and emits fluorescence having a peak wavelength of an emission spectrum of 590 ± 30 nm. Therefore, when the phosphor is applied to the surface of the blue LED, the phosphor is excited by the blue light emitted from the blue LED, and emits a fluorescent light having a complementary color relationship with the blue light. In addition, this fluorescence has a stronger red component than the fluorescence emitted from the conventional phosphor. Therefore, by mixing with blue light, reddish warm white light can be obtained.
[0048]
Next, a method for producing the α-sialon phosphor according to the present invention will be described. The α-sialon phosphor according to the present invention is obtained by mixing compounds containing component elements at a predetermined ratio and baking the obtained mixture under predetermined conditions.
[0049]
As starting materials, compounds such as carbonates, oxides, and nitrides containing Si, Al, Eu, and a metal element M (hereinafter, these are referred to as “cationic elements”) can be used. As a starting material, a simple compound containing one kind of cation element may be used, or a composite compound containing two or more kinds of cation elements may be used.
[0050]
The kind and the mixing ratio of the starting materials are selected according to the composition of the phosphor to be prepared. Basically, one or two or more M sources including the metal element M and one or two or more sources including Eu so that the ratio of the cation element is within the range shown in the formula (2). May be mixed at a predetermined ratio with one or two or more Si supply sources including Si and one or two or more Al supply sources including Al. In addition, at least one of these cation element supply sources is a compound (for example, oxide, carbonate, hydroxide, oxynitride) capable of supplying an amount of oxygen necessary for producing α-sialon. Etc.).
[0051]
For example, a compound capable of producing an oxide MO δ / 2 of the metal element M (hereinafter referred to as “M compound”), Eu 2 O 3 , Si 3 N 4 and AlN as starting materials, When preparing a phosphor having a composition represented by the formula, the M compound is 1 mol% to 20 mol% in terms of MO δ / 2 , Eu 2 O 3 is 0.5 mol% to 10 mol%, and Si 3 N 4 is It is preferable that 28 mol% or more and 89 mol% or less, and AlN is 9 mol% or more and 60 mol% or less, that is, 100 mol% in total.
[0052]
For example, when a phosphor having a composition represented by Formula 4 is prepared using CaCO 3 , Eu 2 O 3 , Si 3 N 4 and AlN as starting materials, CaCO 3 is converted to 3 mol% in terms of CaO. above 12 mol% or less, Eu 2 O 3 and 0.15 mol% or more 2.5 mol% or less, Si 3 N 4 51mol% or more 77 mol% or less, AlN and a less 17 mol% or more 38 mol%, a total of 100 mol% It is preferable to mix them. The same applies when other starting materials are used.
[0053]
The compounded starting material is fired under predetermined conditions. The atmosphere during firing is preferably a nitrogen gas atmosphere having a gauge of 0.1 atm or more. If the pressure of the nitrogen gas is less than 0.1 atm, the decomposition of α-sialon occurs, which is not preferable. The pressure of the nitrogen gas is more preferably 0.5 gauge or more.
[0054]
The firing temperature is preferably from 1650 ° C to 1900 ° C. If the sintering temperature is lower than 1650 ° C., the reaction rate of the solid phase reaction of the starting materials is undesirably reduced. On the other hand, if the firing temperature exceeds 1900 ° C., decomposition of α-sialon occurs, which is not preferable. The firing temperature is more preferably from 1700 ° C to 1850 ° C.
[0055]
The holding time (firing time) at the firing temperature is preferably 0.5 hours or more. If the calcination time is less than 0.5 hours, the solid phase reaction becomes insufficient, and an α-sialon single phase cannot be obtained, which is not preferable. The firing time is more preferably 1 hour or more.
[0056]
When firing is performed under such conditions, a powdery α-sialon phosphor in which a predetermined amount of the metal elements M and Eu is dissolved is obtained by a solid-phase reaction. Immediately after firing, the powder is usually in an agglomerated state. When this is used as a phosphor for an LED, the synthesized powdered phosphor is ground to a predetermined particle size.
[0057]
【Example】
(Examples 1 to 9)
As starting materials, CaCO 3 , Eu 2 O 3 , Si 3 N 4 and AlN were used, weighed so that the final composition was within the range of the formula 2, and mixed in a mortar made of silicon nitride. In this example, m = 0.5 to 3.0, (m / n) ratio = 2.0, and Ca substitution rate y = 0.1 to 0.38.
[0058]
Next, this mixture was placed in a Mo container of about 2 cm square and fired using a graphite resistance heating type pressure sintering furnace. The firing was performed in a nitrogen gas at a gauge of 1.0 to 8.5 atm under the conditions of firing temperature: 1650 ° C to 1830 ° C and firing time: 2 to 4 hours. Further, the obtained powder was pulverized in a silicon nitride mortar to obtain a phosphor sample.
[0059]
(Examples 10 to 12)
Li 2 CO 3 (Example 10), MgCO 3 (Example 11) or Y 2 O 3 (Example 12) was used as a supply source of the metal element M, and these were mixed with Eu 2 O 3 , Si 3 N 4 and AlN was weighed so that the final composition was within the range of the formula 2, and mixed in a silicon nitride mortar. In this example, m = 0.9, (m / n) ratio = 2.0, and M substitution rate y = 0.1.
