JP2003238131A - Random aggregate of thin particle with carbon skeletal structure - Google Patents
Random aggregate of thin particle with carbon skeletal structureInfo
- Publication number
- JP2003238131A JP2003238131A JP2002032883A JP2002032883A JP2003238131A JP 2003238131 A JP2003238131 A JP 2003238131A JP 2002032883 A JP2002032883 A JP 2002032883A JP 2002032883 A JP2002032883 A JP 2002032883A JP 2003238131 A JP2003238131 A JP 2003238131A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- particles
- film particles
- random
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭素からなる骨格
を持つ薄膜状粒子のランダム凝集体に関する。TECHNICAL FIELD The present invention relates to a random agglomerate of thin film particles having a carbon skeleton.
【0002】[0002]
【従来の技術】近年、形状の異方性が高い物質の探索と
その応用が急速に進行している。炭素原子を骨格とする
異方性形状の物質としては、1次元では黒鉛繊維やそれ
が特に細くなったカーボンナノチューブが知られてお
り、2次元では黒鉛、フッ化黒鉛、酸化黒鉛などが知ら
れている。これらのうち、黒鉛、フッ化黒鉛、酸化黒鉛
はいずれも2次元的な基本層が積み重なった多層構造体
であり、一般に層数の非常に多いものが知られている。
さらに、酸化黒鉛については、層数の少ない非常に薄い
ものも作られており(例えば、N.A.Kotov et al.,Adv.M
ater.,8,637(1996))、本発明者らも先に、そのような
酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと
呼ぶことが望ましい(グラフェンは黒鉛の1層分の名
称))の薄膜状粒子を高収率で製造する方法を見出すと
共に、それを還元して層数の非常に少ない黒鉛(層数が
1枚の場合はグラフェンと呼ぶことが望ましい)類似の
薄膜状粒子を得た(特願2000−277307)。さ
らに、本発明者らは、特に大きく広がった薄膜状粒子や
薄膜状粒子が積層して広がった積層集合体と、それらの
還元物を得た(特願2001−374537、特願20
01−374538)。2. Description of the Related Art In recent years, the search for substances having high shape anisotropy and their applications have been rapidly progressing. As an anisotropic material having a carbon atom as a skeleton, one-dimensionally known graphite fibers and particularly thinned carbon nanotubes, and two-dimensionally known graphite, fluorinated graphite, graphite oxide, etc. ing. Of these, graphite, fluorinated graphite, and graphite oxide are all multilayer structures in which two-dimensional basic layers are stacked, and it is generally known that the number of layers is very large.
Furthermore, for graphite oxide, very thin ones with a small number of layers have been made (eg, NAKotov et al., Adv.M.
Ater., 8, 637 (1996)), the inventors of the present invention previously mentioned that it is desirable to call such graphite oxide (when the number of layers is one, for example, graphene oxide (graphene is the name of one layer of graphite)). ) And a graphite having a very small number of layers by reducing it (preferably called graphene when the number of layers is one). (Japanese Patent Application No. 2000-277307). Furthermore, the present inventors have obtained a particularly widespread thin film particle and a laminated aggregate in which thin film particles are laminated and expanded, and a reduced product thereof (Japanese Patent Application Nos. 2001-374537 and 20).
01-374538).
【0003】ここで、酸化黒鉛の基本層は、炭素原子1
個分または2個分の厚さの炭素骨格(sp3炭素とsp2
炭素からなり、sp3炭素が多い)と、その骨格の両側
の面に酸性の水酸基などが結合した構造を持つと考えら
れている(例えば、T.Nakajima et al.,Carbon,26,357
(1988);M.Mermoux et al.,Carbon,29,469(1991))。炭
素骨格の厚さが炭素原子1個分で、その両側の面に水酸
基などがあり、層間の水が極めて少ない場合には、基本
層の厚さは0.61nmである。また、酸化の程度が高
く、よく乾燥された場合、酸化黒鉛に含まれる酸素は4
0wt%程度である。Here, the basic layer of graphite oxide is 1 carbon atom.
Carbon skeletons of one or two thicknesses (sp 3 carbon and sp 2
Consisting of carbon, sp 3 carbons and often), on both sides of the plane of the skeleton, such as acidic hydroxyl group is believed to have a structure bonded (e.g., T.Nakajima et al., Carbon, 26,357
(1988); M. Mermoux et al., Carbon, 29, 469 (1991)). When the thickness of the carbon skeleton is one carbon atom, hydroxyl groups are present on both sides of the carbon skeleton, and the amount of water between the layers is extremely small, the thickness of the basic layer is 0.61 nm. In addition, when the degree of oxidation is high and it is dried well, the oxygen contained in the oxidized graphite is 4
It is about 0 wt%.
【0004】この酸化黒鉛の薄膜状粒子(以下では酸化
型の薄膜状粒子と呼ぶ)は、部分的に、または完全に還
元されることで、黒鉛類似のsp2結合の多い電子状態
となり、電気伝導性が高くなる。特に、酸化黒鉛の一般
的挙動として、加熱による還元で多層内部まで黒鉛類似
の構造にすることが可能であり、複数の粒子が互いに結
合した状態で加熱すれば、多層粒子内部の層間や複数の
粒子間に分子間力が生じて、通常の黒鉛フィルムなどの
巨視的な形状の付与も可能であることが知られている
(J.Maire et al.,Carbon,6,555(1968))。酸化型の薄
膜状粒子は、同様の加熱により還元型の薄膜状粒子にな
る(特願2000−277307)。The graphite oxide thin-film particles (hereinafter referred to as “oxidation-type thin-film particles”) are partially or completely reduced to be in an electronic state with many sp 2 bonds similar to graphite, resulting in an electrical state. Higher conductivity. In particular, as a general behavior of graphite oxide, it is possible to form a graphite-like structure up to the inside of the multilayer by reduction by heating. It is known that an intermolecular force is generated between the particles to give a macroscopic shape such as an ordinary graphite film (J.Maire et al., Carbon, 6,555 (1968)). Oxidized thin film particles are reduced to thin film particles by the same heating (Japanese Patent Application No. 2000-277307).
【0005】ここで、薄膜状粒子が完全に還元された場
合には、薄膜状粒子の各基本層はほぼ黒鉛の基本層(グ
ラフェン)になる。多層粒子であれば、層間距離はほぼ
黒鉛の層間距離に一致するが、各層の相互位置関係は黒
鉛のそれよりも乱れた乱層気味の構造となる。また、部
分的な還元の場合には、各基本層に酸素などが残り、そ
の層間距離は黒鉛の層間距離よりも大きくなる。Here, when the thin film particles are completely reduced, each basic layer of the thin film particles becomes a basic layer (graphene) of graphite. In the case of multi-layer particles, the interlayer distance substantially matches the interlayer distance of graphite, but the mutual positional relationship of the layers has a disordered structure that is more disturbed than that of graphite. Further, in the case of partial reduction, oxygen or the like remains in each basic layer, and the interlayer distance becomes larger than the interlayer distance of graphite.
【0006】以上のような酸化型と還元型の薄膜状粒子
は、酸素の分率が高い場合には酸化黒鉛ナノフィルム
(1層であれば酸化グラフェンナノフィルム)、酸素の
分率が低い場合や酸素が無い場合には黒鉛ナノフィルム
(1層であればグラフェンナノフィルム)、と呼ぶこと
ができる。さらに、統一的には、それぞれ、酸化型の単
層カーボンナノフィルムと多層カーボンナノフィルム、
還元型の単層カーボンナノフィルムと多層カーボンナノ
フィルム、と呼ぶことができる。このカーボンナノフィ
ルムの名称であれば、前記のように乱層気味でありなが
ら黒鉛と呼ぶことによる混乱が生じない。The above-mentioned oxidized and reduced thin-film particles have a graphite oxide nanofilm (graphene oxide nanofilm if there is one layer) when the oxygen fraction is high, and a low oxygen fraction. When there is no oxygen, it can be called a graphite nanofilm (graphene nanofilm if there is one layer). Furthermore, as a unified approach, the oxidation type single-layer carbon nanofilm and multilayer carbon nanofilm, respectively,
It can be referred to as a reduced single-layer carbon nanofilm and a multi-layer carbon nanofilm. With the name of this carbon nanofilm, although it is a disordered layer as described above, there is no confusion caused by calling it graphite.
【0007】このような薄膜状粒子は、その各層が高い
周期性の緻密な炭素骨格を持つ(還元型の薄膜状粒子で
は骨格にパイ電子の多い特に緻密な炭素骨格になる)
が、その厚さに比較して粒子の広がりが大きいため、粒
子の内部で変形が可能である。具体的には、酸化型の薄
膜状粒子において、周囲の分散媒との親和性が相対的に
低下した場合に生じる、薄い紙を皺くちゃにしたように
折れ曲がって変形した形状が知られている(例えば、T.
Hwa et al.,Phys.Rev.A44,R2235(1991)、X.Wen et al.,
Nature,355,426(1992))。この変形した粒子は、薄膜状
粒子のランダム凝集体に相当する。In such a thin film particle, each layer has a dense periodic carbon skeleton (a reduced type thin film particle has a particularly dense carbon skeleton with many pi electrons).
However, since the particles have a large spread as compared with the thickness, the particles can be deformed inside. Specifically, in the case of oxidized thin-film particles, when the affinity with the surrounding dispersion medium is relatively decreased, a shape that is bent and deformed like wrinkled thin paper is known. (For example, T.
Hwa et al., Phys. Rev. A44, R2235 (1991), X. Wen et al.,
Nature, 355, 426 (1992)). The deformed particles correspond to random agglomerates of thin film particles.
【0008】[0008]
【発明が解決しようとする課題】ところが、このような
酸化型の薄膜状粒子のランダム凝集体に対して、還元型
の薄膜状粒子のランダム凝集体は、具体的に知られてい
なかった。However, in contrast to such a random agglomerate of oxidation type thin film particles, a random agglomerate of reduction type thin film particles has not been specifically known.
【0009】本発明の目的は、この還元型の薄膜状粒子
のランダム凝集体と、その合成方法を提供することにあ
る。An object of the present invention is to provide a random agglomerate of the reduced thin film particles and a method for synthesizing the same.
【0010】[0010]
【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、酸化型の薄膜状粒子を分散液中で
還元することや、酸化型の薄膜状粒子のランダム凝集体
を還元することを検討して、還元型の薄膜状粒子のラン
ダム凝集体とその合成方法に関する本発明を完成させ
た。[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention reduced an oxidative thin film particle in a dispersion liquid, or a random aggregate of an oxidizable thin film particle. The present invention relating to a random agglomerate of reduced-type thin film particles and a method for synthesizing the same was completed by studying reduction of a.
【0011】[0011]
【発明の実施の形態】本発明に用いる酸化型の薄膜状粒
子(酸化型のカーボンナノフィルム)には、先に特願2
000−277307および特願2001−37453
7で開示したような、不純物が少なく、層構造が発達し
た結晶性の高い黒鉛を原料として、化学的または電気化
学的な酸化を行い、さらに小さなイオンなどをできるだ
け除去するように精製して、自発的な層の分離を進めた
ものを用いる。さらに、特に層の分離を進める方法とし
て、薄膜状粒子の分散液を100℃付近で加熱する方法
がある。BEST MODE FOR CARRYING OUT THE INVENTION For the oxidation type thin film particles (oxidation type carbon nanofilm) used in the present invention, Japanese Patent Application No.
000-277307 and Japanese Patent Application No. 2001-37453
As disclosed in 7 above, using graphite with few impurities and high crystallinity with a developed layer structure as a raw material, chemical or electrochemical oxidation is performed, and purification is performed to remove even smaller ions as much as possible, Use the one that has promoted spontaneous layer separation. Furthermore, as a method of particularly promoting the separation of layers, there is a method of heating a dispersion liquid of thin film particles at around 100 ° C.
【0012】以上により、酸化型のカーボンナノフィル
ムと呼べるような、極めて薄い薄膜状粒子が水に分散し
た分散液が合成される。As described above, a dispersion liquid, in which extremely thin thin film particles are dispersed in water, which can be called an oxidized carbon nanofilm, is synthesized.
【0013】薄膜状粒子の寸法は、比較的小さなものと
しては、厚さ(原料黒鉛でのc軸の方向)が0.4nm
〜10nm、望ましくは0.4nm〜5nmであり、平
面方向(原料黒鉛でのa軸とb軸の方向)の大きさが2
0nm以上、望ましくは200nm以上、さらに望まし
くは1μm以上である。The size of the thin film particles is such that the thickness (the direction of the c-axis in the raw material graphite) is 0.4 nm as a relatively small particle.
10 nm, preferably 0.4 nm to 5 nm, and the size in the plane direction (direction of a-axis and b-axis in raw graphite) is 2
It is 0 nm or more, preferably 200 nm or more, and more preferably 1 μm or more.
【0014】薄膜状粒子の合成が終了した段階におい
て、薄膜状粒子の形態は水を分散媒とする分散液であ
る。この分散液の分散媒を、水から、水以外のメタノー
ル、エタノール、アセトン、2−ブタノンなどの比誘電
率で約15以上の高極性の液体に交換することが可能で
ある。このような水以外の高極性の液体を主な分散媒と
するための手段として、元の分散液に含まれる水よりも
十分多量の水以外の高極性の分散媒を加えて希釈する方
法、水以外の高極性の分散媒を加えてから遠心分離とデ
カンテーションなどで上澄みを除くことを繰り返して水
以外の高極性の分散媒に徐々に交換する方法、などがあ
る。When the synthesis of the thin film particles is completed, the thin film particles are in the form of a dispersion liquid containing water as a dispersion medium. It is possible to replace the dispersion medium of this dispersion liquid with water, instead of water, with a highly polar liquid having a relative dielectric constant of about 15 or more, such as methanol, ethanol, acetone, or 2-butanone. As a means for using such a high-polarity liquid other than water as the main dispersion medium, a method of diluting by adding a sufficiently high-polarity dispersion medium other than water contained in the original dispersion liquid, There is a method in which a high-polarity dispersion medium other than water is added and then the supernatant is repeatedly removed by centrifugation and decantation to gradually exchange the high-polarity dispersion medium other than water.
【0015】この分散液中の酸化型の薄膜状粒子は、分
散媒の誘電率が低いほど、分散媒との親和性が低くな
り、凝集が進行する。The lower the permittivity of the dispersion medium, the lower the dielectric constant of the oxidation type thin film particles in the dispersion, the lower the affinity with the dispersion medium, and the more the aggregation progresses.
【0016】酸化型の薄膜状粒子の還元には、還元剤を
用いる各種の公知の還元反応や電極反応(電解還元)が
利用可能である。ただし、特に還元剤を用いる場合に
は、基本層まで分解できていないと、多層粒子の内部ま
での完全な還元は困難であると考えられる。他方、酸化
黒鉛の一般的挙動として知られている加熱による還元
(J.Maire et al.,Carbon,6,555(1968))では、多層内
部までほぼ完全に還元することが可能である。酸化型の
薄膜状粒子は、先に特願2000−277307で開示
したように、同様の加熱により還元型の薄膜状粒子にな
る。Various known reduction reactions using a reducing agent and electrode reactions (electrolytic reduction) can be used for the reduction of the oxidized thin film particles. However, especially when a reducing agent is used, complete reduction to the inside of the multilayer particles is considered difficult unless the basic layer is decomposed. On the other hand, the reduction by heating (J. Maire et al., Carbon, 6,555 (1968)), which is known as a general behavior of graphite oxide, can almost completely reduce the inside of the multilayer. As disclosed in Japanese Patent Application No. 2000-277307, the oxidized thin film-like particles are reduced into thin film-like particles by the same heating.
【0017】ここで、薄膜状粒子が完全に還元されれ
ば、薄膜状粒子の各基本層はほぼ黒鉛の基本層(グラフ
ェン)になる。層間距離(単層の場合は定義されない)
はほぼ黒鉛の層間距離に一致するが、各層の相互位置関
係は黒鉛のそれよりも少し乱れた乱層気味の構造とな
る。また、複数の薄膜状粒子の平面方向の相互位置関係
は、非常に乱れた(ほとんどランダムな)乱層構造とな
り、さらに複数の粒子の間に隙間のある構造となる。When the thin film particles are completely reduced, each basic layer of the thin film particles becomes a basic graphite layer (graphene). Interlayer distance (undefined for single layer)
Is almost the same as the interlayer distance of graphite, but the mutual positional relationship of the layers is a disordered structure that is a little more disturbed than that of graphite. In addition, the mutual positional relationship in the plane direction of the plurality of thin film particles has a very disordered (almost random) disordered layer structure, and further, there is a gap between the plurality of particles.
【0018】他方、薄膜状粒子の還元の程度は、必ずし
も完全である必要は無く、その目的により部分還元でも
よい。この場合には、各基本層は酸素などを含み、その
層間距離は黒鉛の層間距離よりも大きくなる。On the other hand, the degree of reduction of the thin film particles does not necessarily have to be perfect, and partial reduction may be used depending on the purpose. In this case, each basic layer contains oxygen and the like, and its interlayer distance is larger than that of graphite.
【0019】加熱による還元は、特に150℃〜200
℃付近で急激に生じ、さらに非酸化性の雰囲気下や真空
中では1000℃以上まで緩やかに進行する。また、さ
らに高温で加圧することで、より大きな結晶になること
が期待される。他方、空気中では600℃以下で焼失す
るため、わずかに酸素などが残る部分的な還元のみが可
能である。加熱による還元の際には、水、酸素、炭素化
合物などの脱離が生じる。その結果、酸素の分率は還元
前の40wt%程度から、0〜35wt%程度に変化す
る。The reduction by heating is particularly carried out at 150 ° C to 200 ° C.
It rapidly occurs at around ℃, and further slowly progresses to 1000 ℃ or more in a non-oxidizing atmosphere or in vacuum. Further, it is expected that a larger crystal will be formed by pressing at a higher temperature. On the other hand, since it burns down in air at 600 ° C. or lower, only partial reduction in which oxygen or the like remains is possible. During the reduction by heating, desorption of water, oxygen, carbon compounds, etc. occurs. As a result, the oxygen fraction changes from about 40 wt% before reduction to about 0 to 35 wt%.
【0020】以上のようにして、比較的低温の加熱で、
酸化型の薄膜状粒子(酸化型のカーボンナノフィルム)
から還元型の薄膜状粒子(還元型のカーボンナノフィル
ム)が合成される。As described above, by heating at a relatively low temperature,
Oxidized thin film particles (oxidized carbon nanofilm)
From this, reduced thin film particles (reduced carbon nanofilm) are synthesized.
【0021】本発明では、以上のような薄膜状粒子の性
質を用いて、次の2種の方法で還元型の薄膜状粒子のラ
ンダム凝集体を合成する。1つ目の方法は、酸化型の薄
膜状粒子をその分散液(特に水分散液)の中で部分的ま
たは完全に還元し、薄膜状粒子の分散媒に対する親和性
を低下させて、ランダム凝集体を生じさせる方法であ
る。この場合の還元には前記の各方法が使用可能である
が、特に還元剤の使用や、還元剤と加熱の併用が望まし
い。2つ目の方法は、比較的低い誘電率の、薄膜状粒子
に対する親和性の少し低い分散媒を用いて、まず酸化型
の薄膜状粒子のランダム凝集体を生じさせてから、その
分散媒を乾燥などで除いてランダム凝集体を取り出し、
その後で部分的または完全に還元する方法である。この
場合の還元には、特に加熱を用いることが望ましい。In the present invention, using the properties of the thin film particles as described above, a random agglomerate of reduced thin film particles is synthesized by the following two methods. The first method is to partially or completely reduce the oxidized thin film particles in the dispersion liquid (particularly, the aqueous dispersion liquid), reduce the affinity of the thin film particles for the dispersion medium, and carry out random coagulation. This is a method of producing aggregates. Each of the above methods can be used for the reduction in this case, but it is particularly preferable to use a reducing agent or to use a reducing agent and heating in combination. The second method is to use a dispersion medium having a relatively low dielectric constant and a little low affinity for the thin film particles to first generate random agglomerates of the oxidized thin film particles, and then use the dispersion medium. Take out the random agglomerates by removing by drying,
After that, it is a method of partial or complete reduction. It is particularly desirable to use heating for the reduction in this case.
【0022】いずれの方法でも、分散液中の薄膜状粒子
の濃度が低い場合には、相対的に単独の薄膜状粒子の凝
集体が多くなり、濃度が高い場合には、複数個の薄膜状
粒子からなる凝集体が多くなる。また、薄膜状粒子と分
散液との親和性を低くするほど、粒子の各部分がより鋭
く急激に折れ曲がるように変形することになり、各薄膜
状粒子(単独の薄膜状粒子または複数の薄膜状粒子の凝
集体を構成する各薄膜状粒子)がより小さく収縮して、
高密度に凝集させることが可能になる。In either method, when the concentration of the thin film particles in the dispersion is low, the number of aggregates of the single thin film particles is relatively large, and when the concentration is high, a plurality of thin film particles are formed. There are many agglomerates composed of particles. In addition, the lower the affinity between the thin film particles and the dispersion liquid, the more sharply and sharply each part of the particle is deformed, and each thin film particle (single thin film particle or multiple thin film particles Each thin film particle that constitutes an aggregate of particles shrinks smaller,
It becomes possible to aggregate at high density.
【0023】本発明で得られる還元型の薄膜状粒子のラ
ンダム凝集体は、その薄膜状粒子の各部分が折れ曲がっ
てランダムに凝集した構造により、その各部分同士の間
に隙間を生じるため、折れ曲がらずに積み重なって凝集
する場合に比較して、大きな比表面積を有する。これに
より、低分子やイオンの吸収材料、触媒、電池の負極材
料などに用いることが可能である。The random agglomerates of the reduced thin film particles obtained in the present invention have a structure in which each part of the thin film particles is bent and agglomerates randomly to form a gap between the respective parts, so It has a large specific surface area as compared with the case of stacking without bending and aggregating. Accordingly, it can be used as a low molecular weight or ion absorbing material, a catalyst, a negative electrode material of a battery, and the like.
【0024】[0024]
【実施例】以下、実施例を用いて本発明をさらに詳しく
説明するが、本発明はこれによって限定されるものでは
ない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
【0025】実施例1
天然黒鉛((株)エスイーシー製、SNO−25、純度9
9.97wt%以上、2900℃の加熱で不純物などを
除いた精製品、平均粒径24μm、粒径4.6μm以下
と61μm以上が各5wt%)10gを、硝酸ナトリウ
ム(純度99%)7.5g、硫酸(純度96%)621
g、過マンガン酸カリウム(純度99%)45gからな
る混合液中に入れ、約20℃で5日間、緩やかに撹拌し
ながら放置した。得られた高粘度の液を、5wt%硫酸
水溶液(希釈用の水には伝導度0.1μS/cm未満の
ものを用いた(以下同じ))1000cm3に約1時間で
撹拌しながら加えて、さらに2時間撹拌した。得られた
液に過酸化水素(30wt%水溶液)30gを加えて、
2時間撹拌した。Example 1 Natural graphite (SNOC, SNO-25, purity 9)
9.97 wt% or more, purified product obtained by removing impurities and the like by heating at 2900 ° C., 10 g of average particle size of 24 μm, particle size of 4.6 μm or less and 61 μm or more of 5 wt% each, sodium nitrate (purity 99%) 7. 5 g, sulfuric acid (purity 96%) 621
g, and 45 g of potassium permanganate (purity 99%) were placed in a mixed solution, and the mixture was allowed to stand at about 20 ° C. for 5 days with gentle stirring. The obtained highly viscous liquid was added to 1000 cm 3 of 5 wt% sulfuric acid aqueous solution (water having a conductivity of less than 0.1 μS / cm was used for dilution (hereinafter the same)) with stirring for about 1 hour. , And stirred for another 2 hours. 30 g of hydrogen peroxide (30 wt% aqueous solution) was added to the obtained liquid,
Stir for 2 hours.
【0026】この液を、3wt%硫酸/0.5wt%過
酸化水素の混合水溶液を用いた遠心分離と水を用いた遠
心分離で精製して、薄膜状粒子の水分散液を得た。液の
一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃
度は0.45wt%となった。また、40℃で真空乾燥
させた薄膜状粒子の元素分析で、酸素は約42wt%、
水素は約2wt%であった。This solution was purified by centrifugation using a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide and centrifugation using water to obtain an aqueous dispersion of thin film particles. From the weight change of a part of the liquid before and after drying, the concentration of thin film particles in the liquid was 0.45 wt%. In addition, in the elemental analysis of the thin film particles dried in vacuum at 40 ° C., oxygen is about 42 wt%,
Hydrogen was about 2 wt%.
【0027】得られた水分散液をガラス板に載せて乾燥
させ、X線回折測定を行った。0.83nmに対応する
ピークが得られた。これは一般的に知られている酸化黒
鉛(層間に水を保持した場合)の層間距離に対応する。The resulting aqueous dispersion was placed on a glass plate and dried, and X-ray diffraction measurement was performed. A peak corresponding to 0.83 nm was obtained. This corresponds to the interlayer distance of generally known graphite oxide (when water is held between the layers).
【0028】同じ水分散液を水で100倍に希釈してか
らガラス板に載せて乾燥させて、薄膜状粒子の厚さの平
均値を出すことを試みた。液中から乾燥してガラス板に
付着した多数の粒子の平均の厚さが約12nmと計算
(粒子の密度を2.1g/cm 3とした)される場合
に、液が拡がった全面にほぼ粒子3枚程度以上が重なっ
ていることが光学顕微鏡(OM)観察で確認された(粒
子は極めて薄いが、ガラスよりも反射率が高いため、識
別できた)。これより、個々の薄膜状粒子の厚さは平均
4nm未満となった。また、この観察で、薄膜状粒子の
平面方向の大きさは平均約20μm程度であることが確
認された。Dilute the same aqueous dispersion 100 times with water
And place it on a glass plate to dry, and then flatten the thickness of the thin-film particles.
I tried to get the average value. Dry from the liquid and put on a glass plate
Calculated the average thickness of a large number of attached particles is about 12 nm
(The particle density is 2.1 g / cm 3And if)
In addition, about 3 particles or more are overlaid on the entire surface where the liquid spreads
Was confirmed by optical microscope (OM) observation (grain
Although the child is extremely thin, it has a higher reflectance than glass,
I was able to separate). From this, the thickness of each thin film particle is an average
It was less than 4 nm. Also, in this observation, thin film particles
It is confirmed that the average size in the plane direction is about 20 μm.
It has been certified.
【0029】この酸化型の薄膜状粒子の水分散液を水で
約50倍に希釈し、アルミニウム粉末(純度99.9
%、平均粒径3μm)と塩酸(35wt%水溶液)を加
え、超音波を照射して、薄膜状粒子の水素処理(還元)
を行った。薄膜状粒子は、少なくともその表面が還元さ
れ、疎水性で巨視的に黒色の粒子となって、大部分が液
面に浮かんだ。生じた粒子を濾過により水洗し、少量の
水と共に乾燥させずに回収して容器に入れた。This aqueous dispersion of thin film particles of the oxidative type was diluted about 50 times with water to prepare an aluminum powder (purity 99.9).
%, Average particle size 3 μm) and hydrochloric acid (35 wt% aqueous solution) are added, ultrasonic irradiation is performed, and hydrogen treatment (reduction) of thin film particles is performed.
I went. At least the surface of the thin film particles was reduced to become hydrophobic and macroscopically black particles, and most of them floated on the liquid surface. The generated particles were washed with water by filtration, collected together with a small amount of water without being dried, and put in a container.
【0030】粒子を乾燥させて各種測定を行った。OM
観察したところ、得られた粒子は半透明であった。前記
の疎水性で巨視的に黒色であったことと合わせて、薄膜
状粒子の還元は完全ではないと考えられた。また、走査
型電子顕微鏡(SEM)観察したところ、紙を皺くちゃ
にしたように折れ曲がって変形し、高密度に凝集した、
薄膜状粒子の単独または複数での凝集物が確認された。
また、透過型電子顕微鏡(TEM)観察したところ、低
倍率ではSEMと類似の構造が確認され、高倍率では炭
素骨格の急激な折れ曲がりの部分も確認された。さらに
X線回折測定したところ、0.83nmに対応するピー
クは完全に消失しており、配向性が極めて低いランダム
凝集体であることが裏付けられた。The particles were dried and various measurements were performed. OM
Upon observation, the particles obtained were translucent. Combined with the hydrophobic and macroscopically black color described above, the reduction of the thin film particles was considered to be incomplete. In addition, when observed by a scanning electron microscope (SEM), the paper was bent and deformed as if it had been wrinkled, and aggregated at high density.
Aggregates of single or multiple thin film particles were confirmed.
Further, when observed by a transmission electron microscope (TEM), a structure similar to SEM was confirmed at low magnification, and a sharp bending portion of the carbon skeleton was also confirmed at high magnification. Further, when X-ray diffraction measurement was performed, the peak corresponding to 0.83 nm completely disappeared, which confirmed that the random aggregate had extremely low orientation.
【0031】実施例2
実施例1と同じ、平均の広がりが約20μmで平均の厚
さが4nm未満の酸化型の薄膜状粒子の水分散液を遠心
瓶に入れ、アセトン(25℃における比誘電率20.
7、純度99.5%、水分散液の約2倍〜4倍、操作が
進むにつれて倍率は増大)を加えて再分散と遠心分離
(7000rpm、30分)と上澄みの廃棄を合計3回
繰り返した。得られた沈殿は濃度が約1.7wt%で、
流動性のない固まりであった。Example 2 As in Example 1, an aqueous dispersion of oxidized thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm was placed in a centrifuge bottle, and acetone (specific dielectric at 25 ° C.) was added. Rate 20.
7, purity 99.5%, about 2 to 4 times that of the aqueous dispersion, the magnification increases as the operation proceeds), redispersion and centrifugation (7000 rpm, 30 minutes), and discarding of the supernatant are repeated 3 times in total. It was The obtained precipitate has a concentration of about 1.7 wt%,
It was a lump without fluidity.
【0032】この沈殿を減圧下で放置してアセトンを除
き、元の沈殿に比較して数十分の1の体積になった塊状
の固体を得た。SEM観察したところ、実施例1よりも
密な凝集体(ランダムな凝集の部分の他に層状の重なり
の部分を含むと考えられる)が確認された。This precipitate was left under a reduced pressure to remove acetone, and a lump-like solid having a volume of several tens of minutes as compared with the original precipitate was obtained. As a result of SEM observation, a denser aggregate (which is considered to include a layered overlapping portion in addition to a random aggregation portion) was confirmed as compared with Example 1.
【0033】この凝集体を約10時間で室温から500
℃まで昇温して加熱、還元し、還元型のランダム凝集体
を得た。This agglomerate was removed from room temperature to 500 in about 10 hours.
The temperature was raised to 0 ° C., followed by heating and reduction to obtain a reduced random aggregate.
【0034】この還元型のランダム凝集体を密閉容器に
入れて、水素を導入し、圧力減少から水素吸蔵量を測定
した。吸蔵量は約0.02wt%であった。This reduced random agglomerate was placed in a closed container, hydrogen was introduced, and the hydrogen storage amount was measured from the pressure decrease. The storage amount was about 0.02 wt%.
【0035】[0035]
【発明の効果】本発明の、還元型の炭素からなる骨格を
持つ薄膜状粒子(還元型のカーボンナノフィルム)のラ
ンダム凝集体は、薄膜状粒子の各部分が鋭く急激に折れ
曲がり、高密度に凝集した構造を持つ。この凝集体は大
きな比表面積を有するため、低分子やイオンの吸収材
料、触媒、電池の負極材料などへの利用が期待できる。INDUSTRIAL APPLICABILITY The random agglomerates of thin film particles (reducing carbon nanofilms) having a skeleton made of reduced carbon according to the present invention are sharply and sharply bent at each part of the thin film particles to have a high density. Has an aggregated structure. Since this aggregate has a large specific surface area, it can be expected to be used as a low molecular weight or ion absorbing material, a catalyst, a negative electrode material of a battery, and the like.
【図1】還元型の薄膜状粒子のランダム凝集体(水素処
理で合成)の走査型電子顕微鏡像(凝集体の全体の例)FIG. 1 is a scanning electron microscope image of a random aggregate of reduced thin film particles (synthesized by hydrogen treatment) (an example of the whole aggregate).
【図2】還元型の薄膜状粒子のランダム凝集体(水素処
理で合成)の走査型電子顕微鏡像(図1の一部の拡大)FIG. 2 is a scanning electron microscope image of a random aggregate of reduced thin film particles (synthesized by hydrogen treatment) (enlarged part of FIG. 1).
【図3】還元型の薄膜状粒子のランダム凝集体(水素処
理で合成)の透過型電子顕微鏡像(中央に薄膜状粒子の
急激な折れ曲がりの部分がある)FIG. 3 is a transmission electron microscope image of a random aggregate of reduced thin film particles (synthesized by hydrogen treatment) (there is a sharp bend in the thin film particles in the center).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 拓也 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 谷口 貢 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 Fターム(参考) 4G046 CA01 CB09 CC10 4G066 AA04B AA06D BA20 BA36 BA50 CA38 FA03 FA11 FA17 FA37 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takuya Goto 22 Wadai, Tsukuba City, Ibaraki Mitsubishi Gas Chemical Research Institute, Inc. (72) Inventor Mitsugu Taniguchi 22 Wadai, Tsukuba City, Ibaraki Mitsubishi Gas Chemical Research Institute, Inc. F-term (reference) 4G046 CA01 CB09 CC10 4G066 AA04B AA06D BA20 BA36 BA50 CA38 FA03 FA11 FA17 FA37
Claims (7)
nm〜10nm、平面方向の大きさが20nm以上で、
比誘電率が15以上の液体に親液性があり、炭素からな
る骨格を持つ薄膜状粒子を、酸素含有率が0〜35wt
%になるように部分的または完全に還元して、1個また
は複数個で凝集させたランダム凝集体。1. The thickness obtained by oxidizing graphite is 0.4.
nm to 10 nm, the size in the plane direction is 20 nm or more,
Liquid having relative permittivity of 15 or more is lyophilic, and thin film particles having a skeleton made of carbon have an oxygen content of 0 to 35 wt.
A random agglomerate obtained by partially or completely reducing the amount to 1% and aggregating one or more.
がり、高密度に凝集していることを特徴とする請求項1
に記載のランダム凝集体。2. The thin film particles are sharply and abruptly bent, and aggregated at a high density.
The random aggregate according to 1.
還元することを特徴とする請求項1および請求項2に記
載のランダム凝集体の合成方法。3. The method for synthesizing random aggregates according to claim 1 or 2, wherein the thin film particles are partially or completely reduced in a liquid.
相対的に低い分散媒に分散させ、その分散媒を除いてか
ら、部分的または完全に還元することを特徴とする請求
項1および請求項2に記載のランダム凝集体の合成方
法。4. The thin film particles are dispersed in a dispersion medium having a relatively low affinity for the thin film particles, the dispersion medium is removed, and then the particles are partially or completely reduced. The method for synthesizing a random aggregate according to claim 1 or claim 2.
た低分子やイオンの吸収材料。5. A low molecular weight or ionic absorption material using the random aggregate according to claim 1.
た触媒。6. A catalyst using the random aggregate according to claim 1.
た電池の負極材料。7. A negative electrode material for a battery using the random aggregate according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002032883A JP2003238131A (en) | 2002-02-08 | 2002-02-08 | Random aggregate of thin particle with carbon skeletal structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002032883A JP2003238131A (en) | 2002-02-08 | 2002-02-08 | Random aggregate of thin particle with carbon skeletal structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003238131A true JP2003238131A (en) | 2003-08-27 |
Family
ID=27775867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002032883A Pending JP2003238131A (en) | 2002-02-08 | 2002-02-08 | Random aggregate of thin particle with carbon skeletal structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003238131A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005063951A (en) * | 2003-07-23 | 2005-03-10 | Mitsubishi Gas Chem Co Inc | Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof |
JP2011144071A (en) * | 2010-01-14 | 2011-07-28 | Sekisui Chem Co Ltd | Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film |
JP2011144060A (en) * | 2010-01-13 | 2011-07-28 | Sekisui Chem Co Ltd | Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material |
JP2011184264A (en) * | 2010-03-10 | 2011-09-22 | Sekisui Chem Co Ltd | Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film |
JP2011195432A (en) * | 2010-02-26 | 2011-10-06 | Sekisui Chem Co Ltd | Method for producing flaky graphite and flaky graphite |
GB2480915A (en) * | 2010-05-28 | 2011-12-07 | Univ Texas | Graphene oxide and graphite oxide catalysts and systems |
JP2012510950A (en) * | 2008-12-04 | 2012-05-17 | タイコ・エレクトロニクス・コーポレイション | Graphene aerogels and graphene oxide aerogels |
JP2012224526A (en) * | 2011-04-21 | 2012-11-15 | Hiroshima Univ | Method for producing graphene |
WO2013047630A1 (en) * | 2011-09-30 | 2013-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Graphene and power storage device, and manufacturing method thereof |
JP2013065837A (en) * | 2011-08-26 | 2013-04-11 | Semiconductor Energy Lab Co Ltd | Power storage device |
JP2014105123A (en) * | 2012-11-27 | 2014-06-09 | Harima Chemicals Inc | Method for producing oriented film of thin layer graphite or of thin layer graphite compound |
WO2014136757A1 (en) * | 2013-03-06 | 2014-09-12 | 積水化学工業株式会社 | Method for producing random-structure gic, method for producing flaked graphite dispersion, flaked graphite dispersion, and flaked graphite |
US8945772B2 (en) | 2011-10-07 | 2015-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US9218916B2 (en) | 2011-06-24 | 2015-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Graphene, power storage device, and electric device |
US9373834B2 (en) | 2011-12-16 | 2016-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming positive electrode for lithium-ion secondary battery |
US9490472B2 (en) | 2013-03-28 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing electrode for storage battery |
US9487880B2 (en) | 2011-11-25 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Flexible substrate processing apparatus |
US9673454B2 (en) | 2013-02-18 | 2017-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Sodium-ion secondary battery |
US9768443B2 (en) | 2012-11-07 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device |
US9859585B2 (en) | 2012-02-29 | 2018-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
JP2019011248A (en) * | 2011-08-19 | 2019-01-24 | 株式会社半導体エネルギー研究所 | Graphene coated silicon |
US10243214B2 (en) | 2011-06-03 | 2019-03-26 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing electrode |
US10270097B2 (en) | 2011-08-31 | 2019-04-23 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of composite oxide and manufacturing method of power storage device |
JP2022547289A (en) * | 2019-09-06 | 2022-11-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Gas diffusion layer for proton exchange membrane fuel cell and method for fabricating same |
-
2002
- 2002-02-08 JP JP2002032883A patent/JP2003238131A/en active Pending
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4591666B2 (en) * | 2003-07-23 | 2010-12-01 | 三菱瓦斯化学株式会社 | Dispersion liquid containing thin-film particles having a skeleton made of carbon, conductive coating film, conductive composite material, and production method thereof |
JP2005063951A (en) * | 2003-07-23 | 2005-03-10 | Mitsubishi Gas Chem Co Inc | Dispersion solution, conductive film, and conductive composite material containing thin film-shaped particles having skeleton composed of carbon, and manufacturing method thereof |
JP2012510950A (en) * | 2008-12-04 | 2012-05-17 | タイコ・エレクトロニクス・コーポレイション | Graphene aerogels and graphene oxide aerogels |
US8871821B2 (en) | 2008-12-04 | 2014-10-28 | Tyco Electronics Corporation | Graphene and graphene oxide aerogels |
JP2011144060A (en) * | 2010-01-13 | 2011-07-28 | Sekisui Chem Co Ltd | Method for producing dispersion liquid of flaked graphite, method for producing flaked graphite and method for producing composite material |
JP2011144071A (en) * | 2010-01-14 | 2011-07-28 | Sekisui Chem Co Ltd | Method for manufacturing thinly exfoliated graphite dispersion, thinly exfoliated graphite dispersion and method for manufacturing thin film |
JP2011195432A (en) * | 2010-02-26 | 2011-10-06 | Sekisui Chem Co Ltd | Method for producing flaky graphite and flaky graphite |
JP2011184264A (en) * | 2010-03-10 | 2011-09-22 | Sekisui Chem Co Ltd | Method for producing dispersion of flaked graphite, dispersion of flaked graphite, and method for producing thin film |
GB2480915B (en) * | 2010-05-28 | 2014-11-19 | Graphea Inc | Graphene oxide and graphite oxide catalysts and systems |
GB2480915A (en) * | 2010-05-28 | 2011-12-07 | Univ Texas | Graphene oxide and graphite oxide catalysts and systems |
JP2012224526A (en) * | 2011-04-21 | 2012-11-15 | Hiroshima Univ | Method for producing graphene |
US10243214B2 (en) | 2011-06-03 | 2019-03-26 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing electrode |
US9653728B2 (en) | 2011-06-24 | 2017-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Graphene, power storage device, and electric device |
US9218916B2 (en) | 2011-06-24 | 2015-12-22 | Semiconductor Energy Laboratory Co., Ltd. | Graphene, power storage device, and electric device |
US11898261B2 (en) | 2011-08-19 | 2024-02-13 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode |
JP2019011248A (en) * | 2011-08-19 | 2019-01-24 | 株式会社半導体エネルギー研究所 | Graphene coated silicon |
US11248307B2 (en) | 2011-08-19 | 2022-02-15 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode |
US10748673B2 (en) | 2011-08-26 | 2020-08-18 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
JP2013065837A (en) * | 2011-08-26 | 2013-04-11 | Semiconductor Energy Lab Co Ltd | Power storage device |
US10270097B2 (en) | 2011-08-31 | 2019-04-23 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of composite oxide and manufacturing method of power storage device |
US11283075B2 (en) | 2011-08-31 | 2022-03-22 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of composite oxide and manufacturing method of power storage device |
US11799084B2 (en) | 2011-08-31 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Method for making LiFePO4 by hydrothermal method |
JP2013163636A (en) * | 2011-09-30 | 2013-08-22 | Semiconductor Energy Lab Co Ltd | Graphene, electrode and power storage device |
US11735731B2 (en) | 2011-09-30 | 2023-08-22 | Semiconductor Energy Laboratory Co., Ltd. | Graphene and power storage device, and manufacturing method thereof |
US11990621B2 (en) | 2011-09-30 | 2024-05-21 | Semiconductor Energy Laboratory Co., Ltd. | Graphene and power storage device, and manufacturing method thereof |
WO2013047630A1 (en) * | 2011-09-30 | 2013-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Graphene and power storage device, and manufacturing method thereof |
CN103858259A (en) * | 2011-09-30 | 2014-06-11 | 株式会社半导体能源研究所 | Graphene and power storage device, and manufacturing method thereof |
US8883351B2 (en) | 2011-09-30 | 2014-11-11 | Semiconductor Energy Laboratory Co., Ltd. | Graphene and power storage device, and manufacturing method thereof |
US10461332B2 (en) | 2011-09-30 | 2019-10-29 | Semiconductor Energy Laboratory Co., Ltd. | Graphene and power storage device, and manufacturing method thereof |
CN108101050A (en) * | 2011-09-30 | 2018-06-01 | 株式会社半导体能源研究所 | Graphene and electrical storage device and their manufacturing method |
US9601764B2 (en) | 2011-10-07 | 2017-03-21 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US8945772B2 (en) | 2011-10-07 | 2015-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US9487880B2 (en) | 2011-11-25 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Flexible substrate processing apparatus |
US9373834B2 (en) | 2011-12-16 | 2016-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming positive electrode for lithium-ion secondary battery |
US9859585B2 (en) | 2012-02-29 | 2018-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US11515517B2 (en) | 2012-11-07 | 2022-11-29 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device |
US9768443B2 (en) | 2012-11-07 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device |
JP2014105123A (en) * | 2012-11-27 | 2014-06-09 | Harima Chemicals Inc | Method for producing oriented film of thin layer graphite or of thin layer graphite compound |
US9673454B2 (en) | 2013-02-18 | 2017-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Sodium-ion secondary battery |
US9919926B2 (en) | 2013-03-06 | 2018-03-20 | Sekisui Chemical Co., Ltd. | Method for producing random-structure GIC, method for producing exfoliated graphite dispersion liquid, exfoliated graphite dispersion liquid, and exfoliated graphite |
JPWO2014136757A1 (en) * | 2013-03-06 | 2017-02-09 | 積水化学工業株式会社 | Method for producing random structure GIC, method for producing exfoliated graphite dispersion, exfoliated graphite dispersion and exfoliated graphite |
WO2014136757A1 (en) * | 2013-03-06 | 2014-09-12 | 積水化学工業株式会社 | Method for producing random-structure gic, method for producing flaked graphite dispersion, flaked graphite dispersion, and flaked graphite |
US10347905B2 (en) | 2013-03-28 | 2019-07-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing electrode for storage battery |
US9490472B2 (en) | 2013-03-28 | 2016-11-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing electrode for storage battery |
JP2022547289A (en) * | 2019-09-06 | 2022-11-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Gas diffusion layer for proton exchange membrane fuel cell and method for fabricating same |
US11817590B2 (en) | 2019-09-06 | 2023-11-14 | Robert Bosch Gmbh | Gas diffusion layer of proton exchange membrane fuel cell and preparation method of gas diffusion layer |
JP7483866B2 (en) | 2019-09-06 | 2024-05-15 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Gas diffusion layer for proton exchange membrane fuel cell and method for making same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003238131A (en) | Random aggregate of thin particle with carbon skeletal structure | |
Meng et al. | Advances and challenges in 2D MXenes: From structures to energy storage and conversions | |
Hirata et al. | Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles | |
Chen et al. | Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes | |
JP5825617B2 (en) | Partially reduced graphene hierarchy-conjugate, method for producing partially reduced graphene hierarchy-linkage, partially reduced graphene hierarchy-linkage-containing powder, partially reduced graphene hierarchy-linkage-containing film, graphene electrode film, graphene electrode film Manufacturing method and graphene capacitor | |
Ezeigwe et al. | One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors | |
Si et al. | Exfoliated graphene separated by platinum nanoparticles | |
JP4765077B2 (en) | Ruthenium oxide encapsulated nanocarbon composite structure | |
Guo et al. | Hollow graphene oxide spheres self-assembled by W/O emulsion | |
JP5764494B2 (en) | Composition comprising carbon-based aerogel and method for producing carbon-based aerogel | |
KR101114414B1 (en) | Method for forming graphene nano sheet | |
TW201946319A (en) | Supercapacitors having frustules | |
JP2014529325A (en) | Nanoplate-nanotube composite, method for producing the same, and product obtained therefrom | |
El Ghazaly et al. | Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene | |
KR20160100268A (en) | Graphene having pores made by irregular and random, and Manufacturing method of the same | |
JP2003176116A (en) | Large, thin film particle consisting of carbon | |
JP2019077595A (en) | Fluorographene and production method of the same, composite material, lithium secondary battery, optical component, electronics component and gas barrier film | |
JP5033183B2 (en) | Method for producing carbon nanosheet | |
JP2020075828A (en) | Silver/graphene oxide composite and producing method thereof | |
KR101716256B1 (en) | A process of preparing 3D graphene by using template etching, 3D graphene particles prepared thereby, and hybrid particles comprising the same | |
JP2012153590A (en) | Aggregate, and dispersion liquid made by dispersing the aggregate in solvent | |
KR101195869B1 (en) | Method for preparing porous fullerene using by catalytic combustion | |
TW201536879A (en) | Printed energy storage device, membrane for energy storage device and ink for printed film | |
TW201825396A (en) | Method of producing graphene | |
WO2023047861A1 (en) | Conductive two-dimensional particle-containing composition, conductive film, and method for manufacturing conductive two-dimensional particle-containing composition |