JP2003231913A - Apparatus and method for degassing molten metal - Google Patents
Apparatus and method for degassing molten metalInfo
- Publication number
- JP2003231913A JP2003231913A JP2002031405A JP2002031405A JP2003231913A JP 2003231913 A JP2003231913 A JP 2003231913A JP 2002031405 A JP2002031405 A JP 2002031405A JP 2002031405 A JP2002031405 A JP 2002031405A JP 2003231913 A JP2003231913 A JP 2003231913A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- tank
- degassing
- vacuum
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は溶融金属の脱ガス装
置及び方法に関する。TECHNICAL FIELD The present invention relates to a molten metal degassing apparatus and method.
【0002】[0002]
【従来の技術】溶融金属の脱ガスは、主に鉄鋼にてDH
方式・RH方式等の真空系での溶湯処理が適用されてい
る。しかし、これらは取鍋等を用いてのバッチ処理が一
般的であるため、「保温等の熱的な課題」や「短時間に
大量処理を行う為の大型真空排気装置の導入」や「取鍋
交換等の非定常作業」が生じており、処理コストが高く
なる。2. Description of the Related Art Degassing of molten metal is DH mainly in steel.
Method, RH method, etc., which is applied to the molten metal treatment in a vacuum system. However, since these are generally batch processes using ladle, etc., “thermal issues such as heat retention”, “introduction of large vacuum exhaust device for large-scale processing in a short time” "Unsteady work such as pan replacement" occurs, resulting in high processing costs.
【0003】これらを防止し、更に処理コストを低減す
るために、特公昭53-4483号、特開昭52-80204号、特開
平7-236950号、特開平2-141540号のように真空槽を用い
た脱ガス装置が開発されている。特公昭53-4483号に示
された連続真空脱ガス装置ではサイフォンの原理を用い
て溶銅移送を行い、真空槽の下方にスライド・ゲート等
の流量調整機能を取り付けて溶融金属の流量制御を行っ
ている。このため、排出側の湯面レベル測定及びスライ
ド・ゲートのコントロール装置が必要であり、コストが
高くなることやメンテナンスを行なうことが必須である
こと等の課題が生じる。In order to prevent these and further reduce the processing cost, a vacuum chamber as in Japanese Patent Publication No. 53-4483, No. 52-80204, No. 7-236950, and No. 2141540. A degassing device using is developed. In the continuous vacuum degassing device shown in Japanese Patent Publication No. 53-4483, the molten copper is transferred using the siphon principle, and the flow control function of molten metal is installed under the vacuum chamber by installing a flow control function such as a slide gate. Is going. Therefore, a device for measuring the level of the molten metal on the discharge side and a control device for the slide gate are required, which causes problems such as high cost and indispensable maintenance.
【0004】また、特開昭52-80204号の脱ガス処理装置
ではサイフォンの原理に加え、さらに流入管先端からガ
スを注入することによるガスポンプで溶銅移送を行って
いる。しかし、この装置では上流側の溶融金属の湯面レ
ベルが変化することで下流側へと流れていく溶融金属の
流量が大きく変化する。このため、上流側および下流側
の溶融金属の湯面レベルを常時観察し、その変動に応じ
て極めて微少なガス注入量制御を行わないと厳密な流量
制御ができない。また、ガス注入穴が損耗すると流量が
変化し流量制御が安定しないという不具合も発生するた
め、頻繁に穴の閉塞を把握し流量制御を行なうことが必
要であり、メンテナンス時においても重要な管理ポイン
トであり、メンテナンスにかかる費用等が大となってい
る。Further, in the degassing apparatus of Japanese Patent Laid-Open No. 52-80204, in addition to the siphon principle, molten copper is transferred by a gas pump by injecting gas from the tip of the inflow pipe. However, in this apparatus, the flow level of the molten metal flowing to the downstream side largely changes due to the change in the molten metal level of the upstream molten metal. For this reason, strict flow rate control cannot be performed unless the molten metal level on the upstream side and the downstream side is constantly observed and extremely minute gas injection amount control is performed according to the variation. Also, if the gas injection hole wears, the flow rate will change and the flow rate control will not be stable, so it is necessary to grasp the blockage of the hole frequently and control the flow rate, which is an important management point during maintenance. Therefore, maintenance costs are high.
【0005】次に、特開平7-236950号に示すような流量
制御機能を有さないサイフォン式の真空脱ガス装置があ
るが、ガス吹込みによる溶湯攪拌が積極的に施されない
ため、脱ガス効率が低いという問題を有している。最後
に、特開平2-141540号に示すような槽内底部から還元ガ
ス等を吹込む方法があるが、溶融金属上部を減圧若しく
は真空にしないことから、脱ガス効率が極めて低いとい
う問題を有している。Next, there is a siphon type vacuum degassing apparatus which does not have a flow rate control function as disclosed in Japanese Patent Laid-Open No. 7-236950, but degassing is performed because the molten metal stirring by gas injection is not actively performed. It has a problem of low efficiency. Lastly, there is a method of blowing a reducing gas or the like from the bottom of the tank as shown in JP-A-2-14540, but there is a problem that the degassing efficiency is extremely low because the upper part of the molten metal is not depressurized or vacuumed. is doing.
【0006】[0006]
【発明が解決しようとする課題】本発明は、連続処理を
行なう上で必要としていた流量制御等の煩雑な装置を用
いず、メンテナンス等が不必要で操作性に優れ、コスト
が低い脱ガス装置を提供することを目的とする。また、
本発明は、連続的に流入する溶融金属の流量制御が簡便
な方法で実施できる高効率な真空脱ガス方法を提供する
ことを目的とする。DISCLOSURE OF THE INVENTION The present invention does not use a complicated device such as a flow rate control which is required for performing continuous processing, requires no maintenance, has excellent operability, and is a low-cost degassing device. The purpose is to provide. Also,
It is an object of the present invention to provide a highly efficient vacuum degassing method that can be carried out by a simple method for controlling the flow rate of continuously flowing molten metal.
【0007】[0007]
【課題を解決するための手段】本発明者らは、鋭意検討
を重ねた結果、サイフォンの原理を用いて自然発生的に
溶融金属を流動させ、かつ、槽内を減圧若しくは真空に
して槽底部から不活性ガス若しくは還元ガスをバブリン
グすることにより、スライドゲートやガス流量調整など
のメンテナンス等が不要で操作性に優れ、さらに溶融金
属の攪拌を促進し脱ガス効率を向上させ得ることを見い
出し、この知見に基づき本発明を完成するに至った。す
なわち上記課題は、以下の本発明により解決することが
できる。
(1)炉側から溶融金属の溶湯が供給される上流槽と、
脱ガスされた溶融金属を受け入れる下流槽と、該上流槽
及び該下流槽に貯留される溶湯内に下部を浸漬し、上流
槽からの溶湯溶融金属の流入用と下流槽への溶融金属の
流出用の浸漬管及び底部に設けられ不活性ガス又は還元
ガスをバブリングする穴又はポーラスプラグを有する真
空槽とからなることを特徴とする脱ガス装置。
(2)溶融金属の流れを制御する板を真空槽内に配置し
たことを特徴とする(1)項に記載の脱ガス装置。
(3)真空槽内の溶湯を誘導攪拌する誘導コイルを真空
槽外周に配置したことを特徴とする(1)又は(2)項
に記載の脱ガス装置。
(4)炉側から上流槽に溶融金属を流す工程と、真空槽
を真空にして上流槽から溶融金属を真空槽内へ移送し真
空槽内で不活性ガス又は還元ガスをバブリングしながら
脱ガスする工程と、脱ガスされた溶融金属を下流槽に流
す工程とからなることを特徴とする脱ガス方法。Means for Solving the Problems As a result of intensive studies, the inventors of the present invention have made the molten metal flow spontaneously by using the siphon principle, and decompress or vacuum the inside of the tank to obtain the bottom of the tank. By bubbling an inert gas or a reducing gas from the above, it was found that maintenance such as a slide gate and gas flow rate adjustment is not required and the operability is excellent, and furthermore, stirring of molten metal can be promoted and degassing efficiency can be improved, The present invention has been completed based on this finding. That is, the above problems can be solved by the present invention described below. (1) An upstream tank to which molten metal is supplied from the furnace side,
The downstream tank for receiving the degassed molten metal, the lower part is immersed in the molten metal stored in the upstream tank and the downstream tank, for the inflow of the molten metal from the upstream tank and the outflow of the molten metal to the downstream tank. A degassing apparatus comprising: a dip tube for use with a vacuum tank having a hole or a porous plug provided at the bottom for bubbling an inert gas or a reducing gas. (2) The degassing apparatus according to item (1), wherein a plate for controlling the flow of the molten metal is arranged in the vacuum chamber. (3) The degassing apparatus according to item (1) or (2), wherein an induction coil for inducing and stirring the molten metal in the vacuum tank is arranged on the outer circumference of the vacuum tank. (4) A step of flowing molten metal from the furnace side to the upstream tank, degassing while vacuumizing the vacuum tank and transferring the molten metal from the upstream tank into the vacuum tank and bubbling an inert gas or a reducing gas in the vacuum tank. And a step of flowing the degassed molten metal into a downstream tank.
【0008】[0008]
【発明の実施の形態】まず、本発明の溶融金属の真空脱
ガス装置の好ましい実施態様を、図面に従って説明す
る。なお、以下の各図において同符号は同じものを示
す。図1は、本発明の溶融金属の真空脱ガス装置の断面
図である。本発明の真空脱ガス装置1は、炉側から溶融
金属の溶湯が供給される上流槽5と、脱ガスされた溶融
金属を受け入れる下流槽6と、該上流槽5及び該下流槽
6に貯留される溶湯内に下部を浸漬し、上流槽5からの
溶融金属の溶湯の流入用と下流槽6への溶融金属の流出
用の浸漬管3及び底部に設けられ不活性ガス又は還元ガ
スをバブリングする穴又はポーラスプラグ4を有する真
空槽2とからなる。BEST MODE FOR CARRYING OUT THE INVENTION First, a preferred embodiment of a vacuum degassing apparatus for molten metal according to the present invention will be described with reference to the drawings. In addition, in each of the following drawings, the same reference numerals indicate the same parts. FIG. 1 is a sectional view of a vacuum degassing apparatus for molten metal according to the present invention. The vacuum degassing apparatus 1 of the present invention comprises an upstream tank 5 to which molten metal is supplied from the furnace side, a downstream tank 6 for receiving degassed molten metal, and storage in the upstream tank 5 and the downstream tank 6. The lower part is dipped in the molten metal to be melted, and a dipping pipe 3 for inflow of the molten metal from the upstream tank 5 and for outflow of the molten metal to the downstream tank 6 and an inert gas or reducing gas provided at the bottom are bubbled. And a vacuum chamber 2 having a hole or a porous plug 4.
【0009】真空槽2において、溶融金属の脱ガス処理
が行われる。真空槽2は、槽内部を減圧又は真空にする
ために槽上部7から真空ポンプに接続される。槽底部に
は2本以上の浸漬管3が接続され、これにより上流槽5
から溶融金属が真空槽2内へ供給され、脱ガスされた溶
融金属が下流槽6へ流出される。真空槽2は、上流槽5
と下流槽6との液面レベル差L(圧力差)により、サイ
フォンの原理で自然に真空槽2内の溶融金属を下流槽6
へ流動させる。これによりスライドゲートやガス流量調
整等が不要となり、連続的に脱ガスを図る上で溶融金属
の流量制御機構を不要とすることができる。In the vacuum chamber 2, the molten metal is degassed. The vacuum chamber 2 is connected to a vacuum pump from the chamber upper part 7 in order to reduce the pressure or make the inside of the chamber vacuum. Two or more dip pipes 3 are connected to the bottom of the tank, which allows the upstream tank 5
The molten metal is supplied into the vacuum tank 2 and the degassed molten metal is discharged to the downstream tank 6. The vacuum tank 2 is an upstream tank 5
The liquid level difference L (pressure difference) between the downstream tank 6 and the downstream tank 6 causes the molten metal in the vacuum tank 2 to naturally flow in the downstream tank 6 by the siphon principle.
Flow to. As a result, a slide gate, gas flow rate adjustment, etc. are not required, and a molten metal flow rate control mechanism can be eliminated for continuous degassing.
【0010】また、真空槽2の底部には不活性ガス又は
還元ガスをバブリングする穴又はポーラスプラグ4が設
けられている。槽内を減圧若しくは真空にし、槽底部か
ら不活性ガス又は還元ガスのバブリングを施すことによ
り、攪拌が促進され脱ガス効率が向上する。また、鉄鋼
等で実施されているRH脱ガス装置とは異なり、還流流
量制御とガス吹込み量とは相関が無いので吹込みガス量
を自由に変化させることが可能となるため、必要に応じ
たガス・レベルに下げるべく吹込みガス量を制御するこ
とが可能となる。A hole or a porous plug 4 for bubbling an inert gas or a reducing gas is provided at the bottom of the vacuum chamber 2. By depressurizing or vacuuming the inside of the tank and bubbling an inert gas or a reducing gas from the bottom of the tank, stirring is promoted and degassing efficiency is improved. In addition, unlike the RH degassing device that is implemented with steel or the like, since there is no correlation between the recirculation flow rate control and the gas injection amount, it is possible to freely change the injection gas amount. It is possible to control the amount of gas blown in to lower the gas level.
【0011】図2(a)は、図2(b)のT−T’一部
断面平面図であり、図2(b)は、図1に示した脱ガス
装置1における真空槽2を拡大して側断面図で示した説
明図である。この図では、真空槽2の底部に設けられた
吹込み穴又はポーラスプラグ4の個数は1つであり、真
空槽2の中央に設けられている。FIG. 2 (a) is a partial cross-sectional plan view of TT 'of FIG. 2 (b), and FIG. 2 (b) is an enlarged view of the vacuum chamber 2 in the degassing apparatus 1 shown in FIG. It is explanatory drawing shown by the side sectional view. In this figure, the number of blowing holes or porous plugs 4 provided at the bottom of the vacuum chamber 2 is one, and it is provided at the center of the vacuum chamber 2.
【0012】真空槽2の底部の吹込み穴又はポーラスプ
ラグ4の個数及び配置を変化させ、及び真空槽2内の溶
融金属のフローパターンを変化させて、槽内の攪拌状態
を変更させることで脱ガス効率の向上を図ることができ
る。図3〜8は、本発明の脱ガス装置1における真空槽
2の他の実施態様の説明図であり、それぞれ図(a)は
図(b)のT−T’一部断面平面図、図(b)は図
(a)のS−S’側断面図である。図3、4に示すよう
に穴又はポーラスプラグ4を一列に配置してもよく、図
5に示すように上流槽側の浸漬管3の周囲に配置しても
よく、図6に示すように真空槽2の底部全体に分散して
配置してもよい。また、図4、7に示すように真空槽2
内に溶融金属の流れを制御する板8を配置することもで
きる。さらに、図8に示すように電磁力を用いて真空槽
2内の溶湯を誘導攪拌するために、誘導コイル9を真空
槽外周10に配置することもできる。By changing the number and arrangement of the blowing holes or the porous plugs 4 at the bottom of the vacuum chamber 2 and the flow pattern of the molten metal in the vacuum chamber 2, the stirring state in the chamber can be changed. The degassing efficiency can be improved. 3 to 8 are explanatory views of another embodiment of the vacuum chamber 2 in the degassing apparatus 1 of the present invention, and FIG. 3A is a partial cross-sectional plan view of TT ′ in FIG. (B) is a sectional view taken along the line SS ′ of FIG. The holes or porous plugs 4 may be arranged in a line as shown in FIGS. 3 and 4, or may be arranged around the immersion pipe 3 on the upstream tank side as shown in FIG. 5, and as shown in FIG. You may distribute and arrange in the whole bottom part of the vacuum chamber 2. In addition, as shown in FIGS.
It is also possible to arrange a plate 8 for controlling the flow of the molten metal therein. Further, as shown in FIG. 8, the induction coil 9 may be arranged on the outer circumference 10 of the vacuum chamber in order to induce and agitate the molten metal in the vacuum chamber 2 by using electromagnetic force.
【0013】図1においては図示されていないが、上流
槽5と下流槽6とは連続しており、真空槽2内で溶融金
属の凝固等による閉塞が生じた場合には、炉側から流れ
込んでくる溶融金属は上流槽5から下流槽6ヘオーバー
フローする。このため湯漏れ等による災害を防止するこ
とができる。Although not shown in FIG. 1, the upstream tank 5 and the downstream tank 6 are continuous with each other, and if the vacuum tank 2 is clogged due to solidification of the molten metal or the like, it flows from the furnace side. The molten metal coming out overflows from the upstream tank 5 to the downstream tank 6. Therefore, it is possible to prevent a disaster such as a leak of hot water.
【0014】次に本発明の真空脱ガス装置の使用方法に
ついて説明する。図9は、本発明の装置の使用方法の説
明図であり、図9(a)は溶融金属流入初期状態におけ
る本発明の装置の説明断面図であり、図9(b)は脱ガ
ス実施状態における本発明の装置の説明断面図である。
まず、炉側から上流槽に溶融金属を流す。この際、図9
(a)に示すように初期の低温溶湯はそのまま下流へ流
す。これは流入初期の溶融金属温度が低い場合には真空
槽2内で凝固するトラブルが発生するからである。溶湯
温度が所定温度以上になった時点で真空槽2に設けられ
た浸漬管3を下降させ、上流槽5及び下流槽6中に浸漬
させる。Next, a method of using the vacuum degassing apparatus of the present invention will be described. FIG. 9 is an explanatory view of a method of using the apparatus of the present invention, FIG. 9 (a) is an explanatory sectional view of the apparatus of the present invention in an initial state of molten metal inflow, and FIG. 9 (b) is a degassing execution state. 3 is an explanatory cross-sectional view of the device of the present invention in FIG.
First, molten metal is flowed from the furnace side to the upstream tank. At this time, FIG.
As shown in (a), the initial low temperature molten metal is allowed to flow downstream. This is because when the temperature of the molten metal at the beginning of the inflow is low, the trouble of solidification in the vacuum chamber 2 occurs. When the temperature of the molten metal reaches a predetermined temperature or higher, the dip pipe 3 provided in the vacuum tank 2 is lowered and immersed in the upstream tank 5 and the downstream tank 6.
【0015】次に、真空槽2内を減圧すると、大気圧と
の差で真空槽2内に溶融金属が上流槽5から上昇し流入
する。この際、真空槽2の底部に設けられたガス吹込み
用の穴若しくはポーラスプラグ4からガスを吹込む。溶
融金属の表面が極めて減圧されていること及び真空槽2
の底部よりガスをバブリングすることにより、極めて短
時間のうちに脱ガス処理が実施される。Next, when the pressure inside the vacuum chamber 2 is reduced, the molten metal rises from the upstream chamber 5 and flows into the vacuum chamber 2 due to the difference from the atmospheric pressure. At this time, gas is blown through a gas blowing hole or a porous plug 4 provided at the bottom of the vacuum chamber 2. The surface of the molten metal is extremely depressurized and the vacuum chamber 2
By degassing the gas from the bottom of, the degassing process can be performed in an extremely short time.
【0016】さらに、炉側から上流槽5へ溶融金属が流
れ込むことにより、上流槽5の溶融金属の液面レベルが
下流槽6よりも高くなる。このため上流槽5と下流槽6
との液面レベルが異なることで圧力差が生じ、自然に真
空槽2内の溶融金属が下流槽6へ流れ出していく。Further, since the molten metal flows into the upstream tank 5 from the furnace side, the liquid level of the molten metal in the upstream tank 5 becomes higher than that in the downstream tank 6. Therefore, the upstream tank 5 and the downstream tank 6
The difference in the liquid surface level between and causes a pressure difference, and the molten metal in the vacuum tank 2 naturally flows out to the downstream tank 6.
【0017】溶融金属の流入量が増加すると真空槽2内
における滞留時間が減少し脱ガス効果が低下するので、
吹込みガス量、真空度及び脱ガス量の関係を予め把握し
ておき、この関係式に則ってガス吹込み量、真空度を制
御することで安定した脱ガスを実施する。この場合、吹
込みガス量が溶湯の流量に直接影響しないことから、R
H脱ガス装置で使用される量の10倍以上のガスを吹き
込んでも良い等の条件設定範囲を広範に取ることができ
る。When the inflow amount of the molten metal increases, the residence time in the vacuum chamber 2 decreases and the degassing effect decreases.
The relationship between the blown gas amount, the degree of vacuum, and the degassing amount is grasped in advance, and stable degassing is performed by controlling the gas blowing amount and the vacuum degree according to this relational expression. In this case, since the amount of blown gas does not directly affect the flow rate of the molten metal, R
It is possible to take a wide range of condition setting range, such as blowing gas at 10 times or more the amount used in the H 2 degasser.
【0018】図10は、本発明の装置の設置例の説明図
である。本装置は工業的には図10のようなシャフト炉
11や電気炉などで溶解され連続的に製出された金属を
処理することができる。図10では保持炉12の下流に
本装置を設置しているが保持炉12の上流に設置しても
なんら支障は無い。ここで連続的に処理された溶融金属
は、その後、半連続・全連続鋳造機13へ供給される。
その結果、水素ガス又は酸素ガスに起因する欠陥が無
く、良好なインゴットや荒引き線などを得ることができ
る。FIG. 10 is an explanatory view of an installation example of the apparatus of the present invention. This apparatus can industrially process the metal continuously melted and produced in the shaft furnace 11 and the electric furnace as shown in FIG. Although the present apparatus is installed downstream of the holding furnace 12 in FIG. 10, there is no problem even if it is installed upstream of the holding furnace 12. The molten metal continuously treated here is then supplied to the semi-continuous / total continuous casting machine 13.
As a result, there are no defects caused by hydrogen gas or oxygen gas, and good ingots and rough drawn lines can be obtained.
【0019】以上のとおり、本発明の脱ガス装置は連続
的に高効率で脱ガス処理を行うことができ、操作性に優
れた安価な装置である。また、流量制御機能を用いない
ことから、スライドゲート等のメンテナンスが不要で、
構造的に極めて単純で安全な脱ガス装置である。As described above, the degassing apparatus of the present invention is an inexpensive apparatus which can continuously perform degassing with high efficiency and is excellent in operability. In addition, since the flow rate control function is not used, maintenance of the slide gate etc. is unnecessary,
It is a structurally extremely simple and safe degassing device.
【0020】次に、本発明の脱ガス方法について説明す
る。本発明の脱ガス方法の具体例は、
(1)炉側から上流槽に溶融金属を流す工程
(2)真空槽を真空にして上流槽から溶融金属を真空槽
内へ移送し、真空槽内で不活性ガス又は還元ガスをバブ
リングしながら脱ガスする工程
(3)脱ガスされた溶融金属を下流槽に流す工程
の工程からなる。これらの工程は連続的に行うことがで
きる。Next, the degassing method of the present invention will be described. Specific examples of the degassing method of the present invention include (1) a step of flowing molten metal from the furnace side to an upstream tank (2) vacuumizing the vacuum tank to transfer the molten metal from the upstream tank into the vacuum tank, and And (3) degassing while bubbling the inert gas or reducing gas, and (3) flowing the degassed molten metal into the downstream tank. These steps can be performed continuously.
【0021】上記脱ガス装置の説明で既に述べたよう
に、まず炉側から上流槽に溶融金属を流す(工程
(1))。次に真空槽内を減圧し、大気圧との差で真空
槽内に溶融金属を上流槽から上昇し流入させ、真空槽2
の底部に設けられたガス吹込み用の穴若しくはポーラス
プラグ4からガスを吹込む。溶融金属の表面が極めて減
圧されていること及び真空槽2の底部よりガスをバブリ
ングすることにより、極めて短時間のうちに脱ガス処理
が実施される(工程(2))。As already described in the description of the degassing apparatus, first, molten metal is flowed from the furnace side to the upstream tank (step (1)). Next, the inside of the vacuum tank is decompressed, and the molten metal is moved upward from the upstream tank into the vacuum tank due to the difference from the atmospheric pressure.
Gas is blown from a hole for blowing gas or a porous plug 4 provided at the bottom of the. By depressurizing the surface of the molten metal extremely and bubbling gas from the bottom of the vacuum chamber 2, degassing treatment is carried out in an extremely short time (step (2)).
【0022】さらに、炉側から上流槽5へ溶融金属が流
れ込むことにより、上流槽5の溶融金属の液面レベルが
下流槽6よりも高くなる。このため上流槽5と下流槽6
との液面レベルが異なることで圧力差が生じ、自然に真
空槽2内の溶融金属が下流槽6へ流れ出していく(工程
(3))。Further, since the molten metal flows from the furnace side into the upstream tank 5, the liquid level of the molten metal in the upstream tank 5 becomes higher than that in the downstream tank 6. Therefore, the upstream tank 5 and the downstream tank 6
The difference in the liquid level between and causes a pressure difference, and the molten metal in the vacuum tank 2 naturally flows out to the downstream tank 6 (step (3)).
【0023】以上のとおり、本発明の脱ガス方法は連続
的に流入する溶融金属の流量制御が簡便な方法で実施で
き、かつ、連続的に高効率で脱ガス処理を行うことがで
きる。As described above, the degassing method of the present invention can be carried out by a method in which the flow rate of the continuously flowing molten metal can be easily controlled, and the degassing process can be continuously performed with high efficiency.
【0024】なお、本発明を適用する溶融金属とは、鉄
および非鉄金属(例えば鉄鋼・銅及び銅合金・アルミ及
びアルミ合金など)の溶融物を意味する。The molten metal to which the present invention is applied means a molten material of ferrous and non-ferrous metals (for example, steel, copper and copper alloys, aluminum and aluminum alloys, etc.).
【0025】[0025]
【実施例】次に本発明を実施例に基づきさらに詳細に説
明する。シャフト炉にて電気銅のみを原料として溶解し
た溶銅を用いて、連続脱ガス処理を行った。この実験
は、燃焼条件等を制御・変更して約1時間経過後のガス
組成が安定している溶銅を用いて行い、溶湯温度は液相
線温度+50℃で行った。そして、真空槽下部にある上
流槽と下流槽中の溶銅から、真空ピンサンプラーで溶銅
を吸引・凝固させ、このサンプルの酸素・水素濃度を分
析した。The present invention will be described in more detail based on the following examples. Continuous degassing treatment was performed in a shaft furnace using molten copper obtained by melting only electrolytic copper as a raw material. This experiment was performed using molten copper whose gas composition was stable after about 1 hour by controlling and changing combustion conditions and the like, and the molten metal temperature was liquidus temperature + 50 ° C. Then, the molten copper was sucked and coagulated by a vacuum pin sampler from the molten copper in the upstream tank and the downstream tank located under the vacuum tank, and the oxygen / hydrogen concentration of this sample was analyzed.
【0026】実験は、表1〜3に記載された脱ガス装置
で、表1〜3に記載された溶銅流入速度(溶湯処理
量)、真空度、ガス種類及び吹込みガス流量で実施し
た。比較例としては、図2の装置においてガス吹込みを
中止して脱ガス能力の評価を行なった。なお、実施例1
〜6についてはφ1mmの貫通穴から溶銅へのガス吹込
みを行ない、実施例7〜10については、ポーラスプラ
グ(多孔質体)を用いてガス吹込みを行い、実施例11
〜20についてはスリットタイプのプラグを用いてガス
吹込みを行なった。ポーラスプラグは、溶融金属と接触
する部位での直径がφ40mm〜φ200mm程度の高
気孔率耐火材を用いた。また、実施例11〜20につい
ては吹き込みガスに一酸化炭素を用い、以下の計算式を
用いて単位吹込みガス当たりの脱ガス能力(吹込みガス
の有効差)を計算した。
K=(Cin−Cout)×W/V
(式中、Cin:流入ガス濃度(ppm)、Cout:流出ガス
濃度(ppm)、W:通過溶湯重量(ton/hr)、V:吹込
みガス量(リッター/min))
結果を表1〜3に示す。なお、表2中、K(水素)およ
びK(酸素)はそれぞれ上記式で計算された脱水素・脱
酸素の効率を示す。The experiments were conducted with the degassing apparatus shown in Tables 1 to 3 at the molten copper inflow rate (melting amount), vacuum degree, gas type and blowing gas flow rate shown in Tables 1 to 3. . As a comparative example, gas blowing was stopped in the apparatus of FIG. 2 and the degassing ability was evaluated. In addition, Example 1
For Nos. 6 to 6, gas was blown into the molten copper from the through hole of φ1 mm, and for Examples 7 to 10, gas was blown using a porous plug (porous body), and Example 11 was used.
About 20, gas injection was performed using a slit type plug. As the porous plug, a high porosity refractory material having a diameter of about 40 mm to 200 mm at a portion in contact with the molten metal was used. Further, in Examples 11 to 20, carbon monoxide was used as the blowing gas, and the degassing ability (effective difference of the blowing gas) per unit blowing gas was calculated using the following calculation formula. K = (C in −C out ) × W / V (wherein C in : inflow gas concentration (ppm), C out : outflow gas concentration (ppm), W: passing molten metal weight (ton / hr), V: Blow gas amount (liter / min)) The results are shown in Tables 1 to 3. In Table 2, K (hydrogen) and K (oxygen) indicate the dehydrogenation / deoxygenation efficiency calculated by the above formula.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【表3】 [Table 3]
【0030】真空槽内の状態を観察すると、実施例で
は、真空槽内の溶融金属は吹込みガスによって著しく攪
拌されており、脱ガス処理が効率よく進行した。一方、
比較例では、溶湯表面は極めて穏やかで、溶融金属は上
流槽側浸漬管から下流槽側浸漬管へと短絡的に流出して
いき、槽内の滞留時間もたいへん短いと推定された。吹
込みガスとして一酸化炭素ガスを用いた場合、脱酸素効
果が大きいことが確認された。この結果、製出溶湯から
容易に無酸素銅が製造できた。Observing the state inside the vacuum chamber, in the examples, the molten metal inside the vacuum chamber was significantly stirred by the blowing gas, and the degassing process proceeded efficiently. on the other hand,
In the comparative example, the surface of the molten metal was extremely gentle, and the molten metal was estimated to flow out in a short circuit from the dipping pipe on the upstream tank side to the dipping pipe on the downstream tank side, and the residence time in the tank was estimated to be very short. It was confirmed that when carbon monoxide gas was used as the blowing gas, the deoxidizing effect was large. As a result, oxygen-free copper could be easily produced from the produced molten metal.
【0031】[0031]
【発明の効果】本発明の脱ガス装置によれば、連続処理
を行なう上で必要としていた流量制御等の煩雑な装置を
用いず、スライドゲート等のメンテナンス等が不必要で
操作性に優れ、コストを低くすることができる。すなわ
ち、本発明の脱ガス装置は、長時間安定した脱ガスが連
続的に高効率で行うことができ、しかも構造的に極めて
単純で安全である。この装置を用いてシャフト炉や溶解
炉などで溶解された非鉄金属の脱ガスを行うことによ
り、水素若しくは酸素に起因する欠陥が無く、かつ、良
好なインゴットや荒引き線などを得ることができる。ま
た、安価に高品質な無酸素銅(雷子管用無酸素銅や加速
器用無酸素銅)をも得ることができる。また、本発明の
連続脱ガス方法によれば、連続的に流入する溶融金属の
流量制御が簡便な方法で実施でき、かつ、連続的に高効
率で脱ガス処理を行うことができる。EFFECTS OF THE INVENTION According to the degassing apparatus of the present invention, a complicated apparatus such as a flow rate control which is necessary for performing continuous processing is not used, maintenance such as a slide gate is unnecessary, and operability is excellent, The cost can be reduced. That is, the degassing apparatus of the present invention can continuously perform degassing stably for a long time with high efficiency, and is structurally extremely simple and safe. By degassing the non-ferrous metal melted in a shaft furnace or a melting furnace using this device, it is possible to obtain good ingots and rough drawn lines without defects due to hydrogen or oxygen. . Also, high-quality oxygen-free copper (oxygen-free copper for lightning tubes and oxygen-free copper for accelerators) can be obtained at low cost. Further, according to the continuous degassing method of the present invention, the flow rate of the molten metal flowing in continuously can be controlled by a simple method, and the degassing treatment can be continuously performed with high efficiency.
【図1】本発明の溶融金属の真空脱ガス装置の断面図で
ある。FIG. 1 is a sectional view of a vacuum degassing apparatus for molten metal according to the present invention.
【図2】(a)は(b)のT−T’一部断面平面図であ
り、(b)は図1に示した装置における真空槽を拡大し
て側断面図で示した説明図である。2A is a partial cross-sectional plan view of TT ′ of FIG. 2B, and FIG. 2B is an explanatory view showing an enlarged side view of the vacuum chamber in the apparatus shown in FIG. is there.
【図3】本発明の装置の他の実施態様の説明図であり、
(a)は(b)のT−T’一部断面平面図、(b)は
(a)のS−S’側断面図である。FIG. 3 is an illustration of another embodiment of the device of the present invention,
(A) is a TT 'partial cross section top view of (b), (b) is a SS' side sectional view of (a).
【図4】本発明の装置の他の実施態様の説明図であり、
(a)は(b)のT−T’一部断面平面図、(b)は
(a)のS−S’側断面図である。FIG. 4 is an illustration of another embodiment of the device of the present invention,
(A) is a TT 'partial cross section top view of (b), (b) is a SS' side sectional view of (a).
【図5】本発明の装置の他の実施態様の説明図であり、
(a)は(b)のT−T’一部断面平面図、(b)は
(a)のS−S’側断面図である。FIG. 5 is an illustration of another embodiment of the device of the invention,
(A) is a TT 'partial cross section top view of (b), (b) is a SS' side sectional view of (a).
【図6】本発明の装置の他の実施態様の説明図であり、
(a)は(b)のT−T’一部断面平面図、(b)は
(a)のS−S’側断面図である。FIG. 6 is an illustration of another embodiment of the device of the present invention,
(A) is a TT 'partial cross section top view of (b), (b) is a SS' side sectional view of (a).
【図7】本発明の装置の他の実施態様の説明図であり、
(a)は(b)のT−T’一部断面平面図、(b)は
(a)のS−S’側断面図である。FIG. 7 is an illustration of another embodiment of the device of the invention,
(A) is a TT 'partial cross section top view of (b), (b) is a SS' side sectional view of (a).
【図8】本発明の装置の他の実施態様の説明図であり、
(a)は(b)のT−T’一部断面平面図、(b)は
(a)のS−S’側断面図である。FIG. 8 is an illustration of another embodiment of the device of the present invention,
(A) is a TT 'partial cross section top view of (b), (b) is a SS' side sectional view of (a).
【図9】本発明の装置の使用方法の説明図であり、
(a)は溶融金属流入初期状態における本発明の装置の
説明断面図であり、(b)は脱ガス実施状態における本
発明の装置の説明断面図である。FIG. 9 is an explanatory diagram of a method of using the device of the present invention,
(A) is explanatory sectional drawing of the apparatus of this invention in a molten metal inflow initial state, (b) is explanatory sectional drawing of the apparatus of this invention in a degassing implementation state.
【図10】本発明の装置の設置例の説明図である。FIG. 10 is an explanatory diagram of an installation example of the device of the present invention.
1 真空脱ガス装置 2 真空槽 3 浸漬管 4 穴又はポーラスプラグ 5 上流槽 6 下流槽 7 真空槽上部 8 溶融金属の流れを制御する板 9 誘導コイル 10 真空槽外周 11 シャフト炉 12 保持炉 13 半連続・全連続鋳造機 1 Vacuum degasser 2 vacuum chamber 3 immersion pipe 4 holes or porous plug 5 upstream tank 6 downstream tanks 7 Upper part of vacuum tank 8 Plates that control the flow of molten metal 9 induction coil 10 Vacuum tank outer circumference 11 shaft furnace 12 holding furnace 13 Semi-continuous / Full-continuous casting machine
フロントページの続き (72)発明者 鎌田 千綱 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 勅使河原 聡 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 大田 昭行 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 佐藤 健二郎 愛知県名古屋市南区滝春町9番地 大同特 殊鋼株式会社滝春テクノセンター内 (72)発明者 宮嶋 孝士 愛知県名古屋市南区滝春町9番地 大同特 殊鋼株式会社滝春テクノセンター内 Fターム(参考) 4K001 AA02 AA09 AA10 BA23 EA02 EA03 GA18 GB01 GB02 GB06 4K013 BA07 CA01 CA05 CA23 CC06 CE03 CE05 CE09 CF13 DA05 DA12 DA13 Continued front page (72) Inventor Chitsuna Kamata 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Kawa Electric Industry Co., Ltd. (72) Inventor Satoshi Teshigawara 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Kawa Electric Industry Co., Ltd. (72) Inventor Akiyuki Ota 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Kawa Electric Industry Co., Ltd. (72) Inventor Kenjiro Sato Daido Special, 9 Takiharu-cho, Minami-ku, Nagoya-shi, Aichi Special Steel Co., Ltd. Takiharu Techno Center (72) Inventor Takashi Miyajima Daido Special, 9 Takiharu-cho, Minami-ku, Nagoya-shi, Aichi Special Steel Co., Ltd. Takiharu Techno Center F-term (reference) 4K001 AA02 AA09 AA10 BA23 EA02 EA03 GA18 GB01 GB02 GB06 4K013 BA07 CA01 CA05 CA23 CC06 CE03 CE05 CE09 CF13 DA05 DA12 DA13
Claims (4)
流槽と、脱ガスされた溶融金属を受け入れる下流槽と、
該上流槽及び該下流槽に貯留される溶湯内に下部を浸漬
し、上流槽からの溶融金属の溶湯の流入用と下流槽への
溶融金属の流出用の浸漬管及び底部に設けられ不活性ガ
ス又は還元ガスをバブリングする穴又はポーラスプラグ
を有する真空槽とからなることを特徴とする脱ガス装
置。1. An upstream tank to which molten metal is supplied from the furnace side, and a downstream tank to receive degassed molten metal,
The lower part is immersed in the molten metal stored in the upstream tank and the downstream tank, and an inert gas is provided in the immersion pipe and the bottom for inflow of the molten metal from the upstream tank and outflow of the molten metal to the downstream tank. A degassing device comprising a vacuum chamber having a hole or a porous plug for bubbling gas or reducing gas.
に配置したことを特徴とする請求項1記載の脱ガス装
置。2. The degassing apparatus according to claim 1, wherein a plate for controlling the flow of the molten metal is arranged in the vacuum chamber.
ルを真空槽外周に配置したことを特徴とする請求項1又
は2に記載の脱ガス装置。3. The degassing apparatus according to claim 1, wherein an induction coil for inducing and stirring the molten metal in the vacuum chamber is arranged on the outer periphery of the vacuum chamber.
と、真空槽を真空にして上流槽から溶融金属を真空槽内
へ移送し真空槽内で不活性ガス又は還元ガスをバブリン
グしながら脱ガスする工程と、脱ガスされた溶融金属を
下流槽に流す工程とからなることを特徴とする脱ガス方
法。4. A step of flowing molten metal from the furnace side to the upstream tank, and vacuuming the vacuum tank to transfer the molten metal from the upstream tank into the vacuum tank while bubbling an inert gas or a reducing gas in the vacuum tank. A degassing method comprising a step of degassing and a step of flowing the degassed molten metal into a downstream tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002031405A JP3884659B2 (en) | 2002-02-07 | 2002-02-07 | Apparatus and method for degassing molten copper or copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002031405A JP3884659B2 (en) | 2002-02-07 | 2002-02-07 | Apparatus and method for degassing molten copper or copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003231913A true JP2003231913A (en) | 2003-08-19 |
JP3884659B2 JP3884659B2 (en) | 2007-02-21 |
Family
ID=27774824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002031405A Expired - Fee Related JP3884659B2 (en) | 2002-02-07 | 2002-02-07 | Apparatus and method for degassing molten copper or copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3884659B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528322A (en) * | 2015-06-29 | 2018-09-27 | アーバンゴールド ゲーエムベーハー | Apparatus and arrangement for metallurgical processing of electrical and / or electronic scrap or parts and their use and method for metallurgical processing of electrical and / or electronic scrap or parts |
JP2020519759A (en) * | 2017-05-10 | 2020-07-02 | ハルドール・トプサー・アクチエゼルスカベット | Method for reducing oxygen content in metallic copper |
-
2002
- 2002-02-07 JP JP2002031405A patent/JP3884659B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528322A (en) * | 2015-06-29 | 2018-09-27 | アーバンゴールド ゲーエムベーハー | Apparatus and arrangement for metallurgical processing of electrical and / or electronic scrap or parts and their use and method for metallurgical processing of electrical and / or electronic scrap or parts |
JP2020519759A (en) * | 2017-05-10 | 2020-07-02 | ハルドール・トプサー・アクチエゼルスカベット | Method for reducing oxygen content in metallic copper |
US11753700B2 (en) | 2017-05-10 | 2023-09-12 | Haldor Topsøe A/S | Process for reducing the content of oxygen in metallic copper |
Also Published As
Publication number | Publication date |
---|---|
JP3884659B2 (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006341268A (en) | Apparatus and method for continuously manufacturing copper alloy | |
JP4207820B2 (en) | How to use vacuum degassing equipment | |
JP2010189705A (en) | Apparatus for refining molten steel | |
JP2003231913A (en) | Apparatus and method for degassing molten metal | |
JP2007031820A (en) | Vacuum-degassing treating method for molten steel | |
JP2005103552A (en) | Continuous casting method | |
JP5292853B2 (en) | Vacuum degassing apparatus for molten steel and vacuum degassing refining method | |
JPWO2020045544A1 (en) | How to start continuous steel casting | |
JP3654181B2 (en) | Method for refining molten metal | |
RU2770917C1 (en) | Device for refining alloy of antifriction bronze by purging | |
JP2002363636A (en) | Method for smelting molten steel in rh vacuum degassing apparatus | |
JP4062213B2 (en) | Method for adjusting the composition of molten steel in an RH degasser | |
RU2653743C1 (en) | Method of mixing steel in the metallurgical unit | |
Krishnakumar et al. | A model study of slag eye formation during gas purging at the surface of a metal bath | |
RU2016132025A (en) | A method of manufacturing a bimetallic electrode by electroslag surfacing and a method of utilizing metallurgical slag by reduction smelting using a bimetallic electrode | |
JP2000301320A (en) | Method for dissolving clogging of porous plug in ladle refining furnace | |
JP3742534B2 (en) | Vacuum refining apparatus and method for melting low carbon steel using the same | |
JP5239147B2 (en) | Method of melting high cleanliness steel | |
TW202302869A (en) | Method for refining molten steel | |
JP3849471B2 (en) | Uniform heating method for molten steel in tundish | |
JP4084715B2 (en) | Method for controlling flow rate of inert gas in tundish for plasma heating | |
JP2016040400A (en) | Molten steel decompression refining method | |
JP2001064719A (en) | Method for vacuum-refining molten steel | |
JP3841061B2 (en) | Method of adding high density metal or alloy to molten steel | |
JPH0254715A (en) | Method for treating degassing in molten steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050204 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061117 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3884659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |