Nothing Special   »   [go: up one dir, main page]

JP2003205352A - Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it - Google Patents

Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it

Info

Publication number
JP2003205352A
JP2003205352A JP2002001532A JP2002001532A JP2003205352A JP 2003205352 A JP2003205352 A JP 2003205352A JP 2002001532 A JP2002001532 A JP 2002001532A JP 2002001532 A JP2002001532 A JP 2002001532A JP 2003205352 A JP2003205352 A JP 2003205352A
Authority
JP
Japan
Prior art keywords
molten metal
sintered alloy
corrosion resistance
hard sintered
excellent corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002001532A
Other languages
Japanese (ja)
Other versions
JP3916465B2 (en
Inventor
Mari Nishi
西  麻里
Masaru Inoue
勝 井上
Yuji Yamazaki
裕司 山崎
Kenichi Takagi
研一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2002001532A priority Critical patent/JP3916465B2/en
Publication of JP2003205352A publication Critical patent/JP2003205352A/en
Application granted granted Critical
Publication of JP3916465B2 publication Critical patent/JP3916465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for molten metal having extremely excellent corrosion resistance and parting property to the molten metal and excellent in thermal fatigue characteristic, mechanical characteristic and wear resistance, and its producing method. <P>SOLUTION: This member is made of Mo<SB>2</SB>FeB<SB>2</SB>type double boride base hardening sintered alloy as a base material and formed of stable and close nitride film or oxide film and the nitride film consisting essentially of B, Mo, Fe, Cr and nitrogen on this surface, and used as the member for molten metal. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属に対して
優れた耐食性、耐摩耗性を有する焼結合金からなる溶融
金属用部材、その製造方法、およびそれらを用いた機械
構造部材に関する。より詳細には、Mo2FeB2型複硼
化物を主体とする焼結合金において、焼結合金の表面に
窒化物または窒化物と酸化物を形成させることにより、
耐磨耗性、耐食性、離型性を大幅に向上させた溶融金属
用部材、その製造方法、およびその溶融金属用部材を用
いた機械構造部材に関する。
TECHNICAL FIELD The present invention relates to a member for molten metal made of a sintered alloy having excellent corrosion resistance and wear resistance to molten metal, a method for producing the same, and a mechanical structural member using the same. More specifically, in a sintered alloy mainly composed of Mo 2 FeB 2 type double boride, by forming a nitride or a nitride and an oxide on the surface of the sintered alloy,
The present invention relates to a member for molten metal having significantly improved wear resistance, corrosion resistance, and releasability, a manufacturing method thereof, and a mechanical structural member using the member for molten metal.

【0002】[0002]

【従来の技術】溶融金属と直接接触して用いられる部材
の代表的なものとして、ダイカストマシン部品用の部材
がある。ダイカストマシンはプランジャー、スリーブ、
成形金型で構成され、溶融状態にある金属、例えば、ア
ルミニウム、亜鉛、マグネシウム等と直接接触して使用
される。このため、これらの部品に共通して要求される
特性としては、溶融金属に侵食(溶損)されない、反応
層を形成しないなどといった溶融金属に対する耐食性、
耐摩耗性、および耐熱疲労性などがある。従来、これら
の部品に用いる部材として工具鋼や熱間工具鋼(SKD
61など)が使用されていたが、溶融金属に対する耐食
性が十分でないため、寿命が短い問題があった。
2. Description of the Related Art A typical member used in direct contact with molten metal is a member for die casting machine parts. Die casting machine is a plunger, sleeve,
It is composed of a molding die and is used in direct contact with a molten metal, such as aluminum, zinc, or magnesium. Therefore, the properties commonly required for these parts are corrosion resistance to molten metal such as not being eroded (melted) by molten metal and not forming a reaction layer,
It has wear resistance and heat fatigue resistance. Conventionally, tool steel and hot work tool steel (SKD) have been used as members for these parts.
No. 61) was used, but there was a problem that the life was short because the corrosion resistance to molten metal was not sufficient.

【0003】そこで、高硬度および高強度を有している
ことに加えて、溶融金属に対して優れた耐食性を示すM
2FeB2型複硼化物系硬質焼結合金(特公昭60−5
7499号公報)をダイカスト部品に適用したところ、
大幅な寿命延長を得ることができた。しかし、この部材
を長時間使用した場合、部材の金属結合相と溶融金属と
の反応が進行し、耐食性や離型性が低下する問題が生じ
ることが判明した。
Therefore, in addition to having high hardness and high strength, M which exhibits excellent corrosion resistance to molten metal
o 2 FeB 2 type double boride type hard sintered alloy (Japanese Patent Publication No. 60-5
7499 publication) is applied to die casting parts,
We were able to obtain a significant life extension. However, it has been found that when this member is used for a long period of time, the reaction between the metal binding phase of the member and the molten metal proceeds, which causes a problem that corrosion resistance and releasability are deteriorated.

【0004】近年、溶融金属に対する耐食性や離型性を
改善するため、部材表面にアルミナ、ジルコニア等のセ
ラミックスの溶射皮膜を形成させる試みがなされてい
る。しかしながら、これらの溶射皮膜においてはヒート
チェック、ヒートクラック等の亀裂や剥離が生じやす
く、期待するほどの耐久性の向上は得られていない。
In recent years, attempts have been made to form a thermal spray coating of ceramics such as alumina or zirconia on the surface of a member in order to improve the corrosion resistance and the releasability of molten metal. However, in these thermal spray coatings, cracks such as heat check and heat cracks and peeling are likely to occur, and the expected improvement in durability has not been obtained.

【0005】また、特開平5−148588号公報や特
開平9−217167号公報は、鋼、鋳鉄、およびステ
ンレス鋼表面に酸化皮膜を設けることにより、部材の耐
食性の改善が図ることを開示している。しかし、形成さ
れた酸化皮膜は部材との密着性が弱く、かつ非常に薄
く、硬度が低いなどの問題があり、耐摩耗性強度が必要
となるプランジャー、スリーブには適用が困難である。
Further, JP-A-5-148588 and JP-A-9-217167 disclose that the corrosion resistance of members is improved by providing an oxide film on the surface of steel, cast iron and stainless steel. There is. However, the formed oxide film has problems such as weak adhesion to members, very thinness, and low hardness, and it is difficult to apply it to plungers and sleeves that require wear resistance strength.

【0006】[0006]

【発明が解決しようとする課題】本発明においては、上
記のMo2FeB2型複硼化物系硬質焼結合金の溶融金属
に対する耐食性、および離型性を改善し、極めて優れた
耐久性を示す硬質焼結合金を開発することにより、溶融
金属に対し極めて優れた耐食性、離型性を有し、かつ熱
疲労特性、機械的特性、耐摩耗性にも優れる溶融金属用
部材およびその製造方法、およびそれらを用いた機械構
造部材を提供することを目的とする。
DISCLOSURE OF THE INVENTION In the present invention, the Mo 2 FeB 2 type double boride-based hard sintered alloy has improved corrosion resistance to molten metal and releasability, and exhibits extremely excellent durability. By developing a hard sintered alloy, it has extremely excellent corrosion resistance to molten metal, releasability, and thermal fatigue properties, mechanical properties, and excellent wear resistance members for molten metal, and a method for producing the same. And it aims at providing the machine structural member using them.

【0007】[0007]

【課題を解決するための手段】本発明の溶融金属に対す
る耐食性に優れた溶融金属用部材は、母材が硬質焼結合
金からなり、該母材の、溶融金属と直接接触する表面に
窒化物皮膜を形成してなることを特徴とする。 より望
ましい形態として、前記母材がMo2FeB2型複硼化物
とFe基結合相からなる硬質焼結合金であり、また前記
窒化皮膜がMo、Cr、Fe、Bの金属元素と窒素を主
体とする(Fe,Mo,Cr,B) 型の複合窒化
物からなる皮膜であることを特徴とする。
For the molten metal of the present invention
In the member for molten metal with excellent corrosion resistance, the base metal is hard-fired
On the surface of the base metal that is in direct contact with the molten metal
It is characterized in that a nitride film is formed. More hope
As a preferable form, the base material is Mo.2FeB2Type compound boride
And a Fe-based binder phase, which is a hard sintered alloy,
The nitride film mainly contains metallic elements such as Mo, Cr, Fe and B and nitrogen.
Body (Fe, Mo, Cr, B)mN nType of compound nitriding
It is characterized by being a film made of a material.

【0008】そして、前記硬質燒結合金のより具体的構
成成分としては、3〜7.5%のB、21〜79.9%
のMo、2〜30%のCr、残部が10%以上のFeお
よび不可避的不純物からなることを基本とし、さらに 前記硬質焼結合金の全組成に対して、0.1〜8%のM
nを含有すること、さらにまた 硬質焼結合金に含有されるMo含有量の一部を、全組成
に対して0.1〜30%のWで置換してなること、さら
にまた 硬質焼結合金に含有されるMo含有量の一部を、全組成
に対して0.1〜20%のNbで置換してなること、さ
らにまた 硬質焼結合金に含有されるMo含有量の一部を、全組成
に対してWおよびNbの両者の合計で0.1〜30%置
換してなること、さらにまた 硬質焼結合金に含有されるNb含有量の一部または全部
をZr、Ti、Ta、Hfのいずれか1種または2種以
上と置換してなること、さらにまた 硬質焼結合金に含有されるFe含有量の一部を、全組成
に対してNiおよび/またはCoのいずれか一方または
両者の合計で0.1〜20%置換してなること、さらに
また 硬質焼結合金に含有されるCr含有量の一部を、全組成
に対して0.1〜25%のVで置換してなること等が採
用できる。
Further, as a more specific constituent component of the hard-sintered gold, B of 3 to 7.5%, 21 to 79.9%.
Of Mo, 2 to 30% of Cr, and the balance of 10% or more of Fe and unavoidable impurities, and 0.1 to 8% of M with respect to the total composition of the hard sintered alloy.
n, further, a part of the Mo content contained in the hard sintered alloy is replaced with W of 0.1 to 30% with respect to the total composition, and the hard sintered alloy is also formed. Part of the Mo content contained in is replaced with 0.1 to 20% of Nb with respect to the total composition, and further, part of the Mo content contained in the hard sintered alloy, A total of 0.1% to 30% of W and Nb is substituted for the total composition, and a part or all of the Nb content contained in the hard sintered alloy is Zr, Ti, Ta, Substituting any one or more of Hf, and a portion of the Fe content contained in the hard sintered alloy with respect to the total composition, either Ni and / or Co, or 0.1% to 20% of the total amount of both substituted, further hard sintered alloy Some of the Cr content to be contained, or the like to become replaced by 0.1 to 25% of V with respect to the total composition can be employed.

【0009】また本発明の溶融金属用部材の製造方法
は、上記のいずれかの硬質焼結合金を窒素雰囲気あるい
は窒素を含む還元性雰囲気中で加熱してその表面に窒化
物皮膜を形成させる、または 上記のいずれかの硬質焼結合金を大気中あるいは酸素を
含む雰囲気中で加熱してその表面に酸化物皮膜を形成さ
せた後、窒素を含む還元性雰囲気中で加熱し、酸化物皮
膜を還元して窒化物皮膜を形成させる、または 上記のいずれかの硬質焼結合金を大気中あるいは酸素を
含む雰囲気中で加熱してその表面に酸化物皮膜を形成さ
せた後、窒素雰囲気中で加熱し、酸化皮膜の下層に窒化
物皮膜を形成させることを特徴とする。前記窒素を含む
還元性雰囲気または窒素雰囲気の圧力は、0.1〜1.
5MPaが望ましい。さらに本発明の機械構造部材は、
上記のいずれかの溶融金属用部材の製造方法を用いて作
成した溶融金属用部材を用いることを特徴とする機械構
造部材であり、機械構造部材が射出成形機用部材、また
は溶融金属鋳造装置用部材であることを特徴とする。
Further, in the method for producing a member for molten metal according to the present invention, any one of the above hard sintered alloys is heated in a nitrogen atmosphere or a reducing atmosphere containing nitrogen to form a nitride film on the surface thereof. Alternatively, one of the above hard sintered alloys is heated in the air or in an atmosphere containing oxygen to form an oxide film on the surface thereof, and then heated in a reducing atmosphere containing nitrogen to form an oxide film. Reduce to form a nitride film, or heat any of the above hard sintered alloys in the air or in an atmosphere containing oxygen to form an oxide film on the surface and then heat in a nitrogen atmosphere. However, a nitride film is formed below the oxide film. The pressure of the reducing atmosphere containing nitrogen or the nitrogen atmosphere is 0.1 to 1.
5 MPa is desirable. Further, the mechanical structural member of the present invention,
A machine structural member characterized by using a member for molten metal created by using the method for manufacturing a member for molten metal according to any one of the above, wherein the mechanical structural member is a member for an injection molding machine or a molten metal casting apparatus. It is a member.

【0010】[0010]

【発明の実施の形態】本発明は、Mo2FeB2型複硼化
物系の硬質焼結合金(以下母材と称す)の表面にB、M
o、Fe、Crと窒素を主体とした安定かつ緻密な窒化
物皮膜または酸化物皮膜と窒化物皮膜を形成させること
により、溶融金属用の部材として用いた場合に溶融金属
に対して極めて優れた耐食性、および離型性を有する溶
融金属用部材を提供するものである。本発明の溶融金属
用部材の母材となる硬質焼結合金において、B、Mo、
Crの含有量を一定範囲内に限定することにより、微細
な複硼化物とFe基の結合相との2相組織となり、優れ
た強度、耐熱性(耐熱疲労性)が得られるばかりでな
く、上記の窒化物皮膜、または窒化物皮膜と酸化物皮膜
からなる表面処理層を緻密かつ安定に形成することがで
きる。また、母材中にMnを含有させることにより、母
材の機械的特性、表面処理層の耐食性および自己修復性
が向上し、さらに、Nb、Zr、Ti、Ta、Hfを含
有させることにより、表面処理層の耐食性および耐摩耗
性が向上し、Niおよび/またはCoを含有させること
により母材の熱衝撃性および高温強度が向上し、さら
に、Vを含有させることにより母材の機械的特性および
表面処理層の自己修復性がさらに改善される。以下に本
発明を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, B, M is formed on the surface of a hard sintered alloy of Mo 2 FeB 2 type double boride system (hereinafter referred to as a base material).
By forming a stable and dense nitride film or oxide film and nitride film mainly containing o, Fe, Cr and nitrogen, it is extremely excellent against molten metal when used as a member for molten metal. It is intended to provide a member for molten metal having corrosion resistance and releasability. In the hard sintered alloy which is the base material of the member for molten metal of the present invention, B, Mo,
By limiting the Cr content within a certain range, a fine two-phase microstructure of a double boride and a Fe-based binder phase is obtained, and not only excellent strength and heat resistance (heat fatigue resistance) are obtained, It is possible to densely and stably form the above-mentioned nitride film or the surface treatment layer composed of the nitride film and the oxide film. Further, by containing Mn in the base material, the mechanical properties of the base material, the corrosion resistance and the self-repairing property of the surface treatment layer are improved, and by containing Nb, Zr, Ti, Ta, and Hf, The corrosion resistance and wear resistance of the surface-treated layer are improved, the thermal shock resistance and high temperature strength of the base material are improved by containing Ni and / or Co, and the mechanical properties of the base material are improved by containing V. And the self-healing property of the surface treatment layer is further improved. The present invention will be described in detail below.

【0011】本発明者らは本発明に至るまでに、Mo2
FeB2型複硼化物を主体とする硬質焼結合金が、溶融
樹脂や溶融金属が使用される腐食雰囲気や高温域などの
環境下で耐えられるだけの十分な耐食性および耐摩耗性
を有していることを見出していた。しかしながら、近
年、樹脂の高性能付与のためガラス繊維やフェライト粒
子などの各種フィラーが多量に添加され、溶融樹脂の射
出成形などに用いる機械構造部材のさらなる耐摩耗性の
向上が必要とされていた。また、溶融金属に対しては、
長時間溶融金属と接触した場合、Fe基の結合相が溶融
金属と反応し、耐食性、離型(剥離)性が低下する傾向
を示し、溶融金属に対して更なる耐摩耗性、耐食性、離
型(剥離)性の改善が必要であることが判明した。そこ
で種々検討した結果、Mo2FeB2型複硼化物を主体と
する硬質焼結合金の表面に、緻密かつ安定な窒化物皮膜
または窒化物皮膜と酸化物皮膜からなる表面処理層を形
成させることにより、母材の強度を維持させたまま、表
面硬度を上昇させ、長期間使用しても溶融金属および溶
融樹脂に対する耐食性、離型性、耐摩耗性が大幅に向上
することを見出した。
The present inventors have reached the present invention by using Mo 2
A hard sintered alloy mainly composed of FeB 2 type double boride has sufficient corrosion resistance and wear resistance that it can withstand in a corrosive atmosphere in which a molten resin or molten metal is used or in an environment such as a high temperature range. I was finding that. However, in recent years, various fillers such as glass fibers and ferrite particles have been added in order to impart high performance to the resin, and further improvement in wear resistance of mechanical structural members used for injection molding of molten resin has been required. . For molten metal,
When contacting with the molten metal for a long time, the Fe-based binder phase reacts with the molten metal, and the corrosion resistance and release (peeling) properties tend to decrease, and further wear resistance, corrosion resistance, and release to the molten metal are exhibited. It was found that improvement in moldability (peelability) is necessary. As a result of various studies, formation of a dense and stable nitride film or a surface treatment layer composed of a nitride film and an oxide film on the surface of a hard sintered alloy mainly composed of Mo 2 FeB 2 type double boride. According to the above, it was found that the surface hardness is increased while maintaining the strength of the base material, and the corrosion resistance to the molten metal and the molten resin, the releasability, and the abrasion resistance are significantly improved even when used for a long time.

【0012】これは、窒化物皮膜が母材の主要構成元素
であるMo、Cr、Fe、Bの金属元素と窒素を主体と
して構成される(Fe,Mo,Cr,B)型の複
合窒化物からなる安定かつ緻密な皮膜であり、さらに酸
化物皮膜も、母材の主要構成元素であるMo、Cr、F
e、Bの金属元素と酸素を主体として構成される(F
e,Mo,Cr,B)型の複合酸化物からなる安
定かつ緻密な皮膜であり、これらの表面処理層が保護膜
を構成して溶融金属に対する耐食性や耐摩耗性を大幅に
改善向上させるためである。さらに、窒化物皮膜を形成
させる前に予め酸化物皮膜を形成させておき、この酸化
物皮膜を還元しながら窒化することにより、先に生成し
た酸化物層によって窒化が促進され、窒化物皮膜をより
厚く製膜することができる。
This is because the nitride film is mainly composed of metal elements of Mo, Cr, Fe and B, which are main constituent elements of the base metal, and nitrogen (Fe, Mo, Cr, B) m N n type. It is a stable and dense film made of composite nitride, and the oxide film also has Mo, Cr, F, which are the main constituent elements of the base metal.
e and B are mainly composed of a metal element and oxygen (F
e, Mo, Cr, B) x O y type composite oxide, which is a stable and dense film, and these surface treatment layers constitute a protective film to significantly improve the corrosion resistance and wear resistance to molten metal. This is to improve. Furthermore, by forming an oxide film in advance before forming the nitride film and nitriding while reducing this oxide film, nitriding is promoted by the oxide layer previously generated, and the nitride film is formed. A thicker film can be formed.

【0013】本発明の溶融金属用部材に用いる硬質焼結
合金は、上記4元素に加えて、選択的にMn、W、N
b、Zr、Ti、Ta、Hf、Ni、Co、Vが添加さ
れる場合もあり、この場合は合金表面に形成される窒化
物皮膜や酸化物皮膜は、Mo、Cr、Fe、Bに加えて
上記の選択的に添加される元素および窒素または酸素か
ら構成される。窒化物や酸化物にMo、Cr、Fe、B
が含有されない場合は、表面処理層の結合力が弱く、か
つ、母材との密着性が低下するために亀裂や剥離を生じ
やすく、耐摩耗性も十分でない。複合窒化物としては、
具体的には(Fe、Cr)3Mo3N、 Fe3N、Cr
N、Cr2N、MoN、Mo2N、BNなどが挙げられ
る。また複合酸化物としては、具体的には(Fe,M
o,Cr,B)23、(Fe,Mo,Cr,B)34
(Fe,Mo,Cr,B)O、(Fe,Mo,Cr,
B)O3、(Fe,Mo,Cr,B)O2.7〜2.9、(F
e,Mo,Cr,B)O2などが挙げられる。
The hard sintered alloy used for the member for molten metal according to the present invention includes, in addition to the above four elements, Mn, W and N selectively.
In some cases, b, Zr, Ti, Ta, Hf, Ni, Co, and V are added. In this case, the nitride film or oxide film formed on the alloy surface is added to Mo, Cr, Fe, and B. And the above-mentioned selectively added element and nitrogen or oxygen. Mo, Cr, Fe, B for nitrides and oxides
In the case of not containing, the bonding strength of the surface treatment layer is weak, and the adhesiveness with the base material is lowered, so that cracks and peeling are likely to occur, and abrasion resistance is also insufficient. As a compound nitride,
Specifically, (Fe, Cr) 3 Mo 3 N, Fe 3 N, Cr
N, Cr 2 N, MoN, Mo 2 N, BN and the like. As the complex oxide, specifically, (Fe, M
o, Cr, B) 2 O 3 , (Fe, Mo, Cr, B) 3 O 4 ,
(Fe, Mo, Cr, B) O, (Fe, Mo, Cr,
B) O 3 , (Fe, Mo, Cr, B) O 2.7 to 2.9 , (F
e, Mo, Cr, B) O 2 and the like.

【0014】上記の複合窒化物は、Mo2FeB2型の複
硼化物が窒化されることにより得られるため、母材とし
ては合金組成が主にMo、Cr、Fe、BからなるMo
2FeB2型複硼化物からなる硬質焼結合金である必要が
ある。上記硬質焼結合金において、Bは本発明の溶融金
属用部材の母材の硬質相となる複硼化物および表面処理
層を形成するために必要不可欠な元素である。また、B
を含有した表面処理層は母材との密着性を向上させる効
果を示す。B量が3%未満であると硬質相の割合が35
%を下回り、機械的特性が劣る。一方、7.5%を超え
ると硬質相の割合が95%を上回り、強度および耐熱衝
撃性が低下する。よって、B含有量は3〜7.5%に限
定する。
Since the above composite nitride is obtained by nitriding a Mo 2 FeB 2 type double boride, the alloy composition of the base material is mainly Mo, Cr, Fe and B.
It must be a hard sintered alloy composed of 2 FeB 2 type complex boride. In the above hard sintered alloy, B is an indispensable element for forming the double boride and the surface treatment layer which are the hard phase of the base material of the molten metal member of the present invention. Also, B
The surface-treated layer containing is effective in improving the adhesion to the base material. If the amount of B is less than 3%, the ratio of the hard phase is 35.
%, The mechanical properties are inferior. On the other hand, if it exceeds 7.5%, the ratio of the hard phase exceeds 95%, and the strength and the thermal shock resistance decrease. Therefore, the B content is limited to 3 to 7.5%.

【0015】MoはBと同様に複硼化物および表面処理
層を形成するために不可欠な元素である。母材において
は、一部は硬質合金の結合相中に固溶し、母材の機械的
強度を向上させる。しかし、適正量の上限(79.9
%)を超えて含有させるとM6C型炭化物などの金属間
化合物を形成して母材の強度が低下する。一方、含有量
が21%未満であると、Fe2BなどのFe硼化物が形
成するために母材の強度が低下する。よってMo含有量
は21〜79.9%に限定する。
Mo, like B, is an essential element for forming a double boride and a surface treatment layer. In the base material, a part of the base material forms a solid solution in the binder phase of the hard alloy to improve the mechanical strength of the base material. However, the upper limit of the appropriate amount (79.9)
%), An intermetallic compound such as M 6 C type carbide is formed to reduce the strength of the base material. On the other hand, if the content is less than 21%, Fe borides such as Fe 2 B are formed, so that the strength of the base material decreases. Therefore, the Mo content is limited to 21 to 79.9%.

【0016】CrもMoと同様に、母材においては硬質
相だけでなく結合相中にも均一に固溶して機械的特性を
向上させるばかりでなく、表面処理層においては安定か
つ緻密なCrと結合した複合酸化物の形成に不可欠な元
素である。しかし、30%を超えて含有させるとクロム
炭化物(Cr32)等の金属間化合物が形成して母材の
強度が低下する。一方、2%未満になると表面処理層の
Cr量が不十分となり、耐食性の低下を生じる。よっ
て、Cr含有量は2〜30%に限定する。
Like Mo, Cr does not only dissolve in the hard phase in the base metal uniformly in the binder phase to improve the mechanical properties, but also in the surface treatment layer, Cr is stable and dense. It is an essential element for the formation of complex oxides that are combined with. However, if the content exceeds 30%, an intermetallic compound such as chromium carbide (Cr 3 C 2 ) is formed and the strength of the base material is reduced. On the other hand, if it is less than 2%, the amount of Cr in the surface treatment layer becomes insufficient, and the corrosion resistance decreases. Therefore, the Cr content is limited to 2 to 30%.

【0017】Mnは母材の複硼化物の粒成長を抑制し、
合金組織を微細化させることにより、機械的特性を著し
く向上させる。また、Mnの添加により、焼結時に型く
ずれの少ない良好な形状の焼結体が得られ、ニヤネット
化が図られる効果を示す。さらにMnは酸素との親和力
が強いため、表面処理層の自己修復性をもたらし、部材
の耐久性を高める。含有量が0.1%未満では特性改善
の効果が認められず、8%を超えて含有させると母材の
機械的特性が低下する。よってMnの含有量は全組成に
対して0.1〜8%に限定する。
Mn suppresses the grain growth of the double boride of the base material,
By refining the alloy structure, the mechanical properties are significantly improved. Further, by adding Mn, it is possible to obtain a sintered body having a good shape with less shape loss during sintering, and it is possible to obtain a near-net structure. Further, since Mn has a strong affinity with oxygen, it brings self-repairing property of the surface treatment layer and enhances the durability of the member. If the content is less than 0.1%, the effect of improving the properties is not recognized, and if it exceeds 8%, the mechanical properties of the base material deteriorate. Therefore, the Mn content is limited to 0.1 to 8% with respect to the entire composition.

【0018】WはMoと置換させることが可能な元素で
あり、母材の強度を向上させる効果がある。しかしMo
との置換量が全組成に対して0.1%未満であるとその
効果は認められない。一方、Moと全組成に対して30
%を超えて置換してもその効果が認められなくなるばか
りでなく、母材の比重が増加し、製品重量が増大する。
したがってMoに対するWの置換量は全組成に対して
0.1〜30%に限定する。
W is an element that can be replaced with Mo and has the effect of improving the strength of the base material. But Mo
If the amount of substitution with is less than 0.1% with respect to the total composition, the effect is not recognized. On the other hand, 30 for Mo and the total composition
Not only will the effect not be observed even if substitution is made in excess of%, but the specific gravity of the base material will increase and the product weight will increase.
Therefore, the substitution amount of W for Mo is limited to 0.1 to 30% with respect to the total composition.

【0019】NbはMoと置換させることが可能な元素
であり、母材の複硼化物に固溶するとともに一部は他の
硬質粒子(硼化物、酸化物、炭化物、および窒化物)を
形成し、機械的特性を向上させる。しかし、含有量が
0.1%未満であると改善効果が認められず、20%を
超えて含有させると硬質合金の焼結性が低下し、強度の
低下を招くばかりでなく、高価な元素であるためにコス
トの上昇を招く。よってNbの含有量は全組成に対して
0.1〜20%に限定する。またMoはWとNbの両者
と置換させることも可能である。この場合、WとNbの
両者の合計が全組成に対して0.1〜30%で置換する
ことが好ましい。
Nb is an element capable of substituting for Mo, and forms a solid solution with the complex boride of the base material and partly forms other hard particles (borides, oxides, carbides, and nitrides). And improve the mechanical properties. However, if the content is less than 0.1%, no improvement effect is observed, and if the content exceeds 20%, the sinterability of the hard alloy decreases, leading to a decrease in strength, and an expensive element. Therefore, the cost is increased. Therefore, the content of Nb is limited to 0.1 to 20% with respect to the entire composition. Further, Mo can be replaced with both W and Nb. In this case, it is preferable that the total of both W and Nb be replaced by 0.1 to 30% with respect to the total composition.

【0020】Zr、Ti、Ta、HfはNbと同様にM
oと置換させることが可能な元素であり、Nbと同様に
機械的特性を向上させる。そのため、Nb含有量の一部
または全部をこれらの元素のいずれか1種または2種以
上と置換することができる。
Zr, Ti, Ta, and Hf are M like Nb.
It is an element that can be replaced with o and improves mechanical properties like Nb. Therefore, a part or all of the Nb content can be replaced with any one kind or two or more kinds of these elements.

【0021】Niおよび/またはCoはFe基結合相中
に固溶することにより硬質合金の熱衝撃性および高温強
度が向上する。Fe含有量に対する置換量が0.1%未
満であるとその改善効果が認められず、20%を超えて
含有させてもその特性向上の効果が認められなくなる。
よって、Niおよび/またはCoの含有量は全組成に対
して0.1〜20%に限定する。
When Ni and / or Co form a solid solution in the Fe-based binder phase, the thermal shock resistance and high temperature strength of the hard alloy are improved. If the substitution amount with respect to the Fe content is less than 0.1%, the improving effect is not recognized, and even if the content exceeds 20%, the effect of improving the characteristics is not recognized.
Therefore, the content of Ni and / or Co is limited to 0.1 to 20% with respect to the total composition.

【0022】VはCrと置換させることが可能な元素で
あり、少量含有させるだけで母材の機械的特性が向上す
る。さらに表面処理層においては、自己修復性の向上効
果をもたらす。0.1%未満であるとその特性改善効果
が認められず、25%を超えて含有させると、酸化皮膜
を形成させた場合、被膜の密着性が低下し、溶融金属へ
の不純物混入の原因となり得る。よってVの含有量は全
組成に対して0.1〜25%に限定する。
V is an element capable of substituting for Cr, and the mechanical properties of the base material are improved by containing it in a small amount. Further, in the surface treatment layer, the effect of improving self-repairing property is brought about. If it is less than 0.1%, its property improving effect is not recognized, and if it exceeds 25%, when an oxide film is formed, the adhesiveness of the film is reduced, causing impurities to be mixed into the molten metal. Can be. Therefore, the V content is limited to 0.1 to 25% with respect to the entire composition.

【0023】本発明の硬質合金は上記成分元素のほか、
残部がFeで構成される。Feは複硼化物および結合相
を構成する元素であり、表面処理層を構成する複合窒化
物の形成に必要不可欠である。本発明の硬質合金におい
ては、Feの含有量が10%未満であると複硼化物を十
分に形成させることができないばかりか、結合相中のF
e含有量が不足して強度が低下する。そのため、本発明
の硬質合金にはFeを10%以上含有させる必要があ
る。本発明の硬質合金においてFeを10%以上含有さ
せることができない場合は、許容範囲内においてFe以
外の各元素の含有量を減じて、10%以上のFeを含有
させることは言うまでもない。
The hard alloy of the present invention contains, in addition to the above-mentioned constituent elements,
The balance is composed of Fe. Fe is an element that forms the complex boride and the binder phase, and is essential for forming the complex nitride that forms the surface treatment layer. In the hard alloy of the present invention, when the Fe content is less than 10%, not only the double boride cannot be sufficiently formed, but also F in the binder phase is not formed.
The e content is insufficient and the strength decreases. Therefore, the hard alloy of the present invention needs to contain 10% or more of Fe. Needless to say, if the hard alloy of the present invention cannot contain 10% or more of Fe, the content of each element other than Fe is reduced within the allowable range to contain 10% or more of Fe.

【0024】本発明の硬質焼結合金が含有する不可避的
不純物元素の主なものはP、S、Cなどであり、硬質焼
結合金の強度を維持させるためにはこれらの含有量は極
力少なくすることが望ましい。これらの元素の含有量が
合計で1%以下であれば、機械的特性に与える影響は比
較的小さい。
The main unavoidable impurity elements contained in the hard sintered alloy of the present invention are P, S, C, etc., and in order to maintain the strength of the hard sintered alloy, their content is as small as possible. It is desirable to do. When the total content of these elements is 1% or less, the influence on the mechanical properties is relatively small.

【0025】次に本発明の溶融金属用部材の製造方法に
ついて説明する。まず母材である硬質合金の製造方法に
ついて説明する。(1)Fe、Mo、Cr、Mn、また
はさらにW、Nb、Zr、Ti、Ta、Hf、Ni、C
o、Vの1種または2種以上の元素とBからなるB合金
の粉末、または、(2)B合金粉末とこれら元素の1種
または2種以上の合金からなる粉末、または、(3)B
単体とFe、Mo、Cr、Mn、またはさらにW、N
b、Zr、Ti、Ta、Hf、Ni、Co、Vの1種ま
たは2種以上の単体粉末、または、(4)B単体とこれ
らの1種または2種以上の合金からなる粉末、を所定の
合金組成となるように配合し、振動ボールミル等を用い
て有機溶媒中で湿式粉砕後、造粒、成形し、該成形体を
真空中、還元ガス中、または不活性ガス中などの非酸化
性雰囲気中で液相焼結することにより製造する。
Next, a method of manufacturing the molten metal member of the present invention will be described. First, a method of manufacturing a hard alloy that is a base material will be described. (1) Fe, Mo, Cr, Mn, or W, Nb, Zr, Ti, Ta, Hf, Ni, C
Powder of B alloy consisting of B and one or more elements of o and V, or (2) Powder consisting of B alloy powder and alloy of one or more of these elements, or (3) B
Simple substance and Fe, Mo, Cr, Mn, or even W, N
b, Zr, Ti, Ta, Hf, Ni, Co, V, one or more kinds of simple substance powders, or (4) powder of B simple substance and an alloy of one or more kinds thereof, Compounded so as to have the alloy composition described above, wet-milled in an organic solvent using a vibrating ball mill, etc., and then granulated and molded, and the molded body is non-oxidized in vacuum, in a reducing gas, or in an inert gas. It is manufactured by liquid phase sintering in a neutral atmosphere.

【0026】なお、上記の硬質合金の硬質相となる複硼
化物は、上記原料粉末が焼結中に反応することによって
形成されるが、あらかじめMoおよびFe、さらに上記
の選択的に添加される元素からなる複硼化物、またはB
単体の粉末とMoおよびFeさらに上記の選択的に添加
される元素の粉末を炉中で反応させることにより、Mo
2FeB2型複硼化物を製造し、さらに結合組成のFe、
Mo、Ni、Co、および上記の選択的に添加される元
素の粉末を所定の合金組成となるように配合した粉末を
用いても差し支えない。
The complex boride which forms the hard phase of the above hard alloy is formed by the reaction of the above-mentioned raw material powder during sintering, but it is previously added with Mo and Fe, and further selectively as described above. Complex boride consisting of elements, or B
By reacting the powder of a simple substance with the powders of Mo and Fe and the above-mentioned selectively added elements in a furnace,
2 FeB 2 type complex boride is produced, and Fe having a bonding composition is further added.
Powders of Mo, Ni, Co, and powders of the above-mentioned selectively added elements may be used so as to have a predetermined alloy composition.

【0027】液相焼結は通常1373〜1673Kの焼
結温度で5〜90分間行う。焼結温度が1373K未満
の場合は液相が十分に出現せず、空孔の多い焼結体が得
られ、十分な強度が得られない。一方、焼結温度が16
73Kを超えると液相は十分に出現するものの、結晶粒
が粗大化し強度が低下する。また、焼結時間が5分未満
であると、元素の拡散が十分でなく、十分に高密度化し
ない。一方、90分を越えて焼結してもそれ以上の強度
上昇は認められず、場合によっては強度が低下すること
もある。以上のような液相が出現する焼結条件で焼結す
ることにより、空孔が消失し、ほぼ100%の密度の硬
質合金が得られる。液相を出現させずに空孔を消失させ
る方法として、熱間静水圧プレス法、ホットプレス法、
通電焼結法などがあり、これらの方法を用いても空孔を
消失させることができる。またこれらの方法と液相焼結
法を併用してもよい。
Liquid phase sintering is usually carried out at a sintering temperature of 1373 to 1673K for 5 to 90 minutes. If the sintering temperature is less than 1373 K, the liquid phase does not sufficiently appear, a sintered body with many pores is obtained, and sufficient strength cannot be obtained. On the other hand, the sintering temperature is 16
If it exceeds 73 K, the liquid phase appears sufficiently, but the crystal grains become coarse and the strength decreases. Further, if the sintering time is less than 5 minutes, the diffusion of elements is not sufficient and the density is not sufficiently increased. On the other hand, even if it is sintered for more than 90 minutes, no further increase in strength is observed, and in some cases, the strength may decrease. By sintering under the sintering conditions in which the liquid phase described above appears, the voids disappear and a hard alloy having a density of almost 100% is obtained. As a method of eliminating the pores without causing the liquid phase to appear, a hot isostatic pressing method, a hot pressing method,
There are current sintering methods and the like, and the voids can be eliminated by using these methods. Further, these methods may be used in combination with the liquid phase sintering method.