[0060]
Next, this mixture was placed in a Mo container of about 2 cm square and fired using a graphite resistance heating type pressure sintering furnace. The firing was performed in a nitrogen gas at a gauge of 1.0 atm under the conditions of a firing temperature of 1750 ° C. and a firing time of 2 hours. Further, the obtained powder was pulverized in a silicon nitride mortar to obtain a phosphor sample.
[0061]
(Comparative Examples 1 to 6)
CaCO 3 (Comparative Examples 1 to 5) or ZnO (Comparative Example 6) was used as a supply source of the metal element M, and these were weighed in predetermined amounts with Eu 2 O 3 , Si 3 N 4 and AlN, and silicon nitride Mix in mortar. In this comparative example, m = 0.3 to 4.0, n = 0.15 to 3.0, and the M substitution rate y = 0.05 to 0.43.
[0062]
Next, this mixture was placed in a Mo container of about 2 cm square and fired using a graphite resistance heating type pressure sintering furnace. The firing was performed in a nitrogen gas at a gauge of 1.0 atm under the conditions of a firing temperature of 1750 ° C. and a firing time of 2 hours. Further, the obtained powder was pulverized in a silicon nitride mortar to obtain a phosphor sample.
[0063]
The phosphor samples obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were placed in a glass sample bottle (φ18 × 40 × φ10, 6 ml), and excitation light was applied vertically (distance: 30 mm) to the bottom surface. . Fluorescence emitted from the phosphor sample was condensed by a fiberscope from an oblique direction of about 30 ° (distance: about 150 mm), and its emission spectrum was evaluated using a spectrophotometer. For the irradiation of the excitation light, one bullet-shaped blue LED (3.5 V, 20 mA, φ5, directional angle 15 °, emission peak wavelength 470 nm or 450 nm) was used.
[0064]
Further, with respect to these phosphor samples, the generated phases were identified by an X-ray diffraction method, and the average particle size (weight average particle size) was measured using a laser diffraction type particle size distribution device. Table 1 shows the composition, synthesis conditions, powder characteristics, and excitation / emission characteristics of each phosphor sample.
[0065]
[Table 1]
Figure 2004067837
[0066]
The main generated phases of the phosphor samples obtained in Examples 1 to 12 and Comparative Examples 1 to 6 were all α phases. In addition, the average particle diameter was 5 μm except for Example 6 (3 μm) where the firing temperature was 1650 ° C. and Example 9 (7 μm) where the firing temperature was 1830 ° C.
[0067]
In Comparative Examples 1 and 2, the solid solution amount x is out of the range of the present invention. In Comparative Examples 3 to 5, the (m / n) ratio is outside the range of the present invention. Further, in Comparative Example 6, Zn was used as the metal element M. In these cases, when blue light of 470 nm is used as the excitation light, an emission spectrum having an emission peak wavelength of 580 to 600 nm is obtained. However, the emission peak intensity was 80 to 261 (arbitrary unit).
[0068]
On the other hand, in Examples 1 to 9 using Ca as the metal element M, when blue light of 450 nm or 470 nm was used as the excitation light, an emission spectrum having an emission peak wavelength of 587 to 604 nm was obtained. In addition, the emission peak intensity exceeded 300 (arbitrary unit) in each case.
[0069]
When compared with the same composition, the emission peak intensity tended to increase as the firing temperature increased. In Example 9, the emission peak intensity exceeded 900 (arbitrary unit). In the case of Examples 3 and 8 using blue light of 450 nm as excitation light, the emission peak intensities were 727 (arbitrary unit) and 826 (arbitrary unit), respectively. The values were higher than those of Examples 2 and 7 using blue light of 470 nm as the excitation light.
[0070]
In Examples 10 to 12 using Li, Mg, and Y as the metal elements M, respectively, when blue light of 470 nm was used as the excitation light, an emission spectrum having an emission peak wavelength of 585 to 589 nm was obtained. Was. In addition, the emission peak intensity exceeded 300 (arbitrary unit) in each case.
[0071]
As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
[0072]
For example, the phosphor according to the present invention is particularly suitable as a phosphor for a white LED used in combination with a blue LED. However, the application of the present invention is not limited to this, and the phosphor of the present invention is not limited to this. Phosphors excited by near-ultraviolet / ultraviolet light having a wavelength of 400 nm or less, phosphors to which luminescent centers other than Eu are added, phosphors for reinforcing reddish components by adding to phosphors of white LEDs (yellow light emission), etc. Can also be used as
[0073]
【The invention's effect】
The α-sialon phosphor according to the present invention has an effect that a high emission intensity can be obtained because the α-sialon phosphor has a small impurity phase and the base material has high crystallinity. In addition, even if the addition amount of Eu is very small, light is efficiently emitted, and there is an effect that the cost of the phosphor can be reduced. Further, since the α-sialon phosphor according to the present invention is excited by blue light and emits strong red yellow light, a reddish warm white light can be obtained by mixing with blue light. There is.

Claims (5)

一般式:
Si12−(m+n)Al(m+n)16−n
(但し、Mは、Li、Mg、Ca、Y、並びにLa及びCeを除く希土類元素の中から選ばれる1種又は2種以上の金属元素。x=m/δ。δは、金属元素Mの平均価数。0.15≦x≦1.5。1.8≦m/n≦2.2。)
で表されるα−サイアロンを母体材料とし、
前記α−サイアロンに固溶する前記金属元素Mの一部を、電荷の中性を保ちながらEuで置換したものからなるα−サイアロン蛍光体。
General formula:
M x Si 12- (m + n ) Al (m + n) O n N 16-n
(Where M is one or more metal elements selected from Li, Mg, Ca, Y, and rare earth elements other than La and Ce. X = m / δ. Δ is the metal element M Average valence: 0.15 ≦ x ≦ 1.5. 1.8 ≦ m / n ≦ 2.2.)
Α-sialon represented by the parent material,
An α-sialon phosphor comprising a part of the metal element M that forms a solid solution with the α-sialon and substituted with Eu while maintaining neutrality of charge.
一般式:
([Mδ+1−y[Eu2+0.5δySi12−(m+n)Al(m+n)16−n
(但し、Mは、Li、Mg、Ca、Y、並びにLa及びCeを除く希土類元素の中から選ばれる1種又は2種以上の金属元素。x=m/δ。δは、金属元素Mの平均価数。0.15≦x≦1.5。0<y<1。1.8≦m/n≦2.2。)
で表されるものからなるα−サイアロン蛍光体。
General formula:
([M δ +] 1- y [Eu 2+] 0.5δy) x Si 12- (m + n) Al (m + n) O n N 16-n
(Where M is one or more metal elements selected from Li, Mg, Ca, Y, and rare earth elements other than La and Ce. X = m / δ. Δ is the metal element M Average valence: 0.15 ≦ x ≦ 1.5. 0 <y <1. 1.8 ≦ m / n ≦ 2.2.)
An α-sialon phosphor consisting of:
一般式:
CaSi12−(m+n)Al(m+n)16−n
(但し、x=m/2。0.30≦x≦0.75。1.8≦m/n≦2.2。)
で表されるα−サイアロンを母体材料とし、
前記α−サイアロンに固溶するCaの5at%〜40at%を、電荷の中性を保ちながらEuで置換したものからなるα−サイアロン蛍光体。
General formula:
Ca x Si 12- (m + n ) Al (m + n) O n N 16-n
(However, x = m / 2. 0.30 ≦ x ≦ 0.75. 1.8 ≦ m / n ≦ 2.2.)
Α-sialon represented by the parent material,
An α-sialon phosphor comprising 5 at% to 40 at% of Ca dissolved in the α-sialon and substituted with Eu while maintaining neutrality of charge.
一般式:
([Ca2+1−y[Eu2+Si12−(m+n)Al(m+n)16−n
(但し、x=m/2。0.30≦x≦0.75。0.05≦y≦0.4。1.8≦m/n≦2.2。)
で表されるものからなるα−サイアロン蛍光体。
General formula:
([Ca 2+] 1-y [Eu 2+] y) x Si 12- (m + n) Al (m + n) O n N 16-n
(However, x = m / 2. 0.30 ≦ x ≦ 0.75. 0.05 ≦ y ≦ 0.4. 1.8 ≦ m / n ≦ 2.2.)
An α-sialon phosphor consisting of:
470±30nmの波長を有する光を含む励起光で励起され、発光スペクトルのピーク波長が590±30nmである蛍光を放出する請求項1、2、3又は4に記載のα−サイアロン蛍光体。5. The α-sialon phosphor according to claim 1, wherein the phosphor is excited by excitation light including light having a wavelength of 470 ± 30 nm and emits fluorescence having a peak wavelength of an emission spectrum of 590 ± 30 nm.
JP2002228081A 2002-08-06 2002-08-06 α-sialon phosphor Expired - Fee Related JP4207489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228081A JP4207489B2 (en) 2002-08-06 2002-08-06 α-sialon phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228081A JP4207489B2 (en) 2002-08-06 2002-08-06 α-sialon phosphor

Publications (2)

Publication Number Publication Date
JP2004067837A true JP2004067837A (en) 2004-03-04
JP4207489B2 JP4207489B2 (en) 2009-01-14

Family

ID=32014861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228081A Expired - Fee Related JP4207489B2 (en) 2002-08-06 2002-08-06 α-sialon phosphor

Country Status (1)

Country Link
JP (1) JP4207489B2 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008794A (en) * 2003-06-20 2005-01-13 National Institute For Materials Science Sialon phosphor and method for producing the same
EP1498466A1 (en) * 2003-07-16 2005-01-19 Ube Industries, Ltd. Sialon-based phosphor and its production method
WO2005033247A1 (en) * 2003-10-03 2005-04-14 National Institute For Materials Science Oxynitride phosphor and light-emitting device
WO2005052087A1 (en) * 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science Phosphor and light emission appliance using phosphor
JP2005154611A (en) * 2003-11-27 2005-06-16 National Institute For Materials Science Method for producing sialon phosphor
JP2005255885A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and production method thereof
WO2005090517A1 (en) * 2004-03-22 2005-09-29 Fujikura Ltd. Light-emitting device and illuminating device
WO2005090514A1 (en) * 2004-03-22 2005-09-29 Fujikura Ltd. Oxynitride phosphor and light-emitting device
JP2005272484A (en) * 2004-03-22 2005-10-06 Fujikura Ltd Light emitting device
JP2005307012A (en) * 2004-04-22 2005-11-04 National Institute For Materials Science Sialon phosphor and method for producing the same
WO2005123876A1 (en) * 2004-06-18 2005-12-29 National Institute For Materials Science α-SiAlON, α-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME
WO2006006582A1 (en) 2004-07-13 2006-01-19 Fujikura Ltd. Fluorescent substance and light bulb color light emitting diode lamp using the fluorescent substance and emitting light bulb color light
JP2006045271A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science α-type sialon powder and method for producing the same
JP2006054371A (en) * 2004-08-13 2006-02-23 Fujikura Ltd Light emitting diode lamp
JP2006140001A (en) * 2004-11-11 2006-06-01 Futaba Corp Fluorescent display tube
JP2006137902A (en) * 2004-11-15 2006-06-01 Shoei Chem Ind Co Nitride phosphor, process for producing nitride phosphor and white light-emitting element
WO2006070899A1 (en) * 2004-12-27 2006-07-06 Ube Industries, Ltd. Sialon phosphor particle and process for producing the same
WO2006093135A1 (en) * 2005-02-28 2006-09-08 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2006265506A (en) * 2005-02-28 2006-10-05 Denki Kagaku Kogyo Kk Phosphor, method for producing the same, and light emitting device using the same
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP2006321921A (en) * 2005-05-19 2006-11-30 Denki Kagaku Kogyo Kk α-type sialon phosphor and lighting equipment using the same
WO2007004493A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
WO2007004492A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
JP2007177075A (en) * 2005-12-28 2007-07-12 National Institute For Materials Science Method for producing Ca-α-sialon phosphor using shell
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7267786B2 (en) 2003-12-22 2007-09-11 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Phosphor and light source comprising such a phosphor
WO2007105631A1 (en) * 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba Phosphor and light-emitting device
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
EP1867697A1 (en) * 2005-03-04 2007-12-19 Dowa Mining Co., Ltd. Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
EP1878778A1 (en) * 2005-03-31 2008-01-16 DOWA Electronics Materials Co., Ltd. Fluorescent substance, fluorescent substance sheet and process for producing the same, and luminescent device using said fluorescent substance
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
WO2008041452A1 (en) 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Process for producing nitride phosphor or oxonitride phosphor
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
EP2036966A1 (en) 2006-07-05 2009-03-18 Ube Industries, Ltd. Sialon-base oxynitride phosphors and process for production thereof
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
WO2009051138A1 (en) * 2007-10-17 2009-04-23 Denki Kagaku Kogyo Kabushiki Kaisha Phosphor and method for producing the same
WO2009051137A1 (en) * 2007-10-17 2009-04-23 Stanley Electric Co., Ltd. Light-emitting device, vehicular lighting fixture comprising the device, and head lamp
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
JP2009108223A (en) * 2007-10-31 2009-05-21 National Institute For Materials Science Phosphor, method for producing the same, and light emitting device using the same
US7573190B2 (en) 2004-02-18 2009-08-11 National Institute For Materials Science Light emitting element and lighting instrument
US7597821B2 (en) 2004-08-30 2009-10-06 Fujikura Ltd. Oxynitride phosphor and a light emitting device
JP2009293035A (en) * 2005-02-28 2009-12-17 Denki Kagaku Kogyo Kk Phosphor and method of manufacturing the same, and light-emitting element using the same
WO2010018873A1 (en) 2008-08-13 2010-02-18 宇部興産株式会社 LI-CONTAINING α-SIALON FLUORESCENT SUBSTANCE AND METHOD FOR MANUFACTURING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
USRE41234E1 (en) * 2000-08-28 2010-04-20 Toyoda Gosei Co., Ltd. Light-emitting unit having specific fluorescent material
JP2010118620A (en) * 2008-11-14 2010-05-27 Showa Denko Kk Light-emitting device
JP2011155297A (en) * 2004-04-27 2011-08-11 Panasonic Corp Light-emitting device
WO2011108740A1 (en) * 2010-03-01 2011-09-09 宇部興産株式会社 Li-CONTAINING α-SIALON FLUORESCENT PARTICLES, METHOD FOR PRODUCING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
JP2011195688A (en) * 2010-03-18 2011-10-06 Toshiba Corp Red phosphor and method for producing the same, and light emitting device
KR101109988B1 (en) 2007-05-22 2012-03-14 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Fluorescent substance, method for producing the same, and light-emitting device using the same
US8153023B2 (en) 2006-07-18 2012-04-10 Showa Denko K.K. Phosphor, method for production thereof, and light-emitting apparatus
WO2014077132A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
TWI454554B (en) * 2012-02-09 2014-10-01 Denki Kagaku Kogyo Kk Phosphor and illuminating device
JP2014193952A (en) * 2013-03-28 2014-10-09 National Institute For Materials Science Oxynitride phosphor and light emission appliance
CN104145003A (en) * 2012-03-29 2014-11-12 宇部兴产株式会社 Oxynitride phosphor powder
JP2018150433A (en) * 2017-03-10 2018-09-27 デンカ株式会社 Orange phosphor and light-emitting device
CN110498687A (en) * 2014-03-06 2019-11-26 地方独立行政法人神奈川县立产业技术综合研究所 Transparent fluorescent silicon-aluminum-oxynitride ceramic and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Oxynitride phosphor activated with rare earth elements
JP2003124527A (en) * 2001-07-16 2003-04-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit equipped with at least one led as light source
JP2003203504A (en) * 2001-09-20 2003-07-18 Patent Treuhand Ges Elektr Gluehlamp Mbh Lighting unit with at least one LED as light source
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit with at least one LED as light source
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon-based phosphor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Oxynitride phosphor activated with rare earth elements
JP2003124527A (en) * 2001-07-16 2003-04-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit equipped with at least one led as light source
JP2003203504A (en) * 2001-09-20 2003-07-18 Patent Treuhand Ges Elektr Gluehlamp Mbh Lighting unit with at least one LED as light source
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit with at least one LED as light source
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon-based phosphor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
G. Z. CAO ET AL.: ""α'-Sialon Ceramics: A Review"", CHEMISTRY OF MATERIALS, vol. 3, no. 2, JPN6008025248, 1991, pages 242 - 252, ISSN: 0001146702 *
J. W. H. VAN KREVEL ET AL.: ""Luminescence Properties of Terbium-, Cerium-, or Europium-Doped α-Sialon Materials"", JOURNAL OF SOLID STATE CHEMISTRY, vol. 165, no. 1, JPN6008025247, April 2002 (2002-04-01), pages 19 - 24, ISSN: 0001146701 *
JOURNAL OF SOLID STATE CHEMISTRY, vol. 165, no. 1, JPN4007008169, April 2002 (2002-04-01), pages 19 - 24, ISSN: 0000847234 *
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 85, no. 5, JPN4007008168, May 2002 (2002-05-01), pages 1229 - 1234, ISSN: 0000847233 *
R.-J. XIE ET AL.: ""Preparation and Luminescence Spectra of Calcium- and Rare-Earth (R= Eu,Tb and Pr)-Codoped α-SiAlON", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 85, no. 5, JPN6008025246, May 2002 (2002-05-01), pages 1229 - 1234, ISSN: 0001146700 *

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41234E1 (en) * 2000-08-28 2010-04-20 Toyoda Gosei Co., Ltd. Light-emitting unit having specific fluorescent material
JP2005008794A (en) * 2003-06-20 2005-01-13 National Institute For Materials Science Sialon phosphor and method for producing the same
EP1498466A1 (en) * 2003-07-16 2005-01-19 Ube Industries, Ltd. Sialon-based phosphor and its production method
US7144524B2 (en) 2003-07-16 2006-12-05 Ube Industries, Ltd. Sialon-based phosphor and its production method
WO2005033247A1 (en) * 2003-10-03 2005-04-14 National Institute For Materials Science Oxynitride phosphor and light-emitting device
JP2005112922A (en) * 2003-10-03 2005-04-28 National Institute For Materials Science Oxynitride phosphor
US7470378B2 (en) 2003-10-03 2008-12-30 National Institute For Materials Science Oxynitride fluorescent material and light-emitting device
WO2005052087A1 (en) * 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science Phosphor and light emission appliance using phosphor
US9738829B2 (en) 2003-11-26 2017-08-22 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
US10072207B2 (en) 2003-11-26 2018-09-11 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
US11084980B2 (en) 2003-11-26 2021-08-10 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
US11697765B2 (en) 2003-11-26 2023-07-11 Mitsubishi Chemical Corporation Phosphor and light-emitting equipment using phosphor
JP2005154611A (en) * 2003-11-27 2005-06-16 National Institute For Materials Science Method for producing sialon phosphor
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
US7267786B2 (en) 2003-12-22 2007-09-11 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Phosphor and light source comprising such a phosphor
US8148887B2 (en) 2004-02-18 2012-04-03 National Institute For Materials Science Light emitting diode lamp and light emitting device
US7573190B2 (en) 2004-02-18 2009-08-11 National Institute For Materials Science Light emitting element and lighting instrument
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
JP2005255885A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and production method thereof
WO2005090517A1 (en) * 2004-03-22 2005-09-29 Fujikura Ltd. Light-emitting device and illuminating device
US7564065B2 (en) 2004-03-22 2009-07-21 Fujikura Ltd. Light emitting device and a lighting apparatus
KR100806243B1 (en) * 2004-03-22 2008-02-22 가부시키가이샤후지쿠라 Oxynitride phosphor and light-emitting device
EP1736525A4 (en) * 2004-03-22 2008-11-19 Fujikura Ltd PHOSPHORUS OXYNITRIDE AND LIGHT EMISSION DEVICE
EP1734096A1 (en) * 2004-03-22 2006-12-20 Fujikura Ltd. Light-emitting device and illuminating device
EP1736525A1 (en) * 2004-03-22 2006-12-27 Fujikura Ltd. Oxynitride phosphor and light-emitting device
US7402943B2 (en) 2004-03-22 2008-07-22 Fujikura Ltd. Oxynitride phosphor and a light emitting device
JP2005272484A (en) * 2004-03-22 2005-10-06 Fujikura Ltd Light emitting device
WO2005090514A1 (en) * 2004-03-22 2005-09-29 Fujikura Ltd. Oxynitride phosphor and light-emitting device
EP1734096A4 (en) * 2004-03-22 2008-12-31 Fujikura Ltd Light-emitting device and illuminating device
JP2005307012A (en) * 2004-04-22 2005-11-04 National Institute For Materials Science Sialon phosphor and method for producing the same
JP4524368B2 (en) * 2004-04-22 2010-08-18 独立行政法人物質・材料研究機構 Sialon phosphor and method for producing the same
JP2011155297A (en) * 2004-04-27 2011-08-11 Panasonic Corp Light-emitting device
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
EP1772509A1 (en) * 2004-06-18 2007-04-11 National Institute for Materials Science alpha-SiAlON, alpha-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME
JP4762892B2 (en) * 2004-06-18 2011-08-31 独立行政法人物質・材料研究機構 α-sialon and method for producing the same
US7906040B2 (en) 2004-06-18 2011-03-15 National Institute For Materials Science α-Sialon, α-sialon phosphor and method for producing the same
KR100900282B1 (en) 2004-06-18 2009-05-29 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 ?-SiAlON, ?-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME
EP1772509A4 (en) * 2004-06-18 2010-09-29 Nat Inst For Materials Science alpha-SiAlON, alpha-SiAlON LUMINOPHORE AND PROCESS FOR PRODUCING THE SAME
WO2005123876A1 (en) * 2004-06-18 2005-12-29 National Institute For Materials Science α-SiAlON, α-SiAlON PHOSPHOR AND METHOD FOR PRODUCING SAME
USRE44996E1 (en) 2004-06-25 2014-07-08 Nichia Corporation Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US8441180B2 (en) 2004-07-09 2013-05-14 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7884539B2 (en) 2004-07-09 2011-02-08 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
EP1780255A1 (en) * 2004-07-13 2007-05-02 Fujikura, Ltd. Fluorescent substance and light bulb color light emitting diode lamp using the fluorescent substance and emitting light bulb color light
WO2006006582A1 (en) 2004-07-13 2006-01-19 Fujikura Ltd. Fluorescent substance and light bulb color light emitting diode lamp using the fluorescent substance and emitting light bulb color light
EP1780255A4 (en) * 2004-07-13 2008-12-24 Fujikura Ltd FLUORESCENT SUBSTANCE AND COLORED LIGHT-EMITTING DIODE LAMP FOR ELECTRIC BULB USING THE FLUORESCENT SUBSTANCE AND EMITTING COLOR LIGHT FOR ELECTRIC BULB
US8508119B2 (en) 2004-07-13 2013-08-13 Fujikura Ltd. Phosphor and an incandescent lamp color light emitting diode lamp using the same
US8066910B2 (en) 2004-07-28 2011-11-29 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP2006045271A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science α-type sialon powder and method for producing the same
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
USRE44162E1 (en) * 2004-08-02 2013-04-23 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP2006054371A (en) * 2004-08-13 2006-02-23 Fujikura Ltd Light emitting diode lamp
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
USRE45502E1 (en) 2004-08-20 2015-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
EP2022836A1 (en) * 2004-08-27 2009-02-11 DOWA Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source using the same
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
US7803286B2 (en) 2004-08-27 2010-09-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US8308981B2 (en) 2004-08-27 2012-11-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7597821B2 (en) 2004-08-30 2009-10-06 Fujikura Ltd. Oxynitride phosphor and a light emitting device
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
JP2006140001A (en) * 2004-11-11 2006-06-01 Futaba Corp Fluorescent display tube
JP2006137902A (en) * 2004-11-15 2006-06-01 Shoei Chem Ind Co Nitride phosphor, process for producing nitride phosphor and white light-emitting element
WO2006070899A1 (en) * 2004-12-27 2006-07-06 Ube Industries, Ltd. Sialon phosphor particle and process for producing the same
JPWO2006070899A1 (en) * 2004-12-27 2008-06-12 宇部興産株式会社 Sialon phosphor particles and method for producing the same
JP4618255B2 (en) * 2004-12-27 2011-01-26 宇部興産株式会社 Sialon phosphor particles and manufacturing method thereof
US8277686B2 (en) 2004-12-27 2012-10-02 Ube Industries, Ltd. Sialon phosphor particles and production method thereof
US8372309B2 (en) 2005-02-25 2013-02-12 Mitsubishi Chemical Corporation Phosphor and manufacturing method therefore, and light emission device using the phosphor
TWI411660B (en) * 2005-02-28 2013-10-11 Denki Kagaku Kogyo Kk A phosphor and a method for manufacturing the same, and a light-emitting element using the same
JP4512869B2 (en) * 2005-02-28 2010-07-28 電気化学工業株式会社 Phosphor, method for producing the same, and light emitting device using the same
WO2006093135A1 (en) * 2005-02-28 2006-09-08 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2009293035A (en) * 2005-02-28 2009-12-17 Denki Kagaku Kogyo Kk Phosphor and method of manufacturing the same, and light-emitting element using the same
US8125139B2 (en) 2005-02-28 2012-02-28 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
JP2006265506A (en) * 2005-02-28 2006-10-05 Denki Kagaku Kogyo Kk Phosphor, method for producing the same, and light emitting device using the same
KR101115855B1 (en) * 2005-02-28 2012-03-08 덴끼 가가꾸 고교 가부시키가이샤 Fluorescent substance and process for producing the same, and luminescent element using the same
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
EP1867697A1 (en) * 2005-03-04 2007-12-19 Dowa Mining Co., Ltd. Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
EP1867697A4 (en) * 2005-03-04 2012-03-21 Mitsubishi Chem Corp FLUORESCENT SUBSTANCE AND PROCESS FOR PRODUCING THE SAME, AND LIGHT EMITTING DEVICE USING THE FLUORESCENT SUBSTANCE
JP5145934B2 (en) * 2005-03-04 2013-02-20 三菱化学株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
EP1878778A1 (en) * 2005-03-31 2008-01-16 DOWA Electronics Materials Co., Ltd. Fluorescent substance, fluorescent substance sheet and process for producing the same, and luminescent device using said fluorescent substance
JPWO2006106883A1 (en) * 2005-03-31 2008-09-11 Dowaエレクトロニクス株式会社 Phosphor, phosphor sheet and method for producing the same, and light emitting device using the phosphor
EP1878778A4 (en) * 2005-03-31 2012-04-04 Mitsubishi Chem Corp FLUORESCENT SUBSTANCE, FLUORESCENT SUBSTANCE SHEET AND PROCESS FOR PRODUCING THE SAME, AND LUMINESCENT DEVICE USING SAID FLUORESCENT SUBSTANCE
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
JP2006321921A (en) * 2005-05-19 2006-11-30 Denki Kagaku Kogyo Kk α-type sialon phosphor and lighting equipment using the same
JP4538739B2 (en) * 2005-05-19 2010-09-08 電気化学工業株式会社 α-type sialon phosphor and lighting equipment using the same
JP5145534B2 (en) * 2005-07-01 2013-02-20 独立行政法人物質・材料研究機構 Phosphor, method of manufacturing the same, and lighting fixture
WO2007004493A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
US9677000B2 (en) 2005-07-01 2017-06-13 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
US7825580B2 (en) 2005-07-01 2010-11-02 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
US8883039B2 (en) 2005-07-01 2014-11-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
WO2007004492A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science Fluorophor and method for production thereof and illuminator
JP2007177075A (en) * 2005-12-28 2007-07-12 National Institute For Materials Science Method for producing Ca-α-sialon phosphor using shell
US8475680B2 (en) 2006-03-10 2013-07-02 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8450923B2 (en) 2006-03-10 2013-05-28 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
JP2011084741A (en) * 2006-03-10 2011-04-28 Toshiba Corp Light-emitting device
US8491817B2 (en) 2006-03-10 2013-07-23 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
JPWO2007105631A1 (en) * 2006-03-10 2009-07-30 株式会社東芝 Phosphor and light emitting device
JP2011116994A (en) * 2006-03-10 2011-06-16 Toshiba Corp Method for manufacturing fluorescent material
WO2007105631A1 (en) * 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba Phosphor and light-emitting device
US8482192B2 (en) 2006-03-10 2013-07-09 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
JP4762248B2 (en) * 2006-03-10 2011-08-31 株式会社東芝 Phosphor
JP2012036408A (en) * 2006-07-05 2012-02-23 Ube Industries Ltd Method of producing sialon oxynitride phosphor
EP2036966A1 (en) 2006-07-05 2009-03-18 Ube Industries, Ltd. Sialon-base oxynitride phosphors and process for production thereof
KR101354896B1 (en) * 2006-07-05 2014-01-24 우베 고산 가부시키가이샤 Sialon-base oxynitride phosphors and process for production thereof
US8628687B2 (en) 2006-07-05 2014-01-14 Ube Industries, Ltd. Sialon-based oxynitride phosphor and production method thereof
US8153023B2 (en) 2006-07-18 2012-04-10 Showa Denko K.K. Phosphor, method for production thereof, and light-emitting apparatus
WO2008041452A1 (en) 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Process for producing nitride phosphor or oxonitride phosphor
US9683168B2 (en) 2006-09-29 2017-06-20 Nichia Corporation Manufacturing method of nitride phosphor or oxynitride phosphor
US8513876B2 (en) 2007-05-22 2013-08-20 National Institute For Materials Science Fluorescent substance, method for producing the same, and light-emitting device using the same
KR101109988B1 (en) 2007-05-22 2012-03-14 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Fluorescent substance, method for producing the same, and light-emitting device using the same
WO2009051137A1 (en) * 2007-10-17 2009-04-23 Stanley Electric Co., Ltd. Light-emitting device, vehicular lighting fixture comprising the device, and head lamp
US8274208B2 (en) 2007-10-17 2012-09-25 Stanley Electric Co., Ltd. Light-emitting device, vehicular lighting fixture comprising the device, and head lamp
WO2009051138A1 (en) * 2007-10-17 2009-04-23 Denki Kagaku Kogyo Kabushiki Kaisha Phosphor and method for producing the same
CN101828273B (en) * 2007-10-17 2012-02-22 斯坦雷电气株式会社 Light-emitting device, vehicle lamp and headlamp using the light-emitting device
JP2009108223A (en) * 2007-10-31 2009-05-21 National Institute For Materials Science Phosphor, method for producing the same, and light emitting device using the same
EP2314659A1 (en) * 2008-08-13 2011-04-27 Ube Industries, Ltd. Li-containing -sialon fluorescent substance and method for manufacturing same, illumination device, and image display device
US9464226B2 (en) 2008-08-13 2016-10-11 Ube Industries, Ltd. Li-containing α-sialon-based phosphor, production process thereof, lighting device and image display device
EP2314659A4 (en) * 2008-08-13 2012-10-31 Ube Industries ALPHA-SIALON FLUORESCENCE SUBSTANCE CONTAINING LITHIUM AND METHOD FOR MANUFACTURING SAME, LIGHTING DEVICE, AND IMAGE DISPLAY DEVICE
WO2010018873A1 (en) 2008-08-13 2010-02-18 宇部興産株式会社 LI-CONTAINING α-SIALON FLUORESCENT SUBSTANCE AND METHOD FOR MANUFACTURING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
JP2010118620A (en) * 2008-11-14 2010-05-27 Showa Denko Kk Light-emitting device
WO2011108740A1 (en) * 2010-03-01 2011-09-09 宇部興産株式会社 Li-CONTAINING α-SIALON FLUORESCENT PARTICLES, METHOD FOR PRODUCING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
US8497624B2 (en) 2010-03-01 2013-07-30 Ube Industries, Ltd. Li-containing α-sialon-based phosphor particle, production method thereof, lighting device, and image display device
JP5240399B2 (en) * 2010-03-01 2013-07-17 宇部興産株式会社 Li-containing α-sialon-based phosphor particles, method for producing the same, lighting apparatus, and image display device
CN102753650A (en) * 2010-03-01 2012-10-24 宇部兴产株式会社 Li-containing alpha-sialon fluorescent particles, method for producing same, illumination device, and image display device
JP2011195688A (en) * 2010-03-18 2011-10-06 Toshiba Corp Red phosphor and method for producing the same, and light emitting device
TWI454554B (en) * 2012-02-09 2014-10-01 Denki Kagaku Kogyo Kk Phosphor and illuminating device
CN104145003A (en) * 2012-03-29 2014-11-12 宇部兴产株式会社 Oxynitride phosphor powder
JPWO2014077132A1 (en) * 2012-11-13 2017-01-05 デンカ株式会社 Phosphor, light emitting element, and lighting device
WO2014077132A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
JP2014193952A (en) * 2013-03-28 2014-10-09 National Institute For Materials Science Oxynitride phosphor and light emission appliance
CN110498687A (en) * 2014-03-06 2019-11-26 地方独立行政法人神奈川县立产业技术综合研究所 Transparent fluorescent silicon-aluminum-oxynitride ceramic and preparation method thereof
US11111433B2 (en) 2014-03-06 2021-09-07 National University Corporation Yokohama National University Transparent fluorescent sialon ceramic and method of producing same
JP2018150433A (en) * 2017-03-10 2018-09-27 デンカ株式会社 Orange phosphor and light-emitting device

Also Published As

Publication number Publication date
JP4207489B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4207489B2 (en) α-sialon phosphor
JP4511885B2 (en) Phosphor, LED and light source
US7274045B2 (en) Borate phosphor materials for use in lighting applications
JP4511849B2 (en) Phosphor and its manufacturing method, light source, and LED
KR101147560B1 (en) Fluorescent substance and light-emitting equipment
US7611642B2 (en) Oxynitride phosphor and light emitting device
JP4524470B2 (en) Phosphor, method for producing the same, and light source using the phosphor
US7358542B2 (en) Red emitting phosphor materials for use in LED and LCD applications
US7094362B2 (en) Garnet phosphor materials having enhanced spectral characteristics
TWI443854B (en) Illumination system comprising a yellow green-emitting luminescent material
JP5511820B2 (en) Alpha-sialon phosphor
EP1595934A2 (en) Phosphor and production method of the same and light source and led using the phosphor
JP2002363554A (en) Oxynitride phosphor activated with rare earth elements
CN101133137A (en) Phosphor, method for producing the same, and light-emitting device using the same
WO2006095285A1 (en) Illumination system comprising a radiation source and a fluorescent material
US20050093431A1 (en) Garnet phosphor materials having enhanced spectral characteristics
JP2008024741A (en) Phosphor, manufacturing method thereof, and light emitting device
JP2007204730A (en) Phosphor and light-emitting device
TWI481061B (en) White light emitting diode
JP2006176546A (en) Phosphor and light source using phosphor
US20060049414A1 (en) Novel oxynitride phosphors
EP2013315A2 (en) Illumination system comprising a radiation source and a luminescent material
JP5194672B2 (en) Carbonitride phosphor, light-emitting device using the same, and method for producing carbonitride phosphor
TW201110415A (en) Light emitting device employing luminescent substances with oxyorthosilicate luminophores
JP5394903B2 (en) Phosphor, production method thereof, and light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees