Nothing Special   »   [go: up one dir, main page]

JP2004048040A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2004048040A
JP2004048040A JP2003301289A JP2003301289A JP2004048040A JP 2004048040 A JP2004048040 A JP 2004048040A JP 2003301289 A JP2003301289 A JP 2003301289A JP 2003301289 A JP2003301289 A JP 2003301289A JP 2004048040 A JP2004048040 A JP 2004048040A
Authority
JP
Japan
Prior art keywords
light emitting
phosphor
light
emitting device
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003301289A
Other languages
Japanese (ja)
Other versions
JP3871668B2 (en
Inventor
Hideto Sugawara
菅 原 秀 人
Chisato Furukawa
古 川 千 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2003301289A priority Critical patent/JP3871668B2/en
Publication of JP2004048040A publication Critical patent/JP2004048040A/en
Application granted granted Critical
Publication of JP3871668B2 publication Critical patent/JP3871668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device in which the ununiformity of emission is eliminated. <P>SOLUTION: The semiconductor light emitting device is provided with a light emitting element; a first fluorescent material absorbing primary light emitted from the light emitting element to emit light of a first wavelength different from the primary light; and a second fluorescent material absorbing the primary light emitted from the light emitting element to emit light of a second wavelength different from the primary light. The first fluorescent material is provided on a first region of the light emitting surface of the light emitting element. The second fluorescent material is provided on a second region, different from the first region, of the light emitting surface of the light emitting element. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は半導体発光装置に関し、特にLED(light emitting diode:発光ダイオード)などの半導体発光素子と複数種類の蛍光体との組み合わせにより発光する半導体発光装置に関する。 The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device that emits light by combining a semiconductor light emitting element such as an LED (light emitting diode) and a plurality of types of phosphors.

 半導体発光素子と蛍光体とを組み合わせた半導体発光装置は、その組み合わせや種類を選択することにより発光色を自由に変化させることができるため、新しい光源として注目されている。すなわち、半導体発光素子から放出される1次光を蛍光体により波長変換して2次光として取り出すことにより、得られる波長の選択の自由度を大幅に拡げることができる。 (4) A semiconductor light emitting device in which a semiconductor light emitting element and a phosphor are combined has attracted attention as a new light source because the emission color can be freely changed by selecting the combination and type. That is, the primary light emitted from the semiconductor light emitting element is converted in wavelength by the fluorescent material and extracted as secondary light, so that the degree of freedom in selecting the obtained wavelength can be greatly expanded.

 しかし、本発明者の試作検討の結果、半導体発光素子と複数の種類の蛍光体とを組み合わせた従来の半導体発光装置では以下に詳述する問題があることが分かった。 However, as a result of the prototyping study by the present inventors, it has been found that the conventional semiconductor light emitting device in which a semiconductor light emitting element and a plurality of types of phosphors are combined has the following problems.

 図9は、従来の半導体発光装置の概略構成を表す断面図である。すなわち、同図の半導体発光装置は、リードフレーム102に形成された凹状のカップ部の底面にLEDチップ101がマウントされ、ワイア106、107により配線され、蛍光体111〜113が塗布されている。ここで、LED101は、紫外光領域で発光するものであり、蛍光体は、その紫外光を吸収して赤色の光を放出する、赤色(R)蛍光体111、緑色の光を放出する緑色(G)蛍光体112、青色の光を放出する青色(B)蛍光体の混合物である。図9に示した半導体発光装置は、このように、LED101からの紫外光を波長変換してRGBからなる白色光を得ることができる。 FIG. 9 is a cross-sectional view illustrating a schematic configuration of a conventional semiconductor light emitting device. That is, in the semiconductor light emitting device of FIG. 1, the LED chip 101 is mounted on the bottom surface of the concave cup portion formed on the lead frame 102, wired by wires 106 and 107, and coated with phosphors 111 to 113. Here, the LED 101 emits light in the ultraviolet light region, and the phosphor absorbs the ultraviolet light and emits red light. The red (R) phosphor 111 emits red light, and the green light emits green light. G) a mixture of a phosphor 112 and a blue (B) phosphor that emits blue light. As described above, the semiconductor light emitting device shown in FIG. 9 can obtain white light composed of RGB by converting the wavelength of the ultraviolet light from the LED 101.

 しかし、本発明者が図9に示したような半導体発光装置を試作・評価したところ、混合斑すなわち発光の「むら」を引き起こしてしまうという問題があることが分かった。具体的には、例えば、図9の半導体発光装置を光の取り出し方向から眺めた場合に、発光部の中央すなわちLED101の垂直上方付近と、それよりも端の周辺部分とでは、発光色が異なるという問題が発見された。 However, when the present inventor prototyped and evaluated the semiconductor light emitting device as shown in FIG. 9, it was found that there was a problem of causing mixed spots, that is, "unevenness" of light emission. Specifically, for example, when the semiconductor light emitting device of FIG. 9 is viewed from the light extraction direction, the emission color is different between the center of the light emitting portion, that is, the vicinity near the vertical upper part of the LED 101 and the peripheral portion at the end. The problem was discovered.

 本発明者はさらに詳細な検討を行った結果、このような発光の「むら」は、RGBそれぞれの蛍光体の比重や粒径の違いによるものであり、その塗布および溶解させた樹脂の硬化の工程で発生することを見出した。さらに、この現象にはLEDチップ101の存在による蛍光体塗布面の段差が大きく影響を及ぼしていることを知得するに至った。 As a result of further detailed investigations by the present inventor, such "unevenness" of light emission is due to the difference in specific gravity and particle size of each of the phosphors of RGB, and the curing of the applied and dissolved resin is suppressed. It was found to occur in the process. Furthermore, it has been found that this phenomenon is greatly affected by the step on the phosphor-coated surface due to the presence of the LED chip 101.

 すなわち、図9から分かるように、LED101の上部に塗布される蛍光体層と、LED101の周囲のカップ部に塗布される蛍光体層とでは、その塗布厚が大幅に異なる。LED101の厚みは、通常100〜200μmであり、その上に塗布される蛍光体の塗布厚は、数10μmである場合が多い。つまり、LEDの上部と、LEDの周囲のカップ部では、蛍光体の塗布厚が数倍も異なる。 That is, as can be seen from FIG. 9, the thickness of the phosphor layer applied on the LED 101 and the thickness of the phosphor layer applied on the cup around the LED 101 are significantly different. The thickness of the LED 101 is usually 100 to 200 μm, and the thickness of the phosphor applied thereon is often several tens of μm. That is, the coating thickness of the phosphor is several times different between the upper portion of the LED and the cup portion around the LED.

 塗布厚が異なると、塗布した蛍光体と溶媒との混合物が乾燥、硬化するまでの時間が異なり、蛍光体の比重の差などによってRGBの蛍光体粒子の偏析の状態が異なる。ここで、蛍光体の粒径と比重について代表的な値を挙げると、赤色(R)蛍光体の粒径は約6μm、比重は約6.4である。また、緑色(G)蛍光体の粒径は約3μm、比重は約3.8であり、青色(B)蛍光体の粒径は約4μm、比重は約4.2である。このように粒径や比重が異なる複数の蛍光体粒子を溶媒に混合して塗布した場合には、塗布厚によって、蛍光体粒子の偏析の状態が異なる。 If the coating thickness is different, the time required for the mixture of the applied phosphor and the solvent to dry and harden differs, and the state of segregation of the RGB phosphor particles differs due to the difference in specific gravity of the phosphor. Here, as typical values for the particle size and specific gravity of the phosphor, the particle size of the red (R) phosphor is about 6 μm, and the specific gravity is about 6.4. The particle size of the green (G) phosphor is about 3 μm and the specific gravity is about 3.8, and the particle size of the blue (B) phosphor is about 4 μm and the specific gravity is about 4.2. When a plurality of phosphor particles having different particle diameters and specific gravities are mixed with a solvent and applied, the state of segregation of the phosphor particles differs depending on the applied thickness.

 例えば、塗布厚が厚い部分においては、比重の大きい蛍光体粒子がより顕著に下方に偏析する。その結果として、LED101の上部とその周囲とでは、蛍光体の混合状態が異なり、発光色のバランスが異なるために、発光の「むら」が生ずることとなる。 For example, in a portion where the coating thickness is large, the phosphor particles having a large specific gravity segregate more remarkably downward. As a result, the mixed state of the phosphors is different between the upper part of the LED 101 and the periphery thereof, and the emission color balance is different, so that "unevenness" of light emission occurs.

 図9をみても、LEDチップをマウントしたことによる段差の存在により、LEDチップ上部と周辺で蛍光体粒子の比重の違いにより混合比が異なってしまい、その結果として、LEDからの発光を変換した直上方向の光と横方向に向かい反射版で反射した光とでは、その発光色に違いがあることは容易に見てとれる。 Referring to FIG. 9 as well, due to the presence of the step due to the mounting of the LED chip, the mixing ratio was different due to the difference in the specific gravity of the phosphor particles between the upper part and the peripheral part of the LED chip. As a result, the light emission from the LED was converted. It is easy to see that there is a difference in the emission color between the light directly above and the light reflected by the reflection plate in the horizontal direction.

 本発明は、かかる独自の課題の認識に基づいてなされたものである。すなわち、その目的は、蛍光体の塗布厚を均一にすることにより発光の「むら」を解消することができる半導体発光装置を提供することにある。 The present invention has been made based on the recognition of such a unique problem. That is, an object of the present invention is to provide a semiconductor light emitting device capable of eliminating “unevenness” of light emission by making the coating thickness of a phosphor uniform.

 本発明の半導体発光装置は、発光素子と、前記発光素子から放出される1次光を吸収して前記1次光とは異なる第1の波長の光を放出する第1の蛍光体と、前記発光素子から放出される1次光を吸収して前記1次光とは異なる第2の波長の光を放出する第2の蛍光体と、を備えた半導体発光装置であって、前記第1の蛍光体は、前記発光素子の光放出面の第1の領域の上に設けられ、前記第2の蛍光体は、前記発光素子の光放出面の前記第1の領域とは異なる第2の領域の上に設けられていることを特徴とする。 The semiconductor light emitting device of the present invention includes a light emitting element, a first phosphor that absorbs primary light emitted from the light emitting element and emits light having a first wavelength different from the primary light, A second phosphor that absorbs primary light emitted from the light emitting element and emits light having a second wavelength different from the primary light, wherein the first phosphor is a light emitting device. The phosphor is provided on a first area of a light emitting surface of the light emitting element, and the second phosphor is a second area different from the first area of the light emitting surface of the light emitting element. Characterized by being provided on top of

 本発明によれば、リードフレームなどの実装部材に対して、LEDなどの発光素子を埋め込まれた形でマウントすることにより、蛍光体の塗布面を実質的に平坦な面とし、この平坦面に蛍光体を塗布することにより、塗布厚を均一にし、蛍光体粒子の比重や粒径の違いにより発生する偏析の状態を均一にすることによって、発光の「むら」を解消することができる。 According to the present invention, a mounting member such as a lead frame is mounted in a form in which a light emitting element such as an LED is embedded, so that the phosphor-coated surface is made substantially flat, and By coating the phosphor, the coating thickness can be made uniform, and the state of segregation caused by the difference in specific gravity and particle size of the phosphor particles can be made uniform, thereby eliminating "unevenness" of light emission.

 また、本発明によれば、半導体発光装置の色純度を高めることができ、さらに、色純度の指向性も向上させることができる。 According to the present invention, the color purity of the semiconductor light emitting device can be improved, and the directivity of the color purity can be improved.

 さらに、本発明によれば、単一の蛍光体を用いる場合にも、偏析状態を均一にすることにより、2次光の強度むらを解消して均一な発光を得ることができるという効果が得られる。 Furthermore, according to the present invention, even when a single phosphor is used, an effect is obtained in which uniform segregation is achieved to eliminate unevenness in intensity of secondary light and obtain uniform light emission. Can be

 以下、図面を参照しつつ本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 図1は、本発明の第1の実施の形態にかかる半導体発光装置の要部構成を表す概略断面図である。同図において、11はLEDチップであり、12はそのLEDをマウントするリードフレームである。13は赤色(R)蛍光体、14は緑色(G)蛍光体、15は青色(B)蛍光体であり、LED11からの光を吸収してそれぞれの波長帯の2次光を放出するものである。16,17はLEDに駆動電流を供給するためのワイアであり、それぞれLEDの電極とリードフレームのリード部にボンディングされている。 FIG. 1 is a schematic cross-sectional view illustrating a main configuration of a semiconductor light emitting device according to a first embodiment of the present invention. In the figure, 11 is an LED chip, and 12 is a lead frame for mounting the LED. 13 is a red (R) phosphor, 14 is a green (G) phosphor, and 15 is a blue (B) phosphor, which absorbs light from the LED 11 and emits secondary light of each wavelength band. is there. Reference numerals 16 and 17 denote wires for supplying a drive current to the LED, which are respectively bonded to the electrode of the LED and the lead portion of the lead frame.

 本発明の半導体発光装置が従来例と異なる点は、リードフレーム12に凹部12Aが設けられ、LEDチップ11がこの凹部12Aの内部に埋め込む形でマウントされている点にある。本発明によれば、LED11による段差が発生しないため、LEDの周囲の蛍光体の塗布厚を一定にすることができる。その結果として、蛍光体の偏析の状態を均一にすることができ、図9に関して前述したような発光の「むら」を解消することができる。 半導体 The semiconductor light emitting device of the present invention is different from the conventional example in that the lead frame 12 is provided with a recess 12A, and the LED chip 11 is mounted so as to be embedded in the recess 12A. According to the present invention, since a step is not generated by the LED 11, the coating thickness of the phosphor around the LED can be made constant. As a result, the state of segregation of the phosphor can be made uniform, and the “unevenness” of light emission as described above with reference to FIG. 9 can be eliminated.

 また、本実施形態においては、RGB蛍光体のそれぞれを層状に形成している。すなわち、第1層としてR蛍光体13からなる層が設けられ、第2層としてG蛍光体14からなる層が設けられ、第3層としてB蛍光体15からなる層が設けられている。本発明によれば、LED11の周囲において、蛍光体の塗布厚を均一にすることができるので、このような3層構造も確実且つ容易に実現することができる。 In the present embodiment, each of the RGB phosphors is formed in a layer. That is, a layer made of the R phosphor 13 is provided as the first layer, a layer made of the G phosphor 14 is provided as the second layer, and a layer made of the B phosphor 15 is provided as the third layer. According to the present invention, the coating thickness of the phosphor can be made uniform around the LED 11, so that such a three-layer structure can be realized reliably and easily.

 図1の半導体発光装置の製造方法は以下の如くである。すなわち、LEDチップ11をフレーム12にマウントした後に、R蛍光体13を含んだ樹脂を塗布して硬化させ、次にG蛍光体14を含んだ樹脂を塗布して硬化させ、次にB蛍光体15を含んだ樹脂を塗布して硬化させて作成する。ここで、塗布する蛍光体の量や順序については、それぞれの蛍光体の変換効率や塗布領域内部での散乱を考慮して適宜決定することができる。 方法 A method for manufacturing the semiconductor light emitting device of FIG. 1 is as follows. That is, after mounting the LED chip 11 on the frame 12, a resin containing the R phosphor 13 is applied and cured, then a resin containing the G phosphor 14 is applied and cured, and then the B phosphor A resin containing 15 is applied and cured. Here, the amount and order of the phosphors to be applied can be appropriately determined in consideration of the conversion efficiency of each phosphor and scattering inside the application area.

 ここで、LED11の平面形状は通常、一辺が400〜500μmの正方形状であるが、リードフレームの加工精度や、LED11をマウントする際の誤差などを考慮すると、リードフレーム12の凹部12Aの開口寸法は、LED11の寸法の一割増し、40〜50μm程度大きめに形成することが望ましい。この場合には、LEDの両側に隙間が生ずるが、この程度の寸法であれば、塗布むらによる悪影響が生ずる心配はない。 Here, the planar shape of the LED 11 is generally a square shape having a side of 400 to 500 μm, but in consideration of the processing accuracy of the lead frame, an error in mounting the LED 11, and the like, the opening size of the concave portion 12A of the lead frame 12 is considered. It is desirable to increase the size of the LED 11 by 10% and to make it larger by about 40 to 50 μm. In this case, a gap is formed on both sides of the LED. However, with such a size, there is no concern that adverse effects due to uneven coating may occur.

 かくして得られた半導体発光装置に、ワイア16、17を介してバイアス電流を供給したところ、LEDの上方からみて色斑の無い均一な白色発光が得られた。また本半導体発光装置では指向角に対する色純度も良く、この点でも従来構造の装置よりも優れていることが分かった。 When a bias current was supplied to the thus obtained semiconductor light emitting device via the wires 16 and 17, uniform white light emission without color spots was obtained when viewed from above the LED. In addition, the present semiconductor light emitting device has good color purity with respect to the directional angle, and is also superior to the device having the conventional structure in this respect.

 図2は、図1の半導体発光装置に搭載されるLEDの構成を例示する概略断面図である。図中301はサファイア基板、302はn型GaNコンタクト層、303はn型AlGaNクラッド層、304はInGaN活性層、305はp型AlGaNクラッド層、306はp型GaNコンタクト層、307はp側電極、308はn側電極である。図2のLEDは、青色から紫外線領域の波長帯において極めて高い強度の発光を得ることができるので、蛍光体と組み合わせて用いるのに好適である。 FIG. 2 is a schematic cross-sectional view illustrating the configuration of an LED mounted on the semiconductor light emitting device of FIG. In the figure, 301 is a sapphire substrate, 302 is an n-type GaN contact layer, 303 is an n-type AlGaN cladding layer, 304 is an InGaN active layer, 305 is a p-type AlGaN cladding layer, 306 is a p-type GaN contact layer, and 307 is a p-side electrode. , 308 are n-side electrodes. The LED of FIG. 2 can emit light of extremely high intensity in a wavelength band from blue to ultraviolet, and thus is suitable for use in combination with a phosphor.

 なお、図示したLEDは、n側電極308の形成面とp側電極307の形成面との間に段差部を有するが、この段差の高さはせいぜい数μm以下に過ぎず、蛍光体の偏析状態に影響を与えることはない。 Although the illustrated LED has a step between the surface on which the n-side electrode 308 and the surface on which the p-side electrode 307 are formed, the height of the step is at most a few μm or less, and the segregation of the phosphor It does not affect the state.

 本発明において用いることができる発光素子は、蛍光体を励起するのに十分な特性(発光波長、発光強度など)を有すれば良く、図2のLEDに限られるものではない。積層構造および材料を適宜種々変形して作成可能である。例えば、基板301はサファイアに限定されず、その他にも、例えば、スピネル、MgO、ScAlMgO4 、LaSrGaO4 、(LaSr)(AlTa)O3 などの絶縁性基板や、SiCSi、GaAs、GaNなどの導電性基板も同様に用いてそれぞれの効果を得ることができる。ここで、ScAlMgO4 基板の場合には、(0001)面、(LaSr)(AlTa)O3 基板の場合には(111)面を用いることが望ましい。 The light-emitting element that can be used in the present invention only needs to have characteristics (emission wavelength, emission intensity, and the like) sufficient to excite the phosphor, and is not limited to the LED in FIG. The laminated structure and material can be formed by variously changing the structure as appropriate. For example, the substrate 301 is not limited to sapphire. In addition, for example, an insulating substrate such as spinel, MgO, ScAlMgO 4 , LaSrGaO 4 , (LaSr) (AlTa) O 3 , or a conductive material such as SiCSi, GaAs, or GaN Each effect can be obtained by similarly using the conductive substrate. Here, it is desirable to use the (0001) plane for the ScAlMgO 4 substrate and the (111) plane for the (LaSr) (AlTa) O 3 substrate.

 また、窒化物半導体として用いることができる材料しては、Bx Iny Alz Ga(1-x-y-z) N(O≦x≦1、O≦y≦1、O≦z≦1)なる化学式で表されるあらゆる組成のIII −V族化合物半導体を挙げることができ、さらに、V族元素としては、Nに加えてリン(P)や砒素(As)などを含有する混晶も含むものでも良い。さらに、これらの窒化物半導体以外のIII −V族化合物半導体、II−VI 族化合物半導体、或いはSiCなども同様に用いることができる。 Also, in the material can be used as a nitride semiconductor, B x In y Al z Ga (1-xyz) N (O ≦ x ≦ 1, O ≦ y ≦ 1, O ≦ z ≦ 1) made by the chemical formula Examples include group III-V compound semiconductors having any of the compositions shown, and examples of group V elements may include mixed crystals containing phosphorus (P), arsenic (As), etc. in addition to N. . Further, a group III-V compound semiconductor, a group II-VI compound semiconductor, or SiC other than these nitride semiconductors can be used in the same manner.

 次に、本発明の第2の実施の形態について説明する。 Next, a second embodiment of the present invention will be described.

 図3は、本発明の第2の実施の形態にかかる半導体発光装置を表す概略断面図である。同図においては、図1と同様の部分については同一の符号を付した。本実施形態の半導体発光装置は、RGB蛍光体13〜15を樹脂に一緒に混合して塗布、硬化させた点で第1実施形態と異なる。すなわち、本実施形態においては、蛍光体13〜15が、ランダムに混合されている。 FIG. 3 is a schematic sectional view illustrating a semiconductor light emitting device according to a second embodiment of the present invention. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals. The semiconductor light emitting device of the present embodiment differs from the first embodiment in that the RGB phosphors 13 to 15 are mixed together with a resin, applied, and cured. That is, in the present embodiment, the phosphors 13 to 15 are randomly mixed.

 図9に関して前述したように、従来の半導体発光装置では、LEDによる段差の存在により、発光の「むら」が多く発生してしまったのに対して、本実施形態によればLED11をリードフレーム12に埋め込んで段差を実質的になくしているために、蛍光体をランダムに混合した場合においても発光の「むら」を解消できる。このように蛍光体をランダムに混合する場合は、図1に例示したように層状に塗布するよりも容易に製造することができる。 As described above with reference to FIG. 9, in the conventional semiconductor light emitting device, “unevenness” of the light emission is often generated due to the presence of the step due to the LED, but according to the present embodiment, the LED 11 is connected to the lead frame 12. Since the step is substantially eliminated by embedding in the phosphor, "evenness" of light emission can be eliminated even when the phosphors are mixed at random. When the phosphors are randomly mixed in this manner, the phosphor can be manufactured more easily than in the case where the phosphors are applied in layers as illustrated in FIG.

 かくして得られた半導体発光装置にバイアス電流を供給したところ、LED11の上方から観察して色斑の無い均一な白色発光が得られた。つまり、本発明によれば、従来と同様にRGB蛍光体を混合して塗布しても発光「むら」の無い均一な発光を得ることができる。また、本装置では指向角に対する色純度も良く、この点でも従来構造の装置よりも優れていることがわかった。 When a bias current was supplied to the semiconductor light emitting device thus obtained, uniform white light emission without color spots was observed when observed from above the LED 11. That is, according to the present invention, even if the RGB phosphors are mixed and applied in the same manner as in the related art, it is possible to obtain uniform light emission without emission unevenness. In addition, it was found that the present device has good color purity with respect to the directional angle, and in this respect also is superior to the device having the conventional structure.

 次に、本発明の第3の実施の形態について説明する。 Next, a third embodiment of the present invention will be described.

 図4は、本発明の第3の実施の形態にかかる半導体発光装置を表す概略断面図である。本実施形態の半導体発光装置は、発光素子をマウントする実装部材として、前述したリードフレームの代わりに基板22が用いられている点が異なる。すなわち、基板22には凹状のカップ部が形成され、その底面には凹部22Aが設けられている。LED11は、この凹部22Aに埋め込まれるようにマウントされ、ワイア16、17により配線されている。 FIG. 4 is a schematic sectional view showing a semiconductor light emitting device according to a third embodiment of the present invention. The semiconductor light emitting device of this embodiment is different in that a substrate 22 is used instead of the above-described lead frame as a mounting member for mounting a light emitting element. That is, a concave cup portion is formed on the substrate 22, and a concave portion 22A is provided on the bottom surface thereof. The LED 11 is mounted so as to be embedded in the recess 22A, and wired by wires 16 and 17.

 そして、実質的に平坦な面とされたカップ部の底面とLED11の上面とに蛍光体13〜15が塗布されている。 {Circle around (7)} The phosphors 13 to 15 are applied to the bottom surface of the cup portion, which is a substantially flat surface, and the upper surface of the LED 11.

 本実施形態においても、蛍光体の塗布面は段差を有せず、実質的に平坦な面とされているので、図9に関して前述したような偏析状態のむらが生ずることはない。その結果として、均一な発光を得ることができる。 Also in this embodiment, since the phosphor-applied surface has no step and is a substantially flat surface, unevenness of the segregation state as described above with reference to FIG. 9 does not occur. As a result, uniform light emission can be obtained.

 なお、図4においては、RGB蛍光体13〜15を一緒に混合してランダムに塗布した例を表したが、図1に例示したように、各蛍光体13〜15を層状に塗布しても良い。 Although FIG. 4 shows an example in which the RGB phosphors 13 to 15 are mixed together and randomly applied, as illustrated in FIG. 1, even if each of the phosphors 13 to 15 is applied in layers. good.

 次に、本発明の第4の実施の形態について説明する。 Next, a fourth embodiment of the present invention will be described.

 図5は、本発明の第4の実施の形態にかかる半導体発光装置を表す概略断面図である。本実施形態の半導体発光装置も、前述した第3実施形態と同様に基板22にLED11がマウントされている。しかし、本実施形態においては、基板22のカップ部が樹脂25により埋め込まれている点が異なる。すなわち、基板22には凹状のカップ部が形成され、その底面には凹部22Aが設けられている。このカップ部は、樹脂25により埋め込まれ、この樹脂25の表面に蛍光体13〜15が塗布されている。 FIG. 5 is a schematic sectional view showing a semiconductor light emitting device according to a fourth embodiment of the present invention. In the semiconductor light emitting device according to the present embodiment, the LED 11 is mounted on the substrate 22 as in the third embodiment described above. However, the present embodiment is different in that the cup portion of the substrate 22 is embedded with the resin 25. That is, a concave cup portion is formed on the substrate 22, and a concave portion 22A is provided on the bottom surface thereof. This cup portion is embedded with a resin 25, and phosphors 13 to 15 are applied to the surface of the resin 25.

 本実施形態においても、蛍光体の塗布面すなわち樹脂25の表面は段差を有せず、実質的に平坦な面とされているので、図9に関して前述したような偏析状態のむらが生ずることはない。その結果として、均一な発光を得ることができる。 Also in the present embodiment, since the surface on which the phosphor is applied, that is, the surface of the resin 25 has no step and is a substantially flat surface, unevenness of the segregation state as described above with reference to FIG. 9 does not occur. . As a result, uniform light emission can be obtained.

 また、本実施形態によれば、LED11が樹脂25により封止されているので、水分や各種の腐食性雰囲気の侵入によるLEDの劣化や故障を防ぐことができる。その結果として、半導体発光装置の信頼性を向上することができる。 According to the present embodiment, since the LED 11 is sealed with the resin 25, it is possible to prevent deterioration or failure of the LED due to intrusion of moisture or various corrosive atmospheres. As a result, the reliability of the semiconductor light emitting device can be improved.

 なお、図5においては、RGB蛍光体13〜15を一緒に混合してランダムに塗布した例を表したが、図1に例示したように、各蛍光体13〜15を層状に塗布しても良い。また、図5においては、LED11を基板22に埋込みマウントした例を示したが、本実施形態はこれに限定されず、基板22に凹部22Aを形成せずに、カップ部底面の平坦なマウント面にLED11をマウントしても良い。 Note that FIG. 5 shows an example in which the RGB phosphors 13 to 15 are mixed together and randomly applied. However, as illustrated in FIG. good. FIG. 5 shows an example in which the LED 11 is embedded and mounted on the substrate 22. However, the present embodiment is not limited to this, and the recess 22A is not formed in the substrate 22 and a flat mounting surface The LED 11 may be mounted on the LED.

 次に、本発明の第5の実施の形態について説明する。 Next, a fifth embodiment of the present invention will be described.

 図6は、本発明の第5の実施の形態にかかる半導体発光装置を表す概略断面図である。同図においても、前述した第1実施形態及び第2実施形態と同様の構造部分については同一の符号を付した。図中30は、LED11から放出される1次光に対して透明な樹脂により形成されたレンズである。 FIG. 6 is a schematic sectional view showing a semiconductor light emitting device according to a fifth embodiment of the present invention. Also in the figure, the same reference numerals are given to the same structural parts as those in the above-described first and second embodiments. In the drawing, reference numeral 30 denotes a lens formed of a resin transparent to primary light emitted from the LED 11.

 本実施形態においては、LED11をリードフレーム12上に埋め込みマウントした後に透明樹脂のレンズ30を形成し、その表面にRGB蛍光体を塗布した点に特徴を有する。レンズ30の表面は段差を有しないので、蛍光体を塗布した場合に、図9に関して前述したような偏析状態のむらが生ずることはない。その結果として、均一な発光を得ることができる。 This embodiment is characterized in that a transparent resin lens 30 is formed after the LED 11 is embedded and mounted on the lead frame 12, and an RGB phosphor is applied to the surface thereof. Since the surface of the lens 30 does not have a step, when the phosphor is applied, unevenness of the segregation state as described above with reference to FIG. 9 does not occur. As a result, uniform light emission can be obtained.

 さらに、本実施形態によれば、レンズ30を設けたことによりさらに指向角が広くなり、表示用や照明等の用途に広く適用することが可能となる。また、図6にはリードフレームを用いた場合の構造を例示したが、平面基板上へのマウントによって集積化すればその用途は格段に広がり本発明の利点をさらに引き出すことができる。 According to the present embodiment, the provision of the lens 30 further widens the directivity angle, and can be widely applied to uses such as display and illumination. FIG. 6 shows an example of a structure using a lead frame. However, if the structure is integrated by mounting on a flat substrate, the application will be greatly expanded and the advantages of the present invention can be further obtained.

 なお、図6においては、LED11をリードフレーム12に埋込みマウントした例を示したが、本実施形態はこれに限定されず、リードフレーム12に凹部を形成せずに、平坦なマウント面にLED11をマウントしても良い。 Although FIG. 6 shows an example in which the LED 11 is embedded and mounted in the lead frame 12, the present embodiment is not limited to this, and the LED 11 is mounted on a flat mounting surface without forming a recess in the lead frame 12. May be mounted.

 また、蛍光体13〜15も、図6に示したように層状に塗布せずに、溶媒中にRGB蛍光体13〜15を一緒に混合してランダムになるように塗布しても良い。 Also, the phosphors 13 to 15 may be applied in a random manner by mixing the RGB phosphors 13 to 15 together in a solvent, instead of being applied in layers as shown in FIG.

 次に、本発明の第6の実施の形態について説明する。 Next, a sixth embodiment of the present invention will be described.

 図7は、本発明の第6の実施の形態にかかる半導体発光装置を表す概略断面図である。同図においても、前述した第1、第2実施形態と同様の部分については、同一の符号を付した。図中60は発光部が3つの領域に分かれたLEDである。本実施形態は、LED60の3分割された発光領域のそれぞれの上部にRGB蛍光体13〜15を分けて塗布した点に特徴を有する。つまり、LED60は、遮光板62によって、3つの領域に分割され、それぞれの領域にRGB蛍光体13〜15のいずれかが塗布されている。塗布されたそれぞれの蛍光体は、LED60からの1次光を吸収して、それぞれの発光波長の2次光を放出する。 FIG. 7 is a schematic sectional view showing a semiconductor light emitting device according to a sixth embodiment of the present invention. In this figure, the same reference numerals are given to the same parts as those in the first and second embodiments. In the figure, reference numeral 60 denotes an LED having a light-emitting portion divided into three regions. The present embodiment is characterized in that the RGB phosphors 13 to 15 are separately applied to the upper portions of the three divided light emitting regions of the LED 60. That is, the LED 60 is divided into three regions by the light shielding plate 62, and each of the regions is coated with any one of the RGB phosphors 13 to 15. Each applied phosphor absorbs primary light from the LED 60 and emits secondary light of each emission wavelength.

 本実施形態によれば、1つの半導体発光装置においてRGBそれぞれの発光を別々に取り出すことが可能となり、または、それらの混合色も自由に表現できるようになる。 According to the present embodiment, it is possible to separately extract light of each of RGB in one semiconductor light emitting device, or to freely express a mixed color thereof.

 図8は、第6の実施形態において用いることができるLEDを表す概略断面図である。同図においては、前述した図3と同様の構造部分については同一の符号を付した。図中701は、n型GaN基板である。この導電性基板上へ素子を作成することによってLEDの上下面に電極をそれぞれ形成することができる。発光領域の分離は、p型GaNコンタクト層306からn型GaN層302まで貫通するようにエッチングすることにより行う。その後、p型GaNコンタクト層306の上にp側電極307を形成し、n型GaN基板701の裏面には共通のn側電極308を作成して、本素子が完成する。 FIG. 8 is a schematic sectional view showing an LED that can be used in the sixth embodiment. In the figure, the same reference numerals are given to the same structural parts as those in FIG. 3 described above. In the figure, reference numeral 701 denotes an n-type GaN substrate. By forming elements on this conductive substrate, electrodes can be formed on the upper and lower surfaces of the LED, respectively. The light emitting region is separated by etching so as to penetrate from the p-type GaN contact layer 306 to the n-type GaN layer 302. Thereafter, a p-side electrode 307 is formed on the p-type GaN contact layer 306, and a common n-side electrode 308 is formed on the back surface of the n-type GaN substrate 701, whereby the device is completed.

 なお、図7の半導体発光装置においては、遮光板62を設けることにより、隣接する他の領域からの蛍光体の励起を防いでいる。図示した以外にも、発光領域同士の間隔を広くしたり、励起光に対して吸収するような材質あるいは吸収材を含んだ樹脂を用いて蛍光体を分離するようにしても良い。本実施形態においても、色斑のない均一な発光を得ることができる。 In the semiconductor light emitting device shown in FIG. 7, the provision of the light shielding plate 62 prevents excitation of the phosphor from another adjacent region. In addition to the illustration, the phosphors may be separated from each other by widening the interval between the light emitting regions or by using a material that absorbs excitation light or a resin containing an absorbing material. Also in this embodiment, uniform light emission without color spots can be obtained.

 以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明のこれらの具体例に限定されるものではない。例えば、各実施形態で用いた発光素子は、窒化物半導体を用いたLED以外にも、蛍光体の励起のために十分な波長と発光強度を有する他の材料系の発光素子でもよい。また、各実施形態においては蛍光体としてRGBの3種の蛍光体を用いた場合を例示したが、種類の異なる2種類以上の組み合わせにおいて本発明は有効である。例えば、青色の2次光を放出する蛍光体と黄色の2次光を放出する蛍光体とを組み合わせて白色光を得る場合においても本発明を同様に適用して同様の効果を得ることができる。その他本発明の要旨を逸脱しない範囲で種々変形して実施可能である。 The embodiments of the invention have been described with reference to the examples. However, the invention is not limited to these specific examples. For example, the light emitting device used in each embodiment may be a light emitting device of another material type having a wavelength and emission intensity sufficient for exciting the phosphor, in addition to the LED using the nitride semiconductor. Further, in each embodiment, the case where three kinds of phosphors of RGB are used as the phosphors is exemplified, but the present invention is effective in a combination of two or more kinds of different kinds. For example, when white light is obtained by combining a phosphor that emits blue secondary light and a phosphor that emits yellow secondary light, similar effects can be obtained by applying the present invention in the same manner. . In addition, various modifications can be made without departing from the spirit of the present invention.

本発明の第1の実施の形態にかかる半導体発光装置の要部構成を表す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a main part configuration of a semiconductor light emitting device according to a first embodiment of the present invention. 図1の半導体発光装置に搭載されるLEDの構成を例示する概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a configuration of an LED mounted on the semiconductor light emitting device of FIG. 1. 本発明の第2の実施の形態にかかる半導体発光装置を表す概略断面図である。FIG. 4 is a schematic sectional view illustrating a semiconductor light emitting device according to a second embodiment of the present invention. 本発明の第3の実施の形態にかかる半導体発光装置を表す概略断面図である。FIG. 9 is a schematic sectional view illustrating a semiconductor light emitting device according to a third embodiment of the present invention. 本発明の第4の実施の形態にかかる半導体発光装置を表す概略断面図である。FIG. 9 is a schematic sectional view illustrating a semiconductor light emitting device according to a fourth embodiment of the present invention. 本発明の第5の実施の形態にかかる半導体発光装置を表す概略断面図である。FIG. 11 is a schematic sectional view illustrating a semiconductor light emitting device according to a fifth embodiment of the present invention. 本発明の第6の実施の形態にかかる半導体発光装置を表す概略断面図である。FIG. 14 is a schematic sectional view illustrating a semiconductor light emitting device according to a sixth embodiment of the present invention. 第6の実施形態において用いることができるLEDを表す概略断面図である。FIG. 14 is a schematic sectional view illustrating an LED that can be used in the sixth embodiment. 従来の半導体発光装置の概略構成を表す断面図である。FIG. 11 is a cross-sectional view illustrating a schematic configuration of a conventional semiconductor light emitting device.

符号の説明Explanation of reference numerals

11、60、101 LEDチップ
12、102 リードフレーム
13、111 赤色(R)蛍光体
14、112 緑色(G)蛍光体
15、113 青色(B)蛍光体
16、106 n側金ワイヤ
17、107 p側金ワイヤ
22 基板
25 樹脂
30 レンズ
62 遮光板 
301 サファイア基板
302 n型GaNコンタクト層
303 n型AlGaNクラッド層
304 InGaN活性層
305 p型AlGaNクラッド層
306 p型GaNコンタクト層
307 p側電極
308 n側電極
701 GaN基板
11, 60, 101 LED chip 12, 102 Lead frame 13, 111 Red (R) phosphor 14, 112 Green (G) phosphor 15, 113 Blue (B) phosphor 16, 106 n-side gold wire 17, 107 p Side metal wire 22 Substrate 25 Resin 30 Lens 62 Light shielding plate
301 Sapphire substrate 302 n-type GaN contact layer 303 n-type AlGaN cladding layer 304 InGaN active layer 305 p-type AlGaN cladding layer 306 p-type GaN contact layer 307 p-side electrode 308 n-side electrode 701 GaN substrate

Claims (4)

 発光素子と、前記発光素子から放出される1次光を吸収して前記1次光とは異なる第1の波長の光を放出する第1の蛍光体と、
 前記発光素子から放出される1次光を吸収して前記1次光とは異なる第2の波長の光を放出する第2の蛍光体と、
 を備えた半導体発光装置であって、
 前記第1の蛍光体は、前記発光素子の光放出面の第1の領域の上に設けられ、
 前記第2の蛍光体は、前記発光素子の光放出面の前記第1の領域とは異なる第2の領域の上に設けられていることを特徴とする半導体発光装置。 
A light emitting element, a first phosphor that absorbs primary light emitted from the light emitting element and emits light of a first wavelength different from the primary light,
A second phosphor that absorbs primary light emitted from the light emitting element and emits light of a second wavelength different from the primary light;
A semiconductor light emitting device comprising:
The first phosphor is provided on a first region of a light emitting surface of the light emitting element;
The semiconductor light emitting device according to claim 1, wherein the second phosphor is provided on a light emitting surface of the light emitting element on a second area different from the first area.
 前記発光素子が第1領域と第2領域とを有し、
 前記第1領域は、第1導電型の半導体と電気的に接続された第1の活性層と、前記第1の活性層上に形成された第1の第2導電型半導体層と、を有し、
 前記第2領域は、前記第1導電型の半導体と電気的に接続された第2の活性層と、前記第2の活性層上に形成された第2の第2導電型半導体層と、を有し、
 前記第1導電型の半導体に電気的に接続された第1電極が形成され、
 前記第1の第2導電型半導体層に電気的に接続された第1の第2電極が形成され、
 前記第2の第2導電型半導体層に電気的に接続された第2の第2電極が形成され、
 前記第1電極と前記第1の第2電極からの電流注入により前記第1の活性層から前記1次光が放出されて前記第1の蛍光体が励起され、
 前記第1電極と前記第2の第2電極からの電流注入により前記第2の活性層から前記1次光が放出されて前記第2の蛍光体が励起されことを特徴とする請求項1記載の半導体発光装置。
The light emitting device has a first region and a second region,
The first region has a first active layer electrically connected to a first conductivity type semiconductor, and a first second conductivity type semiconductor layer formed on the first active layer. And
The second region includes: a second active layer electrically connected to the first conductivity type semiconductor; and a second second conductivity type semiconductor layer formed on the second active layer. Have
Forming a first electrode electrically connected to the semiconductor of the first conductivity type;
Forming a first second electrode electrically connected to the first second conductivity type semiconductor layer;
Forming a second second electrode electrically connected to the second second conductivity type semiconductor layer;
The primary light is emitted from the first active layer by current injection from the first electrode and the first second electrode to excite the first phosphor,
2. The second phosphor is excited by emitting primary light from the second active layer by current injection from the first electrode and the second second electrode. 3. Semiconductor light emitting device.
 前記半導体発光装置が、前記発光素子から放出される1次光を吸収して前記1次光とは異なる第3の波長の光を放出する第3の蛍光体をさらに備え、
 前記第2の蛍光体が、前記発光素子の光放出面の前記第1の領域および前記第2の領域とは異なる第3の領域の上に設けられ、
 前記半導体発光素子がさらに第3領域を有し、
 前記第3領域は、前記第1導電型の半導体と電気的に接続された第3の活性層と、前記第3の活性層上に形成された第3の第2導電型半導体層と、を有し、
 前記第3の第2導電型半導体層に電気的に接続された第3の第2電極が形成され、
 前記第1電極と前記第3の第2電極からの電流注入により前記第3の活性層から前記1次光が放出されて前記第3の蛍光体が励起されることを特徴とする請求項2記載の半導体発光装置。
The semiconductor light emitting device further includes a third phosphor that absorbs primary light emitted from the light emitting element and emits light of a third wavelength different from the primary light,
The second phosphor is provided on a third area different from the first area and the second area on the light emitting surface of the light emitting element;
The semiconductor light emitting device further has a third region,
The third region includes: a third active layer electrically connected to the semiconductor of the first conductivity type; and a third second conductivity type semiconductor layer formed on the third active layer. Have
Forming a third second electrode electrically connected to the third second conductivity type semiconductor layer;
3. The method according to claim 2, wherein the primary light is emitted from the third active layer by current injection from the first electrode and the third second electrode to excite the third phosphor. 14. The semiconductor light emitting device according to claim 1.
 前記1次光が紫外光であり、前記第1の波長の光が青色光であり、前記第2の波長の光が緑色光であり、前記第3の波長の光が赤色光であることを特徴とする請求項3記載の半導体発光装置。 The primary light is ultraviolet light, the light of the first wavelength is blue light, the light of the second wavelength is green light, and the light of the third wavelength is red light. 4. The semiconductor light emitting device according to claim 3, wherein:
JP2003301289A 2003-08-26 2003-08-26 Semiconductor light emitting device Expired - Fee Related JP3871668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301289A JP3871668B2 (en) 2003-08-26 2003-08-26 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301289A JP3871668B2 (en) 2003-08-26 2003-08-26 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19902098A Division JP3486345B2 (en) 1998-07-14 1998-07-14 Semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006190556A Division JP2006295215A (en) 2006-07-11 2006-07-11 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004048040A true JP2004048040A (en) 2004-02-12
JP3871668B2 JP3871668B2 (en) 2007-01-24

Family

ID=31712645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301289A Expired - Fee Related JP3871668B2 (en) 2003-08-26 2003-08-26 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3871668B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244226A (en) * 2004-02-23 2005-09-08 Lumileds Lighting Us Llc Wavelength conversion type semiconductor light emitting device
JP2005244076A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light-emitting device
WO2006003931A1 (en) * 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Light emitting device, backlight unit for lighting, display unit and display unit
JP2006140297A (en) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and manufacturing method therefor, and lighting module and lighting device equipped therewith
JP2006148051A (en) * 2004-06-30 2006-06-08 Mitsubishi Chemicals Corp Light emitting device, backlight unit for illumination and display device and display device
JP2006278567A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Led unit
JP2007110060A (en) * 2005-09-15 2007-04-26 Nichia Chem Ind Ltd Light emitting device
JP2007180483A (en) * 2005-11-30 2007-07-12 Sharp Corp Light-emitting device
WO2008038691A1 (en) * 2006-09-27 2008-04-03 Kabushiki Kaisha Toshiba Semiconductor light emitting device, backlight composed of the semiconductor light emitting device, and display device
JP2008135537A (en) * 2006-11-28 2008-06-12 Dowa Electronics Materials Co Ltd Light-emitting apparatus and manufacturing method thereof
JP2008135539A (en) * 2006-11-28 2008-06-12 Dowa Electronics Materials Co Ltd Light-emitting apparatus and manufacturing method thereof
KR100856834B1 (en) * 2006-07-21 2008-09-05 (주) 아모센스 Semiconductor package with phosphor sheet and manufacturing method thereof
JP2010245576A (en) * 2010-08-06 2010-10-28 Dowa Electronics Materials Co Ltd Light emitting device and manufacturing method therefor
JP2011091414A (en) * 2005-11-30 2011-05-06 Sharp Corp Light-emitting device
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
EP2105976A3 (en) * 2008-03-26 2012-10-31 Seoul Semiconductor Co., Ltd. Method and apparatus for coating phosphor, and light emitting diode comprising phosphor coating layer
TWI381044B (en) * 2004-02-23 2013-01-01 Philips Lumileds Lighting Co Phosphor converted light emitting device
TWI463690B (en) * 2008-03-04 2014-12-01 Toshiba Kk A semiconductor light emitting device, and a semiconductor light emitting device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244226A (en) * 2004-02-23 2005-09-08 Lumileds Lighting Us Llc Wavelength conversion type semiconductor light emitting device
TWI381044B (en) * 2004-02-23 2013-01-01 Philips Lumileds Lighting Co Phosphor converted light emitting device
JP2005244076A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light-emitting device
US8030840B2 (en) 2004-06-30 2011-10-04 Mitsubishi Chemical Corporation Light emitting device, lighting system, backlight unit for display device and display device
WO2006003931A1 (en) * 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Light emitting device, backlight unit for lighting, display unit and display unit
JP2006148051A (en) * 2004-06-30 2006-06-08 Mitsubishi Chemicals Corp Light emitting device, backlight unit for illumination and display device and display device
US7737623B2 (en) 2004-06-30 2010-06-15 Mitsubishi Chemical Corporation Light emitting device, lighting system, backlight unit for display device, and display device
US8026530B2 (en) 2004-11-11 2011-09-27 Panasonic Corporation Semiconductor light-emitting device, lighting module and lighting apparatus
JP4579654B2 (en) * 2004-11-11 2010-11-10 パナソニック株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, AND LIGHTING MODULE AND LIGHTING DEVICE HAVING SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2006140297A (en) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and manufacturing method therefor, and lighting module and lighting device equipped therewith
JP2006278567A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Led unit
JP2007110060A (en) * 2005-09-15 2007-04-26 Nichia Chem Ind Ltd Light emitting device
JP2007180483A (en) * 2005-11-30 2007-07-12 Sharp Corp Light-emitting device
JP2011091414A (en) * 2005-11-30 2011-05-06 Sharp Corp Light-emitting device
US8294165B2 (en) 2006-03-30 2012-10-23 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
KR100856834B1 (en) * 2006-07-21 2008-09-05 (주) 아모센스 Semiconductor package with phosphor sheet and manufacturing method thereof
JP2013239733A (en) * 2006-09-27 2013-11-28 Toshiba Corp Semiconductor light-emitting device, backlight comprised of semiconductor light-emitting device, and display unit
US8541798B2 (en) * 2006-09-27 2013-09-24 Kabushiki Kaisha Toshiba Semiconductor light emitting device, and backlight and display device comprising the semiconductor light emitting device
JPWO2008038691A1 (en) * 2006-09-27 2010-01-28 株式会社東芝 Semiconductor light emitting device, backlight and display device comprising the semiconductor light emitting device
JP2015159325A (en) * 2006-09-27 2015-09-03 株式会社東芝 Semiconductor light-emitting device, backlight and display device consisting of semiconductor light-emitting device
WO2008038691A1 (en) * 2006-09-27 2008-04-03 Kabushiki Kaisha Toshiba Semiconductor light emitting device, backlight composed of the semiconductor light emitting device, and display device
JP4520972B2 (en) * 2006-11-28 2010-08-11 Dowaエレクトロニクス株式会社 Light emitting device and manufacturing method thereof
JP2008135539A (en) * 2006-11-28 2008-06-12 Dowa Electronics Materials Co Ltd Light-emitting apparatus and manufacturing method thereof
JP2008135537A (en) * 2006-11-28 2008-06-12 Dowa Electronics Materials Co Ltd Light-emitting apparatus and manufacturing method thereof
TWI463690B (en) * 2008-03-04 2014-12-01 Toshiba Kk A semiconductor light emitting device, and a semiconductor light emitting device
EP2105976A3 (en) * 2008-03-26 2012-10-31 Seoul Semiconductor Co., Ltd. Method and apparatus for coating phosphor, and light emitting diode comprising phosphor coating layer
US8394654B2 (en) 2008-03-26 2013-03-12 Seoul Semiconductor Co., Ltd. Method for coating phosphor, apparatus to perform the method, and light emitting diode comprising phosphor coating layer
US20130146927A1 (en) * 2008-03-26 2013-06-13 Seoul Semiconductor Co., Ltd. Method for coating phosphor, apparatus to perform the method, and light emitting diode comprising phosphor coating layer
JP2010245576A (en) * 2010-08-06 2010-10-28 Dowa Electronics Materials Co Ltd Light emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
JP3871668B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP3486345B2 (en) Semiconductor light emitting device
US10957821B2 (en) Wavelength converted semiconductor light emitting device
US10825962B2 (en) Thin film light emitting diode
JP3871668B2 (en) Semiconductor light emitting device
US7414271B2 (en) Thin film led
US8354681B2 (en) Semiconductor light-emitting element and manufacturing method thereof
TWI514631B (en) Semiconductor light emitting device and manufacturing method thereof
US11508701B2 (en) Light emitting device
CN102163666A (en) Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof
JPWO2005106978A1 (en) Light emitting device and manufacturing method thereof
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
JP2005311395A (en) Manufacturing method of semiconductor light-emitting device
JP2008103599A (en) Light-emitting device
JP2008034665A (en) Light emitting device and manufacturing method thereof
JP2006295215A (en) Semiconductor light emitting device
JP2008041807A (en) White light source
JP2007324630A (en) Semiconductor light-emitting device
JP3519986B2 (en) Light emitting diode element
JP2006059851A (en) Semiconductor light emitting device, illuminating device using the same and its manufacturing method
JP2006054224A (en) Light-emitting device
JP2006319061A (en) Semiconductor light emitting apparatus
JP2006196572A (en) Light emitting diode and its manufacturing method
KR20130104603A (en) Semiconductor light emimitting device and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees