JP2003290808A - Method for controlling sheet width in tandem cold rolling - Google Patents
Method for controlling sheet width in tandem cold rollingInfo
- Publication number
- JP2003290808A JP2003290808A JP2002090320A JP2002090320A JP2003290808A JP 2003290808 A JP2003290808 A JP 2003290808A JP 2002090320 A JP2002090320 A JP 2002090320A JP 2002090320 A JP2002090320 A JP 2002090320A JP 2003290808 A JP2003290808 A JP 2003290808A
- Authority
- JP
- Japan
- Prior art keywords
- stand
- control means
- amount
- rolling
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷間タンデム圧延にお
いて、板幅変動を抑制し、板幅公差を満足する冷延金属
板を高歩留で製造する板幅制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strip width control method for producing a cold-rolled metal sheet having a high yield by suppressing strip width variation and satisfying strip width tolerance in cold tandem rolling.
【0002】[0002]
【従来の技術とその問題点】冷間タンデム圧延におい
て、被圧延材の板幅を調整、制御する方法として、例え
ば特開平1−262011号公報及び特開平1−262
013号公報に開示されているように、張力,被圧延材
の形状及びクラウン変化量から板幅変化量を推定し、張
力を調整する方法がある。しかしながら、張力操作方法
を、破断しやすい連続圧延時の先行被圧延材と後続圧延
材との連続部に適用することは困難である。また、スタ
ンド間張力の増加は板厚の減少に作用し、板厚制御と緩
衝し合うことも欠点である。2. Description of the Related Art As a method for adjusting and controlling the strip width of a material to be rolled in cold tandem rolling, for example, JP-A-1-262011 and JP-A-1-262 are available.
As disclosed in Japanese Patent No. 013, there is a method of estimating the plate width change amount from the tension, the shape of the material to be rolled and the crown change amount, and adjusting the tension. However, it is difficult to apply the tension operating method to the continuous portion of the preceding rolled material and the succeeding rolled material during continuous rolling which is easily broken. Further, the increase in the tension between the stands acts on the reduction of the plate thickness, and it is also a drawback that it interferes with the plate thickness control.
【0003】他方、特開平5−154527号公報に開
示されているように、圧延後の板材の目標板幅調整量を
算出し、これを各スタンド毎の板幅調整量に配分するに
際し、板幅調整量及び各スタンド出側のクラウン変化量
と板幅変化量の関係から算出されるクラウン変更量を、
圧延条件から算出されるクラウン変更量の許容範囲内と
するよう板幅調整量を設定し、算出されたクラウン変更
量に応じて圧延スタンドのクラウン制御端(ロールベン
ダー等の形状制御手段)を操作する方法がある。しか
し、板幅変動に及ぼす形状制御手段の影響は各スタンド
毎に単独で把握され、その影響度が後段側スタンドでど
のように変化することに関しては検討されていない。し
たがって、より高精度で板幅を制御するためには、一層
の改善が必要である。On the other hand, as disclosed in Japanese Patent Laid-Open No. 154527/1993, when calculating a target plate width adjustment amount of a rolled plate material and distributing this to the plate width adjustment amount of each stand, The amount of crown change calculated from the relationship between the amount of width adjustment and the amount of change in crown on each stand exit side and the amount of change in plate width
Set the strip width adjustment amount so that it is within the allowable range of the crown change amount calculated from the rolling conditions, and operate the crown control end (shape control means such as roll bender) of the rolling stand according to the calculated crown change amount. There is a way to do it. However, the influence of the shape control means on the plate width variation is individually grasped for each stand, and no consideration has been given to how the degree of influence changes in the latter stand. Therefore, further improvement is required to control the plate width with higher accuracy.
【0004】[0004]
【発明が解決しようとする課題】本発明は、このような
問題を解消すべく案出されたものであり、各スタンドに
おける形状制御手段の変更量が最終スタンド出側の板幅
変動量に及ぼす影響を取り込んだ数式モデルを使用する
ことにより、圧延中に各スタンドにおける形状制御手段
の制御量を補正し、板幅を精度良く制御し、一定板幅の
冷延材を高歩留で製造することを目的とする。The present invention has been devised to solve such a problem, and the change amount of the shape control means in each stand affects the plate width fluctuation amount on the exit side of the final stand. By using the mathematical model that incorporates the influence, the control amount of the shape control means in each stand is corrected during rolling, the strip width is accurately controlled, and a cold strip with a constant strip width is manufactured with high yield. The purpose is to
【0005】[0005]
【課題を解決するための手段】本発明の冷間タンデム圧
延における板幅制御方法は、その目的を達成するため、
冷間タンデム圧延機で冷間圧延する際に、各スタンドに
おける形状制御手段の変更量を変数として最終スタンド
出側の板幅変動を表す数式モデルを予め作成するととも
に、最終スタンド出側の板幅を連続的に測定し、この実
測値を変数として前記数式モデルに基づき、最終スタン
ド出側の板幅が目標値に一致するように各スタンドにお
ける形状制御手段の制御量を補正することを特徴とす
る。また、各スタンドにおける圧延荷重の変化量,各ス
タンド間張力の変化量,及び各スタンドにおける形状制
御手段の変更量を変数として最終スタンド出側の板幅変
動を表す数式モデルを予め作成するとともに、圧延開始
初期に前記の方法により最終スタンド出側の板幅を制御
した後に、圧延中の圧延荷重を連続的に測定し、この実
測値及び各スタンド間張力の変化量を前記数式モデルに
代入し、最終スタンド出側の板幅が目標値に一致するよ
うに各スタンドにおける形状制御手段の制御量を補正す
ることを特徴とする。The strip width control method for cold tandem rolling according to the present invention has the following object.
When performing cold rolling with a cold tandem rolling mill, a mathematical model representing the strip width variation on the final stand outlet side is created in advance with the change amount of the shape control means at each stand as a variable, and the strip width on the final stand outlet side is also created. Is continuously measured, and based on the mathematical model with the measured value as a variable, the control amount of the shape control means in each stand is corrected so that the plate width on the delivery side of the final stand matches the target value. To do. In addition, while preliminarily creating a mathematical model representing the strip width variation on the exit side of the final stand with the variation of the rolling load in each stand, the variation in the tension between each stand, and the variation of the shape control means in each stand as variables, After controlling the strip width on the exit side of the final stand by the above method at the beginning of rolling, the rolling load during rolling is continuously measured, and the measured value and the change amount of each stand tension are substituted into the mathematical model. The control amount of the shape control means in each stand is corrected so that the plate width on the delivery side of the final stand matches the target value.
【0006】[0006]
【実施の態様】本発明者等は、冷間タンデム圧延機で金
属帯板を連続して冷間圧延する際、各スタンドにおける
形状制御手段の制御量を補正することにより、板幅を精
度良く制御し、一定板幅の冷延材を製造できる板幅制御
方法を種々検討した。その結果、各スタンドにおける形
状制御手段の変更量,各スタンドにおける圧延荷重の変
化量及び各スタンド間における張力の変化量が最終スタ
ンド出側の板幅変動量と比例関係にあることに着目し
た。そして、最終スタンド出側の板幅変動量に各スタン
ドにおける形状制御手段の変更量が及ぼす影響を取り込
んだ数式モデルを使用すると、板幅変動が精度良く抑制
されることを見出した。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made it possible to accurately control the strip width by correcting the control amount of the shape control means in each stand when continuously cold rolling a metal strip in a cold tandem rolling mill. A variety of strip width control methods that can be controlled to produce a cold-rolled strip with a constant strip width have been studied. As a result, it was noted that the amount of change in the shape control means in each stand, the amount of change in rolling load in each stand, and the amount of change in tension between each stand were proportional to the strip width variation on the delivery side of the final stand. Then, it was found that the plate width fluctuation can be accurately suppressed by using a mathematical model that incorporates the influence of the change amount of the shape control means in each stand on the plate width fluctuation amount on the delivery side of the final stand.
【0007】形状制御手段の制御量が増加すると当該ス
タンドで板幅が減少するが、その影響度は後段スタンド
になるほど小さくなる。例えば、図1に示すように、N
o.1スタンドでワークロールベンダー力が増加する
と、No.1スタンド出側の板幅が減少するが、その影
響度はNo.2スタンド以降で小さくなる。また、圧延
荷重が増加すると当該スタンドで板幅が増加するが、圧
延荷重増加による影響は後段スタンドになるほど小さく
なる。例えば、図2に示すように、No.1スタンドで
圧延荷重が増加すると、No.1スタンド出側の板幅が
増加するが、その影響度はNo.2スタンド以降で小さ
くなる。さらに、図3に示すように、No.1−No.
2のスタンド間張力が増加すると、No.1,No.2
スタンド出側で板幅が減少するが、その影響度はNo.
3スタンド以降で小さくなる。When the control amount of the shape control means increases, the plate width of the stand decreases, but the degree of influence becomes smaller in the latter stand. For example, as shown in FIG.
o. If the work roll bender strength increases with one stand, No. The strip width on the stand-out side of the 1st stand decreases, but the degree of influence is No. 1. It becomes smaller after 2 stands. Further, as the rolling load increases, the strip width increases at the stand, but the effect of increasing the rolling load becomes smaller in the latter stand. For example, as shown in FIG. If the rolling load increases with one stand, No. 1 The board width on the stand-out side of the 1 stand increases, but the degree of influence is No. 1. It becomes smaller after 2 stands. Further, as shown in FIG. 1-No.
When the tension between the stands of No. 2 increases, No. 2 1, No. Two
The plate width decreases on the stand-out side, but the degree of influence is No.
It becomes smaller after 3 stands.
【0008】そして、最終スタンド出側の板幅変動量
は、図4に示すように、形状制御手段の変更量,圧延荷
重の変化量及びスタンド間張力の変化量とほぼ直線関係
にある。したがって、最終スタンド出側の板幅変動量
は、次の式(1)で予測できる。式中、iは上流スタン
ド側からiスタンド目の圧延機,nはスタンド数,ΔW
は最終スタンド出側の板幅変動量,ΔFiはiスタンド
における形状制御手段の変更量,ΔPiはiスタンドに
おける圧延荷重の変化量,ΔTiは(i−1)スタンド
とiスタンド間の張力変化量,ai,bi,ciは影響
係数を示す。As shown in FIG. 4, the strip width variation on the delivery side of the final stand has a substantially linear relationship with the variation of the shape control means, the variation of the rolling load, and the variation of the inter-stand tension. Therefore, the plate width variation on the delivery side of the final stand can be predicted by the following equation (1). In the formula, i is the rolling mill at the i-th stand from the upstream stand side, n is the number of stands, ΔW
Is the strip width variation on the exit side of the final stand, ΔFi is the variation of the shape control means at the i stand, ΔPi is the variation of the rolling load at the i stand, and ΔTi is the variation of the tension between the (i-1) stand and the i stand. , Ai, bi, and ci represent influence coefficients.
【0009】 [0009]
【0010】影響係数ai,bi,ciは、板幅,板
厚,鋼種等の製造品種によって定まる定数であり、実験
又はロールの弾性変形解析及び素材の塑性変形解析とを
連成させた解析モデルを用いたシミュレーションでそれ
ぞれ求められる。そこで、板幅,板厚,鋼種等の各区分
及びスタンド毎に影響係数ai,bi,ciのテーブル
を設定し、或いは板幅,板厚,鋼種等の関数として影響
係数ai,bi,ciを数式化できる。The influence coefficients ai, bi, and ci are constants determined by manufacturing types such as strip width, strip thickness, steel grade, etc., and are analytical models that are coupled with experiments or elastic deformation analysis of rolls and plastic deformation analysis of material. Can be obtained by simulation using. Therefore, a table of influence coefficients ai, bi, ci is set for each section such as plate width, plate thickness, steel type, etc., or the effect coefficients ai, bi, ci are set as a function of plate width, plate thickness, steel type, etc. You can formulate.
【0011】最終スタンド出側における板幅に実測値に
基づいたフィードバック制御では、最終スタンド出側の
板幅が各スタンドの形状制御手段の制御量と線形関係に
あるので、次の式(2)に示す予測式を使用する。な
お、式中、W1は最終スタンド出側における板幅の実測
値、Wは形状制御手段を制御した後の補正後の板幅を示
す。
最終スタンド出側における板幅の実測値W1を式(2)
に代入し、補正後の最終スタンド出側の板幅Wが目標値
W0となるように、各スタンドにおける形状制御手段の
変更量ΔFiを算出し、形状制御手段の制御量を補正す
る。In the feedback control based on the measured value of the strip width on the exit side of the final stand, the strip width on the exit side of the final stand has a linear relationship with the control amount of the shape control means of each stand. Use the prediction formula shown in. In the formula, W 1 represents the actual measured value of the plate width on the delivery side of the final stand, and W represents the corrected plate width after controlling the shape control means. The measured value W 1 of the board width at the exit side of the final stand is calculated by the formula (2)
And the change amount ΔFi of the shape control means in each stand is calculated so that the corrected plate width W on the delivery side of the final stand becomes the target value W 0, and the control amount of the shape control means is corrected.
【0012】式(2)で最終スタンド出側の板幅Wがそ
の目標値W0となる形状制御手段の変更量ΔFiの組合
せは無数にあるが、各スタンドにおいて形状の変化が小
さくなるように、次の式(3)にしたがって各スタンド
の形状制御手段の変更量を均等化することが好ましい。
There are innumerable combinations of the change amounts ΔFi of the shape control means in which the plate width W on the delivery side of the final stand becomes the target value W 0 in the equation (2), but the change in shape is small in each stand. It is preferable to equalize the change amounts of the shape control means of each stand according to the following formula (3).
【0013】フィードフォワード制御としては、式
(1)に示した予測式に基づいて形状制御手段の制御量
を補正する。その補正方法について説明する。フィード
フォワード制御では、各スタンドにおける圧延荷重を連
続的に測定し、その変化量ΔPi及び各スタンド間の張
力変化量ΔTiを式(1)に代入し、最終スタンド出側
の板幅変動量ΔWが0となるように、各スタンドにおけ
る形状制御手段の変更量ΔFiを算出し、形状制御手段
の制御量を補正する。As the feedforward control, the control amount of the shape control means is corrected based on the prediction formula shown in the formula (1). The correction method will be described. In the feed-forward control, the rolling load at each stand is continuously measured, the change amount ΔPi and the tension change amount ΔTi between the stands are substituted into the formula (1), and the strip width variation amount ΔW on the exit side of the final stand is calculated. The change amount ΔFi of the shape control means in each stand is calculated so as to be 0, and the control amount of the shape control means is corrected.
【0014】式(1)で最終スタンド出側の板幅変動量
ΔWが0となる形状制御手段の変更量ΔFiの組合せは
無数にあるが、各スタンドにおける形状の変化が小さく
なるように、スタンド毎に圧延荷重の変化量ΔPi及び
各スタンド間の張力変化量ΔTiを次の式(4)に代入
し、最終スタンド出側の板幅変動に及ぼす影響量ΔWi
が0となる形状制御手段の変更量ΔFiを算出し、形状
制御手段の制御量を補正することが好ましい。
ΔWi=aiΔFi+biΔPi+ciΔTi ・・・(4)In equation (1), there are innumerable combinations of the change amounts ΔFi of the shape control means for which the plate width variation amount ΔW on the exit side of the final stand becomes 0, but the stands are changed so that the change in the shape of each stand becomes small. The rolling load change amount ΔPi and the tension change amount ΔTi between the stands are substituted into the following formula (4) for each time, and the influence amount ΔWi on the strip width variation on the exit side of the final stand is calculated.
It is preferable to calculate the change amount ΔFi of the shape control unit for which 0 becomes 0 to correct the control amount of the shape control unit. ΔWi = aiΔFi + biΔPi + ciΔTi (4)
【0015】なお、フィードフォワード制御で板幅を制
御する場合には、フィードフォワード制御に先立って、
圧延開始初期にフィードバック制御により板幅が目標値
となるように形状制御手段の制御量を補正しておくこと
が不可欠である。フィードフォワード制御とフィードバ
ック制御を比較すると、フィードフォワード制御は制御
の時間遅れがフィードバック制御よりも少ない利点があ
るが、制御モデルの誤差を生じやすい。精度面ではフィ
ードバック制御の方が優れている。板幅制御のための形
状制御手段としては、ワークロールベンダー,中間ロー
ルベンダー,中間ロールシフト等のいずれも使用可能で
ある。応答性を重視する場合には、ワークロールベンダ
ー又は中間ロールベンダーの使用が好ましい。When the plate width is controlled by the feedforward control, prior to the feedforward control,
It is indispensable to correct the control amount of the shape control means by feedback control at the beginning of rolling so that the strip width becomes a target value. Comparing the feedforward control and the feedback control, the feedforward control has an advantage that the control time delay is smaller than that of the feedback control, but the control model error is likely to occur. Feedback control is superior in terms of accuracy. A work roll bender, an intermediate roll bender, an intermediate roll shift, or the like can be used as the shape control means for controlling the plate width. When importance is attached to responsiveness, it is preferable to use a work roll bender or an intermediate roll bender.
【0016】[0016]
【実施例】フィードバック制御の適用:6段圧延機を4
スタンド備えた冷間タンデム圧延機1(図5)を用い、
板厚2.3mm,板幅1020mmの低炭素鋼帯を板厚
0.6mmまで冷間圧延した。形状制御手段のうち、ワ
ークロールベンダーのみを板幅制御手段として用いた。
最終スタンド出側の板幅を板幅計5で連続的に測定し、
その実測値W1を上位コンピュータ2に入力した。そし
て、各スタンドの形状制御手段の変更量を均等化するよ
うに、プロセスコンピュータ3で式(3)に従って各ス
タンドの形状制御手段の変更量ΔFiを算出し、ワーク
ロールベンダー4を所定の値に変更した。圧延後の板幅
を板幅計で測定し、コイルトップエンドの非定常部を除
いた定常部に板幅の推移を求めた。この場合、板幅変動
量は目標値に対して0.3mmの範囲に収まっていた
(図6a)。[Embodiment] Application of feedback control: 6-high rolling mill 4
Using a cold tandem rolling mill 1 (FIG. 5) equipped with a stand,
A low carbon steel strip having a plate thickness of 2.3 mm and a plate width of 1020 mm was cold-rolled to a plate thickness of 0.6 mm. Of the shape control means, only the work roll bender was used as the plate width control means.
Continuously measure the board width on the exit side of the final stand with a board width gauge 5,
The measured value W 1 was input to the host computer 2. Then, the process computer 3 calculates the change amount ΔFi of the shape control means of each stand so as to equalize the change amount of the shape control means of each stand, and sets the work roll bender 4 to a predetermined value. changed. The strip width after rolling was measured with a strip width gauge, and the transition of strip width was obtained in the steady portion excluding the unsteady portion of the coil top end. In this case, the plate width variation was within the range of 0.3 mm with respect to the target value (Fig. 6a).
【0017】他方、被圧延材の板幅変動に対する形状制
御手段の影響を当該スタンドのみで検討し、影響度が後
段スタンドで変化することを考慮に入れていない従来の
板幅制御方法(特開平5−154527号公報)による
とき、ワークロールベンダーの板幅制御効果が後段スタ
ンドで減少することを無視してワークロールベンダーに
よる板幅制御効果を過大評価していることから、圧延開
始後の初期に板幅の目標値に対して最大で1.0mm以
上板幅が広くなっていた(図6b)。On the other hand, the influence of the shape control means on the variation of the strip width of the material to be rolled is examined only by the stand concerned, and the conventional strip width control method which does not take into consideration the fact that the degree of influence changes in the latter stand (Japanese Patent Laid-Open No. Hei 10-1999) No. 5-154527), the strip width control effect of the work roll bender is ignored and the strip width control effect of the work roll bender is overestimated. In addition, the plate width was wider than the target value of the plate width by 1.0 mm or more at the maximum (FIG. 6b).
【0018】フィードバック制御+フィードフォワード
制御の適用:被圧延材として板厚2.4mm,板幅93
0mmの低炭素鋼帯を用い、板厚0.6mmまで冷間圧
延した。形状制御手段のうち、ワークロールベンダーの
みを板幅制御手段として用いた。圧延開始初期に最終ス
タンド出側の板幅を板幅計5で連続的に測定し、その実
測値W1を上位コンピュータ2に入力した。そして、各
スタンドの形状制御手段の変更量を均等化するように、
プロセスコンピュータ3で式(3)に従って各スタンド
の形状制御手段の変更量ΔFiを算出し、ワークロール
ベンダー4を所定の値に変更した。その後、フィードフ
ォワード制御に切替え、板幅制御を行った。フィードフ
ォワード制御では、各スタンドにおける圧延荷重を連続
的に測定し、スタンド毎にその変化量ΔPi及び各スタ
ンド間の張力変化量ΔTiを式(4)に代入し、最終ス
タンド出側の板幅変動に及ぼすΔWiが0になるよう
に、各スタンドにおける形状制御手段の変更量ΔFiを
算出し、ワークロールベンダー4を所定の値に変更し
た。得られた冷延鋼板の板幅を測定した結果、板幅変動
量は目標値に対して0.4mmの範囲に収まっていた
(図7a)。他方、従来の板幅制御方法(特開平5−1
54527号公報)によるとき、ワークロールベンダー
の板幅制御効果が後段スタンドで減少する影響により、
圧延開始後の初期に板幅の目標値に対して最大で1.0
mm以上板幅が広くなっていた(図7b)。 Feedback control + feed forward
Application of control: Plate thickness 2.4 mm, plate width 93 as material to be rolled
Using a low carbon steel strip of 0 mm, it was cold-rolled to a plate thickness of 0.6 mm. Of the shape control means, only the work roll bender was used as the plate width control means. At the beginning of rolling, the strip width on the delivery side of the final stand was continuously measured by the strip width meter 5, and the measured value W 1 was input to the host computer 2. Then, in order to equalize the change amount of the shape control means of each stand,
The process computer 3 calculated the change amount ΔFi of the shape control means of each stand according to the equation (3), and changed the work roll bender 4 to a predetermined value. After that, the feedforward control was switched to and the plate width was controlled. In the feed-forward control, the rolling load at each stand is continuously measured, and the change amount ΔPi and the tension change amount ΔTi between each stand are substituted into the equation (4) to determine the strip width fluctuation on the delivery side of the final stand. The change amount ΔFi of the shape control means in each stand was calculated so that ΔWi exerted on the work roll bender 4 was changed to a predetermined value. As a result of measuring the strip width of the obtained cold rolled steel sheet, the strip width variation amount was within the range of 0.4 mm with respect to the target value (Fig. 7a). On the other hand, a conventional plate width control method (Japanese Patent Application Laid-Open No. 5-1
54527), due to the effect that the plate width control effect of the work roll bender is reduced in the latter stage stand,
A maximum of 1.0 against the target value of strip width after the start of rolling
The plate width was wider than mm (Fig. 7b).
【0019】上記2つの実施例の対比から明らかなよう
に、後段スタンドに及ぼす影響度を取り込んだ数式モデ
ルで形状制御手段をフィードバック制御或いはフィード
フォワード制御することによって、板幅精度が大幅に向
上した冷延鋼帯を高生産性で製造できることが確認され
た。As is clear from the comparison between the above two embodiments, the plate width accuracy is greatly improved by performing feedback control or feedforward control of the shape control means with a mathematical model that incorporates the degree of influence on the rear stand. It was confirmed that cold-rolled steel strip can be manufactured with high productivity.
【0020】[0020]
【発明の効果】以上に説明したように、本発明の板幅制
御方法では、各スタンドにおける形状制御手段の変更量
が最終スタンド出側の板幅変動に及ぼす影響を取り込ん
だ数式モデルを用い、各スタンドにおける形状制御手段
の制御量を補正している。したがって、形状制御手段の
板幅制御効果が後段スタンドで減少することを見込んで
対処しているので、板幅精度良好で板幅が一定の冷延金
属帯が高歩留で製造される。As described above, the plate width control method of the present invention uses a mathematical model that takes in the influence of the change amount of the shape control means in each stand on the plate width fluctuation on the exit side of the final stand. The control amount of the shape control means in each stand is corrected. Therefore, since it is taken into consideration that the strip width control effect of the shape control means is reduced in the latter stand, a cold rolled metal strip having a good strip width accuracy and a constant strip width can be manufactured with a high yield.
【図1】 No.1スタンドにおけるワークロールベン
ダー力の増加が板幅変動に及ぼす影響を表したグラフFIG. 1 No. Graph showing the effect of increasing work roll bender force in one stand on plate width fluctuation
【図2】 No.1スタンドにおける圧延荷重の増加が
板幅変動に及ぼす影響を表したグラフFIG. 2 No. Graph showing the effect of rolling load increase on strip width in one stand
【図3】 No.1−No.2スタンド間の張力の増加
が板幅変動に及ぼす影響を表したグラフFIG. 3 No. 1-No. Graph showing the effect of increase in tension between two stands on plate width fluctuation
【図4】 ワークロールベンダー力の増加(a),圧延
荷重の増加(b),スタンド間張力の増加(c),が最
終スタンド出側の板幅変動に及ぼす影響を表したグラフFIG. 4 is a graph showing the effect of increase in work roll bender force (a), increase in rolling load (b), and increase in inter-stand tension (c) on strip width variation on the exit side of the final stand.
【図5】 実施例で使用した冷間タンデム圧延機の概略
図FIG. 5 is a schematic view of a cold tandem rolling mill used in Examples.
【図6】 本発明法(a)及び従来法(b)で製造した
冷延鋼帯の板幅変動量を比較したグラフFIG. 6 is a graph comparing strip width fluctuation amounts of cold-rolled steel strips produced by the method of the present invention (a) and the conventional method (b).
【図7】 本発明法(a)及び従来法(b)で製造した
冷延鋼帯の板幅変動量を比較したグラフFIG. 7 is a graph comparing strip width fluctuation amounts of cold rolled steel strips manufactured by the method of the present invention (a) and the conventional method (b).
Claims (2)
に、各スタンドにおける形状制御手段の変更量を変数と
して最終スタンド出側の板幅変動を表す数式モデルを予
め作成するとともに、最終スタンド出側の板幅を連続的
に測定し、この実測値を変数として前記数式モデル基づ
き、最終スタンド出側の板幅が目標値に一致するように
各スタンドにおける形状制御手段の制御量を補正するこ
とを特徴とする冷間タンデム圧延における板幅制御方
法。1. When cold rolling with a cold tandem rolling mill, a mathematical model representing the strip width variation on the delivery side of the final stand is created in advance with the change amount of the shape control means in each stand as a variable, and the final stand is also prepared. The board width on the delivery side is continuously measured, and the control amount of the shape control means in each stand is corrected so that the board width on the delivery side of the final stand matches the target value based on the mathematical model with the measured value as a variable. A strip width control method in cold tandem rolling characterized by the above.
に、各スタンドにおける圧延荷重の変化量,各スタンド
間張力の変化量,及び各スタンドにおける形状制御手段
の変更量を変数として最終スタンド出側の板幅変動を表
す数式モデルを予め作成するとともに、圧延開始初期に
請求項1に記載の方法により最終スタンド出側の板幅を
制御した後に、圧延中の圧延荷重を連続的に測定し、こ
の実測値及び各スタンド間張力の変化量を前記数式モデ
ルに代入し、最終スタンド出側の板幅が目標値に一致す
るように各スタンドにおける形状制御手段の制御量を補
正することを特徴とする冷間タンデム圧延における板幅
制御方法。2. The final stand with the amount of change in rolling load at each stand, the amount of change in tension between each stand, and the amount of change in shape control means at each stand as variables during cold rolling with a cold tandem rolling mill. A mathematical model representing the strip width variation on the delivery side is created in advance, and the strip width on the delivery side of the final stand is controlled by the method according to claim 1 at the beginning of rolling, and then the rolling load during rolling is continuously measured. Then, by substituting the measured value and the change amount of tension between each stand into the mathematical model, the control amount of the shape control means in each stand is corrected so that the plate width on the delivery side of the final stand matches the target value. A method for controlling strip width in cold tandem rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002090320A JP2003290808A (en) | 2002-03-28 | 2002-03-28 | Method for controlling sheet width in tandem cold rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002090320A JP2003290808A (en) | 2002-03-28 | 2002-03-28 | Method for controlling sheet width in tandem cold rolling |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003290808A true JP2003290808A (en) | 2003-10-14 |
Family
ID=29235653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002090320A Withdrawn JP2003290808A (en) | 2002-03-28 | 2002-03-28 | Method for controlling sheet width in tandem cold rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003290808A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105290115A (en) * | 2014-07-16 | 2016-02-03 | 鞍钢股份有限公司 | Method for determining edge drop control regulation efficacy coefficient of cold-rolled silicon steel |
CN105855297A (en) * | 2016-05-25 | 2016-08-17 | 江苏省沙钢钢铁研究院有限公司 | Control method for improving thickness precision of head of hot-rolled first non-oriented silicon steel |
-
2002
- 2002-03-28 JP JP2002090320A patent/JP2003290808A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105290115A (en) * | 2014-07-16 | 2016-02-03 | 鞍钢股份有限公司 | Method for determining edge drop control regulation efficacy coefficient of cold-rolled silicon steel |
CN105290115B (en) * | 2014-07-16 | 2017-03-29 | 鞍钢股份有限公司 | Method for determining edge drop control regulation efficacy coefficient of cold-rolled silicon steel |
CN105855297A (en) * | 2016-05-25 | 2016-08-17 | 江苏省沙钢钢铁研究院有限公司 | Control method for improving thickness precision of head of hot-rolled first non-oriented silicon steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2009113719A1 (en) | Learning method of rolling load prediction in hot plate rolling. | |
JP3253013B2 (en) | Strip crown and shape control method in hot rolling | |
JP4671544B2 (en) | Sheet width control method in cold tandem rolling | |
JP2003290808A (en) | Method for controlling sheet width in tandem cold rolling | |
JP2007203303A (en) | Shape control method in cold rolling | |
JP4330134B2 (en) | Shape control method in cold rolling | |
JP4102267B2 (en) | Sheet width control method in cold tandem rolling | |
JP4162622B2 (en) | Edge drop control method in cold rolling | |
JP2000301221A (en) | Method for controlling edge drop during cold rolling | |
JP3016117B2 (en) | Manufacturing method of tapered steel plate | |
JP4227686B2 (en) | Edge drop control method during cold rolling | |
JP2003290807A (en) | Method for controlling sheet width in tandem cold rolling | |
JP4086119B2 (en) | Shape control method in cold rolling of hot rolled steel strip before pickling | |
JP3719226B2 (en) | Method for producing a metal plate with good plate profile | |
JP3516726B2 (en) | Edge drop control method during cold rolling | |
JP2002292414A (en) | Shape control method in cold rolling | |
JP3205130B2 (en) | Strip width control method in hot rolling | |
CN109226279A (en) | A kind of a quarter wave board-shape control method of five racks cold continuous rolling high strength steel plate band | |
JP4164306B2 (en) | Edge drop control method in cold rolling | |
JP2661515B2 (en) | Strip crown control method in hot rolling | |
JPH09155420A (en) | Method for learning setup model of rolling mill | |
JP4140316B2 (en) | Metal plate manufacturing method | |
JP5700404B2 (en) | Plate thickness control method and plate thickness control device | |
JPH06277728A (en) | Method for controlling and setting plate crown | |
JP3438871B2 (en) | Rolling mill shape control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050607 |