JP2003215032A - Living body optical measuring device - Google Patents
Living body optical measuring deviceInfo
- Publication number
- JP2003215032A JP2003215032A JP2002008651A JP2002008651A JP2003215032A JP 2003215032 A JP2003215032 A JP 2003215032A JP 2002008651 A JP2002008651 A JP 2002008651A JP 2002008651 A JP2002008651 A JP 2002008651A JP 2003215032 A JP2003215032 A JP 2003215032A
- Authority
- JP
- Japan
- Prior art keywords
- light
- living body
- wavelength
- laser
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 45
- 238000005259 measurement Methods 0.000 claims abstract description 41
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 230000007704 transition Effects 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract 2
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 102000001554 Hemoglobins Human genes 0.000 description 4
- 108010054147 Hemoglobins Proteins 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 101000777301 Homo sapiens Uteroglobin Proteins 0.000 description 1
- 102100031083 Uteroglobin Human genes 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は生体光計測装置に
関し、特に半導体レーザを光源とする生体光計測装置の
光源の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological optical measurement device, and more particularly to improvement of a light source of a biological optical measurement device using a semiconductor laser as a light source.
【0002】[0002]
【従来の技術】生体光計測装置は、光源から特定波長の
レーザ光を被検体に照射し、被検体を透過した光或いは
被検体で反射した光を受光素子で検出し、その光量から
血液循環、血行動態、ヘモグロビン変化などの生体情報
を得る装置である。近年、光ファイバを利用して、複数
の測定点を含む領域を検査し、その領域についての生体
情報、具体的にはヘモグロビン動向を画像として表示し
たり、脳の活性領域などを計測するようにした光トポグ
ラフィ装置が提案され、実用化されている。2. Description of the Related Art A biological light measuring device irradiates a subject with laser light of a specific wavelength from a light source, detects light transmitted through the subject or light reflected by the subject with a light receiving element, and circulates blood based on the amount of light. , A device for obtaining biological information such as hemodynamics and hemoglobin changes. Recently, using an optical fiber, an area including a plurality of measurement points is inspected, and biological information about the area, specifically, hemoglobin movement is displayed as an image, or an active area of the brain is measured. The optical topography device has been proposed and put into practical use.
【0003】このような生体光計測装置の光源として
は、例えば発振波長780nm、830nmなどの赤外半導体レー
ザが用いられている。複数の計測点を計測する光トポグ
ラフィ装置では、このような半導体レーザに複数チャン
ネル識別のために数kHzの変調信号を重畳して駆動し、発
光させている。As a light source of such a living body optical measuring device, for example, an infrared semiconductor laser having an oscillation wavelength of 780 nm or 830 nm is used. In an optical topography device that measures a plurality of measurement points, a modulation signal of several kHz is superimposed and driven on such a semiconductor laser in order to identify a plurality of channels, and the semiconductor laser emits light.
【0004】[0004]
【発明が解決しようとする課題】一般に、半導体レーザ
の発振波長には温度依存性があり、光源自体の温度の上
昇に伴い、波長が遷移する。半導体レーザの波長の遷移
による影響を排除するために、通常、30分程度のウォー
ミングアップを行い、光源温度が安定した状態で計測を
行なうようにしているが、実際にはウォーミングアップ
経過後にも光源温度は徐々に上昇し、正確な計測の妨げ
となる。Generally, the oscillation wavelength of a semiconductor laser has temperature dependence, and the wavelength shifts as the temperature of the light source itself rises. In order to eliminate the influence of the transition of the wavelength of the semiconductor laser, the warm-up time is usually about 30 minutes, and the measurement is performed with the light source temperature stable. It gradually rises and hinders accurate measurement.
【0005】具体的には、図8に示すように、半導体レ
ーザの温度変動による波長遷移は不連続な量の変化であ
り、一方、受光素子の受光特性には波長依存性があるた
め、このような不連続な量の変化は受光量の不連続な変
化として現れる。このような不連続な変化は、計測対象
である生体からの情報と区別されにくく、精度の良い生
体光計測の妨げとなる。またこのような不連続な変化
は、公知の温度補償回路等の補正技術によって補正する
ことが困難である。Specifically, as shown in FIG. 8, the wavelength transition due to the temperature fluctuation of the semiconductor laser is a discontinuous change, while the light receiving characteristic of the light receiving element has wavelength dependence. Such a discontinuous change in amount appears as a discontinuous change in the amount of received light. Such discontinuous changes are difficult to distinguish from information from the living body that is the measurement target, and hinder accurate optical measurement of the living body. Further, it is difficult to correct such a discontinuous change by a known correction technique such as a temperature compensation circuit.
【0006】一般に情報通信分野において、光源のレー
ザーダイオード(LD)を数百MHzの高周波変調をかけ
て駆動することによって、マルチモード発信させ、モー
ドホップの影響を除去する技術が知られているが、微小
なアナログ量を計測する生体光計測において、このよう
な高周波変調は測定ノイズの原因となるため採用するこ
とができない。Generally in the field of information and communication, a technique is known in which a laser diode (LD) as a light source is driven by being subjected to high frequency modulation of several hundred MHz to cause multimode emission and eliminate the influence of mode hop. In the optical measurement of living body for measuring a minute amount of analog, such high frequency modulation cannot be adopted because it causes measurement noise.
【0007】そこで本発明は、光源の波長遷移に起因す
る測定精度の低下を防止し、高精度の測定が可能な生体
光計測装置を提供することを目的とする。また本発明
は、比較的短いウォーミングアップ時間で、正確な測定
が可能な生体光計測装置を提供することを目的とする。Therefore, it is an object of the present invention to provide a living body optical measurement device capable of preventing a decrease in measurement accuracy due to a wavelength transition of a light source and performing a highly accurate measurement. Another object of the present invention is to provide a living body optical measurement device capable of accurate measurement with a relatively short warm-up time.
【0008】[0008]
【課題を解決するための手段】上記目的を達成する本発
明の生体光計測装置は、所定の波長の光を発生する発光
手段と、前記発光手段からの光を照射することによって
生体を透過又は生体から反射する光を受光する受光手段
と、受光手段が検出した光量から生体情報を得る信号処
理手段とを備えた生体光計測装置において、前記発光手
段が発生する光の、温度変化に対する波長遷移を連続的
な波長変化に変換する手段を備えたことを特徴とするも
のである。Means for Solving the Problems A living body optical measurement system according to the present invention that achieves the above-mentioned object transmits light to a living body by emitting light from a light emitting means that emits light of a predetermined wavelength, In a living body optical measuring device comprising a light receiving means for receiving light reflected from a living body and a signal processing means for obtaining living body information from the amount of light detected by the light receiving means, a wavelength transition of light generated by the light emitting means with respect to temperature change Is provided with a means for converting the wavelength into a continuous wavelength change.
【0009】本発明の一つの態様によれば、発光手段
は、半導体レーザとレーザ駆動素子とを備え、レーザ駆
動素子からの電流に数MHzの高周波を印加する変調印加
素子を備えることにより、温度変化に対する波長遷移を
連続的な波長変化に変換する。According to one aspect of the present invention, the light emitting means includes a semiconductor laser and a laser driving element, and includes a modulation applying element for applying a high frequency of several MHz to the current from the laser driving element. The wavelength transition with respect to the change is converted into a continuous wavelength change.
【0010】また本発明の別の態様によれば、発光手段
は、複数の半導体レーザを備え、複数の半導体レーザか
らの光を光結合手段で合成することにより、合成光にお
いては、個々の温度変化に対する波長遷移が連続的な波
長変化に変換される。According to another aspect of the present invention, the light emitting means includes a plurality of semiconductor lasers, and the light from the plurality of semiconductor lasers is combined by the optical coupling means, so that in the combined light, individual temperatures are obtained. The wavelength transition with respect to the change is converted into a continuous wavelength change.
【0011】本発明の生体光計測装置は、好適には、発
光手段が発生する光の連続的な波長変化を補正する手段
を備える。補正する手段としては、例えば、発光手段の
光出力を補正する温度補償回路を採用することができ
る。或いは信号処理手段において波長変化に伴う受光量
変化を補償する演算を行なうソフトウェア手段を採用す
ることができる。The living body optical measurement system of the present invention preferably comprises means for correcting a continuous wavelength change of light generated by the light emitting means. As the correcting means, for example, a temperature compensating circuit for correcting the light output of the light emitting means can be adopted. Alternatively, the signal processing means may employ software means for performing a calculation for compensating for the change in the amount of received light due to the change in wavelength.
【0012】本発明によれば、光源の波長遷移による、
受光量の不連続な変化を連続的な変化に変えることによ
り、不連続な変化に起因する測定誤差をなくし、精度の
よい生体光計測が可能となる。According to the present invention, due to the wavelength transition of the light source,
By changing the discontinuous change in the amount of received light into a continuous change, it is possible to eliminate a measurement error caused by the discontinuous change and perform accurate biological light measurement.
【0013】[0013]
【発明の実施の形態】以下、本発明の生体光計測装置
を、図面に示す実施形態に基づきさらに説明する。BEST MODE FOR CARRYING OUT THE INVENTION The biological optical measurement device of the present invention will be further described below based on the embodiments shown in the drawings.
【0014】図1は、本発明が適用される光トポグラフ
ィ装置の全体概要を示す図である。この光トポグラフィ
装置は、所定の波長の光を被検体の検査部位に照射する
ための光源部1と、被検体の検査部位を透過した光或い
は検査部位で反射、散乱した光(以下、まとめて透過光
という)を検出する受光素子を備えた光計測部2と、光
源部1からの光を被検体の検査部位に誘導する照射用光
ファイバ6及び検査部位からの透過光を光計測部に誘導
する検出用光ファイバ7の各先端を被検体の検査部位に
当接させるために、各先端を着脱自在に固定するプロー
ブ3と、光計測部2で計測した信号をもとに血中ヘモグロ
ビン量などを表す生体信号を作成し、画像化する信号処
理部4とを備えている。FIG. 1 is a diagram showing an overall outline of an optical topography apparatus to which the present invention is applied. This optical topography device is a light source unit 1 for irradiating a test region of a subject with light of a predetermined wavelength, and light transmitted through the test region of the subject or light reflected and scattered at the test region (hereinafter, collectively The optical measurement unit 2 having a light receiving element for detecting (transmitted light), the irradiation optical fiber 6 for guiding the light from the light source unit 1 to the inspection site of the subject and the transmitted light from the inspection site to the optical measurement unit. In order to bring each tip of the guiding detection optical fiber 7 into contact with the test site of the subject, a probe 3 that detachably fixes each tip, and blood hemoglobin based on the signal measured by the optical measurement unit 2. A signal processing unit (4) for creating a biometric signal representing a quantity or the like and imaging it.
【0015】光源部1は、可視光から赤外の波長領域内
の所定の波長、例えば780nmや830nmなどの光を放射する
半導体レーザ11と、半導体レーザ11からの光を複数の異
なる周波数で変調するための変調器を備えた複数の光モ
ジュール12とからなる。なお、変調の方法としては、半
導体レーザ11の駆動信号を変調する方法と、半導体レー
ザ11からの光を光学素子を用いて変調する方法がある
が、そのいずれでもよい。また半導体レーザ11として2
波長の光を用いる場合には、これら2波長の光を混合し
た後、各光モジュール毎に異なる周波数に変調し、光フ
ァイバ6を介して被検体の検査部位に照射する。The light source unit 1 modulates the light from the semiconductor laser 11 that emits light having a predetermined wavelength in the visible to infrared wavelength range, for example, 780 nm or 830 nm, and the light from the semiconductor laser 11 at a plurality of different frequencies. And a plurality of optical modules 12 each having a modulator for As a method of modulation, there are a method of modulating a drive signal of the semiconductor laser 11 and a method of modulating light from the semiconductor laser 11 using an optical element, but either method may be used. Also, as the semiconductor laser 11, 2
When light of wavelengths is used, the light of these two wavelengths is mixed, then modulated to a different frequency for each optical module, and irradiated to the inspection site of the subject through the optical fiber 6.
【0016】光計測部2は、検出用光ファイバ7に接続さ
れ、検出用光ファイバ7が誘導する光を光量に対応する
電気信号に変換するフォトダイオード21等の光電変換素
子と、フォトダイオード21からの電気信号を入力し、照
射位置及び波長に対応した変調信号を選択的に検出する
ためのロックインアンプ22と、ロックインアンプ22から
の信号をA/D変換するA/D変換器23とからなる。A/D
変換器23の出力は、信号処理部4に送られ、ここで信号
処理された後、ヘモグロビン量などの変化や分布を表す
画像が作成、表示される。信号処理部4は、装置全体を
制御する制御部、制御や信号処理に必要な条件等を記憶
する記憶部41、信号処理部42、画像を表示する表示装置
5を備えている。The optical measuring unit 2 is connected to the detecting optical fiber 7, and a photoelectric conversion element such as a photodiode 21 for converting the light guided by the detecting optical fiber 7 into an electric signal corresponding to the amount of light, and the photodiode 21. Lock-in amplifier 22 for selectively detecting a modulation signal corresponding to an irradiation position and a wavelength, and an A / D converter 23 for A / D converting the signal from the lock-in amplifier 22. Consists of. A / D
The output of the converter 23 is sent to the signal processing unit 4, where it is subjected to signal processing, and then an image showing changes and distribution of the hemoglobin amount and the like is created and displayed. The signal processing unit 4 is a control unit that controls the entire device, a storage unit 41 that stores conditions and the like necessary for control and signal processing, a signal processing unit 42, and a display device that displays an image.
It has 5.
【0017】光源部1の詳細を図2に示す。半導体レー
ザ111は、図示しない電源回路に接続されたドライブ素
子112に接続され、このドライブ素子112を介して所定の
波長の光出力を得るのに必要な電流が供給される。ここ
で半導体レーザ111の光を駆動信号を変調して変調する
場合には、複数の半導体レーザ111に供給される電流
は、それぞれチャンネルを識別するために数kHz〜10kHz
の周波数で変調されている。また半導体レーザ111は、
ドライブ素子112からの電流に数MHzの周波数を重畳する
変調印加素子113に接続されている。この変調印加素子1
13は、図3に示すように、数MHzの周波数で半導体レー
ザ111をオンオフする。The details of the light source unit 1 are shown in FIG. The semiconductor laser 111 is connected to a drive element 112 connected to a power supply circuit (not shown), and a current required to obtain an optical output of a predetermined wavelength is supplied via the drive element 112. Here, when the light of the semiconductor laser 111 is modulated by modulating the drive signal, the current supplied to the plurality of semiconductor lasers 111 is several kHz to 10 kHz in order to identify each channel.
It is modulated by the frequency of. The semiconductor laser 111 is
It is connected to a modulation applying element 113 that superimposes a frequency of several MHz on the current from the drive element 112. This modulation applying element 1
As shown in FIG. 3, 13 turns on / off the semiconductor laser 111 at a frequency of several MHz.
【0018】このような構成の光源部1では、半導体レ
ーザ11の駆動開始とともに温度が上昇すると、発振波長
も図8に示すように遷移することになるが、駆動電流に
数MHzの高周波を重畳することにより、この周波数で点
灯、消灯を繰り返すことになる。これは、図4に示すよ
うに、遷移前の波長λ1と遷移後の波長λ2の二つの波長
で発振を起こさせていることと同じ状態であり、温度の
上昇に伴い遷移した波長λ2の現れる頻度が高くなる。
そして、点灯、消灯の繰り返しの周波数(数MHz)は、
受光素子によるサンプリング間隔(通常0.1秒程度)に
比べ十分に速いので、計測された光量は図4中太線401
で示すような連続した変化となる。即ち、受光素子で
は、時間の経過(即ち、温度の上昇)に伴い、波長λ1
のときの低い値から波長λ2の時の値に連続的に変化し
た光が検出される。In the light source section 1 having such a structure, when the temperature rises with the start of driving the semiconductor laser 11, the oscillation wavelength also changes as shown in FIG. 8, but a high frequency of several MHz is superimposed on the driving current. By doing so, lighting and extinguishing are repeated at this frequency. This is the same state as shown in FIG. 4 in which oscillation is caused at two wavelengths, the wavelength λ1 before the transition and the wavelength λ2 after the transition, and the transition of the wavelength λ2 appears as the temperature rises. It becomes more frequent.
And the frequency (several MHz) of repeated turning on and off is
Since it is sufficiently faster than the sampling interval (usually about 0.1 seconds) by the light receiving element, the measured light quantity is 401 in FIG.
It becomes a continuous change as shown in. That is, in the light receiving element, as the time elapses (that is, the temperature rises), the wavelength λ1
The light continuously changing from the low value at the time to the value at the wavelength λ2 is detected.
【0019】このように本実施形態によれば、光源レー
ザからの光を、受光素子のサンプリング間隔よりも十分
に早い周波数でオンオフすることにより、温度変化に伴
う不連続的な変化である波長の遷移を、受光側において
は連続的な受光量変化となるように変換することができ
る。これにより、温度補償回路のようなハードウェア或
いは計測信号解析処理時のフィッティング処置のような
ソフトウェアを用いた温度補正を容易に行なうことがで
きる。なお、温度変化に伴う波長の変化が連続的である
場合には、温度補正しなくても光計測を行なうことは可
能であるが、以下述べるような温度補償回路や信号処理
によって補正することが望ましい。As described above, according to this embodiment, the light from the light source laser is turned on and off at a frequency sufficiently faster than the sampling interval of the light receiving element, so that the wavelength which is a discontinuous change due to the temperature change is changed. The transition can be converted so that the light-receiving side has a continuous change in the amount of received light. As a result, it is possible to easily perform temperature correction using hardware such as a temperature compensation circuit or software such as fitting treatment during measurement signal analysis processing. If the wavelength changes continuously with the temperature change, it is possible to perform optical measurement without temperature correction, but it can be corrected by a temperature compensation circuit or signal processing as described below. desirable.
【0020】温度補償回路を備えた光源部の一例を図5
に示す。ここで図2と同じ要素については、同一番号で
示した。図示する例では、図4に示す光量変化を一次変
化とみなし、温度補償回路として、光量変化と逆の一次
の出力特性を有するサーミスタ114の出力を、半導体レ
ーザ111の駆動素子112に入力するようにしている。これ
により、温度依存性のない計測結果を得ることができ
る。FIG. 5 shows an example of a light source section provided with a temperature compensation circuit.
Shown in. Here, the same elements as those in FIG. 2 are indicated by the same numbers. In the illustrated example, the change in light quantity shown in FIG. 4 is regarded as a primary change, and the temperature compensating circuit inputs the output of the thermistor 114 having a primary output characteristic opposite to the change in light quantity to the drive element 112 of the semiconductor laser 111. I have to. This makes it possible to obtain a measurement result that does not depend on temperature.
【0021】ソフトウェアによって補正する場合には、
例えば図6に示すように、光源部11に温度センサ115を
取り付け、この温度センサ115が検出した光源部1の温度
を信号処理部4に送る。一方、信号処理部4の記憶部41に
は、予め温度に応じた補正量を記憶しておく。或いは受
光量を温度の一次関数としたとき、そのパラメータを記
憶しておく。そして、光計測時に温度センサ115が検出
した温度とその温度における補正量を用いて、計測した
光量を補正する。When the correction is performed by software,
For example, as shown in FIG. 6, a temperature sensor 115 is attached to the light source unit 11, and the temperature of the light source unit 1 detected by the temperature sensor 115 is sent to the signal processing unit 4. On the other hand, the storage unit 41 of the signal processing unit 4 stores a correction amount according to the temperature in advance. Alternatively, when the amount of received light is a linear function of temperature, the parameter is stored. Then, the measured light amount is corrected using the temperature detected by the temperature sensor 115 during the light measurement and the correction amount at that temperature.
【0022】次に本発明の第2の実施形態を説明する。
この実施形態では、レーザの波長遷移が起こる温度は、
同じ種類のレーザ素子でも固体ごとに異なることを利用
し、多数のレーザ素子からの光を合成して一つの光源と
することにより、個々のレーザ素子の波長遷移の影響を
平滑化し、全体として連続した変化となるようにしたも
のである。Next, a second embodiment of the present invention will be described.
In this embodiment, the temperature at which the wavelength transition of the laser occurs is
Taking advantage of the fact that different laser elements of the same type differ from one solid to another, by combining the light from multiple laser elements into a single light source, the effects of wavelength transitions of individual laser elements are smoothed, and as a whole, it is continuous. The changes are made.
【0023】第2の実施形態による光源レーザの概要を
図7(a)に示す。図示するように、照射用光ファイバ6
は光結合器71を介して複数の半導体レーザLD1〜LDiに
接続されている。半導体レーザLD1〜LDiは、同じ種類
で同一波長の光を発生するものである。An outline of the light source laser according to the second embodiment is shown in FIG. As shown, the irradiation optical fiber 6
Are connected to a plurality of semiconductor lasers LD1 to LDi via an optical coupler 71. The semiconductor lasers LD1 to LDi generate light of the same type and the same wavelength.
【0024】半導体レーザLD1〜LDiが発生する光は、
光結合器71により混合されて、光ファイバ6先端から生
体に照射される。このとき、光源部1の温度変化に伴
い、各半導体レーザLD1〜LDiは、個々の温度依存特性
に応じて独立に波長遷移を起こすが、合成光については
個々の波長遷移による受光量変動の影響が低減され、連
続的な変化とみなすことができるようになる。なお、波
長遷移を平滑化するために半導体レーザ数(i)は多い
ほどよいが、実用的には数個〜10数個とする。The light generated by the semiconductor lasers LD1 to LDi is
The light is mixed by the optical coupler 71, and the living body is irradiated from the tip of the optical fiber 6. At this time, as the temperature of the light source unit 1 changes, the respective semiconductor lasers LD1 to LDi independently cause wavelength transitions according to their individual temperature-dependent characteristics. Is reduced and can be regarded as a continuous change. In order to smooth the wavelength transition, the larger the number of semiconductor lasers (i), the better. However, the number is practically several to ten or more.
【0025】尚、光源1として複数の波長の光源レーザ
を用いる場合には、図7(b)に示すように、各々の波
長について複数のレーザ素子LD11〜LD1i、LD21〜LD2i
で構成し、これを光結合器72、73で混合し、さらに光結
合器74で混合してもよいし、図7(c)に示すように一
つの光結合器75で混合して生体に照射することができ
る。このように混合して1本の光ファイバ先端から照射
することにより、複数の測定点で測定する場合にも位置
分解能を低下することなく計測できる。When a light source laser having a plurality of wavelengths is used as the light source 1, as shown in FIG. 7B, a plurality of laser elements LD11 to LD1i and LD21 to LD2i are provided for each wavelength.
The optical couplers 72 and 73 may be mixed together, and the optical coupler 74 may be further mixed. Alternatively, as shown in FIG. Can be irradiated. By thus mixing and irradiating from one optical fiber tip, it is possible to perform measurement without lowering the position resolution even when measuring at a plurality of measurement points.
【0026】本実施形態においても、図5又は図6に示
すように、温度補償回路を設けるか、信号処理部におい
て補正処理を行うことにより、温度依存性のない計測結
果を得ることができる。Also in the present embodiment, as shown in FIG. 5 or 6, by providing a temperature compensating circuit or performing correction processing in the signal processing section, it is possible to obtain a measurement result having no temperature dependence.
【0027】[0027]
【発明の効果】本発明によれば、レーザの波長遷移に起
因する受光量の不連続変化を平滑化することができるの
で、温度変化による光出力の変動を容易に補正し、高精
度の生体光計測が可能となる。According to the present invention, since the discontinuous change in the amount of light received due to the wavelength transition of the laser can be smoothed, the fluctuation of the optical output due to the temperature change can be easily corrected, and a highly accurate living body can be obtained. Optical measurement is possible.
【図1】本発明が適用される生体光計測装置の全体概要
を示す図FIG. 1 is a diagram showing an overall outline of a biological optical measurement device to which the present invention is applied.
【図2】図1の光源部の一実施形態を示す図FIG. 2 is a diagram showing an embodiment of the light source unit of FIG.
【図3】変調印加素子の出力を示す図FIG. 3 is a diagram showing an output of a modulation applying element.
【図4】変調後のレーザと受光素子が計測する光量との
関係を示す図FIG. 4 is a diagram showing a relationship between a laser after modulation and a light amount measured by a light receiving element.
【図5】温度補償回路を設けた光源部の一例を示す図FIG. 5 is a diagram showing an example of a light source section provided with a temperature compensation circuit.
【図6】本発明による生体光計測装置の他の実施形態を
示す図FIG. 6 is a diagram showing another embodiment of the biological optical measurement device according to the present invention.
【図7】本発明による生体光計測装置の他の実施形態を
示す図FIG. 7 is a diagram showing another embodiment of the biological optical measurement device according to the present invention.
【図8】半導体レーザの温度依存性を示す図FIG. 8 is a diagram showing temperature dependence of a semiconductor laser.
1・・・光源部(発光手段)、2・・・光計測部、4・・・
信号処理部、11(111)・・・半導体レーザ、113・・・
変調印加素子、114・・・温度補償回路、115・・・温度
センサ1 ... Light source part (light emitting means), 2 ... light measuring part, 4 ...
Signal processing unit, 11 (111) ... Semiconductor laser, 113 ...
Modulation applying element, 114 ... Temperature compensation circuit, 115 ... Temperature sensor
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA05 BB12 CC16 EE01 EE02 EE11 GG01 GG03 GG06 HH01 HH06 JJ17 JJ22 KK01 KK03 MM09 MM10 NN01 NN02 PP04 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 2G059 AA05 BB12 CC16 EE01 EE02 EE11 GG01 GG03 GG06 HH01 HH06 JJ17 JJ22 KK01 KK03 MM09 MM10 NN01 NN02 PP04
Claims (6)
前記発光手段からの光を照射することによって生体を透
過又は生体から反射する光を受光する受光手段と、受光
手段が検出した光量から生体情報を得る信号処理手段と
を備えた生体光計測装置において、 前記発光手段が発生する光の、温度変化に対する波長遷
移を連続的な波長変化に変換する手段を備えたことを特
徴とする生体光計測装置。1. A light emitting means for generating light of a predetermined wavelength,
In a living body optical measurement device comprising a light receiving means for receiving light transmitted through or reflected by a living body by irradiating light from the light emitting means, and a signal processing means for obtaining living body information from the amount of light detected by the light receiving means. A living body optical measurement device comprising means for converting a wavelength transition of light generated by the light emitting means with respect to a temperature change into a continuous wavelength change.
駆動素子とを備え、前記変換する手段は、前記レーザ駆
動素子からの電流に数MHzの高周波を印加する変調印加
素子である請求項1記載の生体光計測装置。2. The light emitting means comprises a semiconductor laser and a laser driving element, and the converting means is a modulation applying element for applying a high frequency of several MHz to the current from the laser driving element. Biological light measurement device.
備え、前記変換する手段は、前記複数の光源レーザから
の光を合成する光結合手段であることを特徴とする請求
項1記載の生体光計測装置。3. The living body according to claim 1, wherein the light emitting means includes a plurality of semiconductor lasers, and the converting means is an optical coupling means for combining lights from the plurality of light source lasers. Optical measuring device.
体光計測装置であって、前記発光手段が発生する光の連
続的な波長変化を補正する手段を備えたことを特徴とす
る生体光計測装置。4. The living body optical measurement apparatus according to claim 1, further comprising means for correcting a continuous wavelength change of light generated by the light emitting means. Optical measuring device.
出力を補正する温度補償回路であることを特徴とする請
求項4記載の生体光計測装置。5. The biological optical measurement device according to claim 4, wherein the correcting unit is a temperature compensating circuit that corrects the light output of the light emitting unit.
に設けられ、波長変化に伴う受光量変化を補償する演算
を行なうソフトウェア手段であることを特徴とする請求
項4記載の生体光計測装置。6. The biological optical measurement device according to claim 4, wherein the correction means is software means provided in the signal processing means and performing a calculation for compensating a change in the amount of received light due to a wavelength change. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002008651A JP3961300B2 (en) | 2002-01-17 | 2002-01-17 | Biological light measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002008651A JP3961300B2 (en) | 2002-01-17 | 2002-01-17 | Biological light measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003215032A true JP2003215032A (en) | 2003-07-30 |
JP3961300B2 JP3961300B2 (en) | 2007-08-22 |
Family
ID=27646858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002008651A Expired - Fee Related JP3961300B2 (en) | 2002-01-17 | 2002-01-17 | Biological light measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3961300B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012066930A1 (en) * | 2010-11-16 | 2012-05-24 | 株式会社 日立メディコ | Biological light measuring device and operation method therefor |
WO2015008435A1 (en) * | 2013-07-17 | 2015-01-22 | パナソニックIpマネジメント株式会社 | Spectroscope |
-
2002
- 2002-01-17 JP JP2002008651A patent/JP3961300B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012066930A1 (en) * | 2010-11-16 | 2012-05-24 | 株式会社 日立メディコ | Biological light measuring device and operation method therefor |
CN103209641A (en) * | 2010-11-16 | 2013-07-17 | 株式会社日立医疗器械 | Biological light measuring device and operation method therefor |
JP5943352B2 (en) * | 2010-11-16 | 2016-07-05 | 株式会社日立製作所 | Biological light measurement device and its operation method |
WO2015008435A1 (en) * | 2013-07-17 | 2015-01-22 | パナソニックIpマネジメント株式会社 | Spectroscope |
CN104641221A (en) * | 2013-07-17 | 2015-05-20 | 松下知识产权经营株式会社 | Spectroscope |
JPWO2015008435A1 (en) * | 2013-07-17 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Spectrometer |
US9829380B2 (en) | 2013-07-17 | 2017-11-28 | Panasonic Intellectual Property Management Co., Ltd. | Spectroscopic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3961300B2 (en) | 2007-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9259176B2 (en) | Biological optical measurement instrument and operation method therefor | |
EP0525107B1 (en) | Method and apparatus for measuring the concentration of absorbing substances | |
JPH09504718A (en) | Method and apparatus for the analysis of glucose in biological matrices | |
WO1989001144A1 (en) | Apparatus for measuring concentration and oxygen saturation of hemoglobin | |
JPH07171140A (en) | Oximetric device | |
JP2013520646A (en) | Fluorescence measurement | |
CN103747732A (en) | A non-invasive device and method for measuring bilirubin levels | |
JPH04256733A (en) | Measuring apparatus and method for blood parameter | |
EP2502567A1 (en) | Organism light measuring device and method for displaying information relating to necessity/unnecessity of replacement of light-emitting part | |
JP3961300B2 (en) | Biological light measurement device | |
US12044615B2 (en) | Biological component measurement device and biological component measurement method | |
JP2005111165A (en) | Instrument and method for measuring scattering absorbing medium | |
JP2009022353A (en) | Biological optical measuring apparatus | |
JP4531632B2 (en) | Biological component concentration measuring apparatus and biological component concentration measuring apparatus control method | |
JP4071506B2 (en) | Biological light measurement device | |
JP2001212115A (en) | Biomedical photometer | |
JP2000266669A (en) | Concentration-measuring apparatus | |
JP5333676B2 (en) | Light source device | |
JP2008125543A (en) | Constituent concentration measuring apparatus | |
CN116138771B (en) | Energy correction method for multispectral blood glucose photoacoustic detection | |
JP2005114678A (en) | Apparatus and method for measuring scattering absorber | |
JP2003254899A (en) | Biological light measuring apparatus | |
JP2004028645A (en) | Optical device measuring apparatus and light receiving unit for measuring optical device | |
JP2016158971A (en) | Component concentration measuring method | |
KR101812696B1 (en) | Apparatus and Method of Homodyne-based Diffuse Optical Spectroscopy and Imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041007 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070516 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |