Nothing Special   »   [go: up one dir, main page]

JP2004052959A - Hydraulic damper - Google Patents

Hydraulic damper Download PDF

Info

Publication number
JP2004052959A
JP2004052959A JP2002213568A JP2002213568A JP2004052959A JP 2004052959 A JP2004052959 A JP 2004052959A JP 2002213568 A JP2002213568 A JP 2002213568A JP 2002213568 A JP2002213568 A JP 2002213568A JP 2004052959 A JP2004052959 A JP 2004052959A
Authority
JP
Japan
Prior art keywords
open
control valve
hydraulic damper
hydraulic
vibration force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002213568A
Other languages
Japanese (ja)
Other versions
JP4009156B2 (en
Inventor
Yuji Kotake
小竹 祐治
Haruhiko Kurino
栗野 治彦
Shunichi Yamada
山田 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Senqcia Corp
Original Assignee
Kajima Corp
Hitachi Metals Techno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Hitachi Metals Techno Ltd filed Critical Kajima Corp
Priority to JP2002213568A priority Critical patent/JP4009156B2/en
Publication of JP2004052959A publication Critical patent/JP2004052959A/en
Application granted granted Critical
Publication of JP4009156B2 publication Critical patent/JP4009156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic damper capable of exerting its damping performance sufficiently by shortening unloading time when a large scale external vibration force is generated and capable of making an impact sound by lengthening unloading time when a slight external vibration force is slightly generated. <P>SOLUTION: In the hydraulic damper 31 wherein a plurality of oil passages 5 passing between a pair of hydraulic chambers 4A and 4B, which are provided on both sides of the piston 3 in a hydraulic cylinder 2, are arranged in parallel, and opening and closing control valves V11 and V12 are provided in each of a plurality of the oil passages 5, detecting means 8 to 10 for detecting the pressure of the hydraulic chambers 4A and 4B and the displacement of the piston 3 respectively, a calculation means 27 for calculating the magnitude of external vibration force F based on the pressure and the displacement detected by the detecting means 8 to 10, and a control means 27 for adjusting and controlling unloading time based on the magnitude of the external vibration force F calculated by the calculation means 27 are provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地震や風等の振動外力による建物の揺れを減衰するための油圧ダンパに関するものである。
【0002】
【従来の技術】
従来の油圧ダンパとしては、例えば図3に示すようなものがある。同図に示す従来の油圧ダンパ11は、油圧シリンダ2内で往復移動するピストン3の両側に設けられた一対の油圧室4A,4Bと、これらの両油圧室4A,4B間をつなぐ流路5を開閉して油圧ダンパ11の減衰係数を最大値と最小値の間で切替える開閉制御弁V1と、高圧による油圧ダンパ11の破損を防止するためのリリーフ弁V2、及び断電時作動絞り弁V3が、油路5に互いに並列に設けられている。
【0003】
また、両油圧室4A,4Bの各々に圧力検出部を取り付けた圧力計8,9と、油圧シリンダ2とピストン3との間の相対変位をピストンロッド6の変位から測定する変位計10と、圧力計8,9によって検出された両油圧室4A,4Bの圧力P,P、及び変位計10によって検出された上記のような相対変位△dに基づいて、予め設定された制御手順によって開閉制御弁V1の開閉動作を制御する制御回路17とを備え、閉じた制御系を構成している。
【0004】
このような従来の油圧ダンパ11は、上記のように外部からの制御指令を必要としない閉じた制御系を構成することにより、部品数を少なくしてコストダウンを図ることができると共に、組立施工上の工数を軽減できるという利点を有している。
【0005】
油圧ダンパ11の断電時作動絞り弁V3は、制御回路17からの通電がONである正常時には閉じ、停電等により制御回路17からの通電がOFFとなる異常時には開くように、開閉制御弁V1とは逆の動作を行うフェールセーフ機能を有するものである。
【0006】
すなわち、万一通電がOFFとなる異常時に、地震等による振動外力が発生して開閉制御弁V1を開くことができない場合においても、断電時作動絞り弁V3を開くことにより一対の油圧室4A、4B間を連通させ、油圧ダンパとしての機能を維持することが可能となる。
【0007】
リリーフ弁V2は、制御回路17に制御されるものではなく、油路5や油圧室4A又は4Bがその耐え得る強度上の限界に近い高圧力となったときに、その高圧力により油圧ダンパ11の油路5や油圧室4A,4Bが破裂するのを防止するために開いて、高圧力の油路5や油圧室4A,4Bからの油の一部を他の場所に逃がすように動作するものである。
【0008】
【発明が解決しようとする課題】
しかしながら、このような従来の油圧ダンパ11においては、制御回路17により開閉制御弁V1の開閉を予め設定された制御手順によって画一的に制御するだけなので、振動外力の除荷時間の長さを振動外力の大きさに応じて調整することができない。
【0009】
またこのような従来の油圧ダンパにおいては、一般に振動外力を除荷する際には衝撃音(除荷音)が発生するが、この衝撃音は振動外力の除荷時間が長い場合に小さくなり、除荷時間が短い場合に大きくなる。一方、大規模な振動外力が発生した場合には、充分な減衰性能を発揮させるために除荷時間を短くすることが必要となる。
【0010】
このため、地震等の大規模な振動外力が発生した場合には減衰性能を優先して徐荷時間を短くし、風等による微小な振動外力が発生した場合には衝撃音を小さくすることを優先して除荷時間を長くすることが望ましい。しかしながら、従来の油圧ダンパにおいては、発生する振動外力に応じた徐荷時間の調整を行うことができなかった。
【0011】
そこで本発明は、上記問題点に鑑みて、大規模な振動外力が発生した場合には除荷時間を短くして減衰性能を十分に発揮させると共に、微小な振動外力が発生した場合には徐荷時間を長くして衝撃音を小さくすることができる油圧ダンパを提供することを課題とするものである。
【0012】
【他の従来の技術との相違点】
なお他の従来の技術として、特開2002−13310号公報に記載されているような制震構造物用可変減衰装置がある。かかる可変減衰装置は、小さな地震や台風などによる風応答時に、可変減衰装置に発生する加速度の変化により小刻みな揺れが発生することにより居住性が損なわれることを解決しようとするものである。
【0013】
そして、上記公報に記載されている従来の制震構造物用可変減衰装置は、減衰動作の1サイクル中において、振幅最大点に達する前に減衰係数を切替えた場合に瞬間的に大きな加速度が生ずることを、減衰係数を3段階以上の多段階にきめ細かく切替えることにより、揺れを抑えて居住性を向上するようにしたものである。
【0014】
これに対して本発明による油圧ダンパは、微小な振動外力が発生した場合には、振動外力が一定の大きさに満たないものであって、減衰性能を優先して除荷時間を短くすることを必要としない場合であると判断したときには、その振動外力に対する減衰係数を調整することにより、減衰性能よりも除荷時間を長くすることを優先して、除荷時間を長くすることにより除荷音を小さくして、騒音を抑えようとするものである点において、上記公報に記載されている従来例とは異なるものである。
【0015】
そして本発明は、油室の圧力(圧力差)や、ピストン(ピストンロッド)の変位を検知して大きな地震か単なる風による振動かを検知し、この検知結果により各開閉制御弁の開閉状態を決めて、減衰動作の1サイクル中においてそのような開閉状態を維持するように、各開閉制御弁の各々を制御することによって、微小な振動外力が発生した場合には徐荷時間を長くして衝撃音を小さくするようになっているが、このことは上記公報に係る従来例のどこにも記載されていない。
【0016】
【課題を解決するための手段】
本発明の油圧ダンパは、前記課題を解決するために、
油圧シリンダ内のピストンの両側に設けられた一対の油圧室間を連通する複数の油路を並列に配置し、前記複数の油路の各々に開閉制御弁を設けた油圧ダンパにおいて、
前記油圧室の各圧力と前記ピストンの変位を検出する各検出手段と、
前記各検出手段が検出した前記圧力と変位に基づいて振動外力の大きさを演算する演算手段と、
前記演算手段が演算した振動外力の大きさに基づいて前記開閉制御弁の各々の開閉状態を制御することにより除荷時間の長さを調整制御する制御手段を有することを特徴とするものである。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づいて具体的に説明する。
図1及び図2は、本発明による油圧ダンパの一実施の形態について説明するために参照する図である。
【0018】
図1に示す油圧ダンパ31は、前記従来の油圧ダンパ11の開閉制御弁V1とほぼ同様の構成を有し、並列の油路5の各々に配置された2つの開閉制御弁V11,V12を備え、これらの開閉制御弁V11,V12の各油路5に直列に流量調整弁20が設けられている。
【0019】
また断電時作動絞り弁V13は、通常はフェールセーフ機能の動作を行なっているが、必要に応じて制御回路27(演算手段、制御手段に相当)により、開閉制御弁V11,V12と同じ動作を行わせるよう制御することができる点において、従来の油圧ダンパ11の断電時作動絞り弁V3とは異なっている。
【0020】
リリーフ弁V2は、制御回路27に制御されるものではなく、油路5や油圧室4A又は4Bがその耐え得る強度上の限界に近い高圧力となったときに、その高圧力により油圧ダンパ11の油路5や油圧室4A,4Bが破裂するのを防止するために開いて、高圧力の油路5や油圧室4A,4Bからの油の一部を他の場所に逃がすように動作するものである点において、従来の油圧ダンパ11のリリーフ弁V2と異なるものではない。
【0021】
流量調整弁20は油路5を流れる油の量を変えるよう調整することができるため、その初期設定流量を変えることにより、同一の油圧ダンパ31の、同一の油路5においても、その流量調整弁20を設けた油路5の開閉制御弁V11やV12を開いた際の、油圧ダンパ31による同じ振動外力の除荷時間を変えることができるものである。
【0022】
【油圧ダンパの動作】
このような本実施の形態に係る油圧ダンパ31の動作について、以下に説明する。
【0023】
まず、圧力計8,9(検出手段に相当)により検出された油圧室4A,4Bの圧力P,Pと、変位計10(検出手段に相当)により検出された油圧シリンダ2とピストン3(ピストンロッド6)との間の相対変位△dに基づいて、制御回路27は振動外力の大きさを演算する。
【0024】
そして制御回路27が、上記演算した振動外力に基づいて開閉制御弁V11,V12を各種の組合せで開くよう、各々の開閉状態を制御することにより、油圧室4A,4B間の圧力差を解消して振動外力を減衰する。このときの各開閉制御弁の開閉状態は、減衰動作の1サイクル中にわたって維持される。
【0025】
たとえば、図2に示すように、振動外力Fが風荷重レベルのような小さい振動外力Fの場合は、開閉制御弁V11のみを開いたときは除荷時間t、開閉制御弁V12のみを開いたときは除荷時間t、開閉制御弁V11,V12を共に開いたときは除荷時間tとなる。
【0026】
また、振動外力Fが地震荷重レベルのような大きい振動外力Fのときは、開閉制御弁V11のみを開いたときは除荷時間t、開閉制御弁V12のみを開いたときは除荷時間t、開閉制御弁V11,V12を共に開いたときは除荷時間tとなる。
【0027】
このような制御による開閉制御弁V11,V12の開閉状態は、振動外力Fの大きさが変化しない限り同一の開閉状態を維持され、振動外力Fの大きさが変化したときは、その大きさに最適な開閉制御弁V11,V12の開閉状態に変化するよう、制御回路27により制御される。
【0028】
このような油圧ダンパ31によれば、振動外力Fが風荷重レベルのような小さい振動外力Fのときは、制御回路27は開閉制御弁V11のみを開くよう制御することにより、最も長い除荷時間tで振動外力Fを減衰するので、除荷時間tを延長して除荷音による騒音を低減することができる。
【0029】
また振動外力Fが地震荷重レベルのような大きい振動外力Fのときは、制御回路27は開閉制御弁V11,V12を共に開くよう制御することにより、最も短い除荷時間tで振動外力Fを減衰するので、除荷時間tを最も短縮して油圧ダンパ31の減衰性能を著しく向上させることができる。
【0030】
さらに本実施の形態においては、振動外力Fが地震荷重レベルのような大きい振動外力Fのときは、制御回路27は断電時作動絞り弁V13を開閉制御弁V11やV12と同時に開くように、断電時作動絞り弁V13への通電をOFFにするよう制御することができる。
【0031】
このことにより、油路5、開閉制御弁V11やV12、流量調整弁20及び断電時作動絞り弁V13を通る、油圧室4A,4B間の油の移動速度が速くなって、図2に示す最短の除荷時間tよりも短縮することができるので、油圧ダンパ31の減衰性能をさらに向上させることができる。
【0032】
また、開閉制御弁V11やV12の油路5に設けられた流量調整弁20は、前述のように、その初期設定流量を変えることにより、開閉制御弁V11やV12を開いた際の振動外力の除荷時間を変えることができるので、同じ振動外力の大きさに対する同じ油圧ダンパ31の除荷時間の長さをさらにきめ細かく調整することができる。
【0033】
なお、前記実施の形態においては開閉制御弁V11,V12の2個の開閉制御弁が油路5に並列に設けられたのものについて説明したが、開閉制御弁は油路5に並列に3個以上設けてもよく、その場合には制御する開閉制御弁の数や組み合せを種々に変化させることにより、さらにきめの細かい除荷時間の長さの調整制御を行うことが可能となる。
【0034】
以上、本発明の実施の形態について具体的に述べてきたが、本発明は上記の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて、その他にも各種の変更が可能なものである。
【0035】
【発明の効果】
以上説明したように、本発明の油圧ダンパによれば、並列の複数の油路に設けられた各開閉制御弁の開閉状態を制御して、発生した振動外力の大きさに応じて除荷時間の長さを調整制御することにより、地震荷重レベルのような大きい振動外力の除荷時間は短縮して減衰性能を向上することができ、また風荷重レベルのような小さい振動外力の除荷時間は延長して除荷音を低減することができる等、油圧ダンパの除荷時間の長さを振動外力の大きさに応じて調整することができる。
【0036】
また断電時作動絞り弁V13を、正常時であっても必要に応じて他の開閉制御弁V11,V12と共に開いて動作させるよう制御することができるので、油圧ダンパの除荷時間の長さを調整できる範囲をさらに拡大させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る油圧ダンパ31を示すブロック構成図である。
【図2】油圧ダンパ31の動作を説明するための振動外力Fと除荷時間tとの関係を示すグラフである。
【図3】従来の油圧ダンパ11を示すブロック構成図である。
【符号の説明】
2 油圧シリンダ
3 ピストン
4A,4B 油圧室
5 油路
6 ピストンロッド
8,9 圧力計
10 変位計
11 油圧ダンパ
17 制御回路
20 流量調整弁
27 制御回路
31 油圧ダンパ
,P 圧力
F,F,F 振動外力
〜t 除荷時間
V1,V11,V12 開閉制御弁
V2 リリーフ弁
V3,V13 断電時作動絞り弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic damper for attenuating a building shake caused by an external vibration force such as an earthquake or wind.
[0002]
[Prior art]
As a conventional hydraulic damper, for example, there is one shown in FIG. A conventional hydraulic damper 11 shown in FIG. 1 includes a pair of hydraulic chambers 4A and 4B provided on both sides of a piston 3 reciprocating in a hydraulic cylinder 2, and a flow path 5 connecting the two hydraulic chambers 4A and 4B. Opening / closing control valve V1 for switching the damping coefficient of the hydraulic damper 11 between the maximum value and the minimum value, a relief valve V2 for preventing the hydraulic damper 11 from being damaged due to a high pressure, and a throttle valve V3 operated at the time of a power failure. Are provided in the oil passage 5 in parallel with each other.
[0003]
A pressure gauge 8, 9 having a pressure detection unit attached to each of the two hydraulic chambers 4A, 4B, a displacement gauge 10 for measuring a relative displacement between the hydraulic cylinder 2 and the piston 3 from a displacement of the piston rod 6, Based on the pressures P 1 and P 2 of the two hydraulic chambers 4A and 4B detected by the pressure gauges 8 and 9 and the relative displacement △ d detected by the displacement meter 10 according to a preset control procedure. A control circuit 17 for controlling the opening / closing operation of the opening / closing control valve V1 to constitute a closed control system.
[0004]
Such a conventional hydraulic damper 11 can reduce costs by reducing the number of parts by constructing a closed control system that does not require an external control command as described above, It has the advantage that the above man-hours can be reduced.
[0005]
The on-off control valve V1 is turned on and off when the power from the control circuit 17 is ON, and closed when the power from the control circuit 17 is OFF due to a power failure or the like. Has a fail-safe function of performing the reverse operation.
[0006]
That is, in the event that an external force due to an earthquake or the like cannot be generated and the on-off control valve V1 cannot be opened in the event of an abnormality where the power supply is turned off, the pair of hydraulic chambers 4A are opened by opening the on-off operation throttle valve V3. , 4B, and the function as a hydraulic damper can be maintained.
[0007]
The relief valve V2 is not controlled by the control circuit 17, and when the oil passage 5 or the hydraulic chamber 4A or 4B has a high pressure close to the strength limit that the oil valve 5 can withstand, the high pressure causes the hydraulic damper 11 The oil passage 5 and the hydraulic chambers 4A and 4B are opened to prevent rupture, and operate to release a part of the oil from the high-pressure oil passage 5 and the hydraulic chambers 4A and 4B to other places. Things.
[0008]
[Problems to be solved by the invention]
However, in such a conventional hydraulic damper 11, since the opening and closing of the on-off control valve V1 is simply controlled uniformly by the control circuit 17 according to a preset control procedure, the length of time for unloading the external vibration force is reduced. It cannot be adjusted according to the magnitude of the external vibration force.
[0009]
In addition, in such a conventional hydraulic damper, an impact sound (unloading sound) is generally generated when the external vibration force is unloaded. However, the impact sound becomes small when the unloading time of the external vibration force is long, It increases when the unloading time is short. On the other hand, when a large-scale vibration external force is generated, it is necessary to shorten the unloading time in order to exhibit sufficient damping performance.
[0010]
Therefore, when large-scale external vibration such as an earthquake occurs, priority should be given to damping performance to shorten the unloading time, and when a small external vibration due to wind or the like occurs, the impact sound should be reduced. It is desirable to extend the unloading time first. However, in the conventional hydraulic damper, the unloading time cannot be adjusted according to the generated external vibration force.
[0011]
Therefore, in view of the above problems, the present invention shortens the unloading time when a large-scale vibration external force is generated to sufficiently exhibit the damping performance, and gradually reduces the unloading time when a small vibration external force is generated. It is an object of the present invention to provide a hydraulic damper that can lengthen the load time and reduce the impact sound.
[0012]
[Differences from other conventional technologies]
In addition, as another conventional technique, there is a variable damping device for a vibration control structure as described in JP-A-2002-13310. Such a variable damping device is intended to solve the problem that the comfortability is impaired due to a slight shaking caused by a change in acceleration generated in the variable damping device at the time of a wind response due to a small earthquake or a typhoon.
[0013]
In the conventional variable damping device for a vibration control structure described in the above publication, a large acceleration is instantaneously generated when the damping coefficient is switched before reaching the maximum amplitude point in one cycle of the damping operation. In this case, the damping coefficient is finely switched to three or more steps to suppress the shaking and improve the comfort.
[0014]
On the other hand, the hydraulic damper according to the present invention is designed to reduce the unloading time by giving priority to the damping performance when the vibration external force is less than a predetermined value when a small vibration external force is generated. When it is judged that the case does not require the unloading, by adjusting the damping coefficient for the external vibration force, the unloading time is made longer by giving priority to making the unloading time longer than the damping performance. This is different from the conventional example described in the above publication in that the sound is reduced to suppress the noise.
[0015]
The present invention detects the pressure (pressure difference) of the oil chamber and the displacement of the piston (piston rod) to detect whether the vibration is a large earthquake or a mere wind. Based on the detection result, the open / close state of each open / close control valve is determined. Then, by controlling each of the open / close control valves so as to maintain such an open / closed state during one cycle of the damping operation, the unloading time is extended when a small external vibration force is generated. The impact noise is reduced, but this is not described anywhere in the prior art disclosed in the above publication.
[0016]
[Means for Solving the Problems]
A hydraulic damper according to the present invention has the following features.
In a hydraulic damper, a plurality of oil passages communicating between a pair of hydraulic chambers provided on both sides of a piston in a hydraulic cylinder are arranged in parallel, and an open / close control valve is provided in each of the plurality of oil passages.
Each detection means for detecting each pressure of the hydraulic chamber and the displacement of the piston,
Calculating means for calculating the magnitude of the external vibration force based on the pressure and the displacement detected by each of the detecting means;
Control means for adjusting and controlling the length of unloading time by controlling the open / close state of each of the open / close control valves based on the magnitude of the external vibration force calculated by the calculation means. .
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
1 and 2 are views referred to for describing an embodiment of a hydraulic damper according to the present invention.
[0018]
The hydraulic damper 31 shown in FIG. 1 has substantially the same configuration as the open / close control valve V1 of the conventional hydraulic damper 11, and includes two open / close control valves V11 and V12 arranged in each of the parallel oil passages 5. A flow control valve 20 is provided in series with each of the oil passages 5 of the open / close control valves V11 and V12.
[0019]
Normally, the throttle valve V13 at the time of power failure performs the operation of the fail-safe function. However, the same operation as the opening / closing control valves V11 and V12 is performed by the control circuit 27 (corresponding to arithmetic means and control means) as necessary. Is different from the conventional throttle valve V3 when the power is cut off in the hydraulic damper 11 in that it can be controlled to perform the following operation.
[0020]
The relief valve V2 is not controlled by the control circuit 27. When the oil passage 5 or the hydraulic chamber 4A or 4B has a high pressure close to the strength limit that the oil passage 5 or the hydraulic chamber 4A or 4B can withstand, the high pressure causes the hydraulic damper 11 to operate. The oil passage 5 and the hydraulic chambers 4A and 4B are opened to prevent rupture, and operate to release a part of the oil from the high-pressure oil passage 5 and the hydraulic chambers 4A and 4B to other places. This is not different from the relief valve V2 of the conventional hydraulic damper 11 in that it is the same.
[0021]
Since the flow control valve 20 can be adjusted so as to change the amount of oil flowing through the oil passage 5, by changing the initial set flow amount, the flow control valve 20 can adjust the flow amount even in the same oil passage 5 of the same hydraulic damper 31. When the opening / closing control valves V11 and V12 of the oil passage 5 provided with the valve 20 are opened, the unloading time of the same vibration external force by the hydraulic damper 31 can be changed.
[0022]
[Operation of hydraulic damper]
The operation of the hydraulic damper 31 according to the present embodiment will be described below.
[0023]
First, the pressures P 1 and P 2 of the hydraulic chambers 4A and 4B detected by the pressure gauges 8 and 9 (corresponding to detecting means), the hydraulic cylinder 2 and the piston 3 detected by the displacement gauge 10 (corresponding to detecting means). The control circuit 27 calculates the magnitude of the oscillating external force based on the relative displacement △ d with the (piston rod 6).
[0024]
The control circuit 27 controls the open / close state of each of the open / close control valves V11 and V12 in various combinations based on the calculated external vibration force, thereby eliminating the pressure difference between the hydraulic chambers 4A and 4B. To attenuate external vibration forces. The open / close state of each open / close control valve at this time is maintained during one cycle of the damping operation.
[0025]
For example, as shown in FIG. 2, when the vibration force F is small vibration force F 1, such as wind load level, when you open only off control valve V11 is unloading time t 3, only the opening and closing control valve V12 when opened the unloading time t 2, is the unloading time t 1 when you open both the opening and closing control valve V11, V12.
[0026]
The vibration force when F is greater vibration force F 2 as seismic loads level, unloading time t 6 when opened only off control valve V11, unloading time when only the open-off control valve V12 t 5, is the unloading time t 4 when opening both the opening and closing control valve V11, V12.
[0027]
The open / close state of the open / close control valves V11 and V12 by such control is maintained at the same open / close state as long as the magnitude of the external vibration force F does not change. It is controlled by the control circuit 27 so as to change to the optimal open / close state of the open / close control valves V11 and V12.
[0028]
According to such a hydraulic damper 31, when the vibration force F is small vibration force F 1, such as wind load level, the control circuit 27 by controlling to open only off control valve V11, the longest unloading since damping vibration force F 1 at time t 3, it is possible to reduce noise due to unloading sound extended unloading time t.
[0029]
Also when the vibration force F is the vibration force F 2, such large as seismic loads level, the control circuit 27 by controlling to open both the opening and closing control valve V11, V12, shortest vibration at unloading time t 4 the external force F 2 , the unloading time t can be shortened most and the damping performance of the hydraulic damper 31 can be significantly improved.
[0030]
Further, in the present embodiment, when the vibration force F is larger vibration force F 2 as seismic loads level, the control circuit 27 to open simultaneously with the opening and closing control valves V11 and V12 the throttle valve V13 operation when deenergized In addition, it is possible to control to turn off the power supply to the throttle valve V13 when the power is cut off.
[0031]
As a result, the moving speed of the oil between the hydraulic chambers 4A and 4B passing through the oil passage 5, the opening / closing control valves V11 and V12, the flow regulating valve 20, and the cut-off operation throttle valve V13 is increased, as shown in FIG. it is possible to shorten than the shortest unloading time t 4, it is possible to further improve the damping performance of the hydraulic damper 31.
[0032]
As described above, the flow control valve 20 provided in the oil passage 5 of the on-off control valves V11 and V12 changes the initial set flow rate to reduce the external vibration force when the on-off control valves V11 and V12 are opened. Since the unloading time can be changed, the length of the unloading time of the same hydraulic damper 31 for the same magnitude of the vibration external force can be more finely adjusted.
[0033]
In the above-described embodiment, a description has been given of a case in which the two on-off control valves V11 and V12 are provided in parallel with the oil passage 5, but three or more on-off control valves are provided in parallel with the oil passage 5. In this case, the number and combination of the open / close control valves to be controlled are variously changed, so that it is possible to perform finer adjustment control of the length of the unloading time.
[0034]
As described above, the embodiments of the present invention have been specifically described. However, the present invention is not limited to the above embodiments, and various other changes may be made based on the technical idea of the present invention. It is possible.
[0035]
【The invention's effect】
As described above, according to the hydraulic damper of the present invention, the open / close state of each of the open / close control valves provided in the plurality of parallel oil passages is controlled, and the unloading time is adjusted according to the magnitude of the generated external vibration force. By adjusting and controlling the length, the unloading time of a large external vibration force such as an earthquake load level can be shortened to improve the damping performance, and the unloading time of a small external vibration force such as a wind load level can be improved. The length of the unloading time of the hydraulic damper can be adjusted in accordance with the magnitude of the external vibration force, for example, the unloading sound can be reduced by extending the length of the unloading sound.
[0036]
In addition, since it is possible to control the throttle valve V13 to be opened and operated together with the other opening / closing control valves V11 and V12 as needed even in a normal state, the length of the unloading time of the hydraulic damper can be increased. Can be further expanded.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a hydraulic damper 31 according to one embodiment of the present invention.
FIG. 2 is a graph illustrating a relationship between an external vibration force F and an unloading time t for explaining the operation of the hydraulic damper 31.
FIG. 3 is a block diagram showing a conventional hydraulic damper 11.
[Explanation of symbols]
2 hydraulic cylinder 3 piston 4A, 4B hydraulic chamber 5 oil passage 6 the piston rod 8,9 pressure gauge 10 displacement meter 11 hydraulic damper 17 control circuit 20 flow rate control valve 27 the control circuit 31 hydraulic damper P 1, P 2 pressure F, F 1 , F 2 vibrating force t 1 ~t 4 unloading time V1, V11, V12-off control valve V2 relief valve V3, V13-energized during operation throttle valve

Claims (5)

油圧シリンダ内のピストンの両側に設けられた一対の油圧室間を連通する複数の油路を並列に配置し、前記複数の油路の各々に開閉制御弁を設けた油圧ダンパにおいて、
前記油圧室の各圧力と前記ピストンの変位を検出する各検出手段と、
前記各検出手段が検出した前記圧力と変位に基づいて振動外力の大きさを演算する演算手段と、
前記演算手段が演算した振動外力の大きさに基づいて前記開閉制御弁の各々の開閉状態を制御することにより除荷時間の長さを調整制御する制御手段を有することを特徴とする油圧ダンパ。
In a hydraulic damper, a plurality of oil passages communicating between a pair of hydraulic chambers provided on both sides of a piston in a hydraulic cylinder are arranged in parallel, and an open / close control valve is provided in each of the plurality of oil passages.
Each detection means for detecting each pressure of the hydraulic chamber and the displacement of the piston,
Calculating means for calculating the magnitude of the external vibration force based on the pressure and the displacement detected by each of the detecting means;
A hydraulic damper having control means for adjusting and controlling the length of unloading time by controlling the open / close state of each of the open / close control valves based on the magnitude of the external vibration force calculated by the calculation means.
前記制御手段が、前記複数の油路の各々に設けられた開閉制御弁の開閉を個別に制御する制御手段である請求項1記載の油圧ダンパ。The hydraulic damper according to claim 1, wherein the control unit is a control unit that individually controls opening / closing of an opening / closing control valve provided in each of the plurality of oil passages. 前記複数の油路の少なくとも一つに、開閉制御弁と直列に流量調整弁を設けた請求項1又は2に記載の油圧ダンパ。The hydraulic damper according to claim 1, wherein a flow control valve is provided in at least one of the plurality of oil passages in series with the on-off control valve. 前記複数の油路の各々に設けた開閉制御弁の少なくとも一つが、通電の状態により他の開閉制御弁と逆の動作を行うフェールセーフ機能を有する開閉制御弁である請求項1ないし3のいずれかに記載の油圧ダンパ。4. An open / close control valve having a fail-safe function of performing an operation reverse to that of another open / close control valve depending on an energized state, wherein at least one of the open / close control valves provided in each of the plurality of oil passages is an open / close control valve. A hydraulic damper according to any of the claims. 前記フェールセーフ機能を有する開閉制御弁が、設定置以上の振動外力が負荷された際に、前記制御手段により制御されて他の開閉制御弁と同じ動作を行うように切替わる機能を有する請求項4記載の油圧ダンパ。The open / close control valve having the fail-safe function has a function of being controlled by the control unit to switch to perform the same operation as another open / close control valve when an external vibration force greater than a set position is applied. 4. The hydraulic damper according to 4.
JP2002213568A 2002-07-23 2002-07-23 Hydraulic damper Expired - Lifetime JP4009156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213568A JP4009156B2 (en) 2002-07-23 2002-07-23 Hydraulic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213568A JP4009156B2 (en) 2002-07-23 2002-07-23 Hydraulic damper

Publications (2)

Publication Number Publication Date
JP2004052959A true JP2004052959A (en) 2004-02-19
JP4009156B2 JP4009156B2 (en) 2007-11-14

Family

ID=31936129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213568A Expired - Lifetime JP4009156B2 (en) 2002-07-23 2002-07-23 Hydraulic damper

Country Status (1)

Country Link
JP (1) JP4009156B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929520A (en) * 2010-08-11 2010-12-29 武汉理工大学 Electrohydraulic energy regenerative vibration absorber
JP2019002513A (en) * 2017-06-16 2019-01-10 株式会社免制震ディバイス Rotational inertia mass damper
JP2020106144A (en) * 2018-12-27 2020-07-09 一夫 有▲吉▼ Building-seismic isolation/vibration control oil damper including control valve on outside
JP7089442B2 (en) 2018-09-03 2022-06-22 株式会社免制震ディバイス damper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701043A (en) * 2012-04-18 2012-10-03 林智勇 Elevator power generation damping safety device
US9149675B2 (en) 2012-10-24 2015-10-06 Freudenberg Medical, Llc Therapy device for trismus prevention and treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959554B1 (en) * 1998-05-22 1999-10-06 鹿島建設株式会社 Hydraulic damper for vibration control and vibration control structure
JP2000240318A (en) * 1999-02-22 2000-09-05 Taisei Corp Base isolation and vibration control system
JP2002013310A (en) * 2000-06-28 2002-01-18 Kajima Corp Variable damper for vibration control structure, and vibration control structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2959554B1 (en) * 1998-05-22 1999-10-06 鹿島建設株式会社 Hydraulic damper for vibration control and vibration control structure
JP2000240318A (en) * 1999-02-22 2000-09-05 Taisei Corp Base isolation and vibration control system
JP2002013310A (en) * 2000-06-28 2002-01-18 Kajima Corp Variable damper for vibration control structure, and vibration control structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929520A (en) * 2010-08-11 2010-12-29 武汉理工大学 Electrohydraulic energy regenerative vibration absorber
JP2019002513A (en) * 2017-06-16 2019-01-10 株式会社免制震ディバイス Rotational inertia mass damper
JP7089442B2 (en) 2018-09-03 2022-06-22 株式会社免制震ディバイス damper
JP2020106144A (en) * 2018-12-27 2020-07-09 一夫 有▲吉▼ Building-seismic isolation/vibration control oil damper including control valve on outside

Also Published As

Publication number Publication date
JP4009156B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JPH02246817A (en) Vibration-attenuation by use of continuously variable semi-positive damper
JP2004270925A (en) Apparatus for controlling bounce of hydraulically powered equipment
JPS63154413A (en) Car height adjusting device
JP2004293628A (en) Controller of hydraulic pressure cylinder
JPH05171836A (en) Variable attenuator for vibration-proof construction
JP2007247897A (en) Hydraulic system with mechanism for relieving pressure trapped in actuator
JP2004052959A (en) Hydraulic damper
JP3915622B2 (en) Load holding device for hydraulic actuator circuit
JP4198308B2 (en) Damping damper and damping system for damping
JP3552735B2 (en) Hydraulic circuit of construction machinery
JP2004125083A (en) Hydraulic damper
JP3730801B2 (en) Directional switching valve controller
JP3606044B2 (en) Damping method for structures and damper for damping
JPH08296605A (en) Hydraulic cylinder control method
JP3249266B2 (en) Damping device
JP2006283839A (en) Hydraulic shock absorber monitoring system
JP3397199B2 (en) Control method of variable damping device for damping structure
JP5436333B2 (en) Seismic isolation device
JP2959554B1 (en) Hydraulic damper for vibration control and vibration control structure
JP2726610B2 (en) Hybrid variable damping device for vibration control structures
JPH0238668A (en) Damping mechanism for architectural structure
JP4491292B2 (en) Vibration control device
JP2000291608A (en) Directional selector valve control device
JPH0882338A (en) Semi-active control damper and control system
JP2005155718A (en) Hydraulic damper for damping

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term