Nothing Special   »   [go: up one dir, main page]

JP2004040868A - Power supply system of electric automobile - Google Patents

Power supply system of electric automobile Download PDF

Info

Publication number
JP2004040868A
JP2004040868A JP2002191974A JP2002191974A JP2004040868A JP 2004040868 A JP2004040868 A JP 2004040868A JP 2002191974 A JP2002191974 A JP 2002191974A JP 2002191974 A JP2002191974 A JP 2002191974A JP 2004040868 A JP2004040868 A JP 2004040868A
Authority
JP
Japan
Prior art keywords
power supply
secondary battery
vehicle
supply system
generation type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002191974A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
清水 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002191974A priority Critical patent/JP2004040868A/en
Priority to PCT/JP2002/008246 priority patent/WO2004002772A1/en
Publication of JP2004040868A publication Critical patent/JP2004040868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply system of an electric automobile for a smaller generation type power supply by increasing a power generation amount as the entire power supply, by taking the storage capacity of a secondary battery as the main power supply of a power supply system and utilizing the non travel hours such as when stopped or parked, which occupies most of usage of a vehicle, as the charging period of the secondary battery. <P>SOLUTION: The power supply system of an electric automobile is provided with a secondary battery (3) and a generation type power supply (2). A charge controller (8) sets that the power generation capacity of the generation type power supply (2) is smaller than an estimated average power consumption of a vehicle, and charges the secondary batter (3) by the generation type power supply (2) while the vehicle is not travelling, in other words stopped or parked, after the vehicle is energized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車の電源システムに係り、特に、2次電池と発電式電源(燃料電池)を備えた電気自動車の電源システムに関するものである。
【0002】
【従来の技術】従来の電気自動車の電源システムとしては、走行距離をのばすため、2次電池とエンジン発電機あるいは燃料電池との組み合わせによるハイブリッド・システムが開発されている。
【0003】
しかし、この従来のハイブリッド・システムは、自動車の走行中を基準にしており、発電式電源の発電能力を電気自動車の走行時平均消費電力より大きく設定し、2次電池を電力のダンパーとして機能させていた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記したように、従来のシステムでは、発電式電源の発電能力を自動車の走行時平均消費電力以上に設定していたため、発電式電源が大型化し、容量を大きくする必要性から電気自動車が高価になっていた。また、車体重量に占める発電式電源の重量が大きくなり、結果として車体重量を増加させるという欠点があった。
【0005】
本発明は、上記状況に鑑みて、2次電池の蓄電容量を電源システムの主要電源として位置付け、走行時における発電式電源による2次電池への充電の不足を補うものとして、車両使用可能時間の大半を占める停車時や駐車時などの非走行時間を2次電池の充電期間として積極的に活用することにより、電源全体としての発電量を増加させ、それによって、発電式電源の小型化を図ることができる電気自動車の電源システムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明によれば、上記目的を達成するために、
〔1〕2次電池と発電式電源とを備えた電気自動車の電源システムにおいて、前記発電式電源の発電容量が車両の想定平均消費電力よりも小さくなるように設定すると共に、前記車両が付勢され、かつ前記車両の停止時や駐車時などの非走行時に前記発電式電源により前記2次電池を充電する充電制御装置を具備することを特徴とする。
【0007】
〔2〕上記〔1〕記載の電気自動車の電源システムにおいて、前記発電式電源が燃料電池であることを特徴とする。
【0008】
〔3〕上記〔1〕又は〔2〕記載の電気自動車の電源システムにおいて、前記充電制御装置は前記2次電池の放電状態を検知する検知手段を備え、前記車両が付勢され、かつ前記車両の停止時や駐車時などの非走行時に前記2次電池の放電率が所定値以上である場合に、前記充電制御装置により前記2次電池が一定の充電状態になるまで前記発電式電源により前記2次電池を充電することを特徴とする。
【0009】
〔4〕上記〔3〕記載の電気自動車の電源システムにおいて、前記2次電池の放電率が、前記発電式電源による前記2次電池の充電によっても回復せず、前記2次電池の放電率が所定値以上である場合には、前記車両の駆動用モータへの供給電流量を前記発電式電源の発電量より小さくなるように制限することを特徴とする。
【0010】
〔5〕上記〔1〕又は〔2〕記載の電気自動車の電源システムにおいて、前記充電制御装置は充電制御スイッチを備え、前記車両のメインスイッチをオフにした後も、前記2次電池が一定の充電量になるか又は前記充電制御スイッチをオフにするまで、前記発電式電源により前記2次電池を充電するようにしたことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照しながら詳細に説明する。
【0012】
図1は本発明の実施例を示す電気自動車の電源システムの構成図である。
【0013】
この図において、1は燃料電池2に燃料を供給する水素タンクである。3は例えばリチュームイオンの2次電池であり、燃料電池2のプラス出力線21は2次電池3のプラス端子31に接続され、そのプラス端子31は動力線41によりインバータ5a,5bに接続されている。
【0014】
また、燃料電池2のマイナス出力線22は2次電池3のマイナス端子32に接続され、そのマイナス端子32は動力線42によりインバータ5a,5bに接続されている。
【0015】
なお、燃料電池2に代えて、例えば天然ガスエンジンにより駆動される発電機を用いてもよい。
【0016】
6a,6bは三相の駆動用モータであり、その出力は直接、あるいは動力伝達機構を介して駆動輪7a,7bに伝達される。43a,43bはインバータ5a,5bから駆動用モータ6a,6bへの三相動力線である。
【0017】
8は充電制御装置であり、2次電池3の放電率を検出する放電検知装置9の出力信号を信号線91を介して受ける。放電検知装置9は、例えば放電率20%および80%の基準値を持ち、2次電池3の放電率が20%以上および80%以上になると、放電率20%信号および放電率80%信号を充電制御装置8に出力する。
【0018】
充電制御装置8は放電検知装置9から放電率20%信号を受けると、信号線81に発電信号を出力し、燃料電池2を作動させる。その後、燃料電池2の作動により、2次電池3の放電率が20%以下に回復すると、燃料電池2の発電を停止する。
【0019】
また、100は充電制御装置用の電源線であり、充電制御装置8は車両のメインスイッチ(キースイッチ)110及び並設された充電制御スイッチ(接点保持型スイッチ)120を介して電源線100に接続されている。そして、充電制御スイッチ120は、キースイッチ110がONされるとONし、キースイッチ110がOFFされた後もON状態を維持する構造となっており、運転者などにより充電制御スイッチ120がOFFにされるまで、充電制御装置8は作動し続ける。
【0020】
この場合、充電制御装置8は、自動車が走行しているか停止しているかを駆動用モータ6a,6bの回転を検知する回転センサ10からの信号で判断し、自動車が停止し続けている場合には、車の停止から所定の時間後に燃料電池2の発電を停止するようにしても良い。なお、図1においては、回転センサ10は駆動用モータ6bのみに接続されるように示されているが、駆動用モータ6aにも接続するようにしてもよい。また、駆動用モータ6aのみに接続するようにしでもよい。
【0021】
なお、本実施例では水素を燃料とする燃料電池を示しているが、メタノールを燃料として用い、改質器によりメタノールから取り出された水素を燃料電池2に供給するようにしても良い。
【0022】
図2は本発明の電気自動車の電源システムの特に非走行時の動作を示すフローチャートである。
【0023】
(1)まず、本発明の電源システムを駆動(イニシアライズ)する(ステップS1)。
【0024】
(2)次いで、発電式電源(例えば、燃料電池)の発電容量を当該電気自動車(以下、車両という)の想定平均消費電力より小さくなるように設定する(ステップS2)。
【0025】
(3)次に、車両のメインスイッチ(キースイッチ)がONか否かをチェックする。(ステップS3)。
【0026】
(4)キースイッチがOFFの場合、充電制御スイッチがONか否かをチェックする(ステップS4)
(5)次に、車両は一時停止時や駐車時などの非走行時であるか否かをチェックする(ステップS5)。
【0027】
(6)次に、2次電池の放電率が所定値以上か否かをチェックする(ステップS6)。
【0028】
(7)次に、ステップS6で2次電池の放電率が所定値以上である場合には、発電式電源より2次電池へ充電を行う(ステップS7)。
【0029】
(8)次に、ステップS7の充電により2次電池の放電率が所定値以下となったか否かをチェックする。(ステップS8)。
【0030】
(9)ステップS7の充電により2次電池の放電率が所定値以下になった場合には、充電を停止する(ステップS9)。
【0031】
上記のように、本発明によれば、発電式電源の発電能力を電気自動車の想定平均消費電力より小さく設定したため、発電式電源を小型化・軽量化することができ、電力不足分は、車両の駆動中のみならず、車両の停車時や駐車時などの非走行時に発電式電源より2次電池へ充電を行うことにより、充足することができる。
【0032】
図3は本発明の電気自動車の電源システムの2次電池の重負荷時の動作フローチャートである。
【0033】
(1)発電式電源による2次電池への充電によっても2次電池の放電率が80%以上であるか否かをチェックする(ステップS11)。
【0034】
(2)ステップS11でYESの場合には、充電制御装置によりインバータに最大電力制御信号を出力する(ステップS12)。
【0035】
(3)次に、車両の駆動用モータへの供給電力量が発電式電源の発電量より小さくなるように制限する。つまり、2次電池の負荷をゼロにする(ステップS13)。
【0036】
(4)次に、2次電池の放電率が80%以下になった場合には、上記制限を解除する(ステップS14)。
【0037】
このように、車両の連続走行により2次電池3の放電が進み、その放電率が80%以上に達すると、2次電池3の損耗の恐れがあるので、これを回避するために、充電制御装置8は信号線82a,82bを介してインバータ5a,5bに、駆動用モータ6a,6bへの供給最大電力量が燃料電池2の出力を下回るようにする最大電力制御信号を出力し、駆動用モータ6a,6bの最大駆動電力の制限を行う。当然、2次電池の負荷をゼロにして放電率の回復を図ることができる。
【0038】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0039】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏することができる。
【0040】
(A)車両の停止時や駐車時等の非走行時の時間を、発電式電源による2次電池への充電にあてて有効に利用することにより、発電式電源を小出力化、小型化することができる。したがって、車両の軽量化、低コスト化を図ることができる。
【0041】
(B)通常の走行距離の場合には、発電式電源と2次電池の両方の電力により高加速性能、高速走行性能を十分発揮することができる。
【0042】
(C)また、2次電池の放電が一定以上に進んだ場合には、照明、制御装置等に必要な電源を確保した上で駆動用モータの最大駆動電力を制限する。当然、2次電池の負荷を制限し、2次電池の放電率の回復を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す電気自動車の電源システムの構成図である。
【図2】本発明の電気自動車の電源システムの特に非走行時の動作を示すフローチャートである。
【図3】図3は本発明の電気自動車の電源システムの2次電池の重負荷時の動作フローチャートである。
【符号の説明】
1  水素タンク
2  燃料電池
3  2次電池
5a,5b  インバータ
6a,6b  三相の駆動用モータ
7a,7b  駆動輪
8  充電制御装置
9  放電検知装置
10  回転センサ
21  燃料電池のプラス出力線
22  燃料電池のマイナス出力線
31  2次電池のプラス端子
32  2次電池のマイナス端子
41,42  動力線
43a,43b  三相動力線
81,82a,82b,91  信号線
100  充電制御装置用の電源線
110  車両のメインスイッチ(キースイッチ)
120  充電制御スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply system for an electric vehicle, and more particularly to a power supply system for an electric vehicle including a secondary battery and a power generation type power supply (fuel cell).
[0002]
2. Description of the Related Art As a conventional power supply system for an electric vehicle, a hybrid system using a combination of a secondary battery and an engine generator or a fuel cell has been developed in order to extend the traveling distance.
[0003]
However, this conventional hybrid system is based on the running of the vehicle, and the power generation capacity of the power generation type power supply is set to be larger than the average power consumption during running of the electric vehicle, and the secondary battery functions as a power damper. I was
[0004]
[Problems to be solved by the invention]
However, as described above, in the conventional system, the power generation capacity of the power generation type power supply is set to be equal to or higher than the average power consumption during driving of the vehicle. Had become expensive. Further, there is a drawback that the weight of the power generation type power supply in the vehicle body weight increases, and as a result, the vehicle body weight increases.
[0005]
In view of the above circumstances, the present invention positions the storage capacity of the secondary battery as a main power source of the power supply system, and compensates for the shortage of charging of the secondary battery by the power generation type power supply during traveling. Active use of non-traveling time during parking or parking, which accounts for the majority of the time, as a charging period for the secondary battery, increases the amount of power generated by the power supply as a whole, thereby reducing the size of the power-generating power supply. It is an object of the present invention to provide a power supply system for an electric vehicle that can be used.
[0006]
[Means for Solving the Problems]
According to the present invention, in order to achieve the above object,
[1] In a power supply system of an electric vehicle including a secondary battery and a power generation type power supply, the power generation capacity of the power generation type power supply is set to be smaller than an assumed average power consumption of the vehicle, and the vehicle is energized. And a charging control device for charging the secondary battery with the power-generating power source when the vehicle is not running, such as when the vehicle is stopped or parked.
[0007]
[2] The power supply system for an electric vehicle according to the above [1], wherein the power generation type power supply is a fuel cell.
[0008]
[3] In the power supply system for an electric vehicle according to the above [1] or [2], the charging control device includes a detecting unit for detecting a discharging state of the secondary battery, the vehicle is energized, and the vehicle When the discharge rate of the secondary battery is not less than a predetermined value at the time of non-traveling such as at the time of stopping or parking, when the secondary battery reaches a certain state of charge by the charge control device, It is characterized by charging a secondary battery.
[0009]
[4] In the power supply system for an electric vehicle according to [3], the discharge rate of the secondary battery is not recovered by the charging of the secondary battery by the power-generating power supply, and the discharge rate of the secondary battery is reduced. When the value is equal to or more than a predetermined value, the amount of current supplied to the drive motor of the vehicle is limited to be smaller than the amount of power generated by the power generation type power supply.
[0010]
[5] In the power supply system for an electric vehicle according to the above [1] or [2], the charging control device includes a charging control switch, and the secondary battery remains constant even after a main switch of the vehicle is turned off. The secondary battery is charged by the power generation type power supply until the charge amount is reached or the charge control switch is turned off.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a configuration diagram of a power supply system of an electric vehicle showing an embodiment of the present invention.
[0013]
In this figure, reference numeral 1 denotes a hydrogen tank for supplying fuel to the fuel cell 2. Reference numeral 3 denotes a lithium ion secondary battery, for example. A positive output line 21 of the fuel cell 2 is connected to a positive terminal 31 of the secondary battery 3, and the positive terminal 31 is connected to inverters 5a and 5b by a power line 41. I have.
[0014]
Further, the negative output line 22 of the fuel cell 2 is connected to a negative terminal 32 of the secondary battery 3, and the negative terminal 32 is connected to the inverters 5a and 5b by a power line 42.
[0015]
Note that, instead of the fuel cell 2, a generator driven by, for example, a natural gas engine may be used.
[0016]
Reference numerals 6a and 6b denote three-phase drive motors, the outputs of which are transmitted to the drive wheels 7a and 7b directly or via a power transmission mechanism. 43a and 43b are three-phase power lines from the inverters 5a and 5b to the driving motors 6a and 6b.
[0017]
Reference numeral 8 denotes a charge control device which receives an output signal of a discharge detection device 9 for detecting a discharge rate of the secondary battery 3 via a signal line 91. The discharge detection device 9 has, for example, reference values of a discharge rate of 20% and 80%, and outputs a 20% signal and a 80% signal when the discharge rate of the secondary battery 3 becomes 20% or more and 80% or more. Output to the charge control device 8.
[0018]
When the charge control device 8 receives the discharge rate 20% signal from the discharge detection device 9, it outputs a power generation signal to the signal line 81 to operate the fuel cell 2. Thereafter, when the discharge rate of the secondary battery 3 recovers to 20% or less by the operation of the fuel cell 2, the power generation of the fuel cell 2 is stopped.
[0019]
Reference numeral 100 denotes a power supply line for the charge control device. The charge control device 8 is connected to the power supply line 100 via a main switch (key switch) 110 of the vehicle and a charge control switch (contact holding type switch) 120 arranged in parallel. It is connected. The charge control switch 120 is turned on when the key switch 110 is turned on, and is kept on even after the key switch 110 is turned off. The driver or the like turns the charge control switch 120 off. Until the charging control device 8 is operated, the charging control device 8 continues to operate.
[0020]
In this case, the charging control device 8 determines whether the vehicle is running or stopped based on a signal from the rotation sensor 10 that detects the rotation of the drive motors 6a and 6b. Alternatively, the power generation of the fuel cell 2 may be stopped a predetermined time after the vehicle stops. Although FIG. 1 shows that the rotation sensor 10 is connected only to the driving motor 6b, it may be connected to the driving motor 6a. Alternatively, the connection may be made only to the drive motor 6a.
[0021]
Although the present embodiment shows a fuel cell using hydrogen as fuel, it is also possible to use methanol as fuel and supply hydrogen extracted from methanol by the reformer to the fuel cell 2.
[0022]
FIG. 2 is a flowchart showing an operation of the power supply system for an electric vehicle of the present invention, particularly when the vehicle is not traveling.
[0023]
(1) First, the power supply system of the present invention is driven (initialized) (step S1).
[0024]
(2) Next, the power generation capacity of the power generation type power supply (for example, fuel cell) is set to be smaller than the assumed average power consumption of the electric vehicle (hereinafter, referred to as vehicle) (step S2).
[0025]
(3) Next, it is checked whether or not the main switch (key switch) of the vehicle is ON. (Step S3).
[0026]
(4) If the key switch is OFF, it is checked whether the charge control switch is ON (step S4).
(5) Next, it is checked whether or not the vehicle is in a non-running state, such as during a temporary stop or parking (step S5).
[0027]
(6) Next, it is checked whether or not the discharge rate of the secondary battery is equal to or higher than a predetermined value (step S6).
[0028]
(7) Next, when the discharge rate of the secondary battery is equal to or more than the predetermined value in step S6, the secondary battery is charged from the power generation type power supply (step S7).
[0029]
(8) Next, it is checked whether or not the discharge rate of the secondary battery has fallen below a predetermined value due to the charging in step S7. (Step S8).
[0030]
(9) If the discharge rate of the secondary battery becomes equal to or less than the predetermined value due to the charging in step S7, the charging is stopped (step S9).
[0031]
As described above, according to the present invention, since the power generation capacity of the power generation type power supply is set to be smaller than the assumed average power consumption of the electric vehicle, the power generation type power supply can be reduced in size and weight. This can be satisfied by charging the secondary battery from the power generation type power supply not only during driving of the vehicle but also during non-traveling such as when the vehicle is stopped or parked.
[0032]
FIG. 3 is an operation flowchart of the power supply system for an electric vehicle according to the present invention when the secondary battery is heavily loaded.
[0033]
(1) It is checked whether or not the discharge rate of the secondary battery is 80% or more even when the secondary battery is charged by the power generation type power supply (step S11).
[0034]
(2) If YES in step S11, the charging control device outputs a maximum power control signal to the inverter (step S12).
[0035]
(3) Next, the amount of power supplied to the drive motor of the vehicle is limited so as to be smaller than the amount of power generated by the power generation type power supply. That is, the load on the secondary battery is set to zero (step S13).
[0036]
(4) Next, when the discharge rate of the secondary battery becomes 80% or less, the above restriction is released (step S14).
[0037]
As described above, the discharge of the secondary battery 3 progresses due to the continuous running of the vehicle, and when the discharge rate reaches 80% or more, the secondary battery 3 may be worn out. The device 8 outputs a maximum power control signal to the inverters 5a and 5b via signal lines 82a and 82b so that the maximum power supplied to the drive motors 6a and 6b is lower than the output of the fuel cell 2, and The maximum drive power of the motors 6a and 6b is limited. Naturally, the discharge rate can be recovered by setting the load of the secondary battery to zero.
[0038]
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0039]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0040]
(A) By effectively utilizing the time during non-traveling such as when the vehicle is stopped or parked for charging the secondary battery with the power-generating power source, the power-generating power source is reduced in output and size. be able to. Therefore, the weight and cost of the vehicle can be reduced.
[0041]
(B) In the case of a normal running distance, high acceleration performance and high-speed running performance can be sufficiently exhibited by the power of both the power generation type power supply and the secondary battery.
[0042]
(C) When the discharge of the secondary battery has progressed beyond a certain level, the maximum drive power of the drive motor is limited after securing the power required for the lighting, the control device, and the like. Naturally, it is possible to limit the load on the secondary battery and to recover the discharge rate of the secondary battery.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power supply system of an electric vehicle according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an operation of the power supply system for an electric vehicle of the present invention, particularly when the vehicle is not traveling.
FIG. 3 is an operation flowchart of the power supply system for an electric vehicle according to the present invention when the secondary battery is heavily loaded.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrogen tank 2 Fuel cell 3 Secondary battery 5a, 5b Inverter 6a, 6b Three-phase drive motor 7a, 7b Drive wheel 8 Charge control device 9 Discharge detection device 10 Rotation sensor 21 Positive output line 22 of fuel cell 22 Negative output line 31 Positive terminal 32 of secondary battery 32 Negative terminal 41 of secondary battery Power lines 43a, 43b Three-phase power lines 81, 82a, 82b, 91 Signal line 100 Power supply line 110 for charge control device Main vehicle Switch (key switch)
120 Charge control switch

Claims (5)

2次電池と発電式電源とを備えた電気自動車の電源システムにおいて、
前記発電式電源の発電容量が車両の想定平均消費電力よりも小さくなるように設定すると共に、前記車両が付勢され、かつ前記車両の停止時や駐車時などの非走行時に前記発電式電源により前記2次電池を充電する充電制御装置を具備することを特徴とする電気自動車の電源システム。
In an electric vehicle power supply system including a secondary battery and a power generation type power supply,
While the power generation capacity of the power generation type power supply is set to be smaller than the assumed average power consumption of the vehicle, the vehicle is energized, and the power generation type power supply is used when the vehicle is not running, such as when the vehicle is stopped or parked. A power supply system for an electric vehicle, comprising a charge control device that charges the secondary battery.
請求項1記載の電気自動車の電源システムにおいて、前記発電式電源が燃料電池であることを特徴とする電気自動車の電源システム。2. The power supply system for an electric vehicle according to claim 1, wherein the power generation type power supply is a fuel cell. 請求項1又は2記載の電気自動車の電源システムにおいて、前記充電制御装置は前記2次電池の放電状態を検知する検知手段を備え、前記車両が付勢され、かつ前記車両の停止時や駐車時などの非走行時に前記2次電池の放電率が所定値以上である場合に、前記充電制御装置により前記2次電池が一定の充電状態になるまで前記発電式電源により前記2次電池を充電することを特徴とする電気自動車の電源システム。3. The power supply system for an electric vehicle according to claim 1, wherein the charge control device includes a detection unit that detects a discharge state of the secondary battery, the vehicle is energized, and the vehicle is stopped or parked. 4. When the discharge rate of the secondary battery is equal to or higher than a predetermined value during non-traveling, the charge control device charges the secondary battery with the power generation type power supply until the secondary battery reaches a constant charge state. A power supply system for an electric vehicle. 請求項3記載の電気自動車の電源システムにおいて、前記2次電池の放電率が、前記発電式電源による前記2次電池の充電によっても回復せず、前記2次電池の放電率が所定値以上である場合には、前記車両の駆動用モータへの供給電流量を前記発電式電源の発電量より小さくなるように制限することを特徴とする電気自動車の電源システム。4. The power supply system for an electric vehicle according to claim 3, wherein the discharge rate of the secondary battery is not recovered by the charging of the secondary battery by the power generation type power supply, and the discharge rate of the secondary battery is equal to or more than a predetermined value. 5. In some cases, the amount of current supplied to the drive motor of the vehicle is limited so as to be smaller than the amount of power generated by the power generation type power supply. 請求項1又は2記載の電気自動車の電源システムにおいて、前記充電制御装置は充電制御スイッチを備え、前記車両のメインスイッチをオフにした後も、前記2次電池が一定の充電量になるか又は前記充電制御スイッチをオフにするまで、前記発電式電源により前記2次電池を充電するようにしたことを特徴とする電気自動車の電源システム。3. The electric vehicle power supply system according to claim 1, wherein the charge control device includes a charge control switch, and after the main switch of the vehicle is turned off, the secondary battery has a constant charge amount or A power supply system for an electric vehicle, wherein the secondary battery is charged by the power generation type power supply until the charge control switch is turned off.
JP2002191974A 2002-07-01 2002-07-01 Power supply system of electric automobile Pending JP2004040868A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002191974A JP2004040868A (en) 2002-07-01 2002-07-01 Power supply system of electric automobile
PCT/JP2002/008246 WO2004002772A1 (en) 2002-07-01 2002-08-13 Power supply system of electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191974A JP2004040868A (en) 2002-07-01 2002-07-01 Power supply system of electric automobile

Publications (1)

Publication Number Publication Date
JP2004040868A true JP2004040868A (en) 2004-02-05

Family

ID=29996952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191974A Pending JP2004040868A (en) 2002-07-01 2002-07-01 Power supply system of electric automobile

Country Status (2)

Country Link
JP (1) JP2004040868A (en)
WO (1) WO2004002772A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100746367B1 (en) 2006-03-15 2007-08-03 주식회사 프로파워 The hybrid power system consisted of fuel cell and rechargeable battery, and the controlling method of the same
US7576512B2 (en) 2005-01-28 2009-08-18 Denso Corporation Secondary battery charging system capable of preventing drop of charged electric power
US8507142B2 (en) 2006-05-23 2013-08-13 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system including charge status detector and operation method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037045A1 (en) * 2008-08-08 2010-03-04 Motorenfabrik Hatz Gmbh & Co. Kg electric vehicle
CN106467030B (en) * 2016-08-01 2019-04-23 方亚明 A kind of pull-type new energy vehicle is from walking type charging vehicle
CN114744252B (en) * 2022-03-16 2024-04-12 武汉格罗夫氢能汽车有限公司 Method for optimally controlling power-down time of whole fuel cell automobile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270603A (en) * 1990-03-20 1991-12-02 Nkk Corp Electric car
JP3094701B2 (en) * 1992-12-11 2000-10-03 トヨタ自動車株式会社 Control device for engine drive generator for electric vehicle
JP2973920B2 (en) * 1995-05-24 1999-11-08 トヨタ自動車株式会社 Hybrid electric vehicle
US5767584A (en) * 1995-11-14 1998-06-16 Grow International Corp. Method for generating electrical power from fuel cell powered cars parked in a conventional parking lot
JP2001231108A (en) * 2000-02-14 2001-08-24 Yamaha Motor Co Ltd Charging device for motor-driven vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576512B2 (en) 2005-01-28 2009-08-18 Denso Corporation Secondary battery charging system capable of preventing drop of charged electric power
KR100746367B1 (en) 2006-03-15 2007-08-03 주식회사 프로파워 The hybrid power system consisted of fuel cell and rechargeable battery, and the controlling method of the same
US8507142B2 (en) 2006-05-23 2013-08-13 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system including charge status detector and operation method therefor

Also Published As

Publication number Publication date
WO2004002772A1 (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US8742718B2 (en) Charging apparatus for vehicle
US7420339B2 (en) Regenerative braking system of fuel cell vehicle using super capacitor
JP4947552B2 (en) Vehicle power supply
JPWO2009013891A1 (en) Vehicle power supply
US8583308B2 (en) Control device for vehicle
JP7020144B2 (en) Electric vehicle and control method of electric vehicle
JP2004112900A (en) Power generation controller for vehicle
JP5202576B2 (en) Vehicle power supply system
JPH10295045A (en) Control apparatus for power generation of hybrid electric vehicle
JP2004248432A (en) Driving apparatus and automobile having the same
JP2009142062A (en) Vehicular power supply unit
JP2013074706A (en) Control device for vehicle
JP2010273428A (en) Vehicle drive power supply unit
JP2009247057A (en) Control device of electric vehicle
US11535119B2 (en) Control of the state of charge of an electrically powered vehicle when traveling on a hill
JP4968596B2 (en) In-vehicle power supply
JP4048766B2 (en) Hybrid vehicle
JP4192658B2 (en) Vehicle control apparatus and control method
JP2004040868A (en) Power supply system of electric automobile
JP2004201411A (en) Apparatus and method for controlling power source
KR100579298B1 (en) Auxiliary battery charge control method for environment car
JP3171218B2 (en) Electric vehicle device
JP2008302852A (en) Controller for hybrid car
JP2900309B2 (en) Electric vehicle regeneration system
JP7322772B2 (en) battery system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724