JP2003332201A - Exposure method and exposure system - Google Patents
Exposure method and exposure systemInfo
- Publication number
- JP2003332201A JP2003332201A JP2002134919A JP2002134919A JP2003332201A JP 2003332201 A JP2003332201 A JP 2003332201A JP 2002134919 A JP2002134919 A JP 2002134919A JP 2002134919 A JP2002134919 A JP 2002134919A JP 2003332201 A JP2003332201 A JP 2003332201A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- incident angle
- euv light
- change
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、EUV(Extreme
Ultra Violet)光を反射型マスクに照射し、その反射型
マスク上の回路パターンを基板に転写する露光方法およ
び露光装置に関する。TECHNICAL FIELD The present invention relates to EUV (Extreme
Ultra Violet) The present invention relates to an exposure method and an exposure apparatus for irradiating a reflective mask with light and transferring a circuit pattern on the reflective mask onto a substrate.
【0002】[0002]
【従来の技術】半導体デバイス作製等におけるリソグラ
フィープロセスは、パターンの微細化とともに露光装置
の光源波長の短波長化が進み、i線(波長365nm)→KrFエ
キシマ(波長248nm)→ArFエキシマ(波長193nm)→F2(波長
153nm)と推移してきた。原理的に解像力を上げるために
は投影光学系の開口数(NA)増大と露光波長の短波長化
によって達成される。一般的に最小線幅を表す露光装置
の解像度は次式(1)で与えられる。2. Description of the Related Art In a lithographic process for manufacturing semiconductor devices, the wavelength of a light source of an exposure apparatus is shortened along with the miniaturization of patterns, i-line (wavelength 365 nm) → KrF excimer (wavelength 248 nm) → ArF excimer (wavelength 193 nm ) → F2 (wavelength
153 nm). In principle, the resolution can be increased by increasing the numerical aperture (NA) of the projection optical system and shortening the exposure wavelength. Generally, the resolution of the exposure apparatus that represents the minimum line width is given by the following equation (1).
【0003】解像度=K1・λ/NA …(1)
ここでK1は使用するレジスト等のプロセスから決まる1
以下の正の定数である。Resolution = K1 · λ / NA (1) Here, K1 is determined by the process such as resist used.
The following positive constants.
【0004】また、さらなる微細化のために、今日にお
いては波長5〜15nmの軟X線領域の光、EUV(Extreme
Ultra Violet)光を露光光とする露光装置の開発が行
われている(例えば、特開2000−91216号公報
参照)。Further, for further miniaturization, light in the soft X-ray region having a wavelength of 5 to 15 nm, EUV (Extreme
An exposure apparatus using Ultra Violet light as exposure light has been developed (see, for example, Japanese Patent Laid-Open No. 2000-91216).
【0005】露光装置では、K1=0.8とした時、13.5nmの
EUV光を露光波長として用いる場合、NA=0.25と仮定する
と上記(1)式により解像度43nmが得られ、最小線幅50
nmのデザインルールの加工が可能となる。このためEU
V露光技術は次世代の露光装置の有力な候補として挙げ
られている。In the exposure apparatus, when K1 = 0.8, 13.5 nm
When EUV light is used as the exposure wavelength, assuming that NA = 0.25, a resolution of 43 nm can be obtained from equation (1) above, and a minimum line width of 50
Allows processing of nm design rules. Because of this EU
V-exposure technology has been cited as a promising candidate for the next-generation exposure apparatus.
【0006】ところで、EUV光においては、存在する
ほとんどの物質は透過せず吸収してしまい、従来の光露
光機のような屈折投影光学系を構成することが不可能で
ある。このため反射投影光学系を用いた構成で開発が進
められている。この場合、原版としてのマスクは反射型
となり、マスクへの照明は斜入射照明となる。By the way, in EUV light, most existing substances are not transmitted but absorbed, and it is impossible to construct a refraction projection optical system like a conventional optical exposure device. For this reason, development is proceeding with a configuration using a catoptric projection optical system. In this case, the mask as the original plate is of a reflection type, and the illumination on the mask is oblique incidence illumination.
【0007】このマスクへの入射角度は、マスク入射面
における照明NA(以下、NAillと表記)により決まる
が、これは所望の解像度から決まる反射投影光学系のウ
エハ面NAと投影倍率とから決まる。投影倍率は現行の光
露光機を踏襲する形で4倍系、又は5倍系として開発が
進んでおり、EUV露光を適用する際の所望の解像度か
ら決まるNA=0.2〜0.3のレベルにおいては、マスク面へ
の入射角度は4°程度となっている。The angle of incidence on the mask is determined by the illumination NA (hereinafter referred to as NAill) on the mask incident surface, which is determined by the wafer surface NA and the projection magnification of the catoptric projection optical system determined by the desired resolution. The projection magnification is being developed as a 4x system or a 5x system following the existing optical exposure machine, and at the level of NA = 0.2 to 0.3 determined by the desired resolution when applying EUV exposure, The angle of incidence on the mask surface is about 4 °.
【0008】[0008]
【発明が解決しようとする課題】ここで、前述のような
斜入射照明にした場合、入射光線の射影ベクトルに対す
るパターンの方位(LSIパターンを走査方向に対して
平行か垂直かで区分すると仮定)で、ウエハ上に転写す
るパターン線幅に方位による差が発生するために、ウエ
ハ上の転写パターン線幅が均一となるように、レイアウ
ト段階でマスク上のパターンの方位によりマスクパター
ン線幅に補正(VH線幅補正)を施すことが検討されてい
る。Here, in the case of oblique incidence illumination as described above, the azimuth of the pattern with respect to the projection vector of the incident ray (assuming that the LSI pattern is divided into parallel or perpendicular to the scanning direction). Since the pattern line width transferred on the wafer varies depending on the orientation, the pattern width on the wafer is corrected to the mask pattern line width at the layout stage so that the transfer pattern line width on the wafer becomes uniform. Applying (VH line width correction) is under consideration.
【0009】しかしながら、EUV光源は非常に大がか
りな設備を必要とするため、メカニカルにはいくつかの
系に分割される。即ち、EUV光源とその光をマスクに
反射させる照明系とで別個の装置構成となり、EUV光
源から出射されるEUV光のマスクへの入射角度がずれ
やすい。この入射角度のずれにより、マスクに対して上
記VH線幅補正をしてあっても方位によるパターン線幅の
差が変動してしまい、正解な転写パターン寸法を維持で
きなくなってしまう。However, since the EUV light source requires a very large-scale equipment, it is mechanically divided into several systems. That is, the EUV light source and the illumination system that reflects the light to the mask are separate devices, and the incident angle of the EUV light emitted from the EUV light source to the mask is likely to shift. Due to this deviation of the incident angle, even if the VH line width correction is performed on the mask, the difference in the pattern line width due to the azimuth changes, and it becomes impossible to maintain the correct transfer pattern size.
【0010】[0010]
【課題を解決するための手段】本発明は、このような課
題を解決するために成されたものである。すなわち、本
発明は、EUV光を所定の角度で反射型マスクに入射
し、マスク上のパターンを基板上へ転写する露光方法で
あり、EUV光の反射型マスクに対する入射角度の変化
を検出し、その検出された入射角度の変化に基づきEU
V光の反射型マスクに対する入射角度を修正して露光を
行う方法である。The present invention has been made to solve the above problems. That is, the present invention is an exposure method in which EUV light is incident on a reflective mask at a predetermined angle and the pattern on the mask is transferred onto a substrate. The change in the incident angle of the EUV light on the reflective mask is detected, EU based on the change in the detected incident angle
In this method, the incident angle of V light with respect to the reflection type mask is corrected to perform exposure.
【0011】また、EUV光を出射するEUV光源と、
EUV光源から出射されたEUV光を所定の角度で反射
型マスクに入射する反射型照明手段と、EUV光の反射
型マスクに対する入射角度の変化を検出する角度検出手
段と、角度検出手段によって検出された入射角度の変化
に基づきEUV光の反射型マスクに対する入射角度を修
正する角度修正手段とを備える露光装置でもある。Further, an EUV light source for emitting EUV light,
The reflection type illumination means for making the EUV light emitted from the EUV light source enter the reflection type mask at a predetermined angle, the angle detection means for detecting a change in the incident angle of the EUV light with respect to the reflection type mask, and the angle detection means. The exposure apparatus also includes an angle correction unit that corrects the incident angle of the EUV light with respect to the reflective mask based on the change of the incident angle.
【0012】このような本発明では、EUV光を反射型
マスクに照射してその反射光による露光を行うにあた
り、EUV光の反射型マスクに対する入射角度の変化を
検出し、入射角度の初期設定値からの変化量を修正して
露光を行うことから、正確な入射角度でEUV光を反射
型マスクへ入射することができ、マスク上のパターン方
位による転写パターン線幅の変動を発生させずに正確な
露光を行うことができるようになる。According to the present invention as described above, when the reflective mask is irradiated with the EUV light and the reflected light is exposed, a change in the incident angle of the EUV light with respect to the reflective mask is detected, and the initial setting value of the incident angle is detected. Since the exposure is performed by correcting the amount of change from, the EUV light can be incident on the reflective mask at an accurate incident angle, and the transfer pattern line width does not vary depending on the pattern orientation on the mask It becomes possible to perform various exposures.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は、本実施形態に係る露光装置
を説明する概略構成図である。露光装置は大きく分けて
光源系、照明系、投影系から構成されている。ここでは
アライメント系などは省略するものとする。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating an exposure apparatus according to this embodiment. The exposure apparatus is roughly divided into a light source system, an illumination system, and a projection system. Here, the alignment system and the like are omitted.
【0014】EUV光を用いる露光装置では反射型マス
ク4に照明光を斜めから入射し、そのマスク面からの反
射光を投影光学系6を介して感光物質を塗布したウエハ
9に投影する(反射型投影系)。これにより反射型マス
ク4上の照明領域内のパターンがウエハ9に転写される
ようになっている。In the exposure apparatus using EUV light, illumination light is obliquely incident on the reflective mask 4, and the reflected light from the mask surface is projected through the projection optical system 6 onto the wafer 9 coated with the photosensitive material (reflection). Type projection system). As a result, the pattern in the illumination area on the reflective mask 4 is transferred onto the wafer 9.
【0015】本実施形態の露光装置では反射型マスク4
上の照明領域は弓型状に形成されるようになっており、
反射型マスク4とウエハ9とを投影光学系6に対して相
対走査することにより反射型マスク4上のパターンをウ
エハ9上に逐次転写する走査露光方式を取るものとす
る。In the exposure apparatus of this embodiment, the reflective mask 4 is used.
The upper illumination area is designed to have an arc shape,
It is assumed that a scanning exposure method is adopted in which the pattern on the reflective mask 4 is sequentially transferred onto the wafer 9 by relatively scanning the reflective mask 4 and the wafer 9 with respect to the projection optical system 6.
【0016】ここで、本実施形態における定義を図2に
沿って説明する。反射型マスク4は図中Y方向に走査さ
れ、パターンがウエハに転写される。本実施形態におけ
る縦線、横線方位の定義は、走査方向と平行な方位を縦
線(V line)、走査方向と垂直な方位を横線(H line)
とする。なお、斜入射の角度は図2においてX軸回りの
角度であると定義する。The definition in this embodiment will be described below with reference to FIG. The reflective mask 4 is scanned in the Y direction in the figure, and the pattern is transferred onto the wafer. The vertical line and horizontal line azimuth in the present embodiment are defined by the vertical line (V line) indicating the direction parallel to the scanning direction and the horizontal line (H line) indicating the direction perpendicular to the scanning direction.
And The oblique incidence angle is defined as the angle around the X axis in FIG.
【0017】EUV光を用いる反射型マスクの構造を図
3の模式斜視図に示す。基板として低膨張ガラスを用い
ており、反射面が例えば2種類の物質を交互に積層した
多層膜となっている。ここでは例としてモリブデン(M
o)と珪素(Si)との多層膜を用いて波長13nmのEUV光入
射に対して反射率約70%の反射膜が形成されているもの
を想定する。The structure of the reflective mask using EUV light is shown in the schematic perspective view of FIG. Low-expansion glass is used as the substrate, and the reflection surface is a multilayer film in which two kinds of substances are alternately laminated. Here, as an example, molybdenum (M
It is assumed that a reflective film having a reflectance of about 70% for EUV light with a wavelength of 13 nm is formed by using a multilayer film of o) and silicon (Si).
【0018】この反射膜の上にEUV光を吸収する物質を
一面に塗布し、パターンニングを行う。吸収膜ブランク
スに多層膜のような反射物質をパターンニングすると失
敗したときの修復が不可能であるのに対して、吸収膜を
設けてパターンニングする方法だとやり直しが可能とな
るのでパターン修復が可能になる。A substance that absorbs EUV light is applied to one surface of the reflective film and patterned. While patterning a reflective material such as a multilayer film on the absorbing film blanks makes it impossible to repair it when it fails, the method of providing an absorbing film for patterning makes it possible to start over, so that pattern repairing is possible. It will be possible.
【0019】斜入射照明によるパターン線幅の縦横差を
厳密にシミュレーションする場合には、図3に示すよう
な吸収膜の段差の3次元構造を加味した電磁場シミュレ
ーションが必要となるが、ここでは簡単のため、シミュ
レーションとして吸収層の厚みがゼロと仮定した2次元
構造バイナリマスクに斜入射した場合で近似するものと
する。When the vertical and horizontal differences in the pattern line width due to the oblique incidence illumination are to be strictly simulated, an electromagnetic field simulation that takes into account the three-dimensional structure of the steps of the absorption film as shown in FIG. 3 is required. Therefore, as a simulation, it is assumed to be approximated when obliquely incident on a two-dimensional binary mask assuming that the thickness of the absorption layer is zero.
【0020】斜入射照明による転写線幅のVH(縦線・横
線)差のシミュレーション結果を図4に示す。このシミ
ュレーション結果は、露光波長=13.5nm、NA=0.25、σ
=0.70、マスク上入射角度=4°(X軸回り)、投影倍
率4倍、ウエハ上パターン=50nmラインアンドスペース
の縦線および横線で、縦横毎のウエハ上転写線幅を計算
したものである。FIG. 4 shows the simulation result of the VH (vertical line / horizontal line) difference of the transfer line width by the oblique incident illumination. This simulation result shows that the exposure wavelength = 13.5 nm, NA = 0.25, σ
= 0.70, incident angle on mask = 4 ° (around X-axis), projection magnification 4 times, pattern on wafer = 50 nm Line and space vertical and horizontal lines are the transfer line widths on the wafer for each vertical and horizontal lines. .
【0021】図4に示すように、ベストフォーカスにお
いて約5nmの線幅差があり、これを補正するために予め
レイアウト段階でマスクパターン線幅を補正してマスク
パターンをパターンニングする。これにより転写された
パターン線幅に縦横差が発生することを防ぐ。As shown in FIG. 4, there is a line width difference of about 5 nm in the best focus, and in order to correct this, the mask pattern line width is corrected in advance at the layout stage to pattern the mask pattern. This prevents vertical and horizontal differences in the line width of the transferred pattern.
【0022】次に、図5に同上の計算条件の下で入射角
度を変えた場合を示す。マスクへの入射角度が変動した
場合に、ウエハ上転写パターンに発生するVH差も変動す
る。マスクの方位毎パターン線幅補正量はあらかじめ決
められた入射角度の元で成立するので、所定外の入射角
度以外では結果としてウエハ転写パターンの線幅が方位
によってばらつきを持つようになる。本実施形態では、
このVH線幅ばらつきをゼロにする点に特徴がある。Next, FIG. 5 shows the case where the incident angle is changed under the same calculation conditions as above. When the incident angle on the mask changes, the VH difference generated in the transfer pattern on the wafer also changes. Since the pattern line width correction amount for each direction of the mask is established based on a predetermined incident angle, as a result, the line width of the wafer transfer pattern varies depending on the direction except for an incident angle outside the predetermined range. In this embodiment,
The feature is that this VH line width variation is zero.
【0023】図5より許容誤差としてベストフォーカス
でのVH間CD差変動を±1nmと仮定すると、4°±0.5
°程度に維持されていなければいけないことが見積もら
れる。従来技術ではこのような照明光入射角度の変動を
含む公差は特に議論されていなかった。Assuming that the variation in CD difference between VHs at the best focus is ± 1 nm as an allowable error from FIG. 5, it is 4 ° ± 0.5.
It is estimated that it must be maintained at about °. In the prior art, such a tolerance including a variation in the illumination light incident angle has not been particularly discussed.
【0024】さらに、マスク上のパターンの繰り返し周
期性(ピッチ)、すなわち疎密性によっても転写パター
ン線幅は変化するが(以下OPE特性:Optical Proximity
Effectと表記)、この疎密特性も照明光入射角度が変
動すると変動してしまう。Furthermore, the line width of the transfer pattern also changes depending on the repeating periodicity (pitch) of the pattern on the mask, that is, the density (hereinafter referred to as OPE characteristic: Optical Proximity).
Effect), this sparse-dense characteristic also changes when the illumination light incident angle changes.
【0025】マスクの疎密性毎パターン線幅補正はあら
かじめ決められた入射角度の元で成立するので、結果と
してウエハ転写パターンの線幅がパターンの疎密によっ
てばらつきを持つようになる。このシミュレーション結
果を図6(H lineのOPE特性)、図7(V lineのOPE特
性)、図8(OPE特性V-H差分)に示す。計算条件は前述
のものとする。Since the line width correction for each pattern density of the mask is established under a predetermined incident angle, as a result, the line width of the wafer transfer pattern varies depending on the density of the pattern. The simulation results are shown in FIG. 6 (H line OPE characteristic), FIG. 7 (V line OPE characteristic), and FIG. 8 (OPE characteristic VH difference). The calculation conditions are as described above.
【0026】この結果より、4°±0.5°の範囲外の
入射角度においてはVH差OPE特性が平行シフトするだけ
でなく、カーブ形状変動(即ち特性変動)も発生し得る
ので、許容外の入射角度に系が変動してしまった場合、
予め4°の入射角度の条件下で疎密特性を補正してある
マスクを転写した場合、VH間線幅差がオフセットだけで
なく、疎密によってもその差が変動することになる。本
実施形態では、この線幅ばらつきをゼロにする点に特徴
がある。From this result, at an incident angle outside the range of 4 ° ± 0.5 °, not only the VH difference OPE characteristic may shift in parallel, but also the curve shape variation (that is, characteristic variation) may occur. If the system fluctuates with the incident angle of
When a mask whose sparse / dense characteristics are corrected in advance under the condition of an incident angle of 4 ° is transferred, the line width difference between VHs varies not only by the offset but also by the sparse / dense. The present embodiment is characterized in that this line width variation is set to zero.
【0027】次に、EUV光源について説明する。EU
V光源の一つの例としてはレーザプラズマ系が挙げられ
る。これは、例えばエキシマレーザ等の高出力レーザ光
をノズルからジェット状に噴出して希ガスなどのEUV
発生物質に集光照射し、この物質をプラズマ状態に励起
させ、低ポテンシャル状態に遷移する際にEUV光を発
生するものである。Next, the EUV light source will be described. EU
One example of the V light source is a laser plasma system. This is, for example, a high-power laser beam such as an excimer laser is jetted from a nozzle in a jet shape to generate an EUV gas such as a rare gas.
The generated substance is condensed and irradiated to excite the substance into a plasma state, and EUV light is generated when the substance is transited to a low potential state.
【0028】図9の模式図に示すように、EUV光は、
高出力レーザ11からEUV発生源13に集光されたレ
ーザ光によって発生する。そして、全方位に放射され、
背面の放物面反射鏡12により平行光に変換される。そ
の後、反射型強度均一化素子21、反射型のコンデンサ
ミラー23によりマスク上照明領域内において強度、NA
illの均一な細長い弓型スリット状のビームとして照射
される。As shown in the schematic view of FIG. 9, EUV light is
It is generated by the laser light focused on the EUV generation source 13 from the high-power laser 11. And it is radiated in all directions,
It is converted into parallel light by the parabolic reflector 12 on the back surface. After that, the reflection type intensity equalizing element 21 and the reflection type condenser mirror 23 are used to set the intensity, NA
It is emitted as a uniform elongated bow-shaped slit beam of ill.
【0029】図10は、露光装置の光学系における共役
関係を抽出した模式図である。反射型マスク4上に斜め
からEUV光を入射するには、具体的に平面ミラー5の
角度を振るか、照明系の瞳面、具体的には反射型強度均
一化素子21(図9参照)の射出面(通常ここには光源
形状を決定する絞り等が設置されている)を絞りと均一
化素子を一体化して光軸進行方向に対して垂直な平面内
で1次元的または2次元的にシフト駆動することにより
実現される。FIG. 10 is a schematic diagram in which the conjugate relationship in the optical system of the exposure apparatus is extracted. In order to make the EUV light obliquely incident on the reflection type mask 4, the angle of the plane mirror 5 is specifically swung, or the pupil plane of the illumination system, specifically, the reflection type intensity equalizing element 21 (see FIG. 9). The exit surface (usually a diaphragm for determining the shape of the light source is installed here) is integrated with the diaphragm and the homogenizing element in one plane or two-dimensionally in the plane perpendicular to the optical axis traveling direction. It is realized by shift driving to.
【0030】図11は、照明系瞳面のシフトによる照射
角度変化を説明する模式図である。このような照明系瞳
面のシフトによりマスクへの入射角度を制御すること
は、ミラーチルトよりも制御が容易な上、良好な制御精
度も得られるため、本実施形態ではこの方式を入射角度
修正手段として採用している。また、この照明系瞳面シ
フトによるマスクへの入射角度変化量は光学設計上一意
に決まるのでオープン制御で問題はない。FIG. 11 is a schematic diagram for explaining the change in irradiation angle due to the shift of the pupil plane of the illumination system. Controlling the incident angle to the mask by shifting the pupil plane of the illumination system as described above is easier to control than the mirror tilt, and good control accuracy can be obtained. Therefore, in this embodiment, this method is used to correct the incident angle. It is adopted as a means. Also, since the amount of change in the angle of incidence on the mask due to this illumination system pupil plane shift is uniquely determined in optical design, there is no problem with open control.
【0031】次に、EUV光のマスクへの入射角度の変
化検出について図12の模式図に基づき説明する。図1
2においてマスクへの入射を行う平面ミラー5(反射プ
リズム)は投影光学系に対して機械的に固定されてい
る。この平面ミラー5の背面に可視光反射ミラー51を
設置しておく。一方、光源系には計測用光源52および
位置計測センサ53を設置しておく。これにより、計測
用光源52から出射された計測光を可視光反射ミラー5
1で反射させ、その反射光を位置計測センサ53にて受
けることで、EUV光の出射角度ずれθを検出する。Next, detection of change in the incident angle of EUV light on the mask will be described with reference to the schematic diagram of FIG. Figure 1
In 2, the plane mirror 5 (reflection prism) that enters the mask is mechanically fixed to the projection optical system. A visible light reflection mirror 51 is installed on the back surface of the plane mirror 5. On the other hand, the measurement light source 52 and the position measurement sensor 53 are installed in the light source system. As a result, the measurement light emitted from the measurement light source 52 is reflected by the visible light reflection mirror 5
The emission angle deviation θ of the EUV light is detected by reflecting the light at 1 and receiving the reflected light at the position measurement sensor 53.
【0032】なお、光源光源系に設置された計測光(例
えばHe-Neレーザ)の出射方位は予めEUV光出射方向
と一致するように調整しておく。位置計測センサ53と
しては単純な2次元センサ、あるいは4分割センサでよ
い。The emission direction of the measurement light (for example, He-Ne laser) installed in the light source light source system is adjusted in advance so as to coincide with the EUV light emission direction. The position measuring sensor 53 may be a simple two-dimensional sensor or a four-division sensor.
【0033】例えば、光源系全体の投影光学系に対する
角度が初期設定に対してθ変動した場合を例とすると、
計測光源〜反射ミラー〜計測面のスパンが2Lの場合、2L
θの位置ズレとして検出される。このようにして光源系
と投影系の相対的な角度情報を常時もしくは一定時間間
隔で計測する。For example, taking the case where the angle of the entire light source system with respect to the projection optical system varies by θ with respect to the initial setting,
Measuring light source ~ Reflecting mirror ~ 2L if the span of the measuring surface is 2L
It is detected as a position shift of θ. In this way, the relative angle information between the light source system and the projection system is measured constantly or at regular time intervals.
【0034】マスクへの入射角度が初期設定(本実施形
態では4°)からずれると、先に説明したようにVH間の
線幅差、OPE疎密特性が変動して、所望の均一寸法制御
が達成できなくなる。よって、マスクへの入射角度が規
格外に外れた場合は、そのずれた角度量を算出し、前述
の如く照明系瞳面の位置シフトによりこのずれた角度を
補正する。If the angle of incidence on the mask deviates from the initial setting (4 ° in this embodiment), the line width difference between VH and the OPE sparse / dense characteristics fluctuate as described above, and the desired uniform dimension control is achieved. It cannot be achieved. Therefore, when the incident angle on the mask is out of the standard, the displaced angle amount is calculated, and the displaced angle is corrected by the position shift of the illumination system pupil plane as described above.
【0035】露光方法のフローの例としては、ウエハ露
光前に前述の角度計測系によるマスク入射角度計測を行
っておき、VH間の線幅差許容変動量、OPE疎密特性許容
変動量から予め求まっている入射角度の許容量を超えて
いるか否かウエハ毎、あるいはショット毎に確認判断す
る。As an example of the flow of the exposure method, the mask incident angle is measured by the angle measuring system described above before the wafer exposure, and it is obtained in advance from the allowable variation amount of the line width difference between VH and the allowable variation amount of the OPE sparse / dense characteristic. The judgment is made for each wafer or for each shot whether the incident angle exceeds the allowable amount.
【0036】そして、許容量を超えている場合、その角
度ズレを補正するように照明系瞳面を光軸進行方向に垂
直な面内で2次元平行駆動する。角度修正が終了したの
が確認された後、露光動作を行う。When the allowable amount is exceeded, the pupil plane of the illumination system is two-dimensionally driven in parallel in the plane perpendicular to the optical axis traveling direction so as to correct the angular deviation. After confirming that the angle correction is completed, the exposure operation is performed.
【0037】これにより、EUV光の反射型マスクへの
入射角度を正確に制御でき、パターン方位によるウエハ
転写パターン線幅の差を発生させずに正確な露光を行う
ことができるようになる。As a result, the incident angle of the EUV light on the reflective mask can be accurately controlled, and accurate exposure can be performed without causing a difference in the wafer transfer pattern line width depending on the pattern orientation.
【0038】なお、これらの角度ずれ計測は常時計測で
きるので1ショットの走査露光中に動的に補正しても構
わない。つまり、計測されたマスク面への入射角度情報
に基づき、角度ズレが所定量を超えた場合に、ウエハ
毎、ショット毎ないしは必要時任意に露光シーケンスの
中でそれを照明瞳の位置を制御することにより補正す
る。Since these angular displacement measurements can always be measured, they may be dynamically corrected during one-shot scanning exposure. That is, based on the measured incident angle information on the mask surface, when the angle deviation exceeds a predetermined amount, it is controlled for each wafer, each shot, or arbitrarily when necessary in the exposure sequence to control the position of the illumination pupil. Correct by
【0039】また、本実施形態では角度ズレはX軸回り
の回転角度(基準角度は本例では4°)に限定して説明
したが、Y軸回りの回転角度(基準角度は0°)に関し
ても同様にVH線幅差、OPE疎密特性のVH差から許容角
度ずれ量が求まる。これに関しても系間の相対角度ずれ
計測系をさらにもう一系統追加して同様に運用すればよ
い。補正はやはり照明系瞳を光線進行方向に対して垂直
な面内で2次元平行シフト駆動すればよい。In the present embodiment, the angle deviation is limited to the rotation angle around the X axis (reference angle is 4 ° in this example), but the rotation angle around the Y axis (reference angle is 0 °) is described. Similarly, the allowable angle deviation amount is obtained from the VH line width difference and the VH difference of the OPE sparse / dense characteristics. Regarding this, another system for measuring the relative angle deviation between the systems may be added and operated in the same manner. For correction, the illumination system pupil may be two-dimensionally parallel-shift driven in a plane perpendicular to the light ray traveling direction.
【0040】[0040]
【発明の効果】以上説明したように、本発明によれば次
のような効果がある。すなわち、EUV光を反射型マス
クに照射して露光を行うにあたり、反射型マスクへのE
UV光の入射角度を正確に管理、制御することから、転
写パターンの方位(垂直、水平間の)線幅差およびOPE
特性変動を許容変動量内に収めることができ、EUV光
による高精度な露光を行うことが可能となる。As described above, the present invention has the following effects. That is, when irradiating the reflective mask with EUV light to perform exposure, the EUV to the reflective mask
Since the incident angle of UV light is accurately managed and controlled, the line width difference (between vertical and horizontal) of the transfer pattern and the OPE
It is possible to keep the characteristic fluctuation within the allowable fluctuation amount, and it is possible to perform highly accurate exposure with EUV light.
【図1】本実施形態に係る露光装置を説明する概略構成
図である。FIG. 1 is a schematic configuration diagram illustrating an exposure apparatus according to this embodiment.
【図2】本実施形態における定義を説明する模式図であ
る。FIG. 2 is a schematic diagram illustrating a definition in this embodiment.
【図3】EUV光を用いる反射型マスクの構造を説明す
る模式斜視図である。FIG. 3 is a schematic perspective view illustrating the structure of a reflective mask that uses EUV light.
【図4】パターン線幅のVH差を説明する図である。FIG. 4 is a diagram illustrating a VH difference between pattern line widths.
【図5】斜入射照明による転写線幅のVH差のシミュレー
ション結果を示す図である。FIG. 5 is a diagram showing a simulation result of VH difference of a transfer line width by oblique incidence illumination.
【図6】入射角度を変えた場合のシミュレーション結果
を示す図である。FIG. 6 is a diagram showing simulation results when the incident angle is changed.
【図7】パターンの疎密によるばらつきのシミュレーシ
ョン結果(V lineのOPE特性)を示す図である。FIG. 7 is a diagram showing a simulation result (VPE OPE characteristic of a line) of variation due to pattern density.
【図8】パターンの疎密によるばらつきのシミュレーシ
ョン結果(OPE特性V-H差分)を示す図である。FIG. 8 is a diagram showing a simulation result (OPE characteristic VH difference) of variation due to sparse and dense patterns.
【図9】光源系および照明系を説明する模式図である。FIG. 9 is a schematic diagram illustrating a light source system and an illumination system.
【図10】露光装置の光学系における共役関係を抽出し
た模式図である。FIG. 10 is a schematic diagram in which a conjugate relationship in an optical system of an exposure apparatus is extracted.
【図11】照明系瞳面のシフトによる照射角度変化を説
明する模式図である。FIG. 11 is a schematic diagram illustrating a change in irradiation angle due to a shift of the illumination system pupil plane.
【図12】EUV光のマスクへの入射角度の変化検出を
説明する模式図である。FIG. 12 is a schematic diagram illustrating detection of a change in an incident angle of EUV light on a mask.
1…EUV光源、2…ステージ、3…マスクホルダ、4
…反射型マスク、5…平面ミラー、6…投影光学系、7
…ウエハステージ、8…ウエハホルダ、9…ウエハ1 ... EUV light source, 2 ... Stage, 3 ... Mask holder, 4
... Reflective mask, 5 ... Planar mirror, 6 ... Projection optical system, 7
... Wafer stage, 8 ... Wafer holder, 9 ... Wafer
Claims (9)
定の角度で反射型マスクに入射し、その反射型マスク上
のパターンをウエハ上へ転写する半導体製造用の露光方
法において、 前記EUV光の前記反射型マスクに対する入射角度の変
化を検出し、その検出された入射角度の変化量に基づき
前記EUV光の前記反射型マスクに対する入射角度を修
正して露光を行うことを特徴とする露光方法。1. An exposure method for semiconductor manufacturing, wherein EUV (Extreme Ultra Violet) light is incident on a reflective mask at a predetermined angle and the pattern on the reflective mask is transferred onto a wafer. An exposure method comprising: detecting a change in an incident angle with respect to a reflective mask, correcting the incident angle of the EUV light with respect to the reflective mask based on the detected amount of change in the incident angle, and performing exposure.
り、前記EUV光の前記反射型マスクへの入射方向と整
合のとれた可視光を用いることを特徴とする請求項1記
載の露光方法。2. The exposure method according to claim 1, wherein visible light matching the incident direction of the EUV light to the reflective mask is used in detecting the change in the incident angle.
入射角度の修正を行うことを特徴とする請求項1記載の
露光方法。3. The exposure method according to claim 1, wherein a change in the incident angle is detected at any time to correct the incident angle.
前記入射角度の修正を行うことを特徴とする請求項1記
載の露光方法。4. The exposure method according to claim 1, wherein a change in the incident angle is periodically detected to correct the incident angle.
射するEUV光源と、 前記EUV光源から出射されたEUV光を所定の角度で
反射型マスクに照射する反射照明手段と、 前記EUV光の前記反射型マスクに対する入射角度の変
化を検出する角度検出手段と、 前記角度検出手段によって検出された入射角度の変化に
基づき前記EUV光の前記反射型マスクに対する入射角
度を修正する角度修正手段とを備えることを特徴とする
露光装置。5. An EUV light source that emits EUV (Extreme Ultra Violet) light, a reflective illumination unit that irradiates a reflective mask with the EUV light emitted from the EUV light source at a predetermined angle, and the reflection of the EUV light. An angle detecting means for detecting a change in the incident angle with respect to the mask, and an angle correcting means for correcting the incident angle of the EUV light with respect to the reflective mask based on the change in the incident angle detected by the angle detecting means. An exposure apparatus.
の照明系瞳の位置を光軸進行方向に対して垂直な面内で
平行移動することによって前記入射角度を修正すること
を特徴とする請求項5記載の露光装置。6. The angle correcting means corrects the incident angle by translating a position of an illumination system pupil of the reflection illuminating means in a plane perpendicular to an optical axis traveling direction. The exposure apparatus according to claim 5.
化を検出するにあたり、前記EUV光の前記反射型マス
クへの照射方向と整合のとれた可視光を用いることを特
徴とする請求項5記載の露光装置。7. The angle detecting means uses visible light that is aligned with the irradiation direction of the EUV light to the reflective mask when detecting the change in the incident angle. The exposure apparatus described.
化を随時検出することを特徴とする請求項5記載の露光
装置。8. The exposure apparatus according to claim 5, wherein the angle detection means detects a change in the incident angle at any time.
化を定期的に検出することを特徴とする請求項5記載の
露光装置。9. The exposure apparatus according to claim 5, wherein the angle detecting means detects a change in the incident angle periodically.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002134919A JP4100038B2 (en) | 2002-05-10 | 2002-05-10 | Exposure method and exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002134919A JP4100038B2 (en) | 2002-05-10 | 2002-05-10 | Exposure method and exposure apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003332201A true JP2003332201A (en) | 2003-11-21 |
JP4100038B2 JP4100038B2 (en) | 2008-06-11 |
Family
ID=29697380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002134919A Expired - Fee Related JP4100038B2 (en) | 2002-05-10 | 2002-05-10 | Exposure method and exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4100038B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006237184A (en) * | 2005-02-24 | 2006-09-07 | Sony Corp | Mask correction method and mask for exposure |
JP2006259699A (en) * | 2005-02-03 | 2006-09-28 | Asml Netherlands Bv | Method for producing photolithography patterning device, computer program, patterning device, method for determining position of target image on or near substrate, measuring device, and lithography device |
JP2007165894A (en) * | 2005-12-09 | 2007-06-28 | Interuniv Micro Electronica Centrum Vzw | Method and device for lithography using electromagnetic radiation with short wavelengths |
JP2008283014A (en) * | 2007-05-11 | 2008-11-20 | Renesas Technology Corp | Method for manufacturing semiconductor device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002772A (en) | 2008-06-20 | 2010-01-07 | Toshiba Corp | Pattern verification-inspection method, method for acquiring distribution of optical image intensity, and program for acquiring distribution of optical image intensity |
-
2002
- 2002-05-10 JP JP2002134919A patent/JP4100038B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006259699A (en) * | 2005-02-03 | 2006-09-28 | Asml Netherlands Bv | Method for producing photolithography patterning device, computer program, patterning device, method for determining position of target image on or near substrate, measuring device, and lithography device |
JP4566137B2 (en) * | 2005-02-03 | 2010-10-20 | エーエスエムエル ネザーランズ ビー.ブイ. | Method for generating a photolithographic patterning device, computer program, patterning device, method for determining the position of a target image on or near a substrate, measuring device and lithography device |
JP2006237184A (en) * | 2005-02-24 | 2006-09-07 | Sony Corp | Mask correction method and mask for exposure |
JP2007165894A (en) * | 2005-12-09 | 2007-06-28 | Interuniv Micro Electronica Centrum Vzw | Method and device for lithography using electromagnetic radiation with short wavelengths |
JP2008283014A (en) * | 2007-05-11 | 2008-11-20 | Renesas Technology Corp | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP4100038B2 (en) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100795504B1 (en) | Method of generating a photolithography patterning device, computer-readable recording medium for recording computer program, patterning device | |
US6992780B2 (en) | Position detecting method and apparatus, exposure apparatus and device manufacturing method | |
EP1589792B1 (en) | Light source apparatus and exposure apparatus having the same | |
US8912103B2 (en) | Method of fabricating and correcting nanoimprint lithography templates | |
JP4924421B2 (en) | Sensor calibration method, exposure method, exposure apparatus, device manufacturing method, and reflective mask | |
TWI574099B (en) | Flash measurement mask, flash measurement method, and exposure method | |
JP5507387B2 (en) | Lithographic apparatus and device manufacturing method | |
CN104834186A (en) | Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method | |
US7083290B2 (en) | Adjustment method and apparatus of optical system, and exposure apparatus | |
JP2007258707A (en) | Lithographic apparatus and device manufacturing method employing double-exposure overlay control | |
TWI434151B (en) | Diffraction elements for alignment targets | |
JP4639134B2 (en) | Lithographic system and method for adjusting transmission characteristics of an optical path in a lithographic system | |
JP2006191046A (en) | Method and exposure equipment for performing inclined focusing, and device manufactured according to the same | |
JP5010830B2 (en) | Optimization to avoid sidelobe printing | |
JPH1097969A (en) | Scanning type reduction projection exposure device and method for measuring distortion | |
JP4100038B2 (en) | Exposure method and exposure apparatus | |
JP4567658B2 (en) | Device manufacturing method and computer program product | |
JP2005166778A (en) | Aligner and method of manufacturing device | |
JP4410171B2 (en) | Alignment apparatus, alignment method, and lithography apparatus | |
JP2004273926A (en) | Aligner | |
JP4418782B2 (en) | Lithographic apparatus, device manufacturing method, calibration method, and computer program product | |
KR20010098873A (en) | Method of estimating lithography system, method of adjusting substrate processing apparatus, lithography system, and exposure apparatus | |
US11854854B2 (en) | Method for calibrating alignment of wafer and lithography system | |
US20220082926A1 (en) | Euv photomask and method of forming mask pattern using the same | |
JP4433609B2 (en) | Exposure method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080310 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |