Nothing Special   »   [go: up one dir, main page]

JP2004055980A - Multilayer flexible wiring board and manufacture thereof - Google Patents

Multilayer flexible wiring board and manufacture thereof Download PDF

Info

Publication number
JP2004055980A
JP2004055980A JP2002213994A JP2002213994A JP2004055980A JP 2004055980 A JP2004055980 A JP 2004055980A JP 2002213994 A JP2002213994 A JP 2002213994A JP 2002213994 A JP2002213994 A JP 2002213994A JP 2004055980 A JP2004055980 A JP 2004055980A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin layer
flexible wiring
wiring
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002213994A
Other languages
Japanese (ja)
Other versions
JP3816038B2 (en
Inventor
Hidehisa Yamazaki
山崎 秀久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaichi Electronics Co Ltd
Original Assignee
Yamaichi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaichi Electronics Co Ltd filed Critical Yamaichi Electronics Co Ltd
Priority to JP2002213994A priority Critical patent/JP3816038B2/en
Publication of JP2004055980A publication Critical patent/JP2004055980A/en
Application granted granted Critical
Publication of JP3816038B2 publication Critical patent/JP3816038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer flexible wiring board which improves reliability, is more thinned and attains compaction, and to provide manufacture thereof. <P>SOLUTION: In the multilayer flexible wiring board, first thermoplastic resin thin layers 8a, 8b and 8c are used as layer insulators 8, a plurality of wiring pattern 9a, 9b, 9c layers are incorporated, and a projecting conductor 10 projecting over surfaces of the wiring patterns 9a, 9b and 9c electrically connects the wiring patterns 9a, 9b and 9c through the layer insulators 8, and laminated contacting surfaces of the layer insulator layers 8a, 8b and 8c are bonded and integrated through a second thermoplastic resin layer 11 whose fusing point is lower than that of the first thermoplastic resin 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多層形フレキシブル配線板およびその製造方法に係り、特に高密度配線形で、薄型化が図られた信頼性の高い多層形フレキシブル配線板およびその製造方法に関する。
【0002】
【従来の技術】
電子機器類の短小軽薄化などに伴って、電気回路を形成する配線板についても、高密度配線化や短小軽薄化だけでなくフレキシブル性が要求されている。このような要求に対応して、図3に要部構成を拡大して断面的に示すような多層形フレキシブル配線板が開発されている。図3において、層間絶縁体層20、21は厚さ25μm程度のポリイミド樹脂フィルムからなり、その層間に配線パターン22が形成され、前記配線パターン22層間を層間接続導体23が電気的に接続する。24は外層配線パターン形成面を被覆する厚さ25μm程度のポリイミド樹脂製のカバーフィルムである。ここで、層間絶縁体層20、21同士および層間絶縁体層21とカバーフィルム24とは熱硬化性の接着剤層(図示省略)を介して積層されており、また、層間接続は、スルホール型やビア型があり、これらの層間接続導体23は、導電体の埋め込みやスルホール内壁面のメッキ膜化などで行われている。
【0003】
そして、この種の多層形フレキシブル配線板は、次のようにして製造されている。先ず、厚さ25μm程度の例えばポリイミド樹脂の熱硬化性フィルム20の主面に、接着剤層を介して厚さ12〜18μm程度の銅箔を貼り合わせた銅箔貼りシートを用意する。次いで、この銅箔貼りシートの所定領域に穿孔加工を施し、層間接続用の貫通孔を設けた後、貫通孔内壁面をメッキ導体化するか、あるいは導電性組成物を充填して層間接続導体23を配置する。その後、フォトエッチング処理を施して配線パターン22を形成し、両面の配線パターン22間が接続された第1のフレキシブル配線層20とする。
【0004】
一方、厚さ25μm程度の例えばポリイミド樹脂の熱硬化性フィルム21の一主面に、接着剤層を介して厚さ12〜18μm程度の銅箔を貼り合わせた銅箔貼りシートを用意する。次いで、この銅箔貼りシートの所定領域に穿孔加工を施し、層間接続用の貫通孔を設けた後、貫通孔内壁面をメッキ導体化するか、あるいは導電性組成物を充填して層間接続導体23を形成する。その後、銅箔についてフォトエッチング処理を施し、配線パターン22に接続する層間接続導体23を有する第2のフレキシブル配線層21とする。また、電子部品実装用のため、所要の領域に打ち抜きプレス加工を施した厚さ15μm程度のポリイミド樹脂製のカバーシート24を用意する。
【0005】
上記用意した、第1のフレキシブル配線層20、第2のフレキシブル配線層21およびカバーシート24を位置合わせし積層配置する。このとき、各フレキシブル配線層20、21同士、およびフレキシブル配線層21とカバーシート24とが対接する領域面に電気的な接続に対する支障を回避するように、熱硬化性の接着剤層を介在させる。そして、この積層配置体に熱プレス加工を施し、これらを接合して一体化させることにより、多層形フレキシブル配線板を製造している。
【0006】
また、上記層間接続の構成を簡略する手段として、図4(a)、(b)、(c)に要部を示す方法も知られている。先ず、厚さ15μm程度の銅箔25の所定領域面に、導電性組成物や導電性金属などを素材として突起状導電体26を形設する。次いで、銅箔25の突起状導電体26形設面に厚さ25μm程度の熱可塑性樹脂層27、および厚さ15μm程度の銅箔25aを順次積層する。その後、この積層体を、熱プレスして接合一体化して、両面銅箔25、25aが熱可塑性樹脂層27を貫挿した突起状導電体26で電気的に接続した両面銅箔貼り板を製作する。この両面銅箔貼り板の両面銅箔25、25aをエッチング処理して配線パターン化する。この方式は、層間接続導体26を容易に、また、微細に形成できるので、生産性および高密度配線パターン化に適する手段として注目されている。
【0007】
【発明が解決しようとする課題】
上記多層形フレキシブル配線板は、コンパクト化されフレキシブルであることから、使用する電子機器類、たとえばデジタルカメラ、携帯電話などの短小軽薄化に寄与するが、一方では、次のような不具合が認められる。すなわち、上記図3に図示する構成においては、各フレキシブル配線層20、21同士、およびフレキシブル配線層21とカバーシート24とが対向する面に、熱硬化性の接着剤層が介挿する構成を採っている。ところで、熱硬化性樹脂フィルムはある程度の厚みが必要であり、積層配置体の接合一体化に当たっては、介挿させた接着剤層の充分な溶融と流動性、および熱硬化を確保するための熱プレス加工が施される。そして、この加圧、加熱加工の段階で、突出的に配置されている配線パターン22が位置ずれなど招来する恐れがあり、結果的に、製作された多層形フレキシブル配線板の信頼性が損なわれたり、あるいは製造歩留まりの低下が見られる。
【0008】
また、強固な接合を確保するために、介挿させる熱硬化性接着剤層の厚さを厚くすると、多層形フレキシブル配線板の薄形化が損なわれるだけでなく、上記熱プレス加工の段階での位置ずれ発生など助長される。なお、熱硬化性の接着剤層においては、一般的に、難燃性化が要求されるため、たとえばハロゲン化合物やリン化合物などの難燃化剤が添加配合されており、この難燃化剤の添加配合によって、環境問題を提起するだけでなく、配線板自体の電気的な特性に悪影響が及ぶ恐れもある。
【0009】
一方、図4に図示する方式で形成された多層形フレキシブル配線板においては、層間絶縁体を構成する熱可塑性樹脂層27の軟化、溶融性を利用し、銅箔(配線パターン)を熱可塑性樹脂層27に接合することができる。しかし、熱可塑性樹脂の選択によっては、溶融変形などに伴う配線パターンの位置ずれ発生が懸念され、充分な接合強度の確保が困難であったり、あるいは充分な耐熱性を確保できない等の問題があって、歩留まりや信頼性などの点で問題がある。
【0010】
本発明は、上記事情に対処してなされたもので、信頼性が高くて、より薄形でコンパクト化が図られた多層形フレキシブル配線板、およびその製造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明は、第1の熱可塑性樹脂層の両主面に配線パターンを形成し、前記配線パターン間を層間接続導体が前記第1の熱可塑性樹脂層を貫挿して前記配線パターン層同士を電気的に接続し、かつ前記少なくとも一方の主面の配線パターンに隣接する面領域に前記第1の熱可塑性樹脂層よりも融点の低い第2の熱可塑性樹脂層を充填し平坦面とした第1のフレキシブル配線素板と、
