Nothing Special   »   [go: up one dir, main page]

JP2004048055A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2004048055A
JP2004048055A JP2003329975A JP2003329975A JP2004048055A JP 2004048055 A JP2004048055 A JP 2004048055A JP 2003329975 A JP2003329975 A JP 2003329975A JP 2003329975 A JP2003329975 A JP 2003329975A JP 2004048055 A JP2004048055 A JP 2004048055A
Authority
JP
Japan
Prior art keywords
electric double
double layer
polarizable electrode
layer capacitor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329975A
Other languages
Japanese (ja)
Inventor
Kazuya Hiratsuka
平塚 和也
Takeshi Morimoto
森本 剛
Manabu Kazuhara
数原 学
Takeshi Kawasato
河里 健
Manabu Tsushima
對馬 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003329975A priority Critical patent/JP2004048055A/en
Publication of JP2004048055A publication Critical patent/JP2004048055A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electric double layer capacitor with less performance degradation caused by a charge and discharge cycle, and excellent operation reliability for a long term. <P>SOLUTION: The electric double layer capacitor includes a polarizable electrode and organic electolyte forming an electric double layer on the surface of the polarizable electrode. The polarizable electrode with a main component of active carbon formed sheet-like is bonded to a collector via a carbon based conductive adhesive layer containing polymide resin or polyamideimide resin as a binder component. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は電気二重層コンデンサ(以下、EDLCという)、特に作動信頼性に優れたEDLCに関する。 The present invention relates to an electric double layer capacitor (hereinafter referred to as EDLC), and more particularly to an EDLC excellent in operation reliability.

 EDLCは、分極性電極の表面の電解液中に形成される電気二重層に電荷を蓄積することを原理としており、EDLCの容量密度を向上させるため、分極性電極には高比表面積の活性炭、カーボンブラックなどの炭素材料、金属又は導電性金属酸化物の微粒子などが用いられる。これらの高比表面積の分極性電極に効率良く充電及び放電するため、これらの分極性電極は集電体と呼ばれる金属や黒鉛などの電子伝導性の抵抗の小さい層や箔と接合されている。これらの集電体には通常電気化学的に耐食性の高いアルミニウムなどのバルブ金属、SUS304、SUS316Lなどのステンレス鋼などが使用される。 EDLC is based on the principle of accumulating electric charge in the electric double layer formed in the electrolyte solution on the surface of the polarizable electrode. In order to improve the capacity density of EDLC, the polarizable electrode has a high specific surface area activated carbon, Carbon materials such as carbon black, fine particles of metal or conductive metal oxide, and the like are used. In order to efficiently charge and discharge these polarizable electrodes having a high specific surface area, these polarizable electrodes are joined to a layer called a current collector, such as a metal or graphite, having a low electron conductivity resistance or a foil. For these current collectors, valve metals such as aluminum having high electrochemical resistance and stainless steel such as SUS304 and SUS316L are usually used.

 このようなEDLCには、電解液に有機電解液を用いたものと水系電解液を用いたものがあり、作動電圧が高く、充電状態のエネルギ密度を大きくできることから、有機電解液を用いたEDLCが注目されている。有機電解液を用いる場合、EDLCの内部に水分が存在するとこの水分が電気分解して性能の劣化を招くため、上記分極性電極は高度に脱水する必要があり、通常、減圧下で加熱する乾燥処理が施される。 There are two types of EDLC, one using an organic electrolyte and the other using an aqueous electrolyte. The EDLC uses an organic electrolyte because the operating voltage is high and the energy density of the charged state can be increased. Is attracting attention. When using an organic electrolyte, the presence of water inside the EDLC causes the water to electrolyze and degrade performance, so the polarizable electrode must be highly dehydrated and is usually dried by heating under reduced pressure. Processing is performed.

 分極性電極には主に活性炭が使用され、活性炭は通常粉末状であるため、例えばポリテトラフルオロエチレン(PTFE)などの含フッ素樹脂を含むバインダを用いてあらかじめシート状に成形したものを集電体と電気的に接続させた電極として用いる。この際、両者を密着させ、かつ電気的な接触抵抗が小さくなるように、導電性接着層を介して接合したものも多くある。しかし、含フッ素樹脂には接着が難しいという性質があり、大きな接合強度を得ることが難しい。 Activated carbon is mainly used for the polarizable electrode, and the activated carbon is usually in the form of powder. For example, the current collected is formed into a sheet using a binder containing a fluorine-containing resin such as polytetrafluoroethylene (PTFE). Used as an electrode electrically connected to the body. At this time, many of them are bonded via a conductive adhesive layer so that both are brought into close contact with each other and the electrical contact resistance is reduced. However, the fluorine-containing resin has a property that it is difficult to bond, and it is difficult to obtain a large bonding strength.

 導電性接着層には電気化学的な耐食性を必要とするので、これらの導電性接着層に電子伝導性を与えるフィラーには、カーボンブラックや黒鉛などの炭素材料が好んで使用される。さらに接合強度を確保するため、導電性接着層には種々のバインダ成分が使用される。この目的に使用されるバインダ成分としては、セルロース、ポリビニルアルコールなどの樹脂(特許文献1、2)や、水ガラス等の無機系バインダ成分(特許文献3)が知られている。 Since the conductive adhesive layer requires electrochemical corrosion resistance, a carbon material such as carbon black or graphite is preferably used as a filler that gives electronic conductivity to the conductive adhesive layer. Further, various binder components are used for the conductive adhesive layer in order to ensure the bonding strength. As binder components used for this purpose, resins such as cellulose and polyvinyl alcohol (Patent Documents 1 and 2) and inorganic binder components such as water glass (Patent Document 3) are known.

 しかし、これら樹脂系バインダ成分を含む導電性接着剤を用いた場合、有機電解液に対する耐性が不充分なことによって分極性電極と集電体が剥離を起こしたりする。また、耐熱性の良いバインダであっても耐熱性が150℃前後であるため高温での乾燥処理ができず、活性炭に吸着している残存水分が電気分解することによるEDLCの性能劣化が見られるなどの問題があった。また、水ガラス等の無機系バインダでは、耐熱性は高いが金属集電体との接着強度が不充分であり、アルカリ成分の溶出や残留水分によってEDLCの性能劣化が起きる問題があった。 However, when a conductive adhesive containing these resin binder components is used, the polarizable electrode and the current collector may be peeled off due to insufficient resistance to the organic electrolyte. Moreover, even if the binder has good heat resistance, the heat resistance is around 150 ° C., so it cannot be dried at high temperature, and the performance of EDLC is deteriorated due to the electrolysis of residual moisture adsorbed on the activated carbon. There were problems such as. In addition, inorganic binders such as water glass have high heat resistance but insufficient adhesive strength with a metal current collector, and there is a problem in that EDLC performance deteriorates due to elution of alkali components and residual moisture.

特開昭59−3915号公報(特許請求の範囲)JP 59-3915 (Claims) 特開昭62−200715号公報(第2頁左上欄最終行〜右上欄3行)JP-A-62-200715 (page 2, upper left column, last line to upper right column, 3 lines) 特開平2−82608号公報(特許請求の範囲)JP-A-2-82608 (Claims)

 本発明は上記従来技術における問題、すなわちEDLC中、特に分極性電極中の水分を極力少なくでき、電極と集電体との電気的接続が強く、性能劣化の起きないEDLCを提供することを目的とする。 The object of the present invention is to provide an EDLC that can reduce the problem in the prior art, that is, EDLC, in particular, moisture in the polarizable electrode as much as possible, has strong electrical connection between the electrode and the current collector, and does not cause performance deterioration. And

 本発明のEDLCは、分極性電極と、該分極性電極の表面に電気二重層を形成する有機電解液とを有する電気二重層コンデンサにおいて、シート状に成形された活性炭を主とする分極性電極が、ポリイミド樹脂又はポリアミドイミド樹脂をバインダ成分として含む炭素系導電性接着層を介して集電体に接合されていることを特徴とする。 The EDLC of the present invention is a polarizable electrode mainly composed of activated carbon formed into a sheet shape in an electric double layer capacitor having a polarizable electrode and an organic electrolyte that forms an electric double layer on the surface of the polarizable electrode. Is bonded to the current collector through a carbon-based conductive adhesive layer containing polyimide resin or polyamideimide resin as a binder component.

 本発明によるEDLCは、高温の加速的劣化を起こす試験条件下において3000サイクルの充放電サイクルを繰り返した時の容量劣化と内部抵抗の上昇が顕著に小さく、長期間使用時の作動信頼性に優れたEDLCであることがわかる。 The EDLC according to the present invention is remarkably small in capacity deterioration and increase in internal resistance when 3000 charge / discharge cycles are repeated under test conditions that cause high-temperature accelerated deterioration, and has excellent operational reliability when used for a long period of time. It turns out that it is EDLC.

 本発明のEDLCにおいて、炭素系導電性接着層に含まれるバインダ成分は、ポリイミド樹脂又はポリアミドイミド樹脂であり、これら樹脂の耐熱温度は通常200〜400℃の範囲にあって耐熱性が高い。ポリイミド樹脂はその主鎖にイミド構造(−CO−NR−CO−)の骨格を持つものの総称であって、耐薬品性、機械的性質、寸法安定性、電気的特性において優れている。ポリイミド樹脂は、線状ポリイミド樹脂と硬化型ポリイミド樹脂に大別できる。線状ポリイミド樹脂には熱可塑性樹脂と非熱可塑性樹脂があり、硬化型樹脂には熱硬化性樹脂と光硬化性樹脂が含まれるが、いずれのタイプのポリイミド樹脂を選ぶとしても、樹脂を溶剤に溶かしたワニスを接着剤に使用するのが好ましい。 In the EDLC of the present invention, the binder component contained in the carbon-based conductive adhesive layer is a polyimide resin or a polyamideimide resin, and the heat resistance temperature of these resins is usually in the range of 200 to 400 ° C. and has high heat resistance. Polyimide resin is a general term for those having an imide structure (—CO—NR—CO—) in its main chain, and is excellent in chemical resistance, mechanical properties, dimensional stability, and electrical characteristics. Polyimide resins can be broadly classified into linear polyimide resins and curable polyimide resins. Linear polyimide resins include thermoplastic resins and non-thermoplastic resins, and curable resins include thermosetting resins and photocurable resins. Regardless of which type of polyimide resin is selected, the resin must be a solvent. It is preferable to use a varnish dissolved in the adhesive.

 ポリイミド樹脂のワニスには、溶剤に可溶なポリイミド樹脂を溶剤に溶かしたものと、ポリアミック酸等のポリイミド樹脂の前駆体を溶剤に溶かしたもので、高温の熱処理でイミド樹脂になるものがあり、いずれも同様に使用できる。ポリイミド樹脂のワニスには、宇部興産社の「U−ワニス」(ポリアミック酸を溶剤に溶かしたもの)、新日本理化社の「リカコート」(溶剤に可溶なポリイミド樹脂を溶剤にとかしたもの)、デュポン社の「パイヤーML」、日立化成社の「PIQ」、東レ社の「トレニース」、旭化成工業社の「パイメル」がある。また、溶剤に可溶なポリアミドイミド樹脂を溶剤に溶かしたワニスには、東洋紡社の「N7525」や「NA−11」がある。 There are two types of polyimide resin varnishes: one in which a polyimide resin soluble in a solvent is dissolved in the solvent, and one in which a polyimide resin precursor such as polyamic acid is dissolved in a solvent, which becomes an imide resin by high-temperature heat treatment. Can be used in the same manner. For the varnish of polyimide resin, Ube Industries' “U-varnish” (polyamic acid dissolved in a solvent), Shin Nippon Rika Co., Ltd.'s “Rika Coat” (solvent-soluble polyimide resin dissolved in a solvent) DuPont's "Pier ML", Hitachi Chemical's "PIQ", Toray's "Trenice" and Asahi Kasei's "Pimel". Further, varnishes obtained by dissolving a polyamideimide resin soluble in a solvent in a solvent include “N7525” and “NA-11” manufactured by Toyobo.

 このように、本発明のEDLCでは、炭素系導電性接着層のバインダ成分であるポリイミド樹脂又はポリアミドイミド樹脂の耐熱性が高いため、高温下での加熱又は減圧下の加熱処理によって活性炭中にある水分を高度に乾燥除去できる。また、このバインダ成分は有機電解液に対する耐性があり、含フッ素樹脂をバインダとする分極性電極シートの金属等の集電体への接着強度もきわめて優れる。このため、大電流密度で充放電サイクルを繰り返しても、長期間にわたって電圧を印加しても、作動性能が安定しており、同時に電極の内部抵抗の増加を小さくできる。 Thus, in the EDLC of the present invention, since the heat resistance of the polyimide resin or polyamideimide resin that is the binder component of the carbon-based conductive adhesive layer is high, it is in the activated carbon by heating at high temperature or heat treatment under reduced pressure. Moisture can be removed by high drying. In addition, this binder component is resistant to an organic electrolyte, and the adhesion strength of a polarizable electrode sheet having a fluorine-containing resin as a binder to a current collector such as metal is extremely excellent. For this reason, even if a charge / discharge cycle is repeated at a large current density or a voltage is applied for a long period of time, the operation performance is stable, and at the same time, the increase in internal resistance of the electrode can be reduced.

 バインダ成分に用いる樹脂は樹脂粉末又はワニスとして入手できるので、これらの樹脂をN−メチル−2−ピロリドン(NMP)等の溶剤に溶かしたものに、導電性フィラーとしてカーボンブラックや黒鉛微粒子を高度に分散させて懸濁液の接着剤とし、この接着剤を集電体の表面に滴下、刷毛塗り、スプレー等によって塗工し、次いでこの表面に別途作製した分極性電極のシートを圧着し、好ましくは250℃以上の高温下、さらには減圧下で加熱乾燥することにより強固に接合する。 Since the resin used for the binder component can be obtained as a resin powder or varnish, carbon black and graphite fine particles are highly used as conductive fillers in those resins dissolved in a solvent such as N-methyl-2-pyrrolidone (NMP). Dispersed to form a suspension adhesive, and this adhesive is applied to the surface of the current collector by dropping, brushing, spraying, etc., and then a separately prepared sheet of polarizable electrode is pressure-bonded to the surface, preferably Is firmly bonded by heating and drying at a high temperature of 250 ° C. or higher, and further under reduced pressure.

 本発明の好ましいEDLCは、バインダ成分が、溶剤に可溶なポリイミド樹脂、ポリアミドイミド樹脂又はこれら樹脂の前駆体を有機溶媒に溶かしたワニスを加熱硬化させたものであり、炭素系導電性接着層中にポリイミド樹脂又はポリアミドイミド樹脂を、ポリイミド樹脂又はポリアミドイミド樹脂と導電性フィラーとの合量中10〜70重量%含むものである。該ポリイミド樹脂又はポリアミドイミド樹脂は炭素系導電性接着層中に10重量%以上含むことによって実用性のある接合強度が得られ、あまり多く含まれると接着層の電気抵抗が大きくなるので70重量%以下とするのが好ましい。 A preferred EDLC of the present invention is a carbon-based conductive adhesive layer in which a binder component is a heat-cured varnish in which a solvent-soluble polyimide resin, polyamide-imide resin or a precursor of these resins is dissolved in an organic solvent. It contains 10 to 70% by weight of the polyimide resin or polyamideimide resin in the total amount of the polyimide resin or polyamideimide resin and the conductive filler. When the polyimide resin or polyamideimide resin is contained in the carbon-based conductive adhesive layer in an amount of 10% by weight or more, a practical bonding strength can be obtained. The following is preferable.

 本発明のEDLCに使用される有機電解液は特に限定されず、公知の有機溶媒にイオン解離性の塩類を含む有機電解液を使用できる。なかでもR、R(Rはアルキル基)などの第4級オニウムカチオンと、BF 、PF 、ClO 、CFSO 等のアニオンとからなる塩を有機溶媒に溶解させた有機電解液を使用するのが好ましい。 The organic electrolyte used in the EDLC of the present invention is not particularly limited, and an organic electrolyte containing ion-dissociable salts in a known organic solvent can be used. Among them, a salt comprising a quaternary onium cation such as R 4 N + or R 4 P + (R is an alkyl group) and an anion such as BF 4 , PF 6 , ClO 4 or CF 3 SO 3 −. It is preferable to use an organic electrolytic solution in which is dissolved in an organic solvent.

 上記有機溶媒としては、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート等のカーボネート類、γ−ブチルラクトン等のラクトン類、スルホラン又はこれらの混合溶媒が好ましく使用できる。 As the organic solvent, carbonates such as propylene carbonate, butylene carbonate and diethyl carbonate, lactones such as γ-butyllactone, sulfolane or a mixed solvent thereof can be preferably used.

 本発明のEDLCの分極性電極材料は、電気化学的に不活性な高比表面積の材料であれば使用できるが、大きい比表面積を有する活性炭粉末を主とする分極性電極材料とするのが好ましい。活性炭粉末の他、カーボンブラック、金属微粒子、導電性金属酸化物微粒子などの大比表面積の材料を好ましく使用できる。また、これらの分極性電極材料を主とする分極性電極を、正極と負極の両方に用いてEDLCとすることが多いが、正極又は負極の一方のみを上記分極性電極とし、残りの一方を充放電可能な非分極性電極材料、すなわち二次電池用活物質材料を主とする非分極性電極としてもよい。 The polarizable electrode material of the EDLC of the present invention can be used as long as it is an electrochemically inert material with a high specific surface area, but is preferably a polarizable electrode material mainly composed of activated carbon powder having a large specific surface area. . In addition to the activated carbon powder, materials having a large specific surface area such as carbon black, metal fine particles, and conductive metal oxide fine particles can be preferably used. In many cases, polarizable electrodes mainly composed of these polarizable electrode materials are used for both positive and negative electrodes to form EDLC, but only one of the positive and negative electrodes is used as the polarizable electrode, and the other is used as the other one. A nonpolarizable electrode material that can be charged / discharged, that is, a nonpolarizable electrode mainly composed of an active material for a secondary battery may be used.

 上記の分極性電極を電気的に接続するための集電体は、導電性に優れ、かつ電気化学的に耐久性のある材料であればよく、アルミニウム、チタン、タンタルなどのバルブ金属、ステンレス鋼、金、白金などの貴金属、黒鉛、グラッシーカーボン、カーボンブラックを含む導電性ゴムなどの炭素系材料が好ましく使用できる。 The current collector for electrically connecting the polarizable electrodes may be any material that is excellent in conductivity and electrochemically durable, such as valve metals such as aluminum, titanium, and tantalum, and stainless steel. Carbon materials such as conductive rubber containing noble metals such as gold and platinum, graphite, glassy carbon, and carbon black can be preferably used.

 本発明のEDLCの製造方法は、活性炭粉末とカーボンブラックに含フッ素樹脂を混合したものをシート状に成形して分極性電極とし、この分極性電極をポリイミド樹脂、ポリアミドイミド樹脂又はこれら樹脂の前駆体のいずれかをバインダ成分として含む懸濁液からなる炭素系導電性接着剤を使用して集電体に接合し、200℃以上の温度で加熱乾燥することが好ましい。乾燥を高度に、かつ速やかに行うには、加熱乾燥を250℃以上で行うのが好ましい。 The production method of the EDLC of the present invention is to form a polarizable electrode by mixing a mixture of activated carbon powder and carbon black with a fluorine-containing resin into a sheet shape. It is preferable to use a carbon-based conductive adhesive made of a suspension containing any one of the bodies as a binder component, join the current collector, and heat dry at a temperature of 200 ° C. or higher. In order to perform drying highly and quickly, it is preferable to perform heat drying at 250 ° C. or higher.

 以下、本発明を実施例(例1〜3)及び比較例(例4、5)によってさらに説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be further described with reference to Examples (Examples 1 to 3) and Comparative Examples (Examples 4 and 5), but the present invention is not limited thereto.

 水蒸気賦活法で得られたやしがら活性炭粉末(平均粒径10μm、比表面積1800m/g)80重量%、PTFE10重量%及びカーボンブラック10重量%にエタノールを加えて混練し、混練物をシート状に成形し、さらに厚さ0.3mmにロール圧延後、40mm角のシートを切り取り、これをエッチング処理を施したアルミニウム箔(厚さ0.1mm)の集電体の表面に、それぞれ表1に示す種類のバインダ成分20重量%と黒鉛微粒子80重量%からなる導電性接着層を介して接着固定した。 The palm activated carbon powder (average particle size 10 μm, specific surface area 1800 m 2 / g) obtained by the steam activation method is kneaded by adding ethanol to 80% by weight, PTFE 10% by weight and carbon black 10% by weight, and the kneaded product is made into a sheet. Then, after rolling and rolling to a thickness of 0.3 mm, a 40 mm square sheet was cut out, and this was applied to the surface of an aluminum foil (thickness: 0.1 mm) current collector subjected to an etching treatment. It was bonded and fixed via a conductive adhesive layer comprising 20% by weight of the binder component shown in FIG.

 すなわち、バインダ成分20重量%と黒鉛微粒子80重量%にNMPを混合した懸濁液である炭素系導電性接着剤を得た。この炭素系導電性接着剤を集電体のアルミニウム箔の表面に塗工し、シート状の分極性電極をこの表面に圧着し、次に表1に示した各懸濁液中に含まれるバインダ成分の耐熱許容温度において減圧下で3時間加熱して乾燥処理し、各電極中の水分を除去した。 That is, a carbon-based conductive adhesive which is a suspension obtained by mixing 20% by weight of the binder component and 80% by weight of the graphite fine particles with NMP was obtained. The carbon-based conductive adhesive is applied to the surface of the aluminum foil of the current collector, and a sheet-like polarizable electrode is pressure-bonded to the surface, and then the binder contained in each suspension shown in Table 1 The components were heated at a heat-resistant allowable temperature for 3 hours under reduced pressure and dried to remove moisture in each electrode.

Figure 2004048055
Figure 2004048055

 乾燥後の集電体と接合された分極性電極を、低湿度のアルゴンガスを充たしたグローブボックスに移し、有機電解液として1モル/リットルのテトラエチルアンモニウムテトラフルオロボレートを含むプロピレンカーボネート溶液を分極性電極中に充分含浸させ、ポリプロピレン繊維の不織布からなるセパレータを両分極性電極間に挟んで対向させ、EDLCを組み立てた。 The polarizable electrode joined to the dried current collector is transferred to a glove box filled with low-humidity argon gas. The electrode was sufficiently impregnated, and a separator made of a nonwoven fabric of polypropylene fibers was sandwiched between the polarizable electrodes so as to face each other, and an EDLC was assembled.

 得られたEDLCの初期の放電容量及び内部抵抗を測定した後、40℃の恒温槽中で0〜2.8Vの間で1Aの定電流による充放電を3000サイクル繰り返し、3000サイクル後の放電容量及び内部抵抗を測定し、前後の性能変化を観察することにより、EDLCの長期的な作動信頼性を加速的に評価した。 After measuring the initial discharge capacity and internal resistance of the obtained EDLC, the battery was charged and discharged with a constant current of 1 A between 0 and 2.8 V in a constant temperature bath at 40 ° C. for 3000 cycles, and the discharge capacity after 3000 cycles. In addition, by measuring the internal resistance and observing the change in performance before and after, the long-term operational reliability of the EDLC was evaluated in an accelerated manner.

 本発明によるEDLCは、長期間使用時の作動信頼性に優れたEDLCである。
The EDLC according to the present invention is an EDLC excellent in operational reliability during long-term use.

Claims (3)

 分極性電極と、該分極性電極の表面に電気二重層を形成する有機電解液とを有する電気二重層コンデンサにおいて、シート状に成形された活性炭を主とする分極性電極が、ポリイミド樹脂又はポリアミドイミド樹脂をバインダ成分として含む炭素系導電性接着層を介して集電体に接合されていることを特徴とする電気二重層コンデンサ。 In an electric double layer capacitor having a polarizable electrode and an organic electrolyte that forms an electric double layer on the surface of the polarizable electrode, the polarizable electrode mainly composed of activated carbon formed into a sheet is made of polyimide resin or polyamide An electric double layer capacitor characterized by being bonded to a current collector through a carbon-based conductive adhesive layer containing an imide resin as a binder component.  前記ポリイミド樹脂又はポリアミドイミド樹脂が、炭素系導電性接着層中に10〜70重量%含まれる請求項1記載の電気二重層コンデンサ。 2. The electric double layer capacitor according to claim 1, wherein the polyimide resin or polyamideimide resin is contained in an amount of 10 to 70% by weight in the carbon-based conductive adhesive layer.  前記有機電解液が、第4級アンモニウム塩又は第4級ホスホニウム塩を電解質として含む有機電解液である請求項1又は2記載の電気二重層コンデンサ。
The electric double layer capacitor according to claim 1 or 2, wherein the organic electrolytic solution is an organic electrolytic solution containing a quaternary ammonium salt or a quaternary phosphonium salt as an electrolyte.
JP2003329975A 2003-09-22 2003-09-22 Electric double layer capacitor Pending JP2004048055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329975A JP2004048055A (en) 2003-09-22 2003-09-22 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329975A JP2004048055A (en) 2003-09-22 2003-09-22 Electric double layer capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7707096A Division JP3846930B2 (en) 1996-03-29 1996-03-29 Manufacturing method of electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2004048055A true JP2004048055A (en) 2004-02-12

Family

ID=31712750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329975A Pending JP2004048055A (en) 2003-09-22 2003-09-22 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2004048055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172139A (en) * 2007-01-15 2008-07-24 Teijin Ltd Polarizing electrode and electric double layer capacitor
JP2014041996A (en) * 2012-07-27 2014-03-06 Seiko Instruments Inc Electrochemical cell and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172139A (en) * 2007-01-15 2008-07-24 Teijin Ltd Polarizing electrode and electric double layer capacitor
JP2014041996A (en) * 2012-07-27 2014-03-06 Seiko Instruments Inc Electrochemical cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6072692A (en) Electric double layer capacitor having an electrode bonded to a current collector via a carbon type conductive adhesive layer
JP5771873B2 (en) High-capacity / high-power electrochemical energy storage element using conductive (conductive) polymer composite
WO2007043515A1 (en) Electric double layer capacitor
MX2007016485A (en) Current collector for double electric layer electrochemical capacitors and method of manufacture thereof.
JP6371861B2 (en) Electrode having a collector including a protective conductive layer and corresponding manufacturing method for an electrical energy storage system
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
CN103198929A (en) Electrode plate of electric double layer capacitor (EDLC) and preparation method thereof
JP2014064030A (en) Electrochemical capacitor
JP3846930B2 (en) Manufacturing method of electric double layer capacitor
JP2017123471A (en) Current conducting electrode and method for manufacturing the same
TWI646562B (en) Composite material of electrode unit, method of producing electrode unit with composite material, and supercapacitor
JP3791149B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2008060282A (en) Electric double layer capacitor
JP2008269824A (en) Electrochemical cell
JP4487540B2 (en) Electrochemical capacitor
JP2008010613A (en) Electric double layer capacitor
JP2007180444A (en) Electrochemical capacitor
JP2004048055A (en) Electric double layer capacitor
TWI668902B (en) Electrode and electrochemical energy storage device
WO2014077393A1 (en) Cnt/non-woven composite capacitor
JP4318337B2 (en) Electrode for non-aqueous electrochemical device and method for producing the same
JP4026226B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
KR102157384B1 (en) Electrical double layer capacitor including granular activated carbon-carbon nanotube composite
Karaca et al. 4.2 V Stack of metal oxide‐polypyrrole‐based composite electrodes and their power management
JP2008252057A (en) Electrode for electrochemical capacitor, and the electrochemical capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050502

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A02