【0028】上記のようにして得られる本発明の溶融金
属用部材の母材である硬質焼結合金は、焼結体単体とし
てのみ用いられるばかりでなく、鋼材と接合させて複合
材として用いることも可能である。すなわち、本発明の
硬質焼結合金は超硬合金のように鋼材にロウ付けして使
用するばかりでなく、ロウ材を使用することなく直接鋼
材と接合させることも可能であり、強固な接着が得られ
る。また、焼結と鋼材を同時に接合する焼結接合法を適
用することも可能であり、鋼材は熱ダメージによる強度
低下を招来することがなく、複合材料をアルミニウムな
どの溶融金属のダイカスト用部材として用いた場合、溶
融金属に対して耐食性および耐摩耗性が必要とされる部
分にのみ、本発明の溶融金属用部材の母相である硬質合
金を必要最小限に用いることにより、金型などの部材を
低価格で製造することが可能となる。
The hard sintered alloy, which is the base material of the molten metal member of the present invention obtained as described above, is used not only as a single sintered body but also as a composite material by being joined to a steel material. Is also possible. That is, the hard sintered alloy of the present invention can be used not only by brazing to a steel material like a cemented carbide, but also by directly joining with a steel material without using a brazing material, and a strong adhesion can be obtained. can get. Further, it is also possible to apply a sinter joining method of joining sinter and steel at the same time, the steel does not cause strength deterioration due to heat damage, and the composite material is used as a member for die casting of molten metal such as aluminum. When used, only in a portion where corrosion resistance and wear resistance to the molten metal are required, by using the hard alloy that is the mother phase of the member for molten metal of the present invention to the minimum necessary, molds etc. It becomes possible to manufacture the member at a low price.

【0029】次に、上記のようにして得られた母材表面
に表面処理層を形成させることを特徴とする、本発明の
溶融金属用部材の製造方法について説明する。上記の溶
融金属用部材の表面に窒化物皮膜のみを形成させる場合
は、得られた母材を所望の形状に機械加工を行い、表面
を洗浄脱脂した後、0.1〜1.5MPaの窒素雰囲気
もしくは窒素を含有する還元性雰囲気中で773〜18
73Kの温度で5分〜50時間保持することにより窒化
物皮膜を形成させる。処理温度が773K未満の場合
は、長時間の処理を行っても優れた耐食性および耐摩耗
性が得られる十分な厚みを有する窒化物皮膜を形成する
ことはできない。一方、1873Kを超える処理温度で
処理した場合は、窒化物皮膜の剥離が生じる。処理時間
が5分未満の場合は十分な厚みの窒化物皮膜の形成が認
められず、50時間を超えて処理を行っても、窒化物皮
膜の成長は飽和し、剥離を生じるばかりでなく、コスト
の上昇につながる。よって、窒化処理は773〜187
3Kの温度で5分〜50時間、好ましくは973〜16
73Kで1〜30時間行う。雰囲気の圧力は処理槽外の
大気が雰囲気中に侵入することがないように、大気圧よ
りも高めにする必要があり、また圧力を高めると膜厚が
厚くなる傾向があるので、0.1〜1.5MPaの圧力
下で処理することが好ましい。
Next, a method for producing a member for molten metal according to the present invention, which comprises forming a surface treatment layer on the surface of the base material obtained as described above, will be described. When only the nitride film is formed on the surface of the above-mentioned molten metal member, the obtained base material is machined into a desired shape, the surface is washed and degreased, and then nitrogen of 0.1 to 1.5 MPa is applied. 773 to 18 in an atmosphere or a reducing atmosphere containing nitrogen
A nitride film is formed by holding at a temperature of 73K for 5 minutes to 50 hours. If the treatment temperature is less than 773K, it is not possible to form a nitride film having a sufficient thickness to obtain excellent corrosion resistance and wear resistance even if the treatment is performed for a long time. On the other hand, when the treatment temperature is higher than 1873K, the nitride film is peeled off. When the treatment time is less than 5 minutes, the formation of a nitride film having a sufficient thickness is not recognized, and even when the treatment is performed for more than 50 hours, not only the growth of the nitride film is saturated and peeling occurs, This leads to higher costs. Therefore, the nitriding treatment is 773 to 187.
5 minutes to 50 hours at a temperature of 3K, preferably 973 to 16
Do at 73K for 1-30 hours. The pressure of the atmosphere needs to be higher than the atmospheric pressure so that the atmosphere outside the processing tank does not enter the atmosphere, and if the pressure is increased, the film thickness tends to be thicker. It is preferable to perform the treatment under a pressure of ˜1.5 MPa.

【0030】窒化物皮膜のみを形成させる別法として、
得られた母材を所望の形状に機械加工を行い、表面を洗
浄脱脂した後、まず大気中もしくは酸素雰囲気中で77
3〜1873Kの温度で5分〜50時間保持して酸化物
皮膜を形成させる。酸化物皮膜の形成手段としては、高
温大気酸化法、高温湿潤水素酸化法等があるが特に限定
されない。処理温度が773K未満の場合は、長時間の
処理を行っても優れた耐食性が得られる十分な厚みを有
する酸化物皮膜を形成することはできない。一方、18
73Kを超える処理温度で処理した場合は、酸化物皮膜
の剥離が生じる。処理時間が5分未満の場合は十分な厚
みの酸化物皮膜の形成が認められず、50時間を超えて
処理を行っても、酸化物皮膜の成長は飽和し、剥離を生
じるばかりでなく、コストの上昇につながる。次いで
0.1〜1.5MPaの窒素を含む還元性雰囲気中で7
73〜1673Kの温度で1〜40時間保持する。この
ように、大気中または酸素を含む雰囲気中で加熱して酸
化物皮膜を形成させ、次いで窒素を含む還元性雰囲気中
で加熱すると、同一条件で窒化処理を行っても窒化処理
単独の場合よりも厚い窒化物皮膜が得られ、厚膜化しや
すくなる。
As an alternative method of forming only a nitride film,
The obtained base material is machined into a desired shape, and after cleaning and degreasing the surface, first, in the air or in an oxygen atmosphere, 77
Hold at a temperature of 3 to 1873K for 5 minutes to 50 hours to form an oxide film. The oxide film forming means includes a high temperature atmospheric oxidation method and a high temperature wet hydrogen oxidation method, but is not particularly limited. If the treatment temperature is less than 773K, it is not possible to form an oxide film having a sufficient thickness to obtain excellent corrosion resistance even if the treatment is performed for a long time. On the other hand, 18
When the treatment temperature is higher than 73 K, the oxide film is peeled off. When the treatment time is less than 5 minutes, formation of an oxide film having a sufficient thickness is not recognized, and even if the treatment is performed for more than 50 hours, not only the oxide film grows saturated and peels off, This leads to higher costs. Then, in a reducing atmosphere containing nitrogen of 0.1 to 1.5 MPa, 7
Hold at a temperature of 73-1673 K for 1-40 hours. As described above, when an oxide film is formed by heating in the air or in an atmosphere containing oxygen and then heated in a reducing atmosphere containing nitrogen, even if nitriding treatment is performed under the same conditions, nitriding treatment alone is more effective. A thick nitride film can be obtained, and it becomes easy to increase the film thickness.

【0031】酸化物皮膜を形成させた後、窒化処理する
と、窒化物皮膜は母材表面、すなわち酸化物皮膜の下層
に形成されることもある。この処理を実施する場合は、
上記と同様にして母材に機械加工を施し、表面を洗浄脱
脂した後、まず大気中もしくは酸素雰囲気中で773〜
1873Kの温度で5分〜50時間保持して酸化物皮膜
を形成させる。酸化物皮膜の形成手段としては、高温大
気酸化法、高温湿潤水素酸化法等があるが特に限定され
ない。処理温度が773K未満の場合は、長時間の処理
を行っても優れた耐食性が得られる十分な厚みを有する
酸化物皮膜を形成することはできない。一方、1873
Kを超える処理温度で処理した場合は、酸化物皮膜の剥
離が生じる。処理時間が5分未満の場合は十分な厚みの
酸化物皮膜の形成が認められず、50時間を超えて処理
を行っても、酸化物皮膜の成長は飽和し、剥離を生じる
ばかりでなく、コストの上昇につながる。よって、酸化
処理は773〜1873Kの温度で5分〜50時間、好
ましくは973〜1673Kで1〜30時間行う。この
ようにして酸化物皮膜が得られる。次いで上記と同様に
して窒化処理を行う。窒化物皮膜は焼結合金母材と酸化
物皮膜の界面に生成する。このようにして窒化物皮膜の
上層に酸化物皮膜を有する2層皮膜が得られる。このよ
うに窒化物皮膜上に酸化物皮膜が存在すると、酸化物が
潤滑効果を示し、耐摩耗性がさらに向上する。以下、実
施例を示し本発明を具体的に説明する。
When the nitriding treatment is performed after forming the oxide film, the nitride film may be formed on the surface of the base material, that is, the lower layer of the oxide film. When performing this process,
After machining the base material and washing and degreasing the surface in the same manner as above, first, in the air or in an oxygen atmosphere, 773-
Hold at a temperature of 1873K for 5 minutes to 50 hours to form an oxide film. The oxide film forming means includes a high temperature atmospheric oxidation method and a high temperature wet hydrogen oxidation method, but is not particularly limited. If the treatment temperature is less than 773K, it is not possible to form an oxide film having a sufficient thickness to obtain excellent corrosion resistance even if the treatment is performed for a long time. On the other hand, 1873
When treated at a treatment temperature exceeding K, peeling of the oxide film occurs. When the treatment time is less than 5 minutes, formation of an oxide film having a sufficient thickness is not recognized, and even if the treatment is performed for more than 50 hours, not only the oxide film grows saturated and peels off, This leads to higher costs. Therefore, the oxidation treatment is performed at a temperature of 773 to 1873K for 5 minutes to 50 hours, preferably at 973 to 1673K for 1 to 30 hours. In this way, an oxide film is obtained. Then, nitriding is performed in the same manner as above. The nitride film is formed at the interface between the sintered alloy base material and the oxide film. In this way, a two-layer coating having an oxide coating on the nitride coating is obtained. When the oxide film is present on the nitride film in this way, the oxide exhibits a lubricating effect and wear resistance is further improved. Hereinafter, the present invention will be specifically described with reference to examples.

【0032】[0032]

【実施例】(実施例1)B粉末および金属粉末を、表1
〜4に示す硬質焼結合金の成分含有量になるように調整
した後、振動ボールミルを用いて、アセトン中で25時
間湿式混合粉砕した。ボールミルで粉砕した後の粉末を
乾燥、造粒し、得られた微粉末を所定の形状にプレス成
形した後、真空度:≦1.3Paの真空中で10K/分
の昇温速度で加熱し、1373〜1673Kの温度で3
0分間加熱した後炉冷し、硬質焼結合金を得た。
EXAMPLES Example 1 B powder and metal powder are shown in Table 1.
After adjusting so as to have the content of hard sintered alloy components shown in Tables 1 to 4, wet mixing and pulverization was performed in acetone for 25 hours using a vibrating ball mill. The powder after crushing with a ball mill is dried and granulated, and the obtained fine powder is press-molded into a predetermined shape, and then heated at a temperature rising rate of 10 K / min in a vacuum with a vacuum degree of ≦ 1.3 Pa. , At temperatures of 1373 to 1673 K for 3
After heating for 0 minutes, the furnace was cooled to obtain a hard sintered alloy.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】得られた硬質焼結合金を所望の形状に加工
し、脱脂後、表5〜9に示す加熱条件で加熱した後、炉
冷し、硬質焼結合金の表面に複合窒化物皮膜、または複
合窒化物と複合酸化物の2層皮膜からなる表面処理層を
形成させ、溶融金属用部材を得た。一部の硬質焼結合金
は比較用に上記の加熱処理を施さずに、下記の特性評価
に供した。上記のようにして得られた表5〜9に示した
硬質硬質合金および溶融金属用部材の強度、溶融金属に
対する耐食性、および耐摩耗性を以下のようにして評価
した。
The obtained hard sintered alloy was processed into a desired shape, degreased, heated under the heating conditions shown in Tables 5 to 9 and then cooled in a furnace to form a composite nitride film on the surface of the hard sintered alloy. Alternatively, a surface-treated layer composed of a two-layer film of a composite nitride and a composite oxide was formed to obtain a member for molten metal. For comparison, some hard sintered alloys were subjected to the following characteristic evaluation without being subjected to the above heat treatment. The strength, the corrosion resistance to molten metal, and the wear resistance of the hard and hard alloys and the members for molten metal shown in Tables 5 to 9 obtained as described above were evaluated as follows.

【0038】[強度]焼結したままの硬質硬質合金、およ
び硬質焼結合金に大気中の加熱処理を施した溶融金属用
部材から試験片を切り出し、JIS H 5501に基づ
いて抗折力(3点曲げ試験)を測定した。抗折力が大き
いほど強度が優れており、1.5GPaを超えるものを
本発明の対象とする。結果を表10〜14に示す。
[Strength] Specimens were cut out from as-sintered hard hard alloys and members for molten metal obtained by subjecting hard sintered alloys to heat treatment in the atmosphere, and bending strength (3) was measured based on JIS H5501. The point bending test) was measured. The larger the transverse rupture strength is, the better the strength is, and those having a bending strength of more than 1.5 GPa are the subject of the present invention. The results are shown in Tables 10-14.

【0039】[耐食性]焼結したままの硬質焼結合金、お
よび硬質焼結合金に複合窒化物皮膜、または複合窒化物
と複合酸化物の2層皮膜を形成させた溶融金属用部材を
10mm×10mm×100mmの大きさに切削加工し
試験片とし、この試験片を993Kで加熱溶融したアル
ミニウム(ダイカスト用アルミニウム合金:JIS−A
DC10)中に6時間浸漬した後、試験片の長手方向に
垂直な断面で切り出し、断面を光学顕微鏡で観察し、試
験片が溶融アルミニウムにより表面から侵食された深さ
を測定し、下記の規準で耐食性を評価した。 ○:侵食深さ<5μm、離型性良好 △:侵食深さ≧5μmでかつ<30μm、離型性やや不
良 ×:侵食深さ≧30μm、離型性不良 結果を表10〜14に示す。表中で#を附したものは、
特定元素を必要以上に添加しても効果の向上効果が認め
られないものを指す。
[Corrosion Resistance] 10 mm × a hard sintered alloy as-sintered, or a member for molten metal in which a composite nitride film or a two-layer film of a composite nitride and a composite oxide is formed on the hard sintered alloy. A test piece was prepared by cutting into a size of 10 mm × 100 mm, and this test piece was heated and melted at 993 K (aluminum alloy for die casting: JIS-A
After being immersed in DC10) for 6 hours, the test piece was cut out in a cross section perpendicular to the longitudinal direction, the cross section was observed with an optical microscope, and the depth at which the test piece was eroded from the surface by molten aluminum was measured. The corrosion resistance was evaluated by. ◯: Erosion depth <5 μm, good releasability Δ: Erosion depth ≧ 5 μm and <30 μm, somewhat poor releasability ×: Erosion depth ≧ 30 μm, poor releasability results are shown in Tables 10-14. Items with # in the table are
It refers to those in which the effect of improving the effect is not observed even if the specific element is added more than necessary.

【0040】[摺動特性および耐摩耗性]ピンオンディス
ク法により、表面を鏡面研磨した硬質焼結合金、および
硬質焼結合金に複合窒化物皮膜、または複合窒化物と複
合酸化物の2層皮膜を形成させた溶融金属用部材から作
製した試験片に下記のピンを載せ、下記の荷重を負荷
し、下記の回数で回転させて摺動した。試験はアルミニ
ウムピン(JIS−5052)荷重:1Nを負荷し、回
転回数:1000回で実施し、試験後の試料の摩耗痕の
幅を走査型電子顕微鏡で測定し、下記の基準で耐摩耗性
を評価した。 ○:摩耗幅<500μm △:500μm≧摩耗幅<1000μm ×:摩耗幅≧1000μm 結果を表10〜14に示す。
[Sliding Property and Abrasion Resistance] A hard sintered alloy whose surface is mirror-polished by a pin-on-disk method, and a hard sintered alloy having a composite nitride film or a composite nitride and a composite oxide two layers The following pins were placed on a test piece prepared from a member for molten metal on which a film was formed, and the following loads were applied, and the sample was rotated and slid at the following times. The test was carried out by applying an aluminum pin (JIS-5052) load of 1 N and rotating at 1000 times, and the width of the wear mark of the sample after the test was measured by a scanning electron microscope. Was evaluated. ◯: Wear width <500 μm Δ: 500 μm ≧ wear width <1000 μm ×: wear width ≧ 1000 μm The results are shown in Tables 10-14.

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【表9】 [Table 9]

【0046】[0046]

【表10】 [Table 10]

【0047】[0047]

【表11】 [Table 11]

【0048】[0048]

【表12】 [Table 12]

【0049】[0049]

【表13】 [Table 13]

【0050】[0050]

【表14】 [Table 14]

【0051】表10〜14に示すように、本発明の溶融
金属用部材は強度、溶融金属に対する耐食性および耐摩
耗性共に優れている。
As shown in Tables 10 to 14, the member for molten metal of the present invention is excellent in strength, corrosion resistance against molten metal and wear resistance.

【0052】(実施例2)Ni2B粉末、Mo25
末、純Mo粉末、カルボニルNi粉末、純Cr粉末、純
Mn粉末を、表1の組成番号16に示す成分含有量とな
るように配合し、振動ボールミルを用いてアセトン中で
平均粒径1.0μmとなるまで粉砕混合した。次いで混
合粉を冷間静水圧成形法(CIP)を用いて円筒状に圧
粉成形した。その後、真空中で1573Kまで昇温し2
0分間保持した後炉冷し、焼結体を得た。次に合金工具
鋼(SCM440)の芯材にこの円筒状の焼結体を嵌着
し、真空中で1473Kで20分間加熱し、拡散接合さ
せ、複合材を得た。この複合材の焼結体部分を射出成形
用スクリューの形状に切削加工した後、0.5MPaの
水素:10%と窒素90%からなる混合雰囲気中で13
73Kで3時間保持して窒化物皮膜を形成させた。この
ようにして得られた射出成形用スクリューを射出成形機
に装填し、ポリプロピレンの射出成形作業に供したが、
3000回使用した後も、表面に腐食孔は発生せず、摩
耗も殆ど認められなかった。
(Example 2) Ni 2 B powder, Mo 2 B 5 powder, pure Mo powder, carbonyl Ni powder, pure Cr powder and pure Mn powder were made to have the component contents shown in composition No. 16 in Table 1. Was mixed in aceto, and the mixture was pulverized and mixed in acetone using a vibrating ball mill until the average particle size became 1.0 μm. Next, the mixed powder was pressed into a cylindrical shape by using the cold isostatic pressing method (CIP). Then, raise the temperature to 1573K in vacuum and 2
After holding for 0 minutes, the furnace was cooled to obtain a sintered body. Next, the cylindrical sintered body was fitted to a core material of alloy tool steel (SCM440), heated in vacuum at 1473K for 20 minutes, and diffusion-bonded to obtain a composite material. After cutting the sintered body portion of this composite material into the shape of an injection molding screw, it was subjected to 13 MPa in a mixed atmosphere consisting of 0.5 MPa hydrogen: 10% and nitrogen 90%.
It was kept at 73 K for 3 hours to form a nitride film. The injection molding screw thus obtained was loaded into an injection molding machine and subjected to polypropylene injection molding work.
After using 3000 times, no corrosion holes were formed on the surface, and almost no wear was observed.

【0053】(実施例3)上記と同一の原料粉を上記と
同一の組成となように配合し、上記と同一条件により円
筒状の焼結体を作成した。この焼結体を所定のスリーブ
形状に切削加工した後、0.5MPaの窒素雰囲気中で
1173Kで3時間加熱し、表面に窒化物皮膜を形成さ
せた。これを合金工具鋼(SKD61)の外筒の内周に
焼きばめし、ダイカスト用スリーブとした。このダイカ
スト用スリーブをアルミニウムダイカスイト装置に装填
し、溶融アルミニウムの鋳込み作業に供したが、200
0回使用した後も、表面にクラック等は発生せず、摩耗
も殆ど認められなかった。
Example 3 The same raw material powder as described above was blended so as to have the same composition as described above, and a cylindrical sintered body was prepared under the same conditions as above. After cutting this sintered body into a predetermined sleeve shape, it was heated in a nitrogen atmosphere of 0.5 MPa at 1173 K for 3 hours to form a nitride film on the surface. This was shrink-fitted to the inner circumference of the outer cylinder of alloy tool steel (SKD61) to obtain a die casting sleeve. This die casting sleeve was loaded into an aluminum die casting machine and was used for casting molten aluminum.
Even after 0 times of use, no cracks and the like were generated on the surface and almost no wear was observed.

【0054】[0054]

【発明の効果】本発明は、Mo、Cr、Fe、Bを含有
させ、Mo、Cr、Bの含有量を一定範囲内に限定し、
またはさらにMn、W、Nb、Zr、Ti、Ta、H
f、Niおよび/またはCo、Vなどを適宜含有させて
成る、微細な複硼化物とFe基の結合相とからなる硬質
焼結合金の表面に、複合窒化物皮膜、または複合酸化物
皮膜と複合窒化物皮膜の2層皮膜を形成させてなる溶融
金属用部材であり、溶融金属や溶融樹脂に対して優れた
耐食性と耐摩耗性を示す。本発明の溶融金属用部材をア
ルミニウム鋳込み用のダイカスト用のスリーブに適用し
た場合、クラックや摩耗を殆ど発生させることがない。
また本発明の溶融金属用部材を樹脂の射出成形機のスク
リューに適用した場合、腐食孔や摩耗を生じることがな
い。このように、本発明の溶融金属用部材は溶融金属の
機械構造部材のみならず、溶融樹脂の機械構造部材とし
て良好に適用させることができる。
INDUSTRIAL APPLICABILITY The present invention contains Mo, Cr, Fe and B, and limits the content of Mo, Cr and B within a certain range,
Or further Mn, W, Nb, Zr, Ti, Ta, H
A composite nitride film or a composite oxide film is formed on the surface of a hard sintered alloy composed of fine double boride and an Fe-based binder phase, which contains f, Ni and / or Co, V and the like as appropriate. It is a member for molten metal formed by forming a two-layer film of a composite nitride film, and exhibits excellent corrosion resistance and wear resistance against molten metal and molten resin. When the molten metal member of the present invention is applied to a die casting sleeve for aluminum casting, cracks and wear are hardly generated.
Further, when the molten metal member of the present invention is applied to a screw of a resin injection molding machine, corrosion holes and wear do not occur. As described above, the member for molten metal of the present invention can be favorably applied not only to the mechanical structural member of molten metal but also to the mechanical structural member of molten resin.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 C23C 8/10 C23C 8/10 8/26 8/26 8/34 8/34 // B29C 45/60 B29C 45/60 (72)発明者 山崎 裕司 山口県下松市東豊井1296番地の1 東洋鋼 鈑株式会社技術研究所内 (72)発明者 高木 研一 東京都千代田区四番町2番地12 東洋鋼鈑 株式会社内 Fターム(参考) 4F206 AA11 AJ02 AJ07 AJ14 JA07 JD01 JQ07 JQ11 4K028 AA02 AB03 AC08 CC02 CD01─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C22C 38/58 C22C 38/58 C23C 8/10 C23C 8/10 8/26 8/26 8/34 8 / 34 // B29C 45/60 B29C 45/60 (72) Inventor Yuji Yamazaki 1 1296 Higashitoyoi Shimomatsu City, Yamaguchi Prefecture Toyo Kohan Co., Ltd. Technical Research Institute (72) Kenichi Takagi 2 Yonbancho, Chiyoda-ku, Tokyo 2 Address 12 Toyo Kohan Co., Ltd. F term (reference) 4F206 AA11 AJ02 AJ07 AJ14 JA07 JD01 JQ07 JQ11 4K028 AA02 AB03 AC08 CC02 CD01

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 母材が硬質焼結合金からなり、該母材
の、溶融金属と直接接触する表面に窒化物皮膜を形成し
てなることを特徴とする溶融金属に対する耐食性に優れ
た溶融金属用部材。
1. A molten metal excellent in corrosion resistance to molten metal, characterized in that the base material is made of a hard sintered alloy, and a nitride film is formed on the surface of the base material that is in direct contact with the molten metal. Parts.
【請求項2】 前記母材がMo2FeB2型複硼化物とF
e基結合相からなる硬質焼結合金であることを特徴とす
る、請求項1に記載の溶融金属に対する耐食性に優れた
溶融金属用部材。
2. The base material is Mo 2 FeB 2 type double boride and F.
A member for molten metal having excellent corrosion resistance to molten metal according to claim 1, which is a hard sintered alloy composed of an e-based bonded phase.
【請求項3】 前記硬質燒結合金表面に形成する窒化物
皮膜がMo、Cr、Fe、Bの金属元素と窒素を主体と
する(Fe,Mo,Cr,B)型の複合窒化物か
らなる皮膜であることを特徴とする請求項1または2に
記載の溶融金属に対する耐食性に優れた溶融金属用部
材。
3. The nitride film formed on the surface of the hard-bonded gold is a (Fe, Mo, Cr, B) m N n- type composite nitride mainly composed of metal elements of Mo, Cr, Fe and B and nitrogen. A member for molten metal having excellent corrosion resistance to molten metal according to claim 1 or 2, wherein the member is composed of
【請求項4】 前記硬質焼結合金が3〜7.5重量%
(以下、単に%で示す)のB、21〜79.9%のM
o、2〜30%のCr、残部が10%以上のFeおよび
不可避的不純物からなることを特徴とする、請求項1、
2または3に記載の溶融金属に対する耐食性に優れた溶
融金属用部材。
4. The hard sintered alloy is 3 to 7.5% by weight.
B (21% to 79.9%, hereinafter)
O, 2 to 30% of Cr, and the balance of 10% or more of Fe and unavoidable impurities.
2. A member for molten metal having excellent corrosion resistance to the molten metal according to 2 or 3.
【請求項5】 前記硬質焼結合金の全組成に対して、
0.1〜8%のMnを含有することを特徴とする、請求
項4に記載の溶融金属に対する耐食性に優れた溶融金属
用部材。
5. The total composition of the hard sintered alloy,
The member for molten metal having excellent corrosion resistance to molten metal according to claim 4, which contains 0.1 to 8% of Mn.
【請求項6】 前記硬質焼結合金に含有されるMo含有
量の一部を、全組成に対して0.1〜30%のWで置換
してなることを特徴とする、請求項4または5に記載の
溶融金属に対する耐食性に優れた溶融金属用部材。
6. The method according to claim 4, wherein a part of the Mo content contained in the hard sintered alloy is replaced with W of 0.1 to 30% with respect to the total composition. 5. A member for molten metal having excellent corrosion resistance to the molten metal according to item 5.
【請求項7】 前記硬質焼結合金に含有されるMo含有
量の一部を、全組成に対して0.1〜20%のNbで置
換してなることを特徴とする、請求項4または5に記載
の溶融金属に対する耐食性に優れた溶融金属用部材。
7. The method according to claim 4, wherein a part of the Mo content contained in the hard sintered alloy is replaced with 0.1 to 20% of Nb with respect to the total composition. 5. A member for molten metal having excellent corrosion resistance to the molten metal according to item 5.
【請求項8】 前記硬質焼結合金に含有されるMo含有
量の一部を、全組成に対してWおよびNbの両者の合計
で0.1〜30%置換してなることを特徴とする請求項
4または5に記載の溶融金属に対する耐食性に優れた溶
融金属用部材。
8. A part of the Mo content contained in the hard sintered alloy is replaced by 0.1 to 30% in total of both W and Nb with respect to the total composition. A member for molten metal having excellent corrosion resistance to the molten metal according to claim 4 or 5.
【請求項9】 前記硬質焼結合金に含有されるNb含有
量の一部または全部をZr、Ti、Ta、Hfのいずれ
か1種または2種以上と置換してなることを特徴とす
る、請求項7または8に記載の溶融金属に対する耐食性
に優れた溶融金属用部材。
9. A part or all of the Nb content contained in the hard sintered alloy is replaced with any one kind or two kinds or more of Zr, Ti, Ta, and Hf. A member for molten metal having excellent corrosion resistance to the molten metal according to claim 7.
【請求項10】 前記硬質焼結合金に含有されるFe含
有量の一部を、全組成に対してNiおよび/またはCo
のいずれか一方または両者の合計で0.1〜20%置換
してなることを特徴とする、請求項4〜9のいずれかに
記載の溶融金属に対する耐食性に優れた溶融金属用部
材。
10. A portion of the Fe content contained in the hard sintered alloy is Ni and / or Co with respect to the total composition.
A member for molten metal having excellent corrosion resistance to molten metal according to any one of claims 4 to 9, which is formed by substituting 0.1 to 20% of either one or both in total.
【請求項11】 前記硬質焼結合金に含有されるCr含
有量の一部を、全組成に対して0.1〜25%のVで置
換してなることを特徴とする請求項4〜10のいずれか
に記載の溶融金属に対する耐食性に優れた溶融金属用部
材。
11. The method according to claim 4, wherein a part of the Cr content contained in the hard sintered alloy is replaced with V of 0.1 to 25% with respect to the total composition. A member for molten metal having excellent corrosion resistance to the molten metal according to any one of 1.
【請求項12】 請求項1〜11のいずれかに記載の硬
質焼結合金を窒素雰囲気あるいは窒素を含む還元性雰囲
気中で加熱してその表面に窒化物皮膜を形成させること
を特徴とする、溶融金属用部材の製造方法。
12. The hard sintered alloy according to any one of claims 1 to 11 is heated in a nitrogen atmosphere or a reducing atmosphere containing nitrogen to form a nitride film on the surface thereof. A method for manufacturing a member for molten metal.
【請求項13】 請求項1〜11のいずれかに記載の硬
質焼結合金を大気中あるいは酸素を含む雰囲気中で加熱
してその表面に酸化物皮膜を形成させた後、窒素を含む
還元性雰囲気中で加熱し、酸化物皮膜を還元して窒化物
皮膜を形成させることを特徴とする、溶融金属用部材の
製造方法。
13. The hard sintered alloy according to claim 1, which is heated in the air or in an atmosphere containing oxygen to form an oxide film on the surface of the hard sintered alloy, and then the reducing property containing nitrogen. A method for producing a member for molten metal, which comprises heating in an atmosphere to reduce an oxide film to form a nitride film.
【請求項14】 請求項1〜11のいずれかに記載の硬
質焼結合金を大気中あるいは酸素を含む雰囲気中で加熱
してその表面に酸化物皮膜を形成させた後、窒素雰囲気
中で加熱し、酸化皮膜の下層に窒化物皮膜を形成させる
ことを特徴とする、溶融金属用部材の製造方法。
14. The hard sintered alloy according to claim 1 is heated in the atmosphere or in an atmosphere containing oxygen to form an oxide film on the surface, and then heated in a nitrogen atmosphere. Then, a method for producing a member for molten metal is characterized in that a nitride film is formed under the oxide film.
【請求項15】 窒素を含む還元性雰囲気または窒素雰
囲気の圧力が0.1〜1.5MPaである、請求項12
〜14のいずれかに記載の溶融金属用部材の製造方法。
15. The reducing atmosphere containing nitrogen or the nitrogen atmosphere has a pressure of 0.1 to 1.5 MPa.
15. The method for manufacturing a member for molten metal according to any one of 1 to 14.
【請求項16】 請求項12〜15のいずれかに記載の
溶融金属用部材の製造方法を用いて作成した溶融金属用
部材を用いることを特徴とする機械構造部材。
16. A machine structural member using a member for molten metal produced by the method for manufacturing a member for molten metal according to claim 12.
【請求項17】 前記機械構造部材が射出成形機用部材
である請求項16に記載の機械構造部材。
17. The mechanical structural member according to claim 16, wherein the mechanical structural member is a member for an injection molding machine.
【請求項18】 前記機械構造部材が溶融金属鋳造装置
用部材である請求項16に記載の機械構造部材。
18. The mechanical structure member according to claim 16, wherein the mechanical structure member is a member for a molten metal casting apparatus.
JP2002001532A 2002-01-08 2002-01-08 Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same Expired - Fee Related JP3916465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001532A JP3916465B2 (en) 2002-01-08 2002-01-08 Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001532A JP3916465B2 (en) 2002-01-08 2002-01-08 Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same

Publications (2)

Publication Number Publication Date
JP2003205352A true JP2003205352A (en) 2003-07-22
JP3916465B2 JP3916465B2 (en) 2007-05-16

Family

ID=27641632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001532A Expired - Fee Related JP3916465B2 (en) 2002-01-08 2002-01-08 Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same

Country Status (1)

Country Link
JP (1) JP3916465B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
WO2012023265A1 (en) * 2010-08-18 2012-02-23 東洋鋼鈑株式会社 Thermal neutron-blocking material and method for producing same
CN104213030A (en) * 2014-09-25 2014-12-17 湖南英捷高科技有限责任公司 Injection molding alloyed powder and application of injection molding alloyed powder in automobile transmission sliding sleeve
CN104630591A (en) * 2015-01-29 2015-05-20 南京航空航天大学 Stripe type ternary boride reinforced and toughened Ti(C, N)-based metal ceramic and preparation method thereof
CN105603331A (en) * 2016-01-12 2016-05-25 江苏千博机械科技有限公司 Mo2FeB2-based hard alloy and preparation method thereof
JP6274381B1 (en) * 2016-09-15 2018-02-07 新日鐵住金株式会社 Wear-resistant steel
JP2018503746A (en) * 2014-12-16 2018-02-08 スコペルタ・インコーポレイテッドScoperta, Inc. Multiple hard phase containing iron alloys with toughness and wear resistance
WO2018052089A1 (en) * 2016-09-15 2018-03-22 新日鐵住金株式会社 Wear resistant steel
CN109128025A (en) * 2018-10-05 2019-01-04 重庆玛斯特机械制造有限公司 The preparation method of camshaft casting with controlled surface hardened layer
CN112195389A (en) * 2020-10-10 2021-01-08 广东博杰特新材料科技有限公司 3D prints ternary boride Mo2FeB2Alloy powder and production process thereof
CN115652127A (en) * 2022-11-01 2023-01-31 西安近代化学研究所 Near-equiaxial crystal grain Mo 2 FeB 2 Preparation method of base cermet
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
US12076788B2 (en) 2019-05-03 2024-09-03 Oerlikon Metco (Us) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929735B (en) * 2017-03-08 2019-02-26 广东博杰特新材料科技有限公司 High-intensitive molybdenum-iron boron ternary boride material and its production preparation method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
WO2012023265A1 (en) * 2010-08-18 2012-02-23 東洋鋼鈑株式会社 Thermal neutron-blocking material and method for producing same
CN104213030A (en) * 2014-09-25 2014-12-17 湖南英捷高科技有限责任公司 Injection molding alloyed powder and application of injection molding alloyed powder in automobile transmission sliding sleeve
CN104213030B (en) * 2014-09-25 2016-04-20 湖南英捷高科技有限责任公司 A kind of injection forming alloy powder and the application in automobile gearbox sliding sleeve thereof
JP2018503746A (en) * 2014-12-16 2018-02-08 スコペルタ・インコーポレイテッドScoperta, Inc. Multiple hard phase containing iron alloys with toughness and wear resistance
JP7185672B2 (en) 2014-12-16 2022-12-07 エリコン メテコ(ユーエス)インコーポレイテッド Iron alloy containing multiple hard phases with toughness and wear resistance
JP2020204099A (en) * 2014-12-16 2020-12-24 スコペルタ・インコーポレイテッドScoperta, Inc. Multiple hard phase-containing iron alloy having toughness and wear resistance
CN104630591A (en) * 2015-01-29 2015-05-20 南京航空航天大学 Stripe type ternary boride reinforced and toughened Ti(C, N)-based metal ceramic and preparation method thereof
CN104630591B (en) * 2015-01-29 2016-12-07 南京航空航天大学 A kind of Ti (C, N) based ceramic metal of strip ternary boride activeness and quietness and preparation method thereof
CN105603331A (en) * 2016-01-12 2016-05-25 江苏千博机械科技有限公司 Mo2FeB2-based hard alloy and preparation method thereof
CN105603331B (en) * 2016-01-12 2017-05-17 江苏千博机械科技有限公司 Mo2FeB2-based hard alloy and preparation method thereof
WO2018052089A1 (en) * 2016-09-15 2018-03-22 新日鐵住金株式会社 Wear resistant steel
KR20180096809A (en) * 2016-09-15 2018-08-29 신닛테츠스미킨 카부시키카이샤 Abrasion resistance
KR101974326B1 (en) 2016-09-15 2019-05-02 닛폰세이테츠 가부시키가이샤 Abrasion resistance
US10662512B2 (en) 2016-09-15 2020-05-26 Nippon Steel Corporation Abrasion-resistant steel
JP6274381B1 (en) * 2016-09-15 2018-02-07 新日鐵住金株式会社 Wear-resistant steel
CN109128025A (en) * 2018-10-05 2019-01-04 重庆玛斯特机械制造有限公司 The preparation method of camshaft casting with controlled surface hardened layer
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
US12076788B2 (en) 2019-05-03 2024-09-03 Oerlikon Metco (Us) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability
CN112195389A (en) * 2020-10-10 2021-01-08 广东博杰特新材料科技有限公司 3D prints ternary boride Mo2FeB2Alloy powder and production process thereof
CN115652127A (en) * 2022-11-01 2023-01-31 西安近代化学研究所 Near-equiaxial crystal grain Mo 2 FeB 2 Preparation method of base cermet
CN115652127B (en) * 2022-11-01 2023-09-08 西安近代化学研究所 Nearly equiaxial grain Mo 2 FeB 2 Preparation method of base metal ceramic

Also Published As

Publication number Publication date
JP3916465B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
KR101831754B1 (en) Tough coated hard particles consolidated in a tough matrix material
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP2009108338A (en) Cermet and manufacturing method thereof
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
WO2018198913A1 (en) Metal matrix composite
JPH10310840A (en) Superhard composite member and its production
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
KR101816712B1 (en) Cutting tools having hard coated layer
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JP4476206B2 (en) Parts for non-ferrous metal casting equipment
WO2018193982A1 (en) Spray coating, laminated pipe, and method for manufacturing spray coating
JP6560549B2 (en) Laminated tube and manufacturing method thereof
JP2001262290A (en) Sintered hard alloy excellent in thermal shock resistance as well as corrosion resistance to molten metal, and member for molten metal using the alloy
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JPH02299740A (en) Forming mold for high-temperature molten metal
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JP2005076115A (en) Iron-containing cemented carbide
JPH05140689A (en) High corrosion resistant and high wear resistant boride tungsten base alloy
JPH08158002A (en) Silicon nitride ceramic-metal composite material and parts for molten aluminum

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Ref document number: 3916465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees