JP2003218410A - Thermoelectric material, its manufacturing method, and thermoelectric conversion device - Google Patents
Thermoelectric material, its manufacturing method, and thermoelectric conversion deviceInfo
- Publication number
- JP2003218410A JP2003218410A JP2002015842A JP2002015842A JP2003218410A JP 2003218410 A JP2003218410 A JP 2003218410A JP 2002015842 A JP2002015842 A JP 2002015842A JP 2002015842 A JP2002015842 A JP 2002015842A JP 2003218410 A JP2003218410 A JP 2003218410A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- thermoelectric
- type
- sintered body
- antimony
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 47
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005245 sintering Methods 0.000 claims abstract description 13
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 12
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 12
- 239000010941 cobalt Substances 0.000 claims abstract description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 229910018989 CoSb Inorganic materials 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 230000006698 induction Effects 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims description 5
- 150000002736 metal compounds Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 3
- 230000010485 coping Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱電材料、その製
造方法及び熱電変換素子に関し、より詳細には、ゼーベ
ック効果を用いた温度差発電やペルチェ効果を用いた電
子冷却を可能とする熱電材料、その製造方法及び熱電変
換素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric material, a method for manufacturing the same, and a thermoelectric conversion element. More specifically, the present invention relates to a thermoelectric material that enables temperature difference power generation using the Seebeck effect and electronic cooling using the Peltier effect. , Its manufacturing method, and a thermoelectric conversion element.
【0002】[0002]
【従来の技術】従来から、超伝導素子や赤外線検出素子
など、冷却することによって著しい性能を発現する素子
が知られている。一方、最近のITやブロードバンド化
に伴って、超高速コンピュータや通信用レーザなど、低
温に冷却したり、動作温度を厳しく制御して動作させる
装置がさかんに開発されている。そのような役割を果た
す代表的な冷却素子が、熱電変換効果を利用したペルチ
ェ素子である。熱電変換効果としては、熱を電気に変え
るゼーベック効果と、電気を熱に変えるペルチェ効果が
有名であり、前者は発電素子として、後者は電子冷却素
子として利用されている。2. Description of the Related Art Conventionally, there have been known elements such as superconducting elements and infrared detecting elements which exhibit remarkable performance by cooling. On the other hand, with the recent shift to IT and broadband, devices such as ultra-high speed computers and communication lasers that are cooled to a low temperature or that are operated by strictly controlling the operating temperature have been actively developed. A typical cooling element that plays such a role is a Peltier element that utilizes the thermoelectric conversion effect. The Seebeck effect of converting heat into electricity and the Peltier effect of converting electricity into heat are well known as thermoelectric conversion effects. The former is used as a power generating element and the latter is used as an electronic cooling element.
【0003】ペルチェ素子等の熱電変換素子は、発電や
冷却を行っても、大気中に環境を脅かすような物質等を
排出しないことから、21世紀のクリーンなエネルギー
及び環境デバイスとして期待されている。このような熱
電変換素子を構成するスクッテルダイト型結晶構造を示
すCoSb3系化合物は、電子又はホールの移動度が極
めて高く、良好な熱電特性を示す材料として利用されて
いる。例えば、特開平8−186294号公報には、C
oSb3にパラジウム、ロジウム、ルテニウム等を添加
することによって、パワー因子(ゼーベック係数Sの2
乗×電気伝導率σ)が大きくなることが記載されてお
り、その他、CoSb3系化合物に白金を添加すること
によっても同様の効果が得られることが知られている。Thermoelectric conversion elements such as Peltier elements do not emit substances that threaten the environment into the atmosphere even when they generate power or cool, and are therefore expected as clean energy and environmental devices in the 21st century. . The CoSb 3 -based compound having a skutterudite type crystal structure, which constitutes such a thermoelectric conversion element, has extremely high electron or hole mobility and is used as a material exhibiting good thermoelectric properties. For example, in Japanese Patent Laid-Open No. 8-186294, C
By adding palladium, rhodium, ruthenium, etc. to oSb 3 , the power factor (Seebeck coefficient S 2
It is described that the power x electric conductivity σ) increases, and it is known that the same effect can be obtained by adding platinum to the CoSb 3 -based compound.
【0004】[0004]
【発明が解決しようとする課題】しかし、パラジウム、
ロジウム、ルテニウム及び白金等は、地球上においても
産出量が少なく、極めて高価であるため、安価な熱電変
換素子を供給することの大きな妨げとなる。また、重元
素を用いていることで、比重が大きく、全体のシステム
が重くなるという問題があった。However, palladium,
Since rhodium, ruthenium, platinum, etc. are produced in small quantities on earth and are extremely expensive, they are a major obstacle to supplying inexpensive thermoelectric conversion elements. In addition, since the heavy element is used, there is a problem that the specific gravity is large and the whole system becomes heavy.
【0005】さらに、通常のスクッテルダイト型結晶構
造を示す化合物の焼結体は、例えば、特開平10−30
3468号公報に記載されているように、まず、コバル
ト、アンチモン、ドーバント不純物を所定量溶融して、
スクッテルダイト合金を作製し、これを一度粉砕して微
粉末状にした後、ホットプレスや放電プラズマ焼結法等
によって高密度化して製造される。したがって、製造工
程が煩雑で、さらに製造の前処理、後処理等に時間がか
かる他、ドーバント以外の不純物が混入されやすいとい
う課題もあった。Further, a sintered body of a compound having a normal skutterudite type crystal structure is disclosed in, for example, Japanese Patent Laid-Open No. 10-30.
As described in Japanese Patent No. 3468, first, a predetermined amount of cobalt, antimony, and dovant impurities are melted,
A skutterudite alloy is produced, and once crushed into a fine powder, it is densified by a hot press, a spark plasma sintering method, or the like. Therefore, there are problems that the manufacturing process is complicated, that pre-processing and post-processing for manufacturing take time, and that impurities other than dovant are easily mixed.
【0006】[0006]
【課題を解決するための手段】本発明によれば、コバル
ト、アンチモン及びニッケル粉末を混合、成型した後、
高周波誘導加熱加圧焼結法により焼結してなるCoSb
3系高密度焼結体である熱電材料が提供される。また、
本発明によれば、コバルト、アンチモン及びニッケル粉
末を混合、成型した後、高周波誘導加熱加圧焼結法によ
り焼結してCoSb3系高密度焼結体を得る熱電材料の
製造方法が提供される。さらに、本発明によれば、p型
熱電変換材料とn型熱電変換材料が1対づつ接合されて
形成された1対以上のpn接合を有してなり、前記n型
熱電変換材料が、コバルトとアンチモンを主成分とした
金属化合物にニッケルが添加されてなる熱電変換素子が
提供される。According to the present invention, after mixing and molding cobalt, antimony and nickel powders,
CoSb obtained by sintering by high-frequency induction heating pressure sintering method
Provided is a thermoelectric material which is a 3 type high density sintered body. Also,
According to the present invention, there is provided a method for producing a thermoelectric material, in which cobalt, antimony and nickel powders are mixed and molded, and then sintered by a high frequency induction heating pressure sintering method to obtain a CoSb 3 based high density sintered body. It Furthermore, according to the present invention, the p-type thermoelectric conversion material and the n-type thermoelectric conversion material have one or more pairs of pn junctions formed by joining one pair each, and the n-type thermoelectric conversion material is cobalt. There is provided a thermoelectric conversion element comprising nickel added to a metal compound containing antimony as a main component.
【0007】[0007]
【発明の実施の形態】本発明の熱電材料は、CoSb3
系高密度焼結体であり、コバルトとアンチモンとを主成
分として含むCoSb3系のスクッテルダイト型の結晶
構造を有する。コバルト及びアンチモンは、高純度で、
さらに粉末状のものを用いることが好ましく、例えば、
純度99%以上、好ましくは99.9%以上、さらに好
ましくは99.99%以上が挙げられる。粉末状態とし
ては、平均粒径が50μm程度以下、好ましくは10μ
m程度以下、さらに好ましくは2μm程度以下が挙げら
れる。また、これらコバルト及びアンチモンに添加する
ニッケルも、これらと同様に、高純度かつ粉末状のもの
が好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The thermoelectric material of the present invention is CoSb 3
System high-density sintered body having a CoSb 3 -based skutterudite type crystal structure containing cobalt and antimony as main components. Cobalt and antimony are highly pure,
Further, it is preferable to use a powdery one, for example,
The purity is 99% or more, preferably 99.9% or more, and more preferably 99.99% or more. In the powder state, the average particle size is about 50 μm or less, preferably 10 μm
It is about m or less, more preferably about 2 μm or less. Further, the nickel added to these cobalt and antimony is also preferably highly pure and powdery, like these.
【0008】これらの金属の混合割合は、例えば、Co
1-xNixSb3(0<x≦0.05)の焼結体を得られ
ることが適当であり、好ましくは0.005≦x≦0.
020であり、さらに好ましくは0.007<x≦0.
013である。これらの粉末を混合する場合は、公知の
方法、例えば、ボールミル、V型混合機、S型混合機、
旋回スクリュー型混合機、リボン型混合機等を利用して
行うことができる。また、適当な溶剤、例えば、水、ア
セトン等の有機溶媒等を加えた湿式混合であってもよい
し、溶剤を用いない乾式混合であってもよい。なかで
も、湿式混合を行って、各粉末を均一に分散させた後、
用いた溶剤をほぼ完全に除去するために乾式混合を行う
ことが好ましい。The mixing ratio of these metals is, for example, Co
It is appropriate to obtain a sintered body of 1-x Ni x Sb 3 (0 <x ≦ 0.05), preferably 0.005 ≦ x ≦ 0.
020, and more preferably 0.007 <x ≦ 0.
013. When these powders are mixed, a known method such as a ball mill, a V-type mixer, an S-type mixer,
It can be carried out by using an orbiting screw type mixer, a ribbon type mixer or the like. Further, wet mixing may be carried out by adding an appropriate solvent, for example, an organic solvent such as water or acetone, or dry mixing may be carried out without using a solvent. Above all, after performing wet mixing to uniformly disperse each powder,
It is preferable to carry out dry mixing in order to almost completely remove the solvent used.
【0009】得られた混合粉末は回収され、黒鉛型の中
に入れて高周波誘導加熱加圧焼結法により焼結する。本
発明においては、このような焼結法のみで、特性の良好
な焼結体を得ることができる。この焼結法は、通常、ホ
ットプレス法又は一軸ホットプレス法とも称され、主に
黒鉛型に原料粉末を充填、一軸加圧しながら高周波誘導
方式により加熱して、セラミック等の材料を高密度に焼
結する方法である。この場合の主要な条件は、圧力、雰
囲気、温度、処理時間等であり、それぞれ、10〜50
MPa程度、ガス雰囲気(空気、アルゴン、水素混合ア
ルゴン等)、500〜800℃程度、30分間〜5時間
程度等が挙げられる。また、昇温速度は、例えば、20
〜100℃/分程度が挙げられる。The obtained mixed powder is collected, put into a graphite mold and sintered by a high frequency induction heating and pressure sintering method. In the present invention, a sintered body having good characteristics can be obtained only by such a sintering method. This sintering method is usually called a hot pressing method or a uniaxial hot pressing method. Mainly, a graphite mold is filled with raw material powder and heated by a high frequency induction method while uniaxially pressurizing a material such as ceramic to a high density. It is a method of sintering. The main conditions in this case are pressure, atmosphere, temperature, processing time, etc.
For example, about MPa, a gas atmosphere (air, argon, hydrogen-mixed argon, etc.), about 500 to 800 ° C., about 30 minutes to 5 hours can be mentioned. The temperature rising rate is, for example, 20
-100 ° C / min.
【0010】このようにして得られた焼結体は、良好な
熱電特性を得ることができる。例えば、熱電材料として
重要な特性であるゼーベック係数(例えば、−300μ
V/k以上)、電気伝導率(例えば、1000S/cm
以上)、熱伝導率(例えば、4.0W/mK以下)、性
能指数(例えば、2.5×10-3/K)を備えている。
なお、これらの特性は、室温から200℃以上程度の温
度範囲において特に良好であるため、このような温度範
囲で使用することが有利である。The thus obtained sintered body can obtain good thermoelectric properties. For example, the Seebeck coefficient (for example, -300 μ, which is an important property as a thermoelectric material).
V / k or more), electric conductivity (for example, 1000 S / cm)
Above), thermal conductivity (for example, 4.0 W / mK or less), and performance index (for example, 2.5 × 10 −3 / K).
Since these characteristics are particularly good in the temperature range from room temperature to about 200 ° C. or higher, it is advantageous to use in such a temperature range.
【0011】本発明の熱電変換素子は、公知の構造の熱
電変換素子のすべてを含むが、特に、p型熱電変換材料
とn型熱電変換材料とが1対づつ接合されて形成された
1対以上のpn接合を有する構造のものが好ましい。こ
のような構造の熱電変換素子においては、n型熱電変換
材料が、コバルトとアンチモンを主成分とした金属化合
物にニッケルが添加されてなる。また、このような材料
で形成されるn型熱電変換材料は、公知の方法のいずれ
によって製造されてもよいが、特に、上述した方法によ
って製造されたものが好ましい。The thermoelectric conversion element of the present invention includes all thermoelectric conversion elements having a known structure, but in particular, one pair formed by joining one pair of p-type thermoelectric conversion material and one pair of n-type thermoelectric conversion material. A structure having the above pn junction is preferable. In the thermoelectric conversion element having such a structure, the n-type thermoelectric conversion material is formed by adding nickel to a metal compound containing cobalt and antimony as main components. The n-type thermoelectric conversion material formed of such a material may be manufactured by any known method, but one manufactured by the method described above is particularly preferable.
【0012】なお、p型熱電変換材料は、どのような材
料で、どのような方法によって形成されていてもよく、
公知のp型熱電変換材料のいずれをも使用することがで
きるが、特に、導電型が異なる以外は、n型熱電変換材
料、特に上述した方法によって製造された熱電変換材料
に準じて製造された材料を用いることが好ましい。以下
に、本発明の熱電材料、その製造方法及び熱電変換素子
の実施の形態を説明する。The p-type thermoelectric conversion material may be formed of any material by any method.
Any known p-type thermoelectric conversion material can be used, but it is manufactured according to the n-type thermoelectric conversion material, particularly the thermoelectric conversion material manufactured by the above-mentioned method, except that the conductivity type is different. It is preferable to use materials. Embodiments of the thermoelectric material, the method for producing the same, and the thermoelectric conversion element of the present invention will be described below.
【0013】実施の形態1:熱電材料及びその製造方法
この実施の形態の熱電材料は、まず、出発原料粉末とし
て金属Co(純度99.99%、粒径2μm)、Sb
(純度99.999%、粒径10μm)及び金属Ni
(純度99.99%、粒径2μm)を用い、Co1-xN
ixSb3(0≦x≦0.1)となるように秤量し、ボー
ルミル装置にて溶剤(アセトン)を用いて湿式混合し
た。その後、100℃程度で乾燥し、さらに乾式混合を
行った。Embodiment 1: Thermoelectric Material and Method of Manufacturing the Same In the thermoelectric material of this embodiment, first, as starting raw material powder, metallic Co (purity 99.99%, particle size 2 μm), Sb are used.
(Purity 99.999%, particle size 10 μm) and metallic Ni
(Purity 99.99%, particle size 2 μm) using Co 1-x N
Weighed so as to be i x Sb 3 (0 ≦ x ≦ 0.1), and wet mixed using a solvent (acetone) in a ball mill device. Then, it was dried at about 100 ° C. and further dry mixed.
【0014】得られた混合粉末を回収し、高密度の焼結
体を得るために、高周波誘導加熱加圧焼結法(一軸ホッ
トプレス法)にて、カーボン型又は黒鉛型を用いて、3
0〜50MPa圧力、カーボン内還元雰囲気中で、55
0℃〜700℃、昇温(30〜70℃/分程度)及び焼
結を含めて1時間、加圧熱処理を行って高密度のCo
1-xNixSb3(0≦x≦0.1)焼結体を得た。得ら
れたCo1-xNixSb3(0≦x≦0.05)の高密度
焼結体のX線回折を行ったところ、そのパターンから、
x=0.0〜0.05の範囲にわたって、良好なスクッ
テルダイト型結晶構造を有する単相の焼結体が得られて
いることがわかった。The mixed powder obtained is recovered and sintered at high density.
In order to obtain the body, high frequency induction heating pressure sintering method (uniaxial hot
Topless method) using a carbon type or a graphite type
55 at 0 to 50 MPa pressure and reducing atmosphere in carbon
0 ° C to 700 ° C, temperature rise (about 30 to 70 ° C / min) and baking
High-density Co is obtained by applying pressure heat treatment for 1 hour including binding.
1-xNixSb3A (0 ≦ x ≦ 0.1) sintered body was obtained. Got
Co1-xNixSb3High density (0 ≦ x ≦ 0.05)
When X-ray diffraction of the sintered body was performed, from the pattern,
Good scoop over the range of x = 0.0 to 0.05.
A single-phase sintered body with a terdite-type crystal structure was obtained.
I found out that
【0015】さらに、焼結体の外形と質量とを精密に測
定した結果、密度は各焼結体において、98%以上であ
った。また、焼結体を粉砕して透過電子顕微鏡下でそれ
ぞれ結晶方位の異なるグレインの大きさを、暗視野像を
用いて観察した結果、グレインの粒径はほぼ20μmで
あるにもかかわらず、結晶方位のそろった単結晶状ドメ
インの粒径は1〜10μm以下であった。Further, as a result of precisely measuring the outer shape and mass of the sintered body, the density was 98% or more in each sintered body. In addition, as a result of observing the size of the grains having different crystal orientations under a transmission electron microscope using a dark-field image after crushing the sintered body, the grain size of the grains was about 20 μm, The grain size of the aligned single crystal domains was 1 to 10 μm or less.
【0016】得られたディスク状の焼結体から、ダイヤ
モンドカッターを用いて、約2×2×10〜16mmの
直方体試料を切り出し、高温ゼーベック測定装置にて高
温ゼーペック係数S(μV/K)及び電気伝導率σ(S
/cm)を測定し、パワーファクタPF(S2σ)を算
出した。また、電気抵抗率も測定した。x=0.01に
おけるこれらの結果を図1に示す。図1によれば、パワ
ーファクタは室温でも8.5×10-3W/cm・K2、1
50℃〜200℃では1×10-2W/cm・K2程度以上
であった。A rectangular parallelepiped sample of about 2 × 2 × 10-16 mm was cut out from the obtained disc-shaped sintered body using a diamond cutter, and the high temperature Seepec coefficient S (μV / K) and Electrical conductivity σ (S
/ Cm) was measured, and the power factor PF (S 2 σ) was calculated. The electrical resistivity was also measured. These results at x = 0.01 are shown in FIG. According to FIG. 1, the power factor is 8.5 × 10 −3 W / cm · K 2 , 1 even at room temperature.
At 50 ° C. to 200 ° C., it was about 1 × 10 −2 W / cm · K 2 or more.
【0017】図2に、0≦x≦0.03の組成範囲で測
定した電気抵抗率、ゼーベック計数、パワーファクタの
Ni添加量の依存性を示す。図2によれば、x=0.0
025以上で安定したn型を示し、x=0.005〜
0.02の範囲内で5×10-3W/mK2以上の大きな
値を示す。また、同様に、直径10mm、厚さ1mmの
ディスク状の試料を準備し、レーザフラッシュ法により
熱拡散率を測定した。さらに、同じ焼結体から切り出し
た試料を用いてDSC測定により高温での比熱を測定
し、その試料の密度を用いて熱伝導率κを算出した。そ
の結果を図3に示す。FIG. 2 shows the dependence of the electrical resistivity, Seebeck coefficient, and power factor on the amount of Ni added, measured in the composition range of 0 ≦ x ≦ 0.03. According to FIG. 2, x = 0.0
Stable n-type above 025, x = 0.005-
A large value of 5 × 10 −3 W / mK 2 or more is shown within the range of 0.02. Similarly, a disk-shaped sample having a diameter of 10 mm and a thickness of 1 mm was prepared, and the thermal diffusivity was measured by the laser flash method. Further, a sample cut out from the same sintered body was used to measure the specific heat at high temperature by DSC measurement, and the thermal conductivity κ was calculated using the density of the sample. The result is shown in FIG.
【0018】熱伝導率κは、高密度化したにもかかわら
ず、単結晶状ドメインを小さく抑えることができたの
で、例えば、x=0.01の試料を用いて200℃で4
W/mKの値が得られた。よって、性能指数(Z=S2σ/
κ)は2.5×10-3K-1、これに温度をかけると、2
00℃でZTが1.2以上という大きな値が得られた。Regarding the thermal conductivity κ, the single crystal domain could be suppressed to a small value in spite of the high density, so that, for example, a sample of x = 0.01 was used at 4 ° C. at 200 ° C.
The value of W / mK was obtained. Therefore, the figure of merit (Z = S 2 σ /
κ) is 2.5 × 10 -3 K -1 , and when it is heated to 2
A large value of ZT of 1.2 or more was obtained at 00 ° C.
【0019】実施の形態2:熱電変換素子
実施の形態1で得られた熱電材料をn型熱電変換材料と
して用い、p型熱電変換材料として、不純物を添加しな
いCoSb3を用い、図4に示すような熱電変換素子を
作製した。つまり、2枚のアルミナ基板1に、図4に示
すような配線パターンとなるように銀ペーストを電極4
として印刷した後、1mm×1mm×2mmに切断した
n型及びp型熱電変換素子2、3を配置し、銀ペースト
を乾燥させて、固着させた。また、2本のリード線5を
とりつけて電圧が取り出せるようにした。このようにし
て作製した熱電変換素子は、np素子が50対、アルミ
ナ基板間に5℃の温度差をつけて約100mVの出力が
得られた。また、この条件で100時間保持した場合に
おいても素子の劣化は認められず、耐久性にも優れるこ
とが確認できた。Second Embodiment: Thermoelectric Conversion Element The thermoelectric material obtained in the first embodiment is used as an n-type thermoelectric conversion material, and CoSb 3 to which no impurity is added is used as a p-type thermoelectric conversion material. Such a thermoelectric conversion element was produced. That is, the silver paste was applied to the electrodes 4 on the two alumina substrates 1 so as to form the wiring pattern as shown in FIG.
After printing, the n-type and p-type thermoelectric conversion elements 2 and 3 cut into 1 mm × 1 mm × 2 mm were placed, and the silver paste was dried and fixed. Also, two lead wires 5 were attached so that the voltage could be taken out. In the thermoelectric conversion element produced in this manner, 50 pairs of np elements were provided, and an output of about 100 mV was obtained with a temperature difference of 5 ° C. between the alumina substrates. Further, it was confirmed that the element was not deteriorated even when it was held under these conditions for 100 hours and the durability was excellent.
【0020】[0020]
【発明の効果】本発明によれば、スクッテルダイト型結
晶構造を有するCoSb3系高密度焼結体に、安価なニ
ッケルを添加し、最適化することによって、熱電性能が
大きく、安価な熱電材料を提供することができる。しか
も、高周波誘導加熱加圧焼結法という簡便な方法によ
り、短時間のプロセスによって、単結晶状ドメインの微
細化を図り、熱伝導率が小さく抑えられ、室温から20
0℃という低温領域において、良好な熱電特性を有する
材料を得ることができる。さらに、もともと劈開性のな
い材料であり、焼結体にも配向性がないため、どの方向
で切断しても、電気特性、熱電特性、熱特性等について
安定した特性を得ることができるとともに、高密度化す
ることによって焼結体が強固になり、機械的強度が大き
く、微細加工等に耐えることができる信頼性に優れた熱
電材料、熱電変換素子を提供することができる。特に、
ニッケルの添加量が0.5%以上、2モル%以下である
場合には、熱電材料として実用可能なゼーベック係数、
電気伝導率、熱伝導率、性能指数等を得ることができ
る。According to the present invention, by adding inexpensive nickel to a CoSb 3 type high density sintered body having a skutterudite type crystal structure and optimizing it, the thermoelectric performance is large and the thermoelectric cost is low. Material can be provided. Moreover, a simple method such as high-frequency induction heating, pressure and sintering is used to reduce the size of the single crystal domain by a short process, and the thermal conductivity can be suppressed to a low level.
A material having good thermoelectric properties can be obtained in a low temperature region of 0 ° C. Furthermore, since it is a material that is not originally cleaveable, and the sintered body also has no orientation, it is possible to obtain stable characteristics in electrical characteristics, thermoelectric characteristics, thermal characteristics, etc., regardless of the cutting direction. It is possible to provide a thermoelectric material and a thermoelectric conversion element which have a high density and have a strong sintered body, high mechanical strength, and can endure fine processing and the like, and which have excellent reliability. In particular,
When the added amount of nickel is 0.5% or more and 2 mol% or less, the Seebeck coefficient that is practical as a thermoelectric material,
Electric conductivity, thermal conductivity, figure of merit, etc. can be obtained.
【図1】 本発明における熱電材料であるCo0.99Ni
0.01Sb3高密度焼結体の電気抵抗率ρ、電気伝導率
σ、ゼーベック係数S、パワーファクタPFの温度依存
性を示すグラフである。1 is a thermoelectric material of the present invention Co 0.99 Ni
4 is a graph showing temperature dependence of electric resistivity ρ, electric conductivity σ, Seebeck coefficient S, and power factor PF of a 0.01 Sb 3 high-density sintered body.
【図2】 本発明における熱電材料であるCoxNi1-x
Sb3高密度焼結体の電気抵抗率ρ、ゼーベック係数
S、パワーファクタPFのNi添加量の依存性を示すグ
ラフである。FIG. 2 is a thermoelectric material of the present invention, Co x Ni 1-x.
3 is a graph showing the dependence of the electrical resistivity ρ, the Seebeck coefficient S, and the power factor PF of the Sb 3 high-density sintered body on the amount of Ni added.
【図3】 本発明における熱電材料であるCoxNi1-x
Sb3高密度焼結体の熱伝導率κ及び性能指数ZのNi
添加量の依存性を示すグラフである。FIG. 3 is a thermoelectric material of the present invention, Co x Ni 1-x.
Ni of Sb 3 high density sintered body with thermal conductivity κ and figure of merit Z
It is a graph which shows the dependency of the amount added.
【図4】 本発明の熱電変換素子の実施の形態を説明す
るための要部の概略断面図(a)及び平面図(b)であ
る。FIG. 4 is a schematic cross-sectional view (a) and a plan view (b) of a main part for explaining an embodiment of a thermoelectric conversion element of the present invention.
1 アルミナ基板 2 n型熱電変換素子 3 p型熱電変換素子 4 電極 5 リード線 1 Alumina substrate 2 n-type thermoelectric conversion element 3 p-type thermoelectric conversion element 4 electrodes 5 lead wires
───────────────────────────────────────────────────── フロントページの続き (72)発明者 土嶺 信男 埼玉県東松山市大字下野本1414番地 株式 会社豊島製作所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuo Tomine 1414 Shimonomoto, Higashimatsuyama City, Saitama Prefecture Stock Company Toyoshima Factory
Claims (6)
を混合、成型した後、高周波誘導加熱加圧焼結法により
焼結してなるCoSb3系高密度焼結体であることを特
徴とする熱電材料。1. A thermoelectric material, which is a CoSb 3 -based high density sintered body obtained by mixing and molding cobalt, antimony and nickel powders and then sintering the mixture by a high frequency induction heating and pressure sintering method.
2モル%以下である請求項1に記載の熱電材料。2. The amount of nickel added is 0.5 mol% or more,
The thermoelectric material according to claim 1, which is 2 mol% or less.
を混合、成型した後、高周波誘導加熱加圧焼結法により
焼結してCoSb3系高密度焼結体を得ることを特徴と
する熱電材料の製造方法。3. Production of a thermoelectric material, characterized in that cobalt, antimony and nickel powders are mixed and shaped, and then sintered by a high frequency induction heating and pressure sintering method to obtain a CoSb 3 type high density sintered body. Method.
1対づつ接合されて形成された1対以上のpn接合を有
してなり、 前記n型熱電変換材料が、コバルトとアンチモンを主成
分とした金属化合物にニッケルが添加されてなることを
特徴とする熱電変換素子。4. A p-type thermoelectric conversion material and an n-type thermoelectric conversion material are bonded together one by one, and each of the n-type thermoelectric conversion materials comprises cobalt and antimony. A thermoelectric conversion element comprising nickel added to a metal compound as a main component.
記載の熱電材料からなる請求項4に記載の熱電変換素
子。5. The thermoelectric conversion element according to claim 4, wherein the n-type thermoelectric conversion material is the thermoelectric material according to claim 1 or 2.
請求項4又は5に記載の熱電変換素子。6. The thermoelectric conversion element according to claim 4, which is used in a temperature range of room temperature to 200 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002015842A JP2003218410A (en) | 2002-01-24 | 2002-01-24 | Thermoelectric material, its manufacturing method, and thermoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002015842A JP2003218410A (en) | 2002-01-24 | 2002-01-24 | Thermoelectric material, its manufacturing method, and thermoelectric conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003218410A true JP2003218410A (en) | 2003-07-31 |
Family
ID=27652093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002015842A Pending JP2003218410A (en) | 2002-01-24 | 2002-01-24 | Thermoelectric material, its manufacturing method, and thermoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003218410A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100746647B1 (en) | 2006-10-23 | 2007-08-06 | 충주대학교 산학협력단 | Method for producing thermoelectric skutterudites |
CN100414732C (en) * | 2003-10-07 | 2008-08-27 | 株式会社东芝 | Thermoelectric material and thermoelectric module using the thermoelectric material |
KR101042574B1 (en) | 2009-08-11 | 2011-06-20 | 충주대학교 산학협력단 | In-Co-Ni-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME |
-
2002
- 2002-01-24 JP JP2002015842A patent/JP2003218410A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100414732C (en) * | 2003-10-07 | 2008-08-27 | 株式会社东芝 | Thermoelectric material and thermoelectric module using the thermoelectric material |
CN100440560C (en) * | 2003-10-07 | 2008-12-03 | 株式会社东芝 | Thermoelectric material and thermoelectric module using the thermoelectric material |
KR100746647B1 (en) | 2006-10-23 | 2007-08-06 | 충주대학교 산학협력단 | Method for producing thermoelectric skutterudites |
KR101042574B1 (en) | 2009-08-11 | 2011-06-20 | 충주대학교 산학협력단 | In-Co-Ni-Sb BASED SKUTTERUDITE THERMOELECTRIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Half‐Heusler thermoelectric module with high conversion efficiency and high power density | |
EP1523048B1 (en) | Thermoelectric material and thermoelectric module using the thermoelectric material | |
KR101087355B1 (en) | Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them | |
Sekimoto et al. | High-thermoelectric figure of merit realized in p-type half-Heusler compounds: ZrCoSnxSb1-x | |
US8785762B2 (en) | Self-organising thermoelectric materials | |
JP6663612B2 (en) | Method for producing polycrystalline magnesium silicide and method for producing sintered body | |
KR20120061800A (en) | Magnesium-silicon composite material and process for producing same, and thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module each comprising or including the composite material | |
KR101663183B1 (en) | Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same | |
KR20060125789A (en) | A method of preparation for the high performance thermoelectric material indium-cobalt-antimony | |
Fu et al. | Thermoelectric properties of DC-sputtered filled skutterudite thin film | |
WO2017170914A1 (en) | Compound, thermoelectric conversion material, and method for producing compound | |
JP5061280B2 (en) | P-type thermoelectric material and method for producing the same | |
JP2003197985A (en) | Thermoelectric conversion material and thermoelectric conversion element using the same | |
JP2001064006A (en) | Si CLATHRATE COMPOUND, ITS PRODUCTION AND THERMOELECTRIC MATERIAL | |
Singsoog et al. | Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation | |
JP2003218410A (en) | Thermoelectric material, its manufacturing method, and thermoelectric conversion device | |
JP5099976B2 (en) | Method for producing thermoelectric conversion material | |
TWI768045B (en) | Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and method for producing magnesium-based thermoelectric conversion material | |
CN105970070A (en) | P-type alpha-MgAgSbSn thermoelectric material with high optimum value and preparation method | |
EP4215633A1 (en) | Thermoelectric material, method for producing same, and thermoelectric power generation element | |
EP1708966A2 (en) | Clathrate compounds, thermoelectric conversion elements, and methods for producing the same | |
JP2001135865A (en) | Thermoelectric conversion material and manufacturing method for it | |
JP3476343B2 (en) | Thermoelectric conversion material | |
JP2510158B2 (en) | Thermoelectric element and manufacturing method thereof | |
JP2002118296A (en) | N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071127 |