Nothing Special   »   [go: up one dir, main page]

JP2003313043A - Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform - Google Patents

Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform

Info

Publication number
JP2003313043A
JP2003313043A JP2002122279A JP2002122279A JP2003313043A JP 2003313043 A JP2003313043 A JP 2003313043A JP 2002122279 A JP2002122279 A JP 2002122279A JP 2002122279 A JP2002122279 A JP 2002122279A JP 2003313043 A JP2003313043 A JP 2003313043A
Authority
JP
Japan
Prior art keywords
gas
glass
raw material
burner
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002122279A
Other languages
Japanese (ja)
Other versions
JP4097982B2 (en
Inventor
Manabu Saito
学 齋藤
Masahiro Horikoshi
雅博 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002122279A priority Critical patent/JP4097982B2/en
Publication of JP2003313043A publication Critical patent/JP2003313043A/en
Application granted granted Critical
Publication of JP4097982B2 publication Critical patent/JP4097982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous preform for an optical fiber to improve the deposition efficiency of glass soot by controlling the flow rate of gaseous starting material for glass and additive gas jetted from a jet port of a burner during depositing and by controlling the flow rate ratio of the gaseous starting material for glass to the additive gas to an optimum state, and to provide a burner device for manufacture of an optical fiber porous preform. <P>SOLUTION: The flow velocity of the gaseous mixture of the gaseous starting material for glass and the additive gas jetted from a first jet port 21 or a second jet port 22 of a burner 10 is changed once or more during depositing the glass soot. The total flow rate V1 l/min of the gaseous starting material for glass and the total flow rate V2 l/mini of the additive gas jetted from the two jet ports are controlled to satisfy the relation of 0.25≤Rb/Rf≤4.0, where Rb=V1/V2 in the initial stage of deposition of the glass soot and Rf=V1/V2 in the terminating stage of deposition of the glass soot. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸水素火炎中でガ
ラス原料ガスを反応させてガラス微粒子を生成し、これ
を出発部材の外周部に堆積させる外付け法に適用される
光ファイバ用多孔質母材の製造方法および光ファイバ用
多孔質母材製造用バーナ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber porous material applied to an external attachment method in which glass raw material gas is reacted in an oxyhydrogen flame to produce glass fine particles, which are deposited on the outer peripheral portion of a starting member. The present invention relates to a method for manufacturing a base material and a burner device for manufacturing a porous base material for an optical fiber.

【0002】[0002]

【従来の技術】光ファイバ母材の製造方法の1つとして
は、バーナからガラス原料ガスを、添加ガス、可燃性ガ
ス、支燃性ガスとともに噴出し、ガラス原料ガスを火炎
中で加水分解反応させてガラス微粒子(スート)を生成
し、コアとなるガラス材を備えた円柱形の出発部材の外
周部にガラス微粒子を堆積させて、複数層からなる多孔
質層を形成して光ファイバ用多孔質母材を得て、これを
電気炉中で脱水、焼結しながら透明ガラス化し光ファイ
バ母材を得る外付け法(OVD法、Outside Vapor Phas
e Deposition)がある。
2. Description of the Related Art As one of the methods for producing an optical fiber preform, a glass raw material gas is ejected from a burner together with an additive gas, a flammable gas and a combustion supporting gas, and the glass raw material gas is hydrolyzed in a flame. To generate glass fine particles (soot), and deposit the glass fine particles on the outer peripheral portion of the cylindrical starting member having the glass material serving as the core to form a porous layer composed of a plurality of layers, thereby forming a porous layer for an optical fiber. An external method (OVD method, Outside Vapor Phas) that obtains a high quality base material, dewaters it in an electric furnace, and sinters it into transparent glass to obtain an optical fiber base material.
e Deposition).

【0003】[0003]

【発明が解決しようとする課題】近年、高速通信の需要
の増加に伴って、光ファイバの需要も年々増加してきて
いる。そのため、光ファイバの価格を下げることが望ま
れている。そこで、このような要望に応えるためには、
光ファイバの製造を高速化して製造時間を短縮し、光フ
ァイバを一度に大量に製造して、製造コストを低減する
必要がある。これを実現するためには、光ファイバの紡
糸に供される光ファイバ母材を大型化する必要がある。
In recent years, the demand for optical fibers has been increasing year by year with the increasing demand for high-speed communication. Therefore, it is desired to reduce the price of the optical fiber. Therefore, in order to respond to such requests,
There is a need to speed up the production of optical fibers to shorten the production time, to produce a large number of optical fibers at a time, and to reduce the production cost. In order to realize this, it is necessary to upsize the optical fiber preform used for spinning the optical fiber.

【0004】外付け法において、光ファイバ用多孔質母
材の製造時間を短縮するには、例えば、ガラス微粒子の
生成に供されるガラス原料ガスの流量を増加して、ガラ
ス微粒子の堆積速度を速める方法がある。しかしなが
ら、単にガラス原料ガスの流量を増加しても、大型の光
ファイバ母材を短時間に作製できるとは限らない。なぜ
ならば、大型の光ファイバ母材を短時間に作製するため
には、ガラス原料ガスの流量を多くしてガラス微粒子の
堆積速度を速めると同時に、ガラス微粒子の堆積効率も
高める必要があるからである。ここで、ガラス微粒子の
堆積効率とは、使用したガラス原料ガスが全て化学反応
によってガラス微粒子に変化したと仮定したときのガラ
ス微粒子の総量に対する、出発部材の表面に堆積された
ガラス微粒子の総量の割合で定義するものである。ま
た、堆積速度とは、単位時間当りに出発部材の表面に堆
積されたガラス微粒子の重量で表されるものである。
In the external attachment method, in order to shorten the manufacturing time of the porous preform for optical fibers, for example, the flow rate of the glass raw material gas used for producing glass fine particles is increased to increase the deposition rate of glass fine particles. There is a way to speed it up. However, even if the flow rate of the glass raw material gas is simply increased, it is not always possible to produce a large-sized optical fiber preform in a short time. This is because in order to produce a large-sized optical fiber preform in a short time, it is necessary to increase the flow rate of the glass raw material gas to increase the deposition rate of the glass particles and at the same time to enhance the deposition efficiency of the glass particles. is there. Here, the deposition efficiency of the glass particles is the total amount of the glass particles deposited on the surface of the starting member with respect to the total amount of the glass particles when it is assumed that all the glass raw material gases used have been changed into the glass particles by the chemical reaction. It is defined as a ratio. Further, the deposition rate is represented by the weight of the glass particles deposited on the surface of the starting member per unit time.

【0005】一般に、ガラス微粒子を堆積する出発部
材、または、ガラス微粒子堆積中の光ファイバ用多孔質
母材(以下、「ターゲット部材」と記す。)の外径が細
い場合、ガラス原料ガスおよび添加ガスの混合ガスの流
速を大きくすれば、ガラス微粒子の堆積効率の向上に有
効である。これは、ターゲット部材の外径が細い場合、
ガラス微粒子の慣性力を大きくし、ガラス微粒子が直
接、ターゲット部材に当る確率を大きくすれば、堆積効
率が向上するからである。一方、ターゲット部材の外径
が太い場合、ガラス原料ガスおよび添加ガスの混合ガス
の流速を小さくすれば、ガラス微粒子の堆積効率の向上
に有効である。これは、ターゲット部材の外径が太い場
合、ガラス原料ガスが反応する時間を長くし、生成した
ガラス微粒子を火炎中で拡散させることで、サーモフォ
レシス効果によるガラス微粒子の堆積効果が期待できる
からである。
Generally, when the outer diameter of a starting member for depositing glass particles or a porous preform for optical fibers (hereinafter, referred to as "target member") during deposition of glass particles is small, a glass raw material gas and addition are added. Increasing the flow rate of the mixed gas of gases is effective in improving the deposition efficiency of glass particles. This is because when the outer diameter of the target member is small,
This is because the deposition efficiency is improved by increasing the inertial force of the glass particles and increasing the probability that the glass particles directly contact the target member. On the other hand, when the outer diameter of the target member is large, it is effective to improve the deposition efficiency of the glass particles by reducing the flow rate of the mixed gas of the glass raw material gas and the additive gas. This is because when the outer diameter of the target member is large, the reaction time of the glass raw material gas is lengthened and the generated glass fine particles are diffused in the flame, so that the deposition effect of the glass fine particles due to the thermophoresis effect can be expected. is there.

【0006】ところが、ターゲット部材の外径が細いと
きは、ガラス原料ガスの流速を上げるために、ガラス原
料ガスおよび添加ガスの混合ガスの流量を多くすると、
この混合ガス中の添加ガスの比率が大きくなってしま
う。このような状況下では、ターゲット部材に堆積され
ないガラス微粒子の量が多くなり、結果として、製造コ
ストが増加する。一方、ターゲット部材の外径が太いと
きは、ガラス原料ガスの流速を下げるために、ガラス原
料ガスおよび添加ガスの混合ガスの流量を少なくする
と、この混合ガス中の添加ガスの比率が小さくなってし
まう。このような状況下では、ガラス微粒子の生成量が
少なくなり、ガラス微粒子の堆積に要する時間が長くな
り、結果として、製造コストが増加する。
However, when the outer diameter of the target member is small, if the flow rate of the mixed gas of the glass raw material gas and the additive gas is increased in order to increase the flow velocity of the glass raw material gas,
The ratio of the added gas in this mixed gas becomes large. Under such a situation, the amount of glass particles not deposited on the target member increases, resulting in an increase in manufacturing cost. On the other hand, when the outer diameter of the target member is large, in order to reduce the flow rate of the glass raw material gas, the flow rate of the mixed gas of the glass raw material gas and the added gas is reduced, and the ratio of the added gas in this mixed gas becomes small. I will end up. Under such circumstances, the amount of glass particles produced is reduced, the time required to deposit the glass particles becomes longer, and as a result, the manufacturing cost increases.

【0007】光ファイバ用多孔質母材の製造において、
ガラス原料ガスおよび添加ガスの混合ガスが同一の噴出
口から噴出される場合、この混合ガスの流速を最適とす
るために、添加ガスの流量を決定すると、混合ガス中の
ガラス原料ガスと添加ガスの比率もそれに応じて決定さ
れる。しかしながら、ガラス原料ガスの反応促進、堆積
中のガラス微粒子の表面温度やかさ密度の大きさなどを
考慮すると、添加ガスの流量を調整することによって、
ガラス原料ガスの流量を最適量に設定することができる
とは限らない。したがって、このような方法では、ガラ
ス微粒子の堆積効率を向上させることができないことも
ある。
In the production of a porous preform for optical fibers,
When the mixed gas of the glass raw material gas and the additive gas is ejected from the same ejection port, the flow rate of the additive gas is determined in order to optimize the flow velocity of this mixed gas. The ratio of is also determined accordingly. However, in consideration of the reaction acceleration of the glass raw material gas, the surface temperature of the glass particles during deposition, the size of the bulk density, etc., by adjusting the flow rate of the added gas,
It is not always possible to set the flow rate of the glass raw material gas to the optimum amount. Therefore, such a method may not be able to improve the deposition efficiency of the glass particles.

【0008】例えば、図11に示すようなバーナを用い
て、第1の噴出口1よりガラス原料ガスおよび添加ガ
ス、第2の噴出口2より不活性ガス、第3の噴出口3よ
り可燃性ガス、第4の噴出口4および第5の噴出口5、
5、…より支燃性ガスを噴出して、光ファイバ用多孔質
母材の製造を行なう光ファイバ用多孔質母材の製造方法
において、ターゲット部材の外径が細い場合、第1の噴
出口1から噴出される添加ガスの流量が多くなり、ガラ
ス微粒子の生成反応に寄与しない添加ガスが多くなる。
一方、ターゲット部材の外径が太くなると、第1の噴出
口1から噴出される添加ガスの流量が少なくなるため、
ガラス原料ガスが十分に反応しなくなるという問題があ
った。
For example, using a burner as shown in FIG. 11, the glass raw material gas and the additive gas are supplied from the first ejection port 1, the inert gas is supplied from the second ejection port 2, and the flammability is supplied from the third ejection port 3. Gas, fourth outlet 4 and fifth outlet 5,
In the method for producing a porous base material for an optical fiber, in which a combustion-supporting gas is ejected from 5, to produce a porous base material for an optical fiber, when the outer diameter of the target member is small, the first ejection port The flow rate of the additional gas ejected from No. 1 increases, and the amount of the additional gas that does not contribute to the reaction of producing glass particles increases.
On the other hand, when the outer diameter of the target member becomes large, the flow rate of the additive gas ejected from the first ejection port 1 decreases,
There is a problem that the glass material gas does not sufficiently react.

【0009】ところで、ガラス原料ガスおよび添加ガス
の混合ガスを、複数の噴出口から噴出する光ファイバ用
多孔質母材の製造方法について、例えば、特開平10−
101343号公報に開示されている。また、添加ガス
を、ガラス原料ガスが噴出される噴出口に隣接する噴出
口から噴出する光ファイバ用多孔質母材の製造方法につ
いては、特開平10−167748号公報に開示されて
いる。しかしながら、これらの光ファイバ用多孔質母材
の製造方法では、各噴出口から噴出するガスの種類と流
量の関係が例示されているにすぎず、ターゲット部材の
外径が大きくなるに伴なって、ガスの流量を変化させる
方法や、ガラス原料ガスと添加ガスの流量比を略一定に
保つなどの方法については記載されていない。
By the way, a method for producing a porous preform for optical fibers in which a mixed gas of a glass raw material gas and an additive gas is jetted from a plurality of jet outlets is described in, for example, Japanese Patent Laid-Open No. 10-
It is disclosed in Japanese Patent No. 101343. Further, a method for producing a porous preform for optical fibers in which an additive gas is ejected from an ejection port adjacent to an ejection port from which a glass material gas is ejected is disclosed in Japanese Patent Application Laid-Open No. 10-167748. However, these methods for producing a porous preform for optical fibers merely exemplify the relationship between the type of gas ejected from each ejection port and the flow rate, and as the outer diameter of the target member increases. There is no description about a method of changing the flow rate of the gas or a method of keeping the flow rate ratio of the glass raw material gas and the additive gas substantially constant.

【0010】本発明は、前記事情に鑑みてなされたもの
で、バーナの噴出口から噴出されるガラス原料ガスと添
加ガスの流量をガラス微粒子堆積中に制御し、ガラス原
料ガスと添加ガスの流量比を最適な状態として、ガラス
微粒子の堆積効率を向上する光ファイバ用多孔質母材の
製造方法および光ファイバ用多孔質母材製造用バーナ装
置を提供することを課題とする。
The present invention has been made in view of the above circumstances, and controls the flow rates of the glass raw material gas and the additive gas ejected from the jet port of the burner during the deposition of the glass fine particles so that the flow rates of the glass raw material gas and the additive gas are controlled. An object of the present invention is to provide a method for producing a porous base material for an optical fiber and a burner device for producing a porous base material for an optical fiber, in which the ratio is optimized and the deposition efficiency of glass particles is improved.

【0011】[0011]

【課題を解決するための手段】前記課題は、中心軸を同
じくして配列された複数のノズルを備えたバーナに、ガ
ラス原料ガスと、これに添加する添加ガスを導入し、該
ガラス原料ガスを酸水素火炎中で火炎加水分解反応させ
てガラス微粒子を生成し、該ガラス微粒子を出発部材の
外周部に堆積して光ファイバ用多孔質母材を得る光ファ
イバ用多孔質母材の製造方法において、前記ノズルによ
って形成される噴出口において、隣接する2つの噴出口
から噴出されるガスを組成の等しい前記ガラス原料ガス
および前記添加ガスの混合ガスとするか、または、隣接
する2つの噴出口の一方から噴出されるガスを前記ガラ
ス原料ガスおよび前記添加ガスの混合ガスとし、他方か
ら噴出されるガスを前記添加ガスとし、前記ガラス微粒
子の堆積中に、前記出発部材の外径変化に伴なって、前
記噴出口の少なくとも1つから噴出される前記ガラス原
料ガスおよび前記添加ガスの混合ガスの流速を1回以上
変化させ、前記隣接する2つの噴出口から噴出されるガ
ラス原料ガスの総流量をV1リットル/分とし、前記隣
接する2つの噴出口から噴出される添加ガスの総流量を
V2リットル/分とし、前記ガラス微粒子の堆積の初期
段階におけるV1/V2をRbとし、前記ガラス微粒子
の堆積の終了段階におけるV1/V2をRfとすると、
RbとRfの関係を0.25≦Rb/Rf≦4.0とす
る光ファイバ用多孔質母材の製造方法によって解決でき
る。なお、ここでガラス微粒子を堆積する初期段階と
は、光ファイバ用多孔質母材の製造開始から、ガラス微
粒子が総堆積量の5〜15%程度堆積したときを示し、
終了段階とは、ガラス微粒子が総堆積量の85〜95%
程度堆積したときを示す。上記光ファイバ用多孔質母材
の製造方法において、前記添加ガスを、酸素または水素
とすることが好ましい。前記課題は、バーナと、ガス供
給源と、ガス制御部を有する光ファイバ用多孔質母材製
造用バーナ装置であって、前記バーナは、中心軸を同じ
くして配列された複数のノズルを有し、該複数のノズル
によって複数の噴出口が形成され、該複数の噴出口の隣
接する2つの噴出口の両方がガラス原料ガスおよび添加
ガスの混合ガスの噴出口であるか、または、一方がガラ
ス原料ガスおよび添加ガスの混合ガスの噴出口、他方が
添加ガスの噴出口であり、前記ガス供給源は、前記バー
ナにガラス原料ガス、可燃性ガス、支燃性ガスおよび不
活性ガスを供給するものであり、前記ガス制御部は、前
記隣接する2つの噴出口から噴出されるガラス原料ガス
の総流量をV1リットル/分とし、前記隣接する2つの
噴出口から噴出される添加ガスの総流量をV2リットル
/分とし、ガラス微粒子の堆積の初期段階におけるV1
/V2をRbとし、ガラス微粒子の堆積の終了段階にお
けるV1/V2をRfとすると、RbとRfの関係を
0.25≦Rb/Rf≦4.0とする制御を行なうもの
である光ファイバ用多孔質母材製造用バーナ装置によっ
て解決できる。
Means for Solving the Problems The above-mentioned problems are solved by introducing a glass raw material gas and an additive gas to be added thereto into a burner equipped with a plurality of nozzles arranged with the same central axis. A method for producing a porous preform for optical fiber, in which glass microparticles are produced by performing a flame hydrolysis reaction in an oxyhydrogen flame, and the glass microparticles are deposited on the outer peripheral portion of the starting member to obtain a porous preform for optical fiber. In the ejection port formed by the nozzle, the gas ejected from two adjacent ejection ports is a mixed gas of the glass raw material gas and the additive gas having the same composition, or two adjacent ejection ports The gas ejected from one is a mixed gas of the glass raw material gas and the additive gas, the gas ejected from the other is the additive gas, during the deposition of the glass fine particles, As the outer diameter of the starting member changes, the flow velocity of the mixed gas of the glass raw material gas and the additive gas ejected from at least one of the ejection ports is changed one or more times, and the admixture from the two adjacent ejection ports is changed. The total flow rate of the glass raw material gas ejected is V1 liter / min, the total flow rate of the additive gas ejected from the two adjacent ejection ports is V2 liter / min, and V1 / in the initial stage of the deposition of the glass particles. If V2 is Rb and V1 / V2 at the end stage of the deposition of the glass particles is Rf,
This can be solved by a method of manufacturing a porous preform for optical fibers in which the relationship between Rb and Rf is 0.25 ≦ Rb / Rf ≦ 4.0. Here, the initial stage of depositing glass fine particles means a time when glass fine particles are deposited by about 5 to 15% of the total deposition amount from the start of the production of the porous preform for optical fibers.
The final stage means that the glass particles are 85 to 95% of the total deposition amount.
It shows the time when it has been accumulated. In the method for producing a porous base material for an optical fiber, it is preferable that the additive gas is oxygen or hydrogen. The problem is a burner device for producing a porous preform for an optical fiber, which has a burner, a gas supply source, and a gas control unit, and the burner has a plurality of nozzles arranged with the same central axis. A plurality of nozzles are formed by the plurality of nozzles, and the two adjacent nozzles of the plurality of nozzles are both nozzles of the mixed gas of the glass raw material gas and the additive gas, or one of them is A mixed gas of a glass raw material gas and an additive gas is ejected, and the other is an ejected gas of the additive gas. The gas control unit sets the total flow rate of the glass raw material gas ejected from the two adjacent ejection ports to V1 liter / min, and the total amount of the additive gas ejected from the two adjacent ejection ports. Flow rate To 2 liters / min, V1 in the initial stage of the deposition of glass particles
/ V2 is Rb and V1 / V2 is Rf at the final stage of the deposition of glass particles, the relationship between Rb and Rf is 0.25 ≦ Rb / Rf ≦ 4.0. It can be solved by a burner device for manufacturing a porous base material.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明の光ファイバ用多孔質母材製造用バーナ装置は、
ガラス微粒子を生成するバーナと、このバーナにガラス
原料ガス、可燃性ガス、支燃性ガスおよび不活性ガスを
供給するガス供給源と、これらのガスの流量または流速
を制御するガス制御部とから概略構成されている
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The burner device for producing a porous preform for an optical fiber of the present invention,
From a burner that produces fine glass particles, a gas supply source that supplies glass raw material gas, a combustible gas, a combustion-supporting gas, and an inert gas to this burner, and a gas control unit that controls the flow rate or flow velocity of these gases. Is roughly configured

【0013】図1は、本発明の光ファイバ用多孔質母材
製造用バーナ装置に備えられているバーナの一例を示す
概略構成図である。このバーナ10の端面において、そ
の中心に第1のノズル11が設けられ、この第1のノズ
ル11の周囲に、第1のノズル11と中心軸を同じくし
て第2のノズル12が設けられ、さらに、この第2のノ
ズル12の周囲に、第1のノズル11と中心軸を同じく
して第3のノズル13が設けられ、以下、同様に、第4
のノズル14および第5のノズル15が設けられてい
る。また、第3のノズル13と第4のノズル14の間
で、第1のノズル11の同心円上には、複数個の内径お
よび外径の等しい第6のノズル16、16、…が設けら
れている。
FIG. 1 is a schematic diagram showing an example of a burner provided in the burner apparatus for producing a porous preform for optical fibers of the present invention. A first nozzle 11 is provided at the center of the end surface of the burner 10, and a second nozzle 12 having the same central axis as the first nozzle 11 is provided around the first nozzle 11. Further, a third nozzle 13 having the same central axis as that of the first nozzle 11 is provided around the second nozzle 12, and hereinafter, similarly to the fourth nozzle.
The nozzle 14 and the fifth nozzle 15 are provided. Further, between the third nozzle 13 and the fourth nozzle 14, a plurality of sixth nozzles 16, 16 having the same inner diameter and outer diameter are provided on the concentric circle of the first nozzle 11. There is.

【0014】また、第1のノズル11が第1の噴出口2
1をなし、第1のノズル11と第2のノズル12の間の
部分が第2の噴出口22をなし、第2のノズル12と第
3のノズル13の間の部分が第3の噴出口23をなし、
第3のノズル13と第4のノズル14の間の部分が第4
の噴出口24をなし、第4のノズル14と第5のノズル
15の間の部分が第5の噴出口25をなし、第6のノズ
ル16、16、…が第6の噴出口26、26、…をなし
ている。
Further, the first nozzle 11 is connected to the first ejection port 2
1, the portion between the first nozzle 11 and the second nozzle 12 forms the second jet port 22, and the portion between the second nozzle 12 and the third nozzle 13 forms the third jet port. 23,
The portion between the third nozzle 13 and the fourth nozzle 14 is the fourth
Of the fourth nozzle 14 and the fifth nozzle 15 form a fifth jet port 25, and the sixth nozzles 16, 16, ... , ...

【0015】このバーナ10は、外径40〜60mm程
度の円筒形で、一般的には石英ガラスで形成されてい
る。また、第1のノズル11の内径は2.5〜6mm程
度、第2のノズル12の内径は4〜10mm程度、第3
のノズル13の内径は6〜15mm程度、第3のノズル
13の内径は6〜15mm程度、第4のノズル14の内
径は25〜45mm程度、第5のノズル15の内径は3
5〜55mm程度、第6のノズル16の内径は1〜2m
m程度となっている。また、第1のノズル11の中心か
ら、第6のノズル16の中心までの距離は10〜30m
m程度となっている。バーナ10を構成する各ノズルの
内径を上記のような範囲とすることにより、後述の光フ
ァイバ用多孔質母材の製造方法が可能となる。
The burner 10 has a cylindrical shape with an outer diameter of about 40 to 60 mm and is generally made of quartz glass. The inner diameter of the first nozzle 11 is about 2.5 to 6 mm, the inner diameter of the second nozzle 12 is about 4 to 10 mm,
The nozzle 13 has an inner diameter of about 6 to 15 mm, the third nozzle 13 has an inner diameter of about 6 to 15 mm, the fourth nozzle 14 has an inner diameter of about 25 to 45 mm, and the fifth nozzle 15 has an inner diameter of about 3 to 15.
About 5 to 55 mm, the inner diameter of the sixth nozzle 16 is 1 to 2 m
It is about m. The distance from the center of the first nozzle 11 to the center of the sixth nozzle 16 is 10 to 30 m.
It is about m. By setting the inner diameter of each nozzle constituting the burner 10 within the above range, a method for producing a porous preform for an optical fiber described later becomes possible.

【0016】さらに、ガス供給源は、ガラス原料ガス、
酸素、水素、不活性ガスなどが充填されたガスボンベ
(図示略)などからなり、バーナ10の後端部に、ガス
供給管路(図示略)を介して接続されている。そして、
ガス制御部は、電磁バルブ、流量制御装置などからな
り、上述のガス供給管路の中途に設けられており、流量
制御装置により、ガスの流量または流速を制御する。
Further, the gas supply source is a glass raw material gas,
It is composed of a gas cylinder (not shown) filled with oxygen, hydrogen, an inert gas, etc., and is connected to the rear end of the burner 10 via a gas supply pipe (not shown). And
The gas control unit is composed of an electromagnetic valve, a flow rate control device, and the like, and is provided in the middle of the above-mentioned gas supply line, and the flow rate control device controls the flow rate or flow velocity of the gas.

【0017】以下、本発明の光ファイバ用多孔質母材の
製造方法を説明する。本発明の多孔質ガラス母材の製造
方法では、まず、その軸周りに回転する出発部材の外周
部に、例えば、バーナ10の第1の噴出口21からガラ
ス原料ガスのSiCl4、GeCl4など、および、添加
ガスの酸素ガスまたは水素ガスを供給し、第2の噴出口
22から支燃性ガスの酸素ガスを供給し、第3の噴出口
23から不活性ガスのアルゴンガスを供給し、第4の噴
出口24からは可燃性ガスの水素ガスを供給し、第5の
噴出口25および第6の噴出口26からは支燃性ガスの
酸素ガスを供給し、バーナ10の酸水素火炎中における
加水分解反応により、ガラス微粒子を合成し、このガラ
ス微粒子を出発部材の外周部に堆積し、光ファイバ用多
孔質母材を得る。
The method for producing the porous preform for optical fibers of the present invention will be described below. In the method for producing a porous glass preform of the present invention, first, on the outer peripheral portion of the starting member that rotates around its axis, for example, from the first ejection port 21 of the burner 10, glass raw material gas SiCl 4 , GeCl 4, etc. , And oxygen gas or hydrogen gas as an additive gas are supplied, oxygen gas as a combustion-supporting gas is supplied from the second ejection port 22, and argon gas as an inert gas is supplied from the third ejection port 23. Hydrogen gas, which is a combustible gas, is supplied from the fourth ejection port 24, oxygen gas, which is a combustion-supporting gas, is supplied from the fifth ejection port 25 and the sixth ejection port 26, and the oxyhydrogen flame of the burner 10 is supplied. Glass particles are synthesized by a hydrolysis reaction in the glass particles, and the glass particles are deposited on the outer peripheral portion of the starting member to obtain a porous preform for optical fibers.

【0018】本発明の光ファイバ用多孔質母材の製造方
法にあっては、第1の噴出口21および第2の噴出口2
2から供給されるガスを、組成の等しいガラス原料ガス
および添加ガスの混合ガスとするか、または、第1の噴
出口21または第2の噴出口22から供給されるガスの
うち、一方をガラス原料ガスおよび添加ガスの混合ガス
とし、他方を添加ガスとする。そして、ガラス微粒子の
堆積中に、ガラス微粒子の堆積時間の経過に伴なって増
加する光ファイバ用多孔質母材の外径変化に応じて、第
1の噴出口21または第2の噴出口22のうち、少なく
とも1つの噴出口から噴出されるガラス原料ガスおよび
添加ガスの混合ガスの流速を1回以上変化させて、ガラ
ス微粒子の堆積の初期段階で速く、終了段階で遅くなる
ようにする。さらに、第1の噴出口21から噴出される
ガラス原料ガスの流量をV1リットル/分とし、第1の
噴出口21および第2の噴出口22から噴出される添加
ガスの酸素ガスの総流量をV2リットル/分とし、これ
らの比V1/V2を、ガラス微粒子の堆積の初期段階で
Rbとし、ガラス微粒子の堆積の終了段階でRfとする
と、RbとRfの関係を0.25≦Rb/Rf≦4.0
とする。RbとRfのより好ましい関係は0.5≦Rb
/Rf≦2.0であり、さらに好ましくは0.8≦Rb
/Rf≦1.2である。
In the method for producing a porous base material for an optical fiber according to the present invention, the first ejection port 21 and the second ejection port 2 are provided.
The gas supplied from 2 is a mixed gas of a glass raw material gas and an additive gas having the same composition, or one of the gases supplied from the first ejection port 21 or the second ejection port 22 is glass. A mixed gas of a source gas and an additive gas is used, and the other is used as an additive gas. Then, during the deposition of the glass particles, the first ejection port 21 or the second ejection port 22 is changed according to the change of the outer diameter of the porous preform for optical fiber, which increases with the passage of the deposition time of the glass particles. Among them, the flow rate of the mixed gas of the glass raw material gas and the additive gas ejected from at least one ejection port is changed once or more so that the glass fine particles are accelerated in the initial stage and delayed in the final stage. Further, the flow rate of the glass material gas ejected from the first ejection port 21 is set to V1 liter / min, and the total flow rate of the oxygen gas of the additive gas ejected from the first ejection port 21 and the second ejection port 22 is V2 liters / minute, these ratios V1 / V2 are Rb at the initial stage of glass particulate deposition and Rf at the final stage of glass particulate deposition, the relationship between Rb and Rf is 0.25 ≦ Rb / Rf ≤4.0
And A more preferable relationship between Rb and Rf is 0.5 ≦ Rb
/Rf≦2.0, more preferably 0.8 ≦ Rb
/Rf≦1.2.

【0019】このように、本発明の光ファイバ用多孔質
母材の製造方法にあっては、バーナの隣接する2つの噴
出口のうち、少なくとも1つの噴出口から噴出されるガ
ラス原料ガスおよび添加ガスの混合ガスの流速を、ガラ
ス微粒子の堆積の初期段階で速く、終了段階で遅くなる
ようにし、かつ、ガラス微粒子の堆積の初期段階と終了
段階において、RbとRfとの比率を大きく変化させな
いようにすれば、常に反応に過不足のない酸素ガスが、
ガラス原料ガス周辺に存在するようになる。すなわち、
ガラス原料ガスと酸素ガスの流量比が、ガラス微粒子堆
積中の光ファイバ用多孔質母材の外径変化に応じて、常
に最適な状態となる。したがって、ガラス原料ガスが十
分に反応するようになるから、ガラス微粒子の堆積効率
が向上する。
As described above, in the method for producing a porous base material for an optical fiber of the present invention, the glass raw material gas and the additive gas ejected from at least one of the two adjoining jet ports of the burner are added. The flow rate of the mixed gas of gases is set to be high in the initial stage of glass particulate deposition and slow in the final stage, and the ratio of Rb and Rf is not significantly changed in the initial stage and the final stage of glass particulate deposition. By doing so, oxygen gas with sufficient excess and deficiency in the reaction is always
It comes to exist around the glass raw material gas. That is,
The flow rate ratio between the glass raw material gas and the oxygen gas is always in an optimum state according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles. Therefore, the glass raw material gas reacts sufficiently, and the deposition efficiency of the glass particles is improved.

【0020】さらに、添加ガスを、酸素ガスから水素ガ
スへ変えた場合も同様である。この場合、好ましいR
b、Rfの値は、添加ガスが酸素ガスの場合とは必然的
に異なるが、RbとRfとの比率を、ガラス微粒子の堆
積の初期段階と終了段階で大きく変化させないことが望
ましいことは全く同様である。
The same applies when the additive gas is changed from oxygen gas to hydrogen gas. In this case, the preferred R
The values of b and Rf inevitably differ from those in the case where the additive gas is oxygen gas, but it is completely desirable that the ratio of Rb and Rf is not significantly changed at the initial stage and the final stage of the deposition of the glass particles. It is the same.

【0021】なお、ガラス原料ガスに添加する添加ガス
は、ガラス微粒子の生成反応に寄与するという観点か
ら、上述のように酸素ガスまたは水素ガスのいずれかで
あることが好ましい。また、光ファイバ用多孔質母材製
造用バーナ装置に備えられたバーナの構造は図1に示す
ような、その中心に、中心軸を同じくして設けられた3
重のノズルを有する構造でも、図11に示すような、そ
の中心に、中心軸を同じくして設けられた2重ノズルを
有する構造であっても、上述の条件を満たしていれば、
どちらであってもよい。
The additive gas added to the glass raw material gas is preferably either oxygen gas or hydrogen gas, as described above, from the viewpoint that it contributes to the reaction for producing glass particles. Further, the structure of the burner provided in the burner device for producing the optical fiber porous preform is as shown in FIG.
Whether a structure having a double nozzle or a structure having a double nozzle provided with the same central axis at the center as shown in FIG. 11 is satisfied as long as the above conditions are satisfied,
Either may be used.

【0022】以下、図1および図11を用いて具体的な
実施例を示し、本発明の効果を明らかにする。なお、以
下に示す実施例において、バーナの構造、ガスの流量、
出発部材の大きさなどは、ここで示したものに限定され
るものではない。また、この実施例をもって本発明が限
定されるものでもない。
Specific examples will be shown below with reference to FIGS. 1 and 11 to clarify the effects of the present invention. In the examples shown below, the burner structure, the gas flow rate,
The size of the starting member is not limited to that shown here. Further, the present invention is not limited to this embodiment.

【0023】(実施例1)直径30mm、長さ1100
mmの円柱形の出発部材を、その軸周りに毎分30回転
させ、バーナ端面の概略形状が図1に示したようなバー
ナを複数個用いて、このバーナを出発部材の長手方向と
平行に往復移動させながら、出発部材の外周部にSiO
2ガラス微粒子を堆積させた。ガラス原料ガスの添加ガ
スには水素ガスを用い、第1の噴出口21のみにガラス
原料ガスを供給した。バーナに供給するガスを、ガラス
微粒子堆積中の光ファイバ用多孔質母材の外径変化に応
じて、表1および図2のように変化させた。
Example 1 Diameter 30 mm, Length 1100
A cylindrical mm-shaped starting member is rotated about its axis 30 times per minute, and a plurality of burners whose burner end faces have a schematic shape as shown in FIG. 1 are used to make this burner parallel to the longitudinal direction of the starting member. While reciprocating, SiO is formed on the outer periphery of the starting member.
2 Glass particles were deposited. Hydrogen gas was used as an additive gas of the glass raw material gas, and the glass raw material gas was supplied only to the first ejection port 21. The gas supplied to the burner was changed as shown in Table 1 and FIG. 2 according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例2)バーナ端面の概略形状が図1
に示したようなバーナを用い、ガラス原料ガスの添加ガ
スには酸素ガスを用いた以外は、実施例1と同様にし
て、出発部材の外周部にSiO2ガラス微粒子を堆積さ
せた。バーナに供給するガスを、ガラス微粒子堆積中の
光ファイバ用多孔質母材の外径変化に応じて、表2およ
び図3のように変化させた。
(Embodiment 2) The schematic shape of the burner end face is shown in FIG.
SiO 2 glass fine particles were deposited on the outer peripheral portion of the starting member in the same manner as in Example 1 except that the burner as shown in 1 was used and oxygen gas was used as the additive gas of the glass raw material gas. The gas supplied to the burner was changed as shown in Table 2 and FIG. 3 according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例3)バーナ端面の概略形状が図1
1に示したようなバーナを用い、ガラス原料ガスの添加
ガスには水素ガスを用い、第1の噴出口1のみにガラス
原料ガスを供給した以外は、実施例1と同様にして、出
発部材の外周部にSiO2ガラス微粒子を堆積させた。
バーナに供給するガスを、ガラス微粒子堆積中の光ファ
イバ用多孔質母材の外径変化に応じて、表3および図4
のように変化させた。
(Embodiment 3) The schematic shape of the burner end face is shown in FIG.
A starting member was used in the same manner as in Example 1 except that the burner as shown in FIG. 1 was used, hydrogen gas was used as an additive gas of the glass raw material gas, and the glass raw material gas was supplied only to the first ejection port 1. SiO 2 glass fine particles were deposited on the outer peripheral portion of the.
The gas supplied to the burner was changed according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles in Table 3 and FIG.
It changed like.

【0028】[0028]

【表3】 [Table 3]

【0029】(実施例4)バーナ端面の概略形状が図1
に示したようなバーナを用い、第2の噴出口22のみに
ガラス原料ガスを供給した以外は、実施例1と同様にし
て、出発部材の外周部にSiO2ガラス微粒子を堆積さ
せた。バーナに供給するガスを、ガラス微粒子堆積中の
光ファイバ用多孔質母材の外径変化に応じて、表4およ
び図5のように変化させた。
(Embodiment 4) The schematic shape of the burner end face is shown in FIG.
The SiO 2 glass fine particles were deposited on the outer peripheral portion of the starting member in the same manner as in Example 1 except that the glass raw material gas was supplied only to the second ejection port 22 using the burner as shown in FIG. The gas supplied to the burner was changed as shown in Table 4 and FIG. 5 according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.

【0030】[0030]

【表4】 [Table 4]

【0031】(実施例5)バーナ端面の概略形状が図1
に示したようなバーナを用い、ガラス原料ガスの添加ガ
スには酸素ガスを用い、第1の噴出口21およにび第2
の噴出口22にガラス原料ガスを供給した以外は、実施
例1と同様にして、出発部材の外周部にSiO2ガラス
微粒子を堆積させた。バーナに供給するガスを、ガラス
微粒子堆積中の光ファイバ用多孔質母材の外径変化に応
じて、表5および図6のように変化させた。
(Embodiment 5) The schematic shape of the end surface of the burner is shown in FIG.
The burner as shown in Fig. 2 is used, oxygen gas is used as an additive gas of the glass raw material gas, and the first ejection port 21 and the second ejection port 21
SiO 2 glass fine particles were deposited on the outer peripheral portion of the starting member in the same manner as in Example 1 except that the glass raw material gas was supplied to the ejection port 22 of the above. The gas supplied to the burner was changed as shown in Table 5 and FIG. 6 according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.

【0032】[0032]

【表5】 [Table 5]

【0033】(比較例1)バーナ端面の概略形状が図1
に示したようなバーナを用い、ガラス原料ガスの添加ガ
スには酸素ガスを用いた以外は、実施例1と同様にし
て、出発部材の外周部にSiO2ガラス微粒子を堆積さ
せた。バーナに供給するガスを、ガラス微粒子堆積中の
光ファイバ用多孔質母材の外径変化に応じて、表6およ
び図7のように変化させた。
(Comparative Example 1) The schematic shape of the burner end face is shown in FIG.
SiO 2 glass fine particles were deposited on the outer peripheral portion of the starting member in the same manner as in Example 1 except that the burner as shown in 1 was used and oxygen gas was used as the additive gas of the glass raw material gas. The gas supplied to the burner was changed as shown in Table 6 and FIG. 7 according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.

【0034】[0034]

【表6】 [Table 6]

【0035】(比較例2)バーナ端面の概略形状が図1
1に示したようなバーナを用い、ガラス原料ガスの添加
ガスには酸素ガスを用い、第1の噴出口1のみにガラス
原料ガスを供給した以外は、実施例1と同様にして、出
発部材の外周部にSiO2ガラス微粒子を堆積させた。
バーナに供給するガスを、ガラス微粒子堆積中の光ファ
イバ用多孔質母材の外径変化に応じて、表7および図8
のように変化させた。
(Comparative Example 2) A schematic shape of the end surface of the burner is shown in FIG.
1 was used in the same manner as in Example 1 except that the burner as shown in FIG. 1 was used, oxygen gas was used as the additive gas of the glass raw material gas, and the glass raw material gas was supplied only to the first ejection port 1. SiO 2 glass fine particles were deposited on the outer peripheral portion of the.
The gas supplied to the burner was changed according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles in Table 7 and FIG.
It changed like.

【0036】[0036]

【表7】 [Table 7]

【0037】(比較例3)バーナ端面の概略形状が図1
に示したようなバーナを用い、ガラス原料ガスの添加ガ
スに酸素ガスを用いた以外は、実施例1と同様にして、
出発部材の外周部にSiO2ガラス微粒子を堆積させ
た。バーナに供給するガスを、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径変化に応じて、表8および
図9のように変化させた。
(Comparative Example 3) The schematic shape of the burner end face is shown in FIG.
In the same manner as in Example 1 except that a burner as shown in 1) was used and oxygen gas was used as an additive gas of the glass raw material gas,
SiO 2 glass particles were deposited on the outer peripheral portion of the starting member. The gas supplied to the burner was changed as shown in Table 8 and FIG. 9 according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.

【0038】[0038]

【表8】 [Table 8]

【0039】実施例1〜5および比較例1〜3における
ガラス微粒子堆積中の光ファイバ用多孔質母材の外径
と、ガラス微粒子の堆積効率の関係を図10に示す。図
10の結果から、第1の噴出口11または第2の噴出口
12、あるいは、第1の噴出口1または第2の噴出口2
のうち少なくとも1つの噴出口から噴出されるガラス原
料ガスおよび添加ガスの混合ガスの流速を、ガラス微粒
子の堆積の初期段階で速く、終了段階で遅くなるように
し、かつ、ガラス微粒子の堆積の初期段階と終了段階に
おいて、RbとRfとの比率を大きく変化させないよう
にすれば、ガラス微粒子の堆積効率を向上することがで
きることが確認された。
FIG. 10 shows the relationship between the outer diameter of the porous preform for optical fibers during the deposition of glass particles and the deposition efficiency of glass particles in Examples 1 to 5 and Comparative Examples 1 to 3. From the result of FIG. 10, the first jet port 11 or the second jet port 12, or the first jet port 1 or the second jet port 2
The flow rate of the mixed gas of the glass raw material gas and the additive gas ejected from at least one of the ejection ports is set to be high at the initial stage of the deposition of glass fine particles and slow at the end stage thereof, and at the initial stage of the deposition of glass fine particles. It was confirmed that the deposition efficiency of the glass particles can be improved if the ratio of Rb and Rf is not changed significantly in the stage and the termination stage.

【0040】[0040]

【発明の効果】以上説明したように、本発明の光ファイ
バ用多孔質母材の製造方法によれば、バーナの隣接する
2つの噴出口のうち、少なくとも1つの噴出口から噴出
されるガラス原料ガスおよび添加ガスの混合ガスの流速
を、ガラス微粒子の堆積の初期段階で速く、終了段階で
遅くなるようにし、かつ、ガラス微粒子の堆積の初期段
階と終了段階において、ガラス原料ガスの総流量と添加
ガスの総流量との比率を大きく変化させないようにする
から、常に反応に過不足のない酸素ガスが、ガラス原料
ガス周辺に存在するようになり、ガラス原料ガスと酸素
ガスの流量比が、ガラス微粒子堆積中の光ファイバ用多
孔質母材の外径変化に応じて、常に最適な状態となる。
したがって、ガラス原料ガスが十分に反応するようにな
るから、ガラス微粒子の堆積効率が向上する。また、本
発明の光ファイバ用多孔質母材製造用バーナ装置によれ
ば、ガラス原料ガスと酸素ガスの流量比を、ガラス微粒
子堆積中の光ファイバ用多孔質母材の外径変化に応じ
て、常に最適な状態とすることができるから、ガラス原
料ガスが十分に反応し、ガラス微粒子の堆積効率を向上
させることができる。
As described above, according to the method for producing a porous base material for an optical fiber of the present invention, the glass raw material ejected from at least one of the two adjacent ejection ports of the burner. The flow rate of the mixed gas of the gas and the additive gas is set to be high in the initial stage of the glass particulate deposition and slow in the final stage, and the total flow rate of the glass raw material gas in the initial stage and the final stage of the glass particulate deposition. Since the ratio with the total flow rate of the additive gas is not significantly changed, an oxygen gas with no excess or deficiency in the reaction is always present around the glass raw material gas, and the flow rate ratio between the glass raw material gas and the oxygen gas is It is always in an optimum state according to the change in the outer diameter of the porous preform for optical fibers during the deposition of glass particles.
Therefore, the glass raw material gas reacts sufficiently, and the deposition efficiency of the glass particles is improved. Further, according to the burner device for producing a porous base material for an optical fiber of the present invention, the flow rate ratio between the glass raw material gas and the oxygen gas is changed according to the change in the outer diameter of the porous base material for an optical fiber during the deposition of glass particles. Since the optimum state can always be achieved, the glass raw material gas reacts sufficiently and the deposition efficiency of the glass particles can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光ファイバ用多孔質母材製造用バー
ナ装置に備えられたバーナの一例を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing an example of a burner included in a burner device for producing a porous preform for optical fibers according to the present invention.

【図2】 実施例1において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during deposition of glass particles and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Example 1. .

【図3】 実施例2において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during deposition of glass particles and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Example 2. .

【図4】 実施例3において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during deposition of glass particles and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Example 3. .

【図5】 実施例4において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
FIG. 5 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during glass particulate deposition and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Example 4. .

【図6】 実施例5において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
FIG. 6 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during glass particulate deposition and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Example 5. .

【図7】 比較例1において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during the deposition of glass particles and the ratio of the total flow rate V1 of glass source gas to the total flow rate V2 of additive gas in Comparative Example 1. .

【図8】 比較例2において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
8 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during the deposition of glass particles and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Comparative Example 2. FIG. .

【図9】 比較例3において、ガラス微粒子堆積中の光
ファイバ用多孔質母材の外径と、ガラス原料ガスの総流
量V1と添加ガスの総流量V2の比率との関係を示すグ
ラフである。
9 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during the deposition of glass particles and the ratio of the total flow rate V1 of glass raw material gas to the total flow rate V2 of additive gas in Comparative Example 3. FIG. .

【図10】 実施例1〜5および比較例1〜3における
ガラス微粒子堆積中の光ファイバ用多孔質母材の外径
と、ガラス微粒子の堆積効率の関係を示すグラフであ
る。
FIG. 10 is a graph showing the relationship between the outer diameter of the porous preform for optical fibers during glass particle deposition and the glass particle deposition efficiency in Examples 1 to 5 and Comparative Examples 1 to 3.

【図11】 光ファイバ用多孔質母材の製造に用いられ
るバーナの一例を示す概略構成図である。
FIG. 11 is a schematic configuration diagram showing an example of a burner used for manufacturing a porous preform for optical fibers.

【符号の説明】[Explanation of symbols]

10・・・バーナ、11・・・第1のノズル、12・・・第2の
ノズル、13・・・第3のノズル、14・・・第4のノズル、
15・・・第5のノズル、16・・・第6のノズル、21・・・
第1の噴出口、22・・・第2の噴出口、23・・・第3の噴
出口、24・・・第4の噴出口、25・・・第5の噴出口、2
6・・・第6の噴出口
10 ... Burner, 11 ... 1st nozzle, 12 ... 2nd nozzle, 13 ... 3rd nozzle, 14 ... 4th nozzle,
15 ... Fifth nozzle, 16 ... Sixth nozzle, 21 ...
1st jet outlet, 22 ... 2nd jet outlet, 23 ... 3rd jet outlet, 24 ... 4th jet outlet, 25 ... 5th jet outlet, 2
6 ... 6th spout

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中心軸を同じくして配列された複数のノ
ズルを備えたバーナに、ガラス原料ガスと、これに添加
する添加ガスを導入し、該ガラス原料ガスを酸水素火炎
中で火炎加水分解反応させてガラス微粒子を生成し、該
ガラス微粒子を出発部材の外周部に堆積して光ファイバ
用多孔質母材を得る光ファイバ用多孔質母材の製造方法
において、 前記複数のノズルによって形成される噴出口において、
隣接する2つの噴出口から噴出されるガスを組成の等し
い前記ガラス原料ガスおよび前記添加ガスの混合ガスと
するか、または、隣接する2つの噴出口の一方から噴出
されるガスを前記ガラス原料ガスおよび前記添加ガスの
混合ガスとし、他方から噴出されるガスを前記添加ガス
とし、 前記ガラス微粒子の堆積中に、前記出発部材の外径変化
に伴なって、前記噴出口の少なくとも1つから噴出され
る前記ガラス原料ガスおよび前記添加ガスの混合ガスの
流速を1回以上変化させ、 前記隣接する2つの噴出口から噴出されるガラス原料ガ
スの総流量をV1リットル/分とし、前記隣接する2つ
の噴出口から噴出される添加ガスの総流量をV2リット
ル/分とし、前記ガラス微粒子の堆積の初期段階におけ
るV1/V2をRbとし、前記ガラス微粒子の堆積の終
了段階におけるV1/V2をRfとすると、RbとRf
の関係を0.25≦Rb/Rf≦4.0とすることを特
徴とする光ファイバ用多孔質母材の製造方法。
1. A glass raw material gas and an additive gas to be added to the glass raw material gas are introduced into a burner having a plurality of nozzles arranged with the same central axis, and the glass raw material gas is flame-hydrogenated in an oxyhydrogen flame. In the method for producing a porous preform for an optical fiber, in which a glass microparticle is generated by a decomposition reaction, and the glass fine particle is deposited on an outer peripheral portion of a starting member to obtain a porous preform for an optical fiber, which is formed by the plurality of nozzles. At the spout that is
The gas ejected from two adjacent ejection ports is a mixed gas of the glass raw material gas and the additive gas having the same composition, or the gas ejected from one of the two adjacent ejection ports is the glass raw material gas. A mixed gas of the additive gas and a gas ejected from the other gas as the additive gas, and ejected from at least one of the ejection ports along with a change in the outer diameter of the starting member during the deposition of the glass particles. The flow rate of the mixed gas of the glass raw material gas and the additive gas is changed once or more, and the total flow rate of the glass raw material gas ejected from the two adjacent ejection ports is V1 liter / min. The total flow rate of the additive gas ejected from the two ejection ports is V2 liter / min, V1 / V2 in the initial stage of the deposition of the glass fine particles is Rb, and the glass is When the V1 / V2 in the final stage of the deposition of the particles and Rf, Rb and Rf
To satisfy 0.25 ≦ Rb / Rf ≦ 4.0.
【請求項2】 請求項1記載の光ファイバ用多孔質母材
の製造方法において、 前記添加ガスを、酸素ガスまたは水素ガスとすることを
特徴とする光ファイバ用多孔質母材の製造方法。
2. The method for producing a porous base material for an optical fiber according to claim 1, wherein the additive gas is oxygen gas or hydrogen gas.
【請求項3】 バーナと、ガス供給源と、ガス制御部を
有する光ファイバ用多孔質母材製造用バーナ装置であっ
て、 前記バーナは、中心軸を同じくして配列された複数のノ
ズルを有し、該複数のノズルによって複数の噴出口が形
成され、該複数の噴出口の隣接する2つの噴出口の両方
がガラス原料ガスおよび添加ガスの混合ガスの噴出口で
あるか、または、一方がガラス原料ガスおよび添加ガス
の混合ガスの噴出口、他方が添加ガスの噴出口であり、 前記ガス供給源は、前記バーナにガラス原料ガス、可燃
性ガス、支燃性ガスおよび不活性ガスを供給するもので
あり、 前記ガス制御部は、前記隣接する2つの噴出口から噴出
されるガラス原料ガスの総流量をV1リットル/分と
し、前記隣接する2つの噴出口から噴出される添加ガス
の総流量をV2リットル/分とし、ガラス微粒子の堆積
の初期段階におけるV1/V2をRbとし、ガラス微粒
子の堆積の終了段階におけるV1/V2をRfとする
と、RbとRfの関係を0.25≦Rb/Rf≦4.0
とする制御を行なうものであることを特徴とする光ファ
イバ用多孔質母材製造用バーナ装置。
3. A burner apparatus for producing a porous preform for optical fibers, which has a burner, a gas supply source, and a gas control unit, wherein the burner comprises a plurality of nozzles arranged with the same central axis. A plurality of nozzles are formed by the plurality of nozzles, and two adjacent nozzles of the plurality of nozzles are both nozzles of a mixed gas of a glass raw material gas and an additive gas, or Is a jet of mixed gas of glass raw material gas and additive gas, the other is a jet of additive gas, the gas supply source, the glass raw material gas, flammable gas, flammable gas and an inert gas to the burner. The gas control unit sets the total flow rate of the glass raw material gas ejected from the two adjacent ejection ports to V1 liter / min, and controls the addition gas ejected from the two adjacent ejection ports. Total flow rate Is V2 liters / minute, V1 / V2 in the initial stage of deposition of glass particles is Rb, and V1 / V2 in the final stage of deposition of glass particles is Rf, the relationship between Rb and Rf is 0.25 ≦ Rb / Rf ≦ 4.0
A burner device for producing a porous preform for an optical fiber, which is characterized by performing the following control.
JP2002122279A 2002-04-24 2002-04-24 Method for producing porous preform for optical fiber Expired - Lifetime JP4097982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122279A JP4097982B2 (en) 2002-04-24 2002-04-24 Method for producing porous preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122279A JP4097982B2 (en) 2002-04-24 2002-04-24 Method for producing porous preform for optical fiber

Publications (2)

Publication Number Publication Date
JP2003313043A true JP2003313043A (en) 2003-11-06
JP4097982B2 JP4097982B2 (en) 2008-06-11

Family

ID=29537934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122279A Expired - Lifetime JP4097982B2 (en) 2002-04-24 2002-04-24 Method for producing porous preform for optical fiber

Country Status (1)

Country Link
JP (1) JP4097982B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118496A1 (en) * 2004-05-27 2005-12-15 Corning Incorporated Method of depositing glass soot for making an optical fiber
JP2007126340A (en) * 2005-11-07 2007-05-24 Sumitomo Electric Ind Ltd Method for producing glass particulate deposit
CN101838103A (en) * 2009-03-03 2010-09-22 信越化学工业株式会社 The manufacture method of base material for optical fiber
CN112725761A (en) * 2020-12-25 2021-04-30 湖南金炉科技股份有限公司 Boiling type vapor deposition furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229474A (en) * 1994-02-17 1995-08-29 Nippon Control Kogyo Kk Electromagnetic pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118496A1 (en) * 2004-05-27 2005-12-15 Corning Incorporated Method of depositing glass soot for making an optical fiber
US7404302B2 (en) 2004-05-27 2008-07-29 Corning Incorporated Method of depositing glass soot
JP2007126340A (en) * 2005-11-07 2007-05-24 Sumitomo Electric Ind Ltd Method for producing glass particulate deposit
CN101838103A (en) * 2009-03-03 2010-09-22 信越化学工业株式会社 The manufacture method of base material for optical fiber
EP2226302A3 (en) * 2009-03-03 2012-07-11 Shin-Etsu Chemical Co., Ltd. Method for manufacturing optical fiber base material
EP2573054A3 (en) * 2009-03-03 2013-05-01 Shin-Etsu Chemical Co., Ltd. Method for manufacturing an optical fiber preform by flame hydrolysis
CN112725761A (en) * 2020-12-25 2021-04-30 湖南金炉科技股份有限公司 Boiling type vapor deposition furnace

Also Published As

Publication number Publication date
JP4097982B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
AU776420B2 (en) Burner for synthesizing glass particles and method for producing porous glass body
JP2003226544A (en) Method of manufacturing optical fiber porous preform
US20060225464A1 (en) Method for manufacturing optical fiber preform and burner apparatus for this method for manufacturing optical fiber preform
US9260339B2 (en) Method of fabricating an optical fiber preform and a burner therefor
WO2003093182A1 (en) Burner assembly for producing glass preforms and corresponding production process
CN1807302B (en) Method for manufacturing glass rod
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JP3946645B2 (en) Optical glass and manufacturing method thereof
JP2003313043A (en) Method for manufacturing porous preform for optical fiber and burner device for manufacture of optical fiber porous preform
JPH09100133A (en) Production of porous glass preform for optical fiber
JP3264227B2 (en) Manufacturing method of preform for optical fiber
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JP2003206154A (en) Burner device for manufacturing porous optical fiber preform and method for manufacturing porous optical fiber preform using the same
AU646490B2 (en) Method for producing glass article
JP2002154835A (en) Coaxial flow diffusion flame burner unit for manufacturing optical waveguide
JP4053305B2 (en) Method for producing porous preform for optical fiber
JP2020090427A (en) Burner for porous body synthesis and method of manufacturing porous body
JPH09188522A (en) Torch for synthesizing glass particles
JPH05147965A (en) Glass base material manufacturing method
JP2004323319A (en) Method for manufacturing quartz burner and glass fine particle deposit
JPH09301719A (en) Focus type composite burner for synthesizing glass particles
JP2000203868A (en) Production of optical fiber preform
JPH10120429A (en) Burner for producing fine glass particle
JP2000007367A (en) Apparatus and process for producing glass preform for optical fiber
JP2003277099A (en) Manufacturing apparatus for optical fiber porous preform and method for manufacturing optical fiber porous preform by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041208

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5