第3の熱可塑性樹脂層の一主面に配線パターンを形成し、かつこの配線パターン側から他主面にわたり前記第3の熱可塑性樹脂層を貫挿してなる第2のフレキシブル配線素板とが、
前記第1のフレキシブル配線素板の少なくとも一方の主面に前記第2のフレキシブル配線素板の他主面に対接し前記第2の熱可塑性樹脂層を介して接合され積層されてなることを特徴とする多層形フレキシブル配線板にある。
【0012】
また、第1の熱可塑性樹脂の薄い層を層間絶縁体とし、複数の配線パターン層を内蔵し、かつ配線パターン面に突設させた突起状導体が層間絶縁体を貫挿して配線パターン層間を電気的に接続する多層形フレキシブル配線板であって、前記層間絶縁体層同士の積層対接面が第1の熱可塑性樹脂よりも融点の低い第2の熱可塑性樹脂層を介して接合、一体化していることを特徴とする多層形フレキシブル配線板である。
【0013】
さらに、上記発明の多層形フレキシブル配線板において、少なくとも第1の熱可塑性樹脂が液晶ポリマーであることを特徴とする。
【0014】
さらに本発明の製造方法は、第1の熱可塑性樹脂薄層の少なくとも一主面に配線パターンが突設的に形成され、かつ第1の熱可塑性樹脂層を貫挿する突起状の層間接続導体を有する第1のフレキシブル配線素板の配線パターン形成面に、配線パターンを埋めるほぼ一様な厚さに前記第1の熱可塑性樹脂よりも融点の低い第2の熱可塑性樹脂層を被覆する工程と、前記被覆した第2の熱可塑性樹脂層面をスラッシュ加工して配線パターン面を同一平面に露出させる工程と、前記第1のフレキシブル配線素板の配線パターン露出面に、第1の熱可塑性樹脂薄層の一主面に配線パターンおよび厚さ方向に貫挿する突起状の層間接続導体を有する第2のフレキシブル配線素板の非配線パターン形成面を位置決め積層配置する工程と、前記積層体を積層方向に加圧して第2の熱可塑性樹脂層を介して第1の熱可塑性樹脂薄層同士を接合一体化する工程とを具備していることを特徴とする多層形フレキシブル配線板の製造方法である。
【0015】
さらに、第1の熱可塑性樹脂薄層の少なくとも一主面に配線パターンが突設的に形成され、かつ第1の熱可塑性樹脂層を貫挿する突起状の層間接続導体を有する第1のフレキシブル配線素板の配線パターン形成面に、配線パターンを埋めるほぼ一様な厚さに前記第1の熱可塑性樹脂よりも融点の低い第2の熱可塑性樹脂層を被覆・配置する工程と、前記被覆・配置した第2の熱可塑性樹脂層面をスラッシュ加工して配線パターン面を同一平面に露出させる工程と、前記第1のフレキシブル配線素板の配線パターン露出面に、第1の熱可塑性樹脂薄層の一主面に導体箔が貼着され、かつ厚さ方向に貫挿する突起状の層間接続導体を有する第2のフレキシブル配線用素板の非導体箔貼着面を位置決め積層配置する工程と、前記積層体を積層方向に加圧して第2の熱可塑性樹脂層を介して第1の熱可塑性樹脂薄層同士を接合一体化する工程と、前記第2のフレキシブル配線用素板の導体箔を配線パターニングする工程とを具備していることを特徴とする多層形フレキシブル配線板の製造方法である。
【0016】
さらに、第1の熱可塑性樹脂薄層の少なくとも一主面に配線パターンが突設的に形成され、かつ第1の熱可塑性樹脂層を貫挿する突起状の層間接続導体を有する第1のフレキシブル配線素板の配線パターン形成面を露出させ、前記第1の熱可塑性樹脂よりも融点の低い第2の熱可塑性樹脂層を充填・配置して平坦面化する工程と、前記第2の熱可塑性樹脂の充填・配置で平坦面化させた第1のフレキシブル配線素板面に、一主面に配線パターンおよび厚さ方向に貫挿する層間接続導体を有する第2のフレキシブル配線素板の非配線パターン形成面を位置決め積層配置する工程と、前記積層体を積層方向に加圧して第2の熱可塑性樹脂層を介して第1の熱可塑性樹脂薄層同士を接合一体化する工程とを具備していることを特徴とする多層形フレキシブル配線板の製造方法である。
【0017】
さらに、上記の多層形フレキシブル配線板の製造方法において、フレキシブル配線素板を形成する第1の熱可塑性樹脂層の厚さが25〜200μmであることを特徴とする。
【0018】
さらに、上記の多層形フレキシブル配線板の製造方法において、少なくとも第1の熱可塑性樹脂が液晶ポリマーであることを特徴とする。
【0019】
すなわち、この出願に係る発明は、比較的融点が高くて耐熱性に優れている熱可塑性の樹脂で層間絶縁体を形成するに当たり、層間絶縁体を形成する各樹脂層間に、比較的融点の低い熱可塑性の樹脂層を介挿させ、より緩和した条件で、容易に強固な接合一体化を図ることを骨子とする。そして、このような構成に伴って、同じ配線パターン層数の構成では、全体の厚さを薄くして短小軽薄化を容易に達成しながら、電気的な特性および可撓性などの優れた信頼性の高い多層形フレキシブル配線板を提供するものである。
【0020】
【発明の実施の形態】
以下、図1および図2(a)、(b)、(c)、(d)を参照して発明の実施形態を説明する。
【0021】
図1は、実施形態に係る多層形フレキシブル配線板の要部を拡大して示す断面図である。図1において、層間絶縁体層8は、厚さ25〜200μmの液晶ポリマーフィルム、例えば融点335℃のBIACフィルム(商品名)またはベクスタフィルム(商品名)の第1の熱可塑性樹脂層8a、8b、8cを積層してなり、この層間絶縁体層8に各配線パターン層9a、9bが挟持、内蔵され、層間絶縁体層8表面に配線パターン層9cが形成されている。ここで、各配線パターン9a、9b、9cは、配線パターン9a、9c面から突設し第1の熱可塑性樹脂層8a、8b、8cを貫挿する突起状接続導体10によって、所要の電気的な接続が行われている。
【0022】
すなわち、層間絶縁体8中を略円錐状もしくは角錐状に印刷形成された導電性バンプ、あるいは選択的に肉盛り成長させた金属製突起などの突起状接続導体10先端側を貫挿させ、対向する配線パターン9a、9bと電気的に接続する構成を採っている。また、前記層間絶縁体層8を形成する液晶ポリマーフィルムの第1の熱可塑性樹脂層8a、8b、8c同士は、その積層対接面に介在させた厚さ25〜200μmの液晶ポリマーフィルム、たとえば融点325℃のCタイプフィルムで形成した第2の熱可塑性樹脂層11を介して接合、一体化している。
なお、さらに外装配線パターン9c形成面にカバーフィルム(図示省略)を被覆した構成を採ることもできる。
【0023】
さらに言及すると、この実施形態に係る多層形フレキシブル配線板は、第1の熱可塑性樹脂層8a、8b、8c同士が、この第1の熱可塑性樹脂層8a、8b、8cよりも融点の低い熱可塑性樹脂からなる第2の熱可塑性樹脂層11を介して接合、一体化した構成を採っている点で特徴付けられる。そして、この構成例においては、多層形フレキシブル配線板(4層形)の厚さが例えば約160μmで、従来の多層形フレキシブル配線板(層間絶縁体がポリイミド樹脂の熱硬化性樹脂層によるは配線パターン4層形)の厚さが約180μmになるのに較べて、約20μm程度薄くでき、しかも、配線パターン9a、9bの位置ずれなども起こらず、信頼性の高い機能を呈することも確認された。なお、図1において、12は電子部品の実装用ビア型端子部である。
【0024】
上記構成の多層形フレキシブル配線板において、層間絶縁体層8を形成する第1の熱可塑性樹脂としては、たとえばフェノキシ樹脂、ポリエーテルスルフォン樹脂、ポリスルフォン樹脂、ポリフェニレンスルフォン樹脂、ポリフェニレンサルファイド樹脂、ホリフェニールエーテル樹脂、ポリエーテルイミド樹脂、熱可塑性ポリイミド樹脂、液晶ポリマー、ポリテトラフロロエチレン樹脂などが挙げられる。また、層間絶縁体層を形成する第1の熱可塑性樹脂層同士を接合一体化する第2の熱可塑性樹脂層11は、基本的には、上記例示の樹脂類である。つまり、第1の熱可塑性樹脂層8と第2の熱可塑性樹脂層11とは、相対的なもので、選択された第1の熱可塑性樹脂層8に対し、10〜40℃程度、より好ましくは20〜30℃程度低い融点を有する熱可塑性樹脂の第2の熱可塑性樹脂層11が選択される。特に、液晶ポリマーの選択は、耐熱性、電気絶縁特性、寸法安定性などが優れているので有利である。
【0025】
変形例として第1の熱可塑性樹脂層8a、8b、8cは互いに異なる材料を選択することができる。例えば層8bをコア層とし、その両面に積層する層8a、8cよりも高い融点を持たせることができる。この場合も、第1の熱可塑性樹脂層に対して第2の熱可塑性樹脂層に、より融点の低い樹脂を使用する。
【0026】
第1の熱可塑性樹脂層8a、8b、8cの厚さは、配線パターン層数、目的とする多層形フレキシブル配線板の厚さや仕様などによっても異なるが、一般的に、25〜200μm程度である。また、第1の熱可塑性樹脂層8a、8b、8c主面の配線パターン9a、9b、9cは、たとえば貼着した銅箔の選択的なエッチング処理、予め形成しておいた配線パターンの圧着、あるいは導電性ペーストのスクリーン印刷などで、突設的に形成される。そして、これら突設的に形成された配線パターン9a、9b、9cは、第1の熱可塑性樹脂層8a、8b、8cの厚さ方向へ加圧・圧入して突設高さを低く調整することもでき、多層形フレキシブル配線板の薄板化に寄与する。
【0027】
第1の熱可塑性樹脂層8a、8b、8c同士が対接する面間に介挿し、相互の接合一体化に寄与する第2の熱可塑性樹脂層11は、層間接続導体10による電気的な接続に対する支障を回避する必要がある。つまり、少なくとも層間接続する配線パターン9a、9b面は、第2の熱可塑性樹脂層11による絶縁被覆を実質的に回避した状態で露出するように、第2の熱可塑性樹脂層11面と同一面を採った構成となる。
【0028】
ここで、配線パターン9a、9bおよび第2の熱可塑性樹脂層11の同一平坦面化は、次のような手段で行える。第1の手段は、配線パターン9a、9b面に、この突設している配線パターン9a、9bの高さよりも5〜10μm程度厚い第2の熱可塑性樹脂フィルムを圧着配置し、この圧着配置した第2の熱可塑性樹脂フィルムをスラッシュ加工によって、選択的に研削して配線パターン9a、9bと同一平坦面化する。第2の手段は、配線パターン9a、9bに対して逆パターンに打ち抜き・加工した第2の熱可塑性樹脂フィルムを嵌合的に装着・配置して、圧着・充填する。この場合、逆パターンに加工した第2の熱可塑性樹脂フィルムを嵌合的に装着・配置した後、配線パターン9a、9bを第1の熱可塑性樹脂8b層に圧入して同一平坦面化してもよい。
【0029】
なお、最外層の配線パターン9c化に先立って、要すれば炭酸レーザーやYAGレーザーなどによって、実装用ビア接続端子部12を形成するための穿孔加工、穿孔内壁面のメッキ導電性化などを行う。そして、最外層の銅箔をフォトエッチング処理して、所要の配線パターン9cを形成する。
【0030】
次に、多層形フレキシブル配線板の製造方法例を説明する。
【0031】
図2(a)、(b)、(c)、(d)は、多層形フレキシブル配線板の製造方法の実施態様を模式的に示す要部断面図である。図2(a)に示すように、先ず、後工程で配線パターン9aとなる厚さ12μm銅箔(9a)を用意し、この銅箔の一主面側に、たとえばステンレス薄鋼板の所定箇所0.2mm径の孔を明けたメタルマスクを位置決め配置して導電性ペーストを印刷する。この導電性ペーストが乾燥後、同一メタルマスクを用いて同一位置に再度印刷する方法で、複数回印刷を繰り返し、層間接続導体10となる高さ150μm程度のほぼ円錐状の山形バンプを形設する。
【0032】
その後、前記銅箔の山形バンプ形設面側に、第1の熱可塑性樹脂層8bとなる厚さ50μmの液晶ポリマーフィルム、たとえば融点335℃のBIACフィルム(商品名)またはベクスタフィルム(商品名)と、後工程で配線パターン9bとなる厚さ12μmの銅箔(9b)を積層して一体化する。次いで、この積層体の両銅箔面に当て板を配置して、樹脂圧として4Mpa程度で熱プレスし、両面銅箔貼り板を製作する。なお、上記熱プレスにおいて、銅箔(9a)の山形バンプは、組成変形性を呈する第1の熱可塑性樹脂フィルム8bを貫挿し、その先端部が対向する銅箔(9b)面に到達して潰れた状態で、電気的には0.01Ω以下の抵抗で接続する。ここでは、一方の銅箔(9a)の片面に層間接続導体を成す山形バンプを形設したが、両銅箔(9a)、(9b)の片面に位置をずらしてそれぞれ山形バンプを形設し、この山形バンプの形設面を対向させて第1の熱可塑性樹脂フィルム8bを貫挿させる構成を採ると、より微細配線に適する層間接続導体の形成が可能である。
【0033】
上記製作した両面銅箔貼り板の両銅箔をフォトエッチング処理し、図2(a)に示すように、所要の配線パターン化を行って両面配線パターンの配線素板13を作成する。ここで、各配線パターン9a、9bは、第1の熱可塑性樹脂層8b面から12μm程度突出している。また、両配線パターン9a、9bを層間接続導体10が接続する。
【0034】
次に、前記両面配線パターンの配線素板13の両面に、第2の熱可塑性樹脂11となる厚さ25μmの液晶ポリマーフィルム、たとえば融点325℃のCタイプフィルムを積層し、樹脂圧として3Mpa程度で熱プレスする。すなわち、図2(b)に示すように、第2の熱可塑性樹脂層11で、前記配線パターン9a、9bを含む配線パターンの配線素板13の両面全体を一体的に被覆する。その後、前記被覆した第2の熱可塑性樹脂層11について、スラッシュ加工処理を施して、配線パターン9a、9bを露出させて、図2(c)に示すように、全体的にほぼ一様な平坦面とする。
【0035】
つまり、第1の熱可塑性樹脂層8b両面の配線パターン9a、9bに隣接する非配線パターン域の面に、配線パターン9a、9bの露出面と同一平坦面を成すように第2の熱可塑性樹脂層11が充填された両面配線の素板を作成する。ここで、第2の熱可塑性樹脂層11の充填配置は、やや厚めの第2の熱可塑性樹脂フィルム11をスラッシュ加工して行う代わりに、配線パターン9a、9bに対して逆パターンに打ち抜き加工した第2の熱可塑性樹脂フィルム11を嵌合的に装着する構成などを採ってもよい。
【0036】
次いで、前記第2の熱可塑性樹脂層11の充填配置で、配線パターン9a、9bの露出面と同一平坦面化した素板面に、第1の熱可塑性樹脂層8a、8cとなる厚さ50μmの液晶ポリマーフィルム、たとえば融点335℃のBIACフィルムをそれぞれ積層配置する。さらに、これら第1の熱可塑性樹脂層8a、8cとなるフィルムの外側に、片面側に形設した山形バンプを対向させて銅箔(9c)を積層的に配置し、樹脂圧として4Mpa程度で、熱プレスし、図2(d)に示すように、両面銅箔貼りの多層配線板用素板を製作する。なお、上記加圧において、山形バンプは、組成変形性を呈する第1の熱可塑性樹脂層8a、8cを貫挿し、その先端部が対向する配線パターン9a、9bに到達して潰れた状態で、電気的には0.01Ω以下の抵抗で対接し接続する。
【0037】
その後、上記製作した多層配線板用素板の外表部について、要すれば炭酸レーザーなどによって、実装用ビアを形設するための穿孔加工、および穿孔部の導電性加工を行ってから、外表面の銅箔(9c)についてフォトエッチング処理を施すことにより外装配線パターン9cとし、図1に示すような多層形フレキシブル配線板を得ることができる。そして、この製造方法例においては、折り曲げを繰り返し後でも剥離して損傷するのを招来する恐れがなく、また、信頼性の高い電気的特性を奏する薄型の多層形フレキシブル配線板を歩留まりよく製作することができる。
【0038】
本発明は、上記実施形態に限定されるものでなく、発明の主旨を逸脱しない範囲でいろいろの変形を採ることができる。たとえば内蔵される配線パターン数は、3層形や5層以上の多層形でもよく、また、第1の熱可塑性樹脂および第2の熱可塑性樹脂の組み合わせも、液晶ポリマー同士の組み合わせだけでなく、液晶ポリマーと他の熱可塑性樹脂との組み合わせなどであってもよい。
【0039】
さらに図2(c)の形状を片面形成すれば60層程度まで一環積層することが可能となることはいうまでもない。
【0040】
【発明の効果】
本発明によれば、複数の配線パターン層を内蔵し、かつ配線パターン面に突設させた突起状導体が熱可塑性樹脂層を貫挿して配線パターン層間を電気的に接続する多層形フレキシブル配線板において、層間絶縁体を構成する熱可塑性樹脂層同士が、この熱可塑性樹脂よりも融点の低い他の熱可塑性樹脂層を介して接合、一体化している。つまり、構成の簡略化が図られているだけでなく、薄形で、信頼性の高い機能を奏する多層形フレキシブル配線板が提供される。
【0041】
また、少なくとも層間絶縁体を液晶ポリマーで構成することにより、より電気的な特性の向上した多層形フレキシブル配線板が提供される。
【0042】
また、本発明の製造方法によれば、構成の簡略化が図られているだけでなく、歩留まりよく量産的に、薄形で、信頼性の高い機能を奏する多層形フレキシブル配線板を容易に提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る多層形フレキシブル配線板の要部構成を示す断面図。
【図2】(a)、(b)、(c)、(d)は実施形態に係る多層形フレキシブル配線板の製造例の実施態様を工程順に模式的に示す要部断面図。
【図3】従来の多層形フレキシブル配線板の要部構成例を示す断面図。
【図4】(a)、(b)、(c)は従来の多層形フレキシブル配線板の製造方法を工程順に模式的に示す要部断面図。
【符号の説明】
8:第1の熱可塑性樹脂が構成する層間絶縁体
8a、8b、8c:第1の熱可塑性樹脂層
9a、9b、9c:配線パターン
10:層間接続導体
11:第2の熱可塑性樹脂層
12:ビア型端子部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer flexible wiring board and a method for manufacturing the same, and more particularly, to a high-density wiring type, highly reliable multilayer flexible wiring board with a reduced thickness and a method for manufacturing the same.
[0002]
[Prior art]
As electronic devices become shorter, lighter, and thinner, wiring boards for forming electric circuits are required to have not only higher density wiring, shorter, lighter, and thinner but also more flexible. In response to such demands, multilayer flexible wiring boards have been developed as shown in FIG. In FIG. 3, interlayer insulating layers 20 and 21 are made of a polyimide resin film having a thickness of about 25 μm, and a wiring pattern 22 is formed between the layers, and an interlayer connection conductor 23 electrically connects the wiring patterns 22 to each other. Reference numeral 24 denotes a polyimide resin cover film having a thickness of about 25 μm that covers the outer layer wiring pattern formation surface. Here, the interlayer insulator layers 20 and 21 and the interlayer insulator layer 21 and the cover film 24 are laminated via a thermosetting adhesive layer (not shown). These via connection types are performed by embedding a conductor or forming a plated film on the inner wall surface of the through hole.
[0003]
And this kind of multilayer flexible wiring board is manufactured as follows. First, a copper foil bonded sheet is prepared by bonding a copper foil having a thickness of about 12 to 18 μm to a main surface of a thermosetting film 20 of, for example, a polyimide resin having a thickness of about 25 μm via an adhesive layer. Next, a predetermined area of the copper foil-bonded sheet is perforated to form a through hole for interlayer connection, and then the inner wall surface of the through hole is made into a plated conductor or filled with a conductive composition to form an interlayer connection conductor. 23 is arranged. After that, the wiring pattern 22 is formed by performing a photo-etching process, and the first flexible wiring layer 20 in which the wiring patterns 22 on both surfaces are connected is obtained.
[0004]
On the other hand, a copper foil-bonded sheet is prepared by bonding a copper foil having a thickness of about 12 to 18 μm to one principal surface of a thermosetting film 21 of, for example, a polyimide resin having a thickness of about 25 μm via an adhesive layer. Next, a predetermined area of the copper foil-bonded sheet is perforated to form a through hole for interlayer connection, and then the inner wall surface of the through hole is made into a plated conductor or filled with a conductive composition to form an interlayer connection conductor. 23 are formed. Thereafter, the copper foil is subjected to a photo-etching process to form a second flexible wiring layer 21 having an interlayer connection conductor 23 connected to the wiring pattern 22. Also, for mounting electronic components, a cover sheet 24 made of a polyimide resin and having a thickness of about 15 μm, which is formed by punching and pressing a required area, is prepared.
[0005]
The first flexible wiring layer 20, the second flexible wiring layer 21, and the cover sheet 24 prepared as described above are aligned and stacked. At this time, a thermosetting adhesive layer is interposed between the flexible wiring layers 20 and 21 and between the flexible wiring layers 21 and the cover sheet 24 so as not to hinder the electrical connection. . Then, the laminated arrangement body is subjected to hot press working, and these are joined and integrated to produce a multilayer flexible wiring board.
[0006]
Further, as a means for simplifying the structure of the interlayer connection, there is also known a method of showing a main part in FIGS. 4A, 4B and 4C. First, a projecting conductor 26 is formed on a predetermined area surface of a copper foil 25 having a thickness of about 15 μm using a conductive composition, a conductive metal, or the like as a material. Next, a thermoplastic resin layer 27 having a thickness of about 25 μm and a copper foil 25a having a thickness of about 15 μm are sequentially laminated on the surface of the copper foil 25 on which the protruding conductor 26 is formed. Thereafter, the laminate is joined by heat pressing to form a double-sided copper foil bonded plate in which the double-sided copper foils 25 and 25a are electrically connected by the protruding conductors 26 penetrating the thermoplastic resin layer 27. I do. The double-sided copper foils 25 and 25a of the double-sided copper foil-attached plate are subjected to an etching treatment to form a wiring pattern. This method has attracted attention as a means suitable for productivity and high-density wiring patterning because the interlayer connection conductor 26 can be easily and finely formed.
[0007]
[Problems to be solved by the invention]
Since the multilayer flexible wiring board is compact and flexible, it contributes to shortening and lightening of electronic devices to be used, for example, digital cameras and mobile phones, but on the other hand, the following problems are observed. . That is, in the configuration shown in FIG. 3, a configuration in which a thermosetting adhesive layer is interposed between the flexible wiring layers 20 and 21 and between the surfaces where the flexible wiring layer 21 and the cover sheet 24 face each other. I am taking it. By the way, the thermosetting resin film needs to have a certain thickness, and in joining and integrating the laminated arrangement, sufficient melting and fluidity of the interposed adhesive layer and heat for securing thermosetting are required. Press working is performed. At the stage of pressurization and heating, there is a possibility that the protruding wiring pattern 22 may be displaced or the like, and as a result, the reliability of the manufactured multilayer flexible wiring board is impaired. Or a decrease in manufacturing yield.
[0008]
In addition, when the thickness of the thermosetting adhesive layer to be interposed is increased in order to secure strong bonding, not only does the thinning of the multilayer flexible wiring board be impaired, but also in the stage of the hot press processing. Is promoted. In general, a thermosetting adhesive layer is required to have flame retardancy. Therefore, for example, a flame retardant such as a halogen compound or a phosphorus compound is added and blended. Not only raises environmental problems but also may adversely affect the electrical characteristics of the wiring board itself.
[0009]
On the other hand, in the multilayer flexible wiring board formed by the method shown in FIG. 4, the copper foil (wiring pattern) is formed by using the softening and melting properties of the thermoplastic resin layer 27 constituting the interlayer insulator. It can be joined to layer 27. However, depending on the selection of the thermoplastic resin, there is a concern that the wiring pattern may be displaced due to melting deformation or the like, and there are problems such as difficulty in securing sufficient bonding strength or failure in securing sufficient heat resistance. Therefore, there is a problem in terms of yield and reliability.
[0010]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a multilayer flexible wiring board that is highly reliable, thinner and more compact, and a method of manufacturing the same.
[0011]
[Means for Solving the Problems]
According to the present invention, a wiring pattern is formed on both main surfaces of a first thermoplastic resin layer, and an interlayer connection conductor penetrates the first thermoplastic resin layer between the wiring patterns to electrically connect the wiring pattern layers to each other. A first thermoplastic resin layer having a lower melting point than the first thermoplastic resin layer in a surface region adjacent to the wiring pattern on at least one of the main surfaces and having a flat surface. Flexible wiring base plate,
A wiring pattern is formed on one main surface of the third thermoplastic resin layer, and a second flexible wiring base plate formed by penetrating the third thermoplastic resin layer from the wiring pattern side to the other main surface. ,
It is characterized by being laminated on at least one main surface of the first flexible wiring base plate while being in contact with the other main surface of the second flexible wiring base plate via the second thermoplastic resin layer. In a multilayer flexible wiring board.
[0012]
Further, a thin layer of the first thermoplastic resin is used as an interlayer insulator, a plurality of wiring pattern layers are built-in, and a projecting conductor projecting from the wiring pattern surface penetrates the interlayer insulator to form a wiring pattern layer. A multilayer flexible wiring board for electrical connection, wherein a laminated contact surface between the interlayer insulator layers is joined and integrated via a second thermoplastic resin layer having a melting point lower than that of the first thermoplastic resin. It is a multilayer flexible wiring board characterized in that it is formed.
[0013]
Further, in the multilayer flexible wiring board according to the invention, at least the first thermoplastic resin is a liquid crystal polymer.
[0014]
Further, in the manufacturing method of the present invention, the wiring pattern is formed so as to protrude on at least one main surface of the first thin thermoplastic resin layer, and the projecting interlayer connection conductor penetrates the first thermoplastic resin layer. Covering a wiring pattern forming surface of a first flexible wiring substrate having a second thermoplastic resin layer having a melting point lower than that of the first thermoplastic resin to a substantially uniform thickness for filling the wiring pattern. Slashing the coated second thermoplastic resin layer surface to expose the wiring pattern surface to the same plane; and providing a first thermoplastic resin on the exposed wiring pattern surface of the first flexible wiring board. Positioning and laminating a non-wiring pattern forming surface of a second flexible wiring substrate having a wiring pattern and a projecting interlayer connection conductor penetrating in a thickness direction on one main surface of the thin layer; Lamination And bonding the first thermoplastic resin thin layers to each other via the second thermoplastic resin layer by applying pressure in the opposite direction to produce a multilayer flexible wiring board. is there.
[0015]
Further, a first flexible film having a wiring pattern protrudingly formed on at least one main surface of the first thermoplastic resin thin layer and having a projecting interlayer connection conductor penetrating the first thermoplastic resin layer. A step of coating and disposing a second thermoplastic resin layer having a melting point lower than that of the first thermoplastic resin on the wiring pattern forming surface of the wiring element plate to a substantially uniform thickness for filling the wiring pattern; A step of subjecting the arranged second thermoplastic resin layer surface to slash processing to expose the wiring pattern surface to the same plane; and a step of forming a first thermoplastic resin thin layer on the exposed wiring pattern surface of the first flexible wiring substrate. Positioning and laminating a non-conductive foil-bonding surface of a second flexible wiring base plate having a protruding interlayer connection conductor having a conductive foil bonded to one main surface thereof and having a protruding interlayer connection conductor penetrating in a thickness direction; , The laminated body in the laminating direction Pressurizing and joining the first thermoplastic resin thin layers via the second thermoplastic resin layer, and wiring patterning the conductive foil of the second flexible wiring base plate. A method for manufacturing a multilayer flexible wiring board.
[0016]
Further, a first flexible film having a wiring pattern protrudingly formed on at least one main surface of the first thermoplastic resin thin layer and having a projecting interlayer connection conductor penetrating the first thermoplastic resin layer. Exposing the wiring pattern forming surface of the wiring base plate, filling and arranging a second thermoplastic resin layer having a lower melting point than the first thermoplastic resin, and flattening the surface; Non-wiring of a second flexible wiring substrate having a wiring pattern and an interlayer connection conductor penetrating in the thickness direction on one principal surface of the first flexible wiring substrate flattened by filling and disposing resin. A step of positioning and laminating a pattern forming surface, and a step of pressing the laminate in the laminating direction to join and integrate the first thermoplastic resin thin layers via the second thermoplastic resin layer. Multi-layer frame A method for producing a reluctance wiring board.
[0017]
Further, in the above-described method for manufacturing a multilayer flexible wiring board, the thickness of the first thermoplastic resin layer forming the flexible wiring board is 25 to 200 μm.
[0018]
Further, in the above-mentioned method for producing a multilayer flexible wiring board, at least the first thermoplastic resin is a liquid crystal polymer.
[0019]
That is, the invention according to the present application is to form an interlayer insulator with a thermoplastic resin having a relatively high melting point and excellent heat resistance, and between each resin layer forming the interlayer insulator, a relatively low melting point. The key is to easily and firmly join and integrate under a more relaxed condition by interposing a thermoplastic resin layer. Along with such a configuration, with the configuration having the same number of wiring pattern layers, the overall thickness is reduced to easily achieve a reduction in size and weight, while achieving excellent reliability such as electrical characteristics and flexibility. It is intended to provide a multi-layer flexible wiring board having high performance.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2A, 2B, 2C, and 2D.
[0021]
FIG. 1 is an enlarged cross-sectional view illustrating a main part of a multilayer flexible wiring board according to an embodiment. In FIG. 1, an interlayer insulating layer 8 is formed of a first thermoplastic resin layer 8a of a liquid crystal polymer film having a thickness of 25 to 200 μm, for example, a BIAC film (trade name) or a Vexta film (trade name) having a melting point of 335 ° C. 8b and 8c are laminated, each wiring pattern layer 9a and 9b is sandwiched and built in the interlayer insulating layer 8, and a wiring pattern layer 9c is formed on the surface of the interlayer insulating layer 8. Here, each wiring pattern 9a, 9b, 9c is provided with a required electrical connection by a protruding connection conductor 10 projecting from the surface of the wiring pattern 9a, 9c and penetrating the first thermoplastic resin layer 8a, 8b, 8c. Connection is made.
[0022]
That is, the front end side of the protruding connection conductor 10 such as a conductive bump printed in a substantially conical or pyramid shape in the interlayer insulator 8 or a metal protrusion that is selectively overgrown is penetrated. And electrically connected to the wiring patterns 9a and 9b. Further, the first thermoplastic resin layers 8a, 8b, 8c of the liquid crystal polymer film forming the interlayer insulator layer 8 have a thickness of 25 to 200 μm and are interposed between the laminated contact surfaces, for example, It is joined and integrated via a second thermoplastic resin layer 11 formed of a C type film having a melting point of 325 ° C.
Note that a configuration in which a cover film (not shown) is further coated on the surface on which the exterior wiring pattern 9c is formed may be employed.
[0023]
More specifically, in the multilayer flexible wiring board according to this embodiment, the first thermoplastic resin layers 8a, 8b, and 8c have a lower melting point than the first thermoplastic resin layers 8a, 8b, and 8c. It is characterized in that it has a configuration in which it is joined and integrated via a second thermoplastic resin layer 11 made of a plastic resin. In this configuration example, the thickness of the multilayer flexible wiring board (four-layer type) is, for example, about 160 μm, and the conventional multilayer flexible wiring board (interlayer insulator is made of a polyimide resin thermosetting resin layer. Compared with the case where the thickness of the pattern (4 layer type) is about 180 μm, it can be made about 20 μm thinner, and it is also confirmed that the wiring patterns 9 a and 9 b do not shift in position and exhibit a highly reliable function. Was. In FIG. 1, reference numeral 12 denotes a via-type terminal for mounting electronic components.
[0024]
In the multilayer flexible wiring board having the above configuration, the first thermoplastic resin forming the interlayer insulating layer 8 is, for example, phenoxy resin, polyether sulfone resin, polysulfone resin, polyphenylene sulfone resin, polyphenylene sulfide resin, polyphenylene Examples thereof include an ether resin, a polyetherimide resin, a thermoplastic polyimide resin, a liquid crystal polymer, and a polytetrafluoroethylene resin. Further, the second thermoplastic resin layer 11 for joining and integrating the first thermoplastic resin layers forming the interlayer insulator layer is basically the above-mentioned resins. That is, the first thermoplastic resin layer 8 and the second thermoplastic resin layer 11 are relative to each other, and are preferably about 10 to 40 ° C. with respect to the selected first thermoplastic resin layer 8. The second thermoplastic resin layer 11 of a thermoplastic resin having a melting point as low as about 20 to 30 ° C. is selected. In particular, selection of a liquid crystal polymer is advantageous because of its excellent heat resistance, electrical insulation properties, dimensional stability, and the like.
[0025]
As a modified example, different materials can be selected for the first thermoplastic resin layers 8a, 8b, 8c. For example, the layer 8b may be used as a core layer and have a higher melting point than the layers 8a and 8c laminated on both surfaces thereof. Also in this case, a resin having a lower melting point is used for the second thermoplastic resin layer than for the first thermoplastic resin layer.
[0026]
The thickness of the first thermoplastic resin layers 8a, 8b, 8c varies depending on the number of wiring pattern layers, the thickness and specifications of the intended multilayer flexible wiring board, but is generally about 25 to 200 μm. . Further, the wiring patterns 9a, 9b, 9c on the main surfaces of the first thermoplastic resin layers 8a, 8b, 8c are formed by, for example, selective etching of the adhered copper foil, pressure bonding of the wiring pattern formed in advance, Alternatively, it is formed in a projecting manner by screen printing of a conductive paste or the like. The projecting wiring patterns 9a, 9b, 9c are pressurized and pressed in the thickness direction of the first thermoplastic resin layers 8a, 8b, 8c to adjust the projecting height to a low level. It also contributes to making the multilayer flexible wiring board thinner.
[0027]
The second thermoplastic resin layer 11 inserted between the surfaces where the first thermoplastic resin layers 8a, 8b and 8c are in contact with each other and contributing to the joint integration of the first thermoplastic resin layers 8a, 8b and 8c It is necessary to avoid trouble. That is, at least the surfaces of the wiring patterns 9a and 9b for interlayer connection are flush with the surface of the second thermoplastic resin layer 11 so as to be exposed in a state where the insulating coating by the second thermoplastic resin layer 11 is substantially avoided. Is adopted.
[0028]
Here, the same flat surface of the wiring patterns 9a and 9b and the second thermoplastic resin layer 11 can be formed by the following means. The first means is to press-fit a second thermoplastic resin film that is about 5 to 10 μm thicker than the height of the projecting wiring patterns 9a and 9b on the surfaces of the wiring patterns 9a and 9b and press-fit. The second thermoplastic resin film is selectively ground by slash processing to have the same flat surface as the wiring patterns 9a and 9b. The second means is to fit and dispose a second thermoplastic resin film punched and processed in a reverse pattern with respect to the wiring patterns 9a and 9b, and press-fit and fill. In this case, the wiring pattern 9a, 9b is pressed into the first thermoplastic resin 8b layer to form the same flat surface after the second thermoplastic resin film processed into the reverse pattern is fitted and arranged in a fitting manner. Good.
[0029]
Prior to the formation of the wiring pattern 9c in the outermost layer, if necessary, a perforation process for forming the mounting via connection terminal portion 12, a plating inner wall surface is made conductive by a carbon dioxide laser, a YAG laser, or the like. . Then, the required copper wiring pattern 9c is formed by photo-etching the outermost copper foil.
[0030]
Next, an example of a method for manufacturing a multilayer flexible wiring board will be described.
[0031]
2 (a), 2 (b), 2 (c), and 2 (d) are cross-sectional views of essential parts schematically showing an embodiment of a method for manufacturing a multilayer flexible wiring board. As shown in FIG. 2 (a), first, a copper foil (9a) having a thickness of 12 μm to be a wiring pattern 9a in a later process is prepared, and a predetermined portion 0 A conductive paste is printed by positioning and arranging a metal mask having a hole having a diameter of 2 mm. After the conductive paste is dried, printing is repeated a plurality of times by using the same metal mask and printing is performed again at the same position to form a substantially conical mountain-shaped bump having a height of about 150 μm and serving as the interlayer connection conductor 10. .
[0032]
Thereafter, a 50 μm thick liquid crystal polymer film, for example, a BIAC film (trade name) or a Vexta film (trade name) having a melting point of 335 ° C. to be the first thermoplastic resin layer 8 b is provided on the side of the copper foil on which the chevron bumps are formed. ) And a copper foil (9b) having a thickness of 12 μm to be a wiring pattern 9b in a later step is laminated and integrated. Next, a contact plate is arranged on both copper foil surfaces of the laminate, and hot-pressed with a resin pressure of about 4 Mpa to produce a double-sided copper foil-laminated plate. In the hot pressing, the chevron bumps of the copper foil (9a) penetrate the first thermoplastic resin film 8b exhibiting compositional deformability, and the tip ends reach the opposing copper foil (9b) surface. In the crushed state, it is electrically connected with a resistance of 0.01Ω or less. Here, a chevron bump forming an interlayer connection conductor is formed on one surface of one copper foil (9a), but a chevron bump is formed on one surface of both copper foils (9a) and (9b) by shifting the position. By adopting a configuration in which the first thermoplastic resin film 8b is penetrated with the formed faces of the angled bumps facing each other, it is possible to form an interlayer connection conductor suitable for finer wiring.
[0033]
Both copper foils of the double-sided copper foil-bonded plate manufactured above are subjected to a photo-etching treatment, and as shown in FIG. 2A, a required wiring pattern is formed to form a wiring substrate 13 having a double-sided wiring pattern. Here, each of the wiring patterns 9a and 9b protrudes about 12 μm from the surface of the first thermoplastic resin layer 8b. Further, the interlayer connection conductor 10 connects the wiring patterns 9a and 9b.
[0034]
Next, a liquid crystal polymer film having a thickness of 25 μm, for example, a C-type film having a melting point of 325 ° C., serving as the second thermoplastic resin 11 is laminated on both surfaces of the wiring base plate 13 of the double-sided wiring pattern, and the resin pressure is set to about 3 Mpa. Heat press. That is, as shown in FIG. 2B, the entire surface of the wiring base plate 13 of the wiring pattern including the wiring patterns 9a and 9b is integrally covered with the second thermoplastic resin layer 11. Thereafter, the coated second thermoplastic resin layer 11 is subjected to a slash processing to expose the wiring patterns 9a and 9b, and as shown in FIG. Face.
[0035]
That is, the second thermoplastic resin is formed on the surface of the non-wiring pattern area adjacent to the wiring patterns 9a and 9b on both surfaces of the first thermoplastic resin layer 8b so as to form the same flat surface as the exposed surface of the wiring patterns 9a and 9b. A blank for double-sided wiring filled with the layer 11 is prepared. Here, the filling arrangement of the second thermoplastic resin layer 11 was performed by punching the wiring patterns 9a and 9b in a reverse pattern instead of performing the slash processing on the slightly thicker second thermoplastic resin film 11. A configuration in which the second thermoplastic resin film 11 is fitted and fitted may be adopted.
[0036]
Next, with the filling arrangement of the second thermoplastic resin layer 11, a 50 μm thick first thermoplastic resin layer 8a, 8c is formed on the base plate surface which is flattened with the exposed surfaces of the wiring patterns 9a, 9b. , For example, a BIAC film having a melting point of 335 ° C. is laminated. Furthermore, a copper foil (9c) is laminated on the outer side of the film to be the first thermoplastic resin layers 8a and 8c with the angled bumps formed on one side facing each other, and the resin pressure is set to about 4 Mpa. Then, as shown in FIG. 2 (d), a base plate for a multilayer wiring board with a double-sided copper foil is manufactured as shown in FIG. In the above-described pressurization, the chevron-shaped bumps penetrate the first thermoplastic resin layers 8a and 8c exhibiting composition deformability, and the tip ends thereof reach the opposed wiring patterns 9a and 9b, and are crushed. Electrically, they are connected to each other with a resistance of 0.01Ω or less.
[0037]
After that, the outer surface of the prepared multilayer wiring board base plate is subjected to perforation processing for forming mounting vias and conductive processing of the perforated part by a carbon dioxide laser or the like, if necessary, and then to the outer surface. By subjecting the copper foil (9c) to photo-etching treatment, the exterior wiring pattern 9c can be obtained, and a multilayer flexible wiring board as shown in FIG. 1 can be obtained. In this example of the manufacturing method, a thin multi-layered flexible wiring board exhibiting reliable electrical characteristics without causing a risk of peeling and damaging even after repeated bending is manufactured with high yield. be able to.
[0038]
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the invention. For example, the number of built-in wiring patterns may be a three-layer type or a multilayer type having five or more layers, and a combination of the first thermoplastic resin and the second thermoplastic resin is not limited to a combination of liquid crystal polymers, A combination of a liquid crystal polymer and another thermoplastic resin may be used.
[0039]
Further, if the shape shown in FIG. 2C is formed on one side, it goes without saying that up to about 60 layers can be integrally laminated.
[0040]
【The invention's effect】
According to the present invention, a multilayer flexible wiring board in which a plurality of wiring pattern layers are built-in, and projecting conductors projecting from the wiring pattern surface penetrate the thermoplastic resin layer to electrically connect the wiring pattern layers. In this case, the thermoplastic resin layers constituting the interlayer insulator are joined and integrated via another thermoplastic resin layer having a lower melting point than the thermoplastic resin. That is, not only the structure is simplified, but also a multi-layer flexible wiring board which is thin and has a highly reliable function is provided.
[0041]
Further, by forming at least the interlayer insulator of a liquid crystal polymer, a multilayer flexible wiring board having further improved electrical characteristics is provided.
[0042]
Further, according to the manufacturing method of the present invention, not only the structure is simplified, but also a multi-layer flexible wiring board having a thin and highly reliable function can be easily provided with high yield and mass production. it can.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of a main part of a multilayer flexible wiring board according to an embodiment of the present invention.
FIGS. 2A, 2B, 2C, and 2D are cross-sectional views of essential parts schematically showing an embodiment of a production example of a multilayer flexible wiring board according to the embodiment in the order of steps.
FIG. 3 is a cross-sectional view showing an example of a configuration of a main part of a conventional multilayer flexible wiring board.
FIGS. 4A, 4B, and 4C are cross-sectional views of essential parts schematically showing a conventional method for manufacturing a multilayer flexible wiring board in the order of steps.
[Explanation of symbols]
8: Interlayer insulator 8a, 8b, 8c composed of first thermoplastic resin: First thermoplastic resin layers 9a, 9b, 9c: Wiring pattern 10: Interlayer connection conductor 11: Second thermoplastic resin layer 12 : Via-type terminal

Claims (9)

第1の熱可塑性樹脂層の両主面に配線パターンを形成し、前記配線パターン間を層間接続導体が前記第1の熱可塑性樹脂層を貫挿して前記配線パターン層同士を電気的に接続し、かつ前記少なくとも一方の主面の配線パターンに隣接する面領域に前記第1の熱可塑性樹脂層よりも融点の低い第2の熱可塑性樹脂層を充填し平坦面とした第1のフレキシブル配線素板と、
第3の熱可塑性樹脂層の一主面に配線パターンを形成し、かつこの配線パターン側から他主面にわたり前記第3の熱可塑性樹脂層を貫挿してなる第2のフレキシブル配線素板とが、
前記第1のフレキシブル配線素板の少なくとも一方の主面に前記第2のフレキシブル配線素板の他主面に対接し前記第2の熱可塑性樹脂層を介して接合され積層されてなることを特徴とする多層形フレキシブル配線板。
A wiring pattern is formed on both main surfaces of the first thermoplastic resin layer, and an interlayer connection conductor penetrates the first thermoplastic resin layer between the wiring patterns to electrically connect the wiring pattern layers to each other. A first flexible wiring element which is filled with a second thermoplastic resin layer having a melting point lower than that of the first thermoplastic resin layer in a surface region adjacent to the wiring pattern on the at least one main surface to make a flat surface; Board and
A wiring pattern is formed on one main surface of the third thermoplastic resin layer, and a second flexible wiring base plate formed by penetrating the third thermoplastic resin layer from the wiring pattern side to the other main surface. ,
It is characterized by being laminated on at least one main surface of the first flexible wiring base plate while being in contact with the other main surface of the second flexible wiring base plate via the second thermoplastic resin layer. Multilayer flexible wiring board.
複数の第1の熱可塑性樹脂層を積層して層間絶縁体とし、複数層の配線パターンを内蔵し、かつ前記配線パターン間を層間接続導体が前記第1の熱可塑性樹脂層を貫挿して前記配線パターン層同士を電気的に接続する多層形フレキシブル配線板であって、
前記第1の熱可塑性樹脂層同士の積層対接面が第1の熱可塑性樹脂層よりも融点の低い第2の熱可塑性樹脂層を介して一体化していることを特徴とする多層形フレキシブル配線板。
A plurality of first thermoplastic resin layers are laminated to form an interlayer insulator, a plurality of wiring patterns are built in, and an interlayer connecting conductor penetrates the first thermoplastic resin layer between the wiring patterns. A multilayer flexible wiring board for electrically connecting wiring pattern layers,
A multilayer flexible wiring, wherein the laminated contact surfaces of the first thermoplastic resin layers are integrated via a second thermoplastic resin layer having a lower melting point than that of the first thermoplastic resin layer. Board.
少なくとも第1の熱可塑性樹脂層が液晶ポリマーであることを特徴とする請求項1または2に記載の多層形フレキシブル配線板。The multilayer flexible wiring board according to claim 1, wherein at least the first thermoplastic resin layer is a liquid crystal polymer. 第1の熱可塑性樹脂層の少なくとも一主面に所定厚さの配線パターンが形成され、かつ第1の熱可塑性樹脂層を貫挿する突起状の層間接続導体を有する第1のフレキシブル配線素板の配線パターン形成面に、配線パターン間の非配線領域を埋めて前記第1の熱可塑性樹脂層よりも融点の低い第2の熱可塑性樹脂層を被覆する工程と、
前記被覆した第2の熱可塑性樹脂層面をスラッシュ加工して配線パターン面および前記非配線領域をほぼ同一平面に形成する工程と、
前記第1のフレキシブル配線素板の配線パターン露出面に、第3の熱可塑性樹脂層の一主面に配線パターンおよび厚さ方向に貫挿する突起状の層間接続用導体を有する第2のフレキシブル配線素板の他の主面の非配線パターン面を対設し積層する工程と、
前記積層体を積層方向に加圧して第2の熱可塑性樹脂層を介して前記第1のフレキシブル配線素板と前記第2のフレキシブル配線素板を接合一体化する工程と、
を具備していることを特徴とする多層形フレキシブル配線板の製造方法。
A first flexible wiring element plate having a wiring pattern of a predetermined thickness formed on at least one main surface of a first thermoplastic resin layer and having a projecting interlayer connection conductor penetrating the first thermoplastic resin layer. Covering the non-wiring region between the wiring patterns on the wiring pattern forming surface with a second thermoplastic resin layer having a lower melting point than the first thermoplastic resin layer;
Slash processing the coated second thermoplastic resin layer surface to form a wiring pattern surface and the non-wiring region on substantially the same plane;
A second flexible substrate having a wiring pattern on one main surface of a third thermoplastic resin layer and a protruding interlayer connection conductor penetrating in the thickness direction on the exposed surface of the wiring pattern of the first flexible wiring substrate; Opposing and laminating the non-wiring pattern surface of the other main surface of the wiring base plate,
A step of pressing the laminate in the laminating direction and joining and integrating the first flexible wiring base plate and the second flexible wiring base plate via a second thermoplastic resin layer;
A method for manufacturing a multilayer flexible wiring board, comprising:
第1の熱可塑性樹脂層の少なくとも一主面に配線パターンが所定厚に形成され、かつ前記第1の熱可塑性樹脂層を貫挿する突起状の層間接続導体を有する第1のフレキシブル配線素板の前記配線パターン形成面に、前記配線パターンを埋めるほぼ一様な厚さに前記第1の熱可塑性樹脂層よりも融点の低い第2の熱可塑性樹脂層を被覆する工程と、
前記被覆形成した第2の熱可塑性樹脂層面をスラッシュ加工して配線パターン面を同一平面に露出させる工程と、
第3の熱可塑性樹脂層の一主面に導体箔が貼着され、かつ厚さ方向に貫挿する突起状の層間接続導体を有する第2のフレキシブル配線用素板を形成し、その他主面の非導体箔貼着面を、前記第1のフレキシブル配線素板の配線パターン露出面に位置決め積層する工程と、
前記積層体を積層方向に加圧して第2の熱可塑性樹脂層を介して第1のフレキシブル配線素板と第2のフレキシブル配線素板を接合一体化する工程と、
前記第2のフレキシブル配線用素板の導体箔を配線パターニングする工程と、
を具備していることを特徴とする多層形フレキシブル配線板の製造方法。
A first flexible wiring element plate having a wiring pattern formed on at least one main surface of the first thermoplastic resin layer to a predetermined thickness, and having a projecting interlayer connection conductor penetrating the first thermoplastic resin layer; Covering the wiring pattern forming surface with a second thermoplastic resin layer having a melting point lower than that of the first thermoplastic resin layer to a substantially uniform thickness filling the wiring pattern;
Slash processing the second thermoplastic resin layer surface on which the coating is formed to expose the wiring pattern surface on the same plane;
A conductor foil is attached to one main surface of the third thermoplastic resin layer, and a second flexible wiring base plate having a projecting interlayer connection conductor penetrating in the thickness direction is formed. Positioning and laminating the non-conductive foil bonding surface on the exposed wiring pattern surface of the first flexible wiring board;
A step of pressing the laminate in the lamination direction and joining and integrating the first flexible wiring base plate and the second flexible wiring base plate via the second thermoplastic resin layer;
Wiring patterning the conductor foil of the second flexible wiring base plate;
A method for manufacturing a multilayer flexible wiring board, comprising:
第1の熱可塑性樹脂層の両主面に配線パターンが所定厚に形成され、かつ前記配線パターン側から他主面に前記第1の熱可塑性樹脂層を貫挿する突起状の層間接続導体を有する第1のフレキシブル配線素板を形成し、前記配線パターン形成面を前記第1の熱可塑性樹脂層よりも融点の低い第2の熱可塑性樹脂層で被覆被着し前記配線パターン面と前記配線パターン間に充填された第2の熱可塑性樹脂層面を平坦面化する工程と、
前記第2の熱可塑性樹脂層の充填で平坦面化させた第1のフレキシブル配線素板面に、一主面に配線パターンおよび厚さ方向に貫挿する層間接続導体を有する第2のフレキシブル配線素板の他主面の非配線パターン形成面を位置決め積層配置する工程と、
前記積層体を積層方向に加圧して第2の熱可塑性樹脂層により第1のフレキシブル配線素板と第2のフレキシブル配線素板を一体化する工程と、
を具備していることを特徴とする多層形フレキシブル配線板の製造方法。
A wiring pattern is formed to a predetermined thickness on both main surfaces of the first thermoplastic resin layer, and a projecting interlayer connection conductor penetrating the first thermoplastic resin layer from the wiring pattern side to the other main surface. Forming a first flexible wiring base plate, and covering the wiring pattern forming surface with a second thermoplastic resin layer having a melting point lower than that of the first thermoplastic resin layer. Flattening the second thermoplastic resin layer surface filled between the patterns,
A second flexible wiring having a wiring pattern and an interlayer connection conductor penetrating in a thickness direction on one principal surface of the first flexible wiring base plate surface flattened by filling with the second thermoplastic resin layer; A step of positioning and arranging the non-wiring pattern forming surface of the other main surface of the base plate,
Pressing the laminate in the laminating direction to integrate the first flexible wiring element and the second flexible wiring element with the second thermoplastic resin layer;
A method for manufacturing a multilayer flexible wiring board, comprising:
第1の熱可塑性樹脂層と第3の熱可塑性樹脂層が同一材料であることを特徴とする請求項4または5に記載の多層形フレキシブル配線板の製造方法。6. The method according to claim 4, wherein the first thermoplastic resin layer and the third thermoplastic resin layer are made of the same material. 第1および第2のフレキシブル配線素板を形成する熱可塑性樹脂層の厚さが25〜200μmであることを特徴とする請求項4ないし請求項6いずれかに記載の多層形フレキシブル配線板の製造方法。7. The multilayer flexible wiring board according to claim 4, wherein the thickness of the thermoplastic resin layer forming the first and second flexible wiring boards is 25 to 200 [mu] m. Method. 第1および第2のフレキシブル配線素板を形成する熱可塑性樹脂層が液晶ポリマーであることを特徴とする請求項4ないし請求項8いずれかに記載の多層形フレキシブル配線板の製造方法。9. The method for manufacturing a multilayer flexible wiring board according to claim 4, wherein the thermoplastic resin layer forming the first and second flexible wiring boards is a liquid crystal polymer.
JP2002213994A 2002-07-23 2002-07-23 Multilayer flexible wiring board and manufacturing method thereof Expired - Fee Related JP3816038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213994A JP3816038B2 (en) 2002-07-23 2002-07-23 Multilayer flexible wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213994A JP3816038B2 (en) 2002-07-23 2002-07-23 Multilayer flexible wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004055980A true JP2004055980A (en) 2004-02-19
JP3816038B2 JP3816038B2 (en) 2006-08-30

Family

ID=31936438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213994A Expired - Fee Related JP3816038B2 (en) 2002-07-23 2002-07-23 Multilayer flexible wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3816038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037628A (en) * 2011-09-30 2013-04-10 株式会社东芝 Apparatus for manufacturing flexible printed wiring board, apparatus for manufacturing wiring board, and applying device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449619B1 (en) 2017-12-14 2022-09-30 삼성전자주식회사 Semiconductor package and semiconductor module including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037628A (en) * 2011-09-30 2013-04-10 株式会社东芝 Apparatus for manufacturing flexible printed wiring board, apparatus for manufacturing wiring board, and applying device
US9155203B2 (en) 2011-09-30 2015-10-06 Kabushiki Kaisha Toshiba Apparatus for manufacturing flexible printed wiring board, apparatus for manufacturing wiring board, and applying device

Also Published As

Publication number Publication date
JP3816038B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US8178191B2 (en) Multilayer wiring board and method of making the same
US6768061B2 (en) Multilayer circuit board
JP4756710B2 (en) Bending type rigid printed wiring board and manufacturing method thereof
JP2003347748A (en) Multilayer wiring board and its manufacturing method
KR100757910B1 (en) Buried pattern substrate and manufacturing method thereof
JP2001332866A (en) Circuit board and method of production
US8076589B2 (en) Multilayer wiring board and its manufacturing method
WO2004017689A1 (en) Multilayer printed wiring board and production method therefor
JP3490309B2 (en) Wiring board and method of manufacturing the same
JP2004273575A (en) Multilayer printed wiring board and its manufacturing method
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3816038B2 (en) Multilayer flexible wiring board and manufacturing method thereof
JPH1070363A (en) Method for manufacturing printed wiring board
JP3953433B2 (en) Manufacturing method of multilayer wiring board
JP3329756B2 (en) Multilayer wiring board and method of manufacturing the same
JPH06232558A (en) Manufacture of multilayer printed wiring board
JP2004311909A (en) Circuit board, multilayer wiring board, method for producing the circuit board and method for producing the multilayer wiring board
KR100699240B1 (en) Chip embedded PCB and method of the same
JP2005158923A (en) Method for manufacturing multilayer printed wiring board
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3943055B2 (en) Manufacturing method of multilayer wiring board
JP2004335921A (en) Multilayer wiring board, substrate for multilayer wiring board, and method for manufacturing these
JP2004214393A (en) Method for producing multilayer wiring board
JP2004281667A (en) Method of manufacturing multilayer wiring board
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees