JP2003272626A - Nonaqueous electrolyte battery - Google Patents
Nonaqueous electrolyte batteryInfo
- Publication number
- JP2003272626A JP2003272626A JP2002073370A JP2002073370A JP2003272626A JP 2003272626 A JP2003272626 A JP 2003272626A JP 2002073370 A JP2002073370 A JP 2002073370A JP 2002073370 A JP2002073370 A JP 2002073370A JP 2003272626 A JP2003272626 A JP 2003272626A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte battery
- positive electrode
- manganese dioxide
- pore volume
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質電池に
関し、特に100℃ないしはそれ以上の高温環境や高温
保存後でも使用可能な非水電解質電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery that can be used even in a high temperature environment of 100 ° C. or higher or after high temperature storage.
【0002】[0002]
【従来の技術】近年、小型で、高電圧かつ高エネルギー
密度を有する非水電解質電池として、リチウム電池の開
発がなされており、携帯型のパーソナルコンピュータ、
携帯型情報端末(PDA)、携帯電話機などのメモリバ
ックアップ電源や、カメラ、デジタルカメラ、自動車用
機器(カーステレオ、ETC機器など)の駆動電源とし
て広範囲の用途に用いられている。2. Description of the Related Art In recent years, a lithium battery has been developed as a small-sized non-aqueous electrolyte battery having a high voltage and a high energy density, and a portable personal computer,
It is used in a wide range of applications as a memory backup power supply for portable information terminals (PDAs), mobile phones, etc., and as a drive power supply for cameras, digital cameras, automobile equipment (car stereos, ETC equipment, etc.).
【0003】このような機器は、晴天下に放置されるこ
と等により、或いは高負荷用途においては例えばCPU
による発熱等により、常温よりもかなり高い温度条件下
にさらされることがあり、場合によっては100℃以
上、更には130℃近くになることもまれではなかっ
た。Such an apparatus may be, for example, a CPU when left in fine weather or in a high load application.
It may be exposed to a temperature condition considerably higher than room temperature due to heat generation by the above, and in some cases, the temperature may be 100 ° C. or higher, or even 130 ° C. in some cases.
【0004】しかしながら、従来の非水電解質電池をこ
のような高温条件下に放置すると、約70℃付近から非
水電解質が分解して二酸化炭素等のガスを発生し始め、
これが原因となって電池にフクレが生じて電池の電極と
外装との接触がとれなくなり、内部抵抗の増大や出力低
下等、電池の特性悪化の原因となっていた。そのため、
従来の非水電解質電池では、保存最高温度は70℃程度
が一般的であった。However, when the conventional non-aqueous electrolyte battery is left under such high temperature conditions, the non-aqueous electrolyte decomposes at about 70 ° C. and begins to generate gas such as carbon dioxide,
This causes blistering in the battery, making it impossible to contact the electrode of the battery and the outer casing, which causes deterioration of the battery characteristics such as an increase in internal resistance and a decrease in output. for that reason,
In the conventional non-aqueous electrolyte battery, the maximum storage temperature is generally about 70 ° C.
【0005】このような非水電解質電池の高温保存特性
を改良すべく種々の研究開発が行われている。例えば、
特開平10−162860号公報に記載の発明がその一
例であり、これには「一般式がLixMyNi1−yO
2(但し、MはFe,V,Cu,Mg,Co,Mn,C
r,Alのうちのいずれか1種類以上の金属とし、xは
1.10≧x≧0.50、yは1>y≧0の範囲とす
る。)で表わされるリチウム含有復合酸化物からなる正
極と、リチウムを吸蔵,放出し得る炭素材料もしくは金
属酸化物,リチウム合金,リチウム金属,リチウム化合
物,導電性ポリマーから選ばれる少なくとも一つからな
る負極と、非水電解液とを備えた非水電解液二次電池に
おいて、前記リチウム含有複合酸化物が、50Å以下の
細孔半径を有する空間体積がリチウム含有複合酸化物1
グラムあたり0.003cm3以下であることを特徴と
する非水電解液二次電池。」の発明(以下、「引用発
明」という。)が開示されている。Various researches and developments have been carried out to improve the high temperature storage characteristics of such a non-aqueous electrolyte battery. For example,
An invention is an example described in JP-A-10-162860, this is the "general formula Li x M y Ni 1-y O
2 (However, M is Fe, V, Cu, Mg, Co, Mn, C
At least one metal selected from r and Al is used, x is in the range of 1.10 ≧ x ≧ 0.50, and y is in the range of 1> y ≧ 0. And a negative electrode composed of at least one selected from a carbon material or metal oxide capable of inserting and extracting lithium, a lithium alloy, a lithium metal, a lithium compound, and a conductive polymer. In the non-aqueous electrolyte secondary battery including a non-aqueous electrolyte, the lithium-containing composite oxide is a lithium-containing composite oxide having a space volume of 50 Å or less.
A non-aqueous electrolyte secondary battery, which is 0.003 cm 3 or less per gram. Invention (hereinafter, referred to as “cited invention”) is disclosed.
【0006】この引用発明は、上記の構成を備えること
により充電状態で80℃で保存したときの電池性能の劣
化を抑制できるという効果を奏するものである。しかし
ながら、上記引用発明は、正極活物質中にNiを必須成
分として含有しているためか、非水電解質の分解反応に
対して非常に高活性であって、せいぜい80℃の温度条
件下に放置した場合が限界であり、100℃ないしはそ
れ以上の温度条件下に放置した場合は、従来例の非水電
解質電池と同様に、電解質の分解による二酸化炭素の発
生量が大きくなり、電池特性の悪化が認められた。[0006] This cited invention has the effect of suppressing the deterioration of the battery performance when stored at 80 ° C in a charged state by providing the above-mentioned configuration. However, the above cited invention is very active for the decomposition reaction of the non-aqueous electrolyte, probably because Ni is contained in the positive electrode active material as an essential component, and is left under a temperature condition of at most 80 ° C. When it is left to stand at a temperature of 100 ° C. or higher, the amount of carbon dioxide generated by the decomposition of the electrolyte increases and the battery characteristics deteriorate, as in the case of the conventional non-aqueous electrolyte battery. Was recognized.
【0007】[0007]
【発明が解決しようとする課題】本願の発明者らは、上
述のような問題点を解決し、100℃ないしはそれ以上
の温度条件下に放置した後でも安定して動作し得る非水
電解質電池を得ることを目的として、正極活物質の組成
や物理的特性を種々検討した結果、正極活物質として二
酸化マンガン又は二酸化マンガンと二リチウム三酸化マ
ンガンの複合体を使用し、かつその所定細孔径範囲のも
のの占める空孔体積を所定数値範囲に限定することによ
り、100℃ないしはそれ以上の温度条件下で放置して
も劣化し難い非水電解質電池が得られることを見出し、
本願発明を完成するに至ったのである。DISCLOSURE OF THE INVENTION The inventors of the present application have solved the above-mentioned problems, and a non-aqueous electrolyte battery that can operate stably even after being left under a temperature condition of 100 ° C. or higher. For the purpose of obtaining, as a result of various studies on the composition and physical characteristics of the positive electrode active material, using manganese dioxide or a complex of manganese dioxide and dilithium manganese trioxide as the positive electrode active material, and its predetermined pore size range It has been found that by limiting the pore volume occupied by those to a predetermined numerical range, it is possible to obtain a non-aqueous electrolyte battery that is not easily deteriorated even if it is left under a temperature condition of 100 ° C. or higher,
The present invention has been completed.
【0008】すなわち、本願発明は、100℃ないしは
それ以上の高温下に放置した場合であっても、劣化が少
なく、正常に動作し得る非水電解質電池を提供すること
を目的とする。That is, an object of the present invention is to provide a non-aqueous electrolyte battery which can be normally operated with little deterioration even when left at a high temperature of 100 ° C. or higher.
【0009】[0009]
【課題を解決するための手段】本発明の上記目的は以下
の構成を採用することにより達成することができる。本
発明は、少なくとも二酸化マンガン又は二酸化マンガン
と二リチウム三酸化マンガンの複合体を正極活物質とす
る正極と、負極と、セパレータとを有する非水電解質電
池であって、該正極活物質の細孔径が30Å〜40Åの
範囲の空孔体積が0.05cc/g以下であることを特
徴とする。The above object of the present invention can be achieved by adopting the following constitution. The present invention is a non-aqueous electrolyte battery having at least a positive electrode using manganese dioxide or a complex of manganese dioxide and dilithium manganese trioxide as a positive electrode active material, a negative electrode, and a separator, and the pore diameter of the positive electrode active material. Is 30 Å to 40 Å and the pore volume is 0.05 cc / g or less.
【0010】前記正極活物質の細孔径が30Å〜40Å
の範囲の空孔体積は、0.05cc/g以下、0.00
5cc/g以上であることが好ましく、0.05cc/
g以下、0.01cc/g以上であることが更に好まし
い。The positive electrode active material has a pore size of 30Å to 40Å
The pore volume in the range is 0.05 cc / g or less, 0.00
It is preferably 5 cc / g or more, and 0.05 cc / g
It is more preferably g or less and 0.01 cc / g or more.
【0011】上記引用発明では、50Å以下の細孔半径
すなわち100Å以下の細孔径の空孔体積を0.003
cm3以下と非常に小さくすることが必要とされるのに
対し、本願発明では30Å〜40Åの範囲の細孔径の空
孔体積を0.05cc/g以下、好ましくは0.05c
c/g以下0.005cc/g以上、更に好ましくは
0.05cc/g以下0.01cc/g以上と上記引用
発明に比べて大きくてもすむために、特に細孔径が小さ
い範囲の空孔体積を減少させるための処理が簡単です
む。In the above cited invention, a pore radius of 50 Å or less, that is, a pore volume of 100 Å or less is 0.003.
cm 3 While the following and required to be very small, the present invention is 0.05 cc / g or less pore volume of pore diameters in the range of 30Å~40Å preferably 0.05c
c / g or less 0.005 cc / g or more, more preferably 0.05 cc / g or less and 0.01 cc / g or more, which is larger than that of the above cited invention. The process to reduce it is easy.
【0012】加えて、二酸化マンガンは容易に入手し得
る原料であるし、また、安価でもあるから、本願発明の
非水電解質電池は上記引用発明と比すると非常に安価に
製造できるし、しかも、上記引用発明では最高保存温度
が高々80℃程度であるのに対し、本願発明では最高保
存温度を100℃ないしはそれ以上まで高めることがで
きる。In addition, since manganese dioxide is a raw material that is easily available and is inexpensive, the non-aqueous electrolyte battery of the present invention can be manufactured at a very low cost as compared with the above cited invention, and In the above cited invention, the maximum storage temperature is about 80 ° C. at most, whereas in the present invention, the maximum storage temperature can be increased to 100 ° C. or higher.
【0013】このように本願発明と上記引用公報に開示
されている発明との間で、要求される所定細孔径範囲の
空孔体積及び達成し得る最高保存温度に差異が生じる正
確な理由は、現在のところまだ明確ではなく今後の研究
に待つ必要があるが、おそらくは、上記引用発明では正
極活物質の構成成分としてNiを必須の成分としてお
り、このNiの有機溶媒の分解活性が本願発明の正極活
物質の必須の構成成分であるMnと比すると大きいため
に、上述のような結果が生じたものと推定される。The exact reason why there is a difference between the pore volume in the required predetermined pore diameter range and the maximum storage temperature that can be achieved between the invention of the present application and the invention disclosed in the above cited publication is as follows. Although it is still unclear at this point in time and it is necessary to wait for future research, it is probable that Ni is an essential component as a constituent component of the positive electrode active material in the above cited invention, and the decomposition activity of this organic solvent of Ni is Since it is larger than Mn, which is an essential constituent component of the positive electrode active material, it is presumed that the above-mentioned result occurred.
【0014】[0014]
【実施例】(実験例)まず、二酸化マンガン又は二酸化
マンガンと二リチウム三酸化マンガンの複合体を合成し
て熱処理温度及び熱処理時間を変えて種々の細孔径と空
孔体積を有するものを合成した。なお、細孔径及び空孔
体積の測定には、株式会社島津製作所製の高速比表面積
/細孔分布測定装置「アサップ2000」を使用して、
細孔分布を窒素吸脱着によるBJH法のログ微分細孔容
積図(脱着側)にて測定した。Example (Experimental example) First, manganese dioxide or a complex of manganese dioxide and dilithium manganese trioxide was synthesized, and those having various pore diameters and pore volumes were synthesized by changing the heat treatment temperature and the heat treatment time. . In addition, for the measurement of the pore diameter and the pore volume, a high-speed specific surface area / pore distribution measuring device “Asap 2000” manufactured by Shimadzu Corporation is used.
The pore distribution was measured by the log differential pore volume diagram (desorption side) of the BJH method by nitrogen adsorption / desorption.
【0015】非水電解質電池に使用される二酸化マンガ
ン又は二酸化マンガンと二リチウム三酸化マンガンの複
合体は、通常電解二酸化マンガン粉末を350℃〜50
0℃で熱処理することにより、二酸化マンガンが持つ水
分を除去して使用されている。図6に従来例で使用され
ている電解法により製造された二酸化マンガン(BET
法による比表面積:17.0m2/g)の細孔径と空孔
体積との関係を示す。なお、横軸の細孔径は対数目盛で
ある。The manganese dioxide or the complex of manganese dioxide and dilithium manganese trioxide used in the non-aqueous electrolyte battery is usually prepared by mixing electrolytic manganese dioxide powder at 350 ° C to 50 ° C.
It is used by removing water contained in manganese dioxide by heat treatment at 0 ° C. FIG. 6 shows the manganese dioxide (BET) produced by the electrolytic method used in the conventional example.
The specific surface area according to the method: 17.0 m 2 / g) shows the relationship between the pore diameter and the pore volume. The pore diameter on the horizontal axis is on a logarithmic scale.
【0016】図6から明らかなように、従来の非水電解
質電池の正極活物質として使用されている二酸化マンガ
ンは、細孔径が約35Å、約80Å及び約500Åにそ
れぞれ空孔体積のピークを有しており、このうち約35
Åのピークは幅が30Å〜40Åに亘る鋭いピークを形
成している。この例では、細孔径30Å〜40Åの空孔
体積は0.125cc/gであるが、この細孔径30Å
〜40Åの空孔体積は、例えば上記二酸化マンガンを4
90℃で4時間熱処理すると、図3に示すようにピーク
の大きさが大幅に減少して、0.032cc/gまで小
さくなる。As is apparent from FIG. 6, manganese dioxide used as the positive electrode active material of the conventional non-aqueous electrolyte battery has pore volume peaks at pore diameters of about 35Å, about 80Å and about 500Å, respectively. About 35 of these
The peak of Å forms a sharp peak with a width of 30 Å to 40 Å. In this example, the pore volume of 30 Å to 40 Å is 0.125 cc / g, but the pore size is 30 Å
The pore volume of 40 Å is, for example, 4 times that of manganese dioxide.
When heat-treated at 90 ° C. for 4 hours, the size of the peak is significantly reduced as shown in FIG. 3, and is reduced to 0.032 cc / g.
【0017】この細孔径30Å〜40Åに亘るピークの
大きさは、熱処理温度及び熱処理時間に比例して小さく
なるので、その熱処理条件を種々変更することにより細
孔径が30Å〜40Åの範囲で所望の空孔体積を有する
二酸化マンガン又は二酸化マンガンと二リチウム三酸化
マンガンの複合体を合成することができる。Since the size of the peak over the pore diameters of 30Å to 40Å becomes smaller in proportion to the heat treatment temperature and the heat treatment time, various pore heat treatment conditions can be used to obtain a desired pore diameter in the range of 30Å to 40Å. Manganese dioxide having a void volume or a complex of manganese dioxide and dilithium manganese trioxide can be synthesized.
【0018】ここでは、この熱処理条件を種々変えるこ
とにより、細孔径30Å〜40Åの範囲の空孔容積が
0.01cc/g、0.027cc/g、0.032c
c/g、0.05cc/g、0.06cc/g及び0.
125cc/gの6種類の試料を作成した。ただし、空
孔体積が0.027cc/gのもののみ二酸化マンガン
と二リチウム三酸化マンガンの複合体試料であり、他の
5種類はすべて二酸化マンガンである。それぞれの窒素
吸脱着によるBJH法のログ微分細孔容積分布図(脱着
側)を順に図1〜図6に示す。Here, the pore volume in the range of 30Å to 40Å is 0.01 cc / g, 0.027 cc / g, 0.032 c by varying the heat treatment conditions.
c / g, 0.05 cc / g, 0.06 cc / g and 0.
Six kinds of 125 cc / g samples were prepared. However, only the sample having a pore volume of 0.027 cc / g was a composite sample of manganese dioxide and dilithium manganese trioxide, and the other five kinds were all manganese dioxide. Log-differential pore volume distribution diagrams (desorption side) of the BJH method by nitrogen adsorption / desorption are shown in FIGS. 1 to 6 in order.
【0019】(実施例1〜4、比較例1、2)上記6種
類の各試料を用いて非水電解質電池を次のようにして組
み立てた。まず、それぞれの複合体の粉末90重量部及
び導電剤としてのグラファイト10重量部をよく混合
し、この混合物に結着剤としてポリテトラフルオロエチ
レン(PTFE)の分散液を5重量部と純水20重量部
を加えて混練し、粉砕後に整粒して湿潤状態の正極合剤
を作成した。(Examples 1 to 4 and Comparative Examples 1 and 2) A non-aqueous electrolyte battery was assembled in the following manner using each of the above 6 types of samples. First, 90 parts by weight of the powder of each composite and 10 parts by weight of graphite as a conductive agent were mixed well, and 5 parts by weight of a dispersion liquid of polytetrafluoroethylene (PTFE) as a binder and 20 parts of pure water were mixed in this mixture. By adding parts by weight, kneading, pulverizing and sizing were performed to prepare a positive electrode mixture in a wet state.
【0020】この正極合剤を、5ton/cm2の圧力
で加圧成形して、6種類の直径18mm厚み1.5mm
の円筒状の正極を作成した。This positive electrode mixture was pressure-molded at a pressure of 5 ton / cm 2 to obtain 6 kinds of diameter 18 mm and thickness 1.5 mm.
A cylindrical positive electrode was prepared.
【0021】次に、図7に示すような非水電解質電池を
製造した。まず、リチウム金属からなる負極活物質(直
径20mm厚み0.6mm)を集電体7を介して負極缶
6に固着し、この負極上に不織布からなるセパレータ3
を載置し、そのセパレータ3に対して電解液を0.3g
注入した。この上に、上記で作成した正極を載置し、ガ
スケット4を介してステンレス製の正極缶2を被せ、か
しめることにより厚み3.0mm、外径24mmの電池
とした。Next, a non-aqueous electrolyte battery as shown in FIG. 7 was manufactured. First, a negative electrode active material (diameter 20 mm, thickness 0.6 mm) made of lithium metal is fixed to a negative electrode can 6 via a current collector 7, and a separator 3 made of a nonwoven fabric is placed on the negative electrode.
And place 0.3 g of electrolyte on the separator 3.
Injected. The positive electrode prepared as described above was placed on this, and the positive electrode can 2 made of stainless steel was covered via the gasket 4 and caulked to obtain a battery having a thickness of 3.0 mm and an outer diameter of 24 mm.
【0022】このときの電解液は、溶媒としてプロピレ
ンカーボネートとジエチレングリコールジメチルエーテ
ルとを体積比50:50で混合した有機溶媒を使用し、
この有機溶媒に過塩素酸リチウムを1M添加したものを
用いた。The electrolytic solution used at this time is an organic solvent prepared by mixing propylene carbonate and diethylene glycol dimethyl ether in a volume ratio of 50:50 as a solvent.
The organic solvent to which 1M lithium perchlorate was added was used.
【0023】このようにして作成した6種類の非水電解
質電池を用いて次のような試験を実施した。まず、各電
池を100℃の環境下で10日間保存した。保存前後の
電池の内部抵抗及び全高値と保存後のパルス放電特性と
を測定した結果をまとめて下記表1に示す。なお、内部
抵抗値(1KHz交流法)及び全高値は室温(23℃)
環境下にて測定した値である。また、パルス放電は、−
20℃環境下で、負荷電流値を10mAとした際の0.
1秒後の電池電圧の値である。The following tests were carried out using the 6 types of non-aqueous electrolyte batteries thus prepared. First, each battery was stored in an environment of 100 ° C. for 10 days. The results of measuring the internal resistance and total height of the battery before and after storage and the pulse discharge characteristics after storage are summarized in Table 1 below. The internal resistance (1KHz AC method) and total height are room temperature (23 ° C).
It is the value measured under the environment. Also, the pulse discharge is −
When the load current value is 10 mA in a 20 ° C. environment,
It is the value of the battery voltage after 1 second.
【0024】なお、上記実施例及び比較例では、負極活
物質としてリチウム金属を使用したが、これに限られる
ものでなく、リチウム−アルミニウム合金やその他のリ
チウム合金、リチウムイオンを吸蔵放出し得る炭素材料
等も使用し得る。In the above-mentioned Examples and Comparative Examples, lithium metal was used as the negative electrode active material, but it is not limited to this, and lithium-aluminum alloy, other lithium alloys, and carbon capable of occluding and releasing lithium ions. Materials and the like can also be used.
【0025】更に、電解液の溶媒としてはプロピレンカ
ーボネートとジエチレングリコールジメチルエーテルと
の混合溶媒を使用したが、本願発明ではこれに限られる
ものではなく、エチレンカーボネート、プロピレンカー
ボネート、ブチレンカーボネート、ビニレンカーボネー
ト、シクロペンタノン、スルホラン、3−メチルスルホ
ラン、2,4−ジメチルスルホラン、3−メチル−1,
3−オキサゾリジン−2−オン、γ−ブチロラクトン、
ジメチルカーボネート、ジエチルカーボネート、エチル
メチルカーボネート、メチルプロピルカーボネート、ブ
チルメチルカーボネート、エチルプロピルカーボネー
ト、ブチルエチルカーボネート、ジプロピルカーボネー
ト、1,2−ジメトキシエタン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、1,3−ジオキソラ
ン、酢酸メチル、酢酸エチル等の単体、2成分及び3成
分混合物も使用可能である。Further, a mixed solvent of propylene carbonate and diethylene glycol dimethyl ether was used as a solvent of the electrolytic solution, but the present invention is not limited to this, and ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentacarbonate Non-, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,
3-oxazolidin-2-one, γ-butyrolactone,
Dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran,
It is also possible to use simple substances such as 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate and ethyl acetate, and binary and ternary mixtures.
【0026】また、電解質としては、過塩素酸リチウム
を使用したが、LiPF6、LiBF4、LiCF3S
O3、LiAsF6、LiN(CF3SO2)2、Li
OSO2(CF2)3CF3等も使用することができ
る。Lithium perchlorate was used as the electrolyte, but LiPF 6 , LiBF 4 , LiCF 3 S was used.
O 3, LiAsF 6, LiN ( CF 3 SO 2) 2, Li
OSO 2 (CF 2) 3 CF 3 and the like can also be used.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【発明の効果】表1の結果より、細孔径の30Å〜40
Åの空孔体積が0.05cc/g以下の物を用いた本発
明の実施例1〜3の非水電解質電池では、100℃もの
高温保存下でのガス発生を抑制することができ、それに
より、電池のフクレがなくなり、高温保存後も1.5V
以上の電圧を保持できる大電流パルス放電が可能となっ
ていることがわかる。EFFECTS OF THE INVENTION From the results shown in Table 1, the pore diameter of 30Å-40
In the non-aqueous electrolyte batteries of Examples 1 to 3 of the present invention in which the pore volume of Å is 0.05 cc / g or less, it is possible to suppress gas generation under high temperature storage of 100 ° C. Prevents the battery from blistering and keeps 1.5V even after storage at high temperature.
It can be seen that high-current pulse discharge capable of holding the above voltage is possible.
【図1】 細孔径30Å〜40Åの空孔体積が0.01
cc/gの二酸化マンガンのログ微分細孔容積分布図
(脱着側)。Fig. 1 Pore volume of pores with a pore size of 30Å-40Å is 0.01
Log differential pore volume distribution diagram of cc / g of manganese dioxide (desorption side).
【図2】 細孔径30Å〜40Åの空孔体積が0.02
7cc/gの二酸化マンガンと二リチウム三酸化マンガ
ン複合体のログ微分細孔容積分布図(脱着側)。[Figure 2] Pore volume of 30Å-40Å is 0.02
Log differential pore volume distribution diagram (desorption side) of 7 cc / g manganese dioxide and dilithium manganese trioxide composite.
【図3】 細孔径30Å〜40Åの空孔体積が0.03
2cc/gの二酸化マンガンのログ微分細孔容積分布図
(脱着側)。[Fig. 3] Pore volume of 30Å to 40Å with a pore volume of 0.03
Log differential pore volume distribution diagram of 2 cc / g manganese dioxide (desorption side).
【図4】 細孔径30Å〜40Åの空孔体積が0.05
cc/gの二酸化マンガンのログ微分細孔容積分布図
(脱着側)。Fig. 4 Pore volume of 30Å to 40Å is 0.05.
Log differential pore volume distribution diagram of cc / g of manganese dioxide (desorption side).
【図5】 細孔径30Å〜40Åの空孔体積が0.06
cc/gの比較例に対応する二酸化マンガンのログ微分
細孔容積分布図(脱着側)。FIG. 5: Pore volume of 30 Å to 40 Å with a pore size of 0.06
The log differential pore volume distribution diagram (desorption side) of manganese dioxide corresponding to the comparative example of cc / g.
【図6】 細孔径30Å〜40Åの空孔体積が0.12
5cc/gの比較例に対応する二酸化マンガンのログ微
分細孔容積分布図(脱着側)。Fig. 6 Pore volume of pores with a diameter of 30Å to 40Å is 0.12
The log differential pore volume distribution diagram (desorption side) of manganese dioxide corresponding to a comparative example of 5 cc / g.
【図7】 非水電解質電池の断面図。FIG. 7 is a cross-sectional view of a non-aqueous electrolyte battery.
1… 正極板 2… 正極缶 3… セパレータ 4… ガスケット 5… 負極板 6… 負極缶 7… 集電体 1 ... Positive electrode plate 2 ... Positive electrode can 3 ... Separator 4 ... Gasket 5 ... Negative electrode plate 6 ... Negative electrode can 7 ... Current collector
───────────────────────────────────────────────────── フロントページの続き (72)発明者 今西 雅弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西口 信博 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 森田 誠二 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ07 AK03 AL06 AL12 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ02 CJ08 DJ04 DJ16 HJ06 HJ09 5H050 AA10 BA17 CA05 CA09 CA29 CB07 CB12 FA02 FA15 FA17 GA02 GA10 HA06 HA09 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masahiro Imanishi 2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture Within Yo Denki Co., Ltd. (72) Inventor Nobuhiro Nishiguchi 2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture Within Yo Denki Co., Ltd. (72) Inventor Seiji Morita 2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture Within Yo Denki Co., Ltd. F-term (reference) 5H029 AJ07 AK03 AL06 AL12 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ02 CJ08 DJ04 DJ16 HJ06 HJ09 5H050 AA10 BA17 CA05 CA09 CA29 CB07 CB12 FA02 FA15 FA17 GA02 GA10 HA06 HA09
Claims (3)
ンガンと二リチウム三酸化マンガンの複合体を正極活物
質とする正極と、負極と、セパレータとを有する非水電
解質電池であって、該正極活物質の細孔径が30Å〜4
0Åの範囲の空孔体積が0.05cc/g以下であるこ
とを特徴とする非水電解質電池。1. A non-aqueous electrolyte battery comprising a positive electrode having at least manganese dioxide or a composite of manganese dioxide and dilithium manganese trioxide as a positive electrode active material, a negative electrode, and a separator. Pore diameter is 30 ~ 4
A nonaqueous electrolyte battery having a pore volume in the range of 0Å of 0.05 cc / g or less.
Åの範囲の空孔体積が0.05cc/g以下、0.00
5cc/g以上であることを特徴とする請求項1に記載
の非水電解質電池。2. The positive electrode active material has a pore size of 30Å-40
Pore volume in the range of Å is less than 0.05cc / g, 0.00
It is 5 cc / g or more, The non-aqueous electrolyte battery according to claim 1.
Åの範囲の空孔体積が0.05cc/g以下、0.01
cc/g以上であることを特徴とする請求項2に記載の
非水電解質電池。3. The positive electrode active material has a pore size of 30Å-40
Pore volume in the range of Å is less than 0.05cc / g, 0.01
It is cc / g or more, The non-aqueous electrolyte battery according to claim 2, which is characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002073370A JP4107857B2 (en) | 2002-03-15 | 2002-03-15 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002073370A JP4107857B2 (en) | 2002-03-15 | 2002-03-15 | Non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003272626A true JP2003272626A (en) | 2003-09-26 |
JP4107857B2 JP4107857B2 (en) | 2008-06-25 |
Family
ID=29203049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002073370A Expired - Lifetime JP4107857B2 (en) | 2002-03-15 | 2002-03-15 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4107857B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022254871A1 (en) * | 2021-05-31 | 2022-12-08 | パナソニックIpマネジメント株式会社 | Coated active material, electrode material and battery |
-
2002
- 2002-03-15 JP JP2002073370A patent/JP4107857B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022254871A1 (en) * | 2021-05-31 | 2022-12-08 | パナソニックIpマネジメント株式会社 | Coated active material, electrode material and battery |
Also Published As
Publication number | Publication date |
---|---|
JP4107857B2 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4637592B2 (en) | Cathode active material for lithium secondary battery and lithium secondary battery using the same | |
CN101405898B (en) | Non-aqueous electrolyte secondary batteries | |
KR20100108209A (en) | Non-aqueous electrolyte battery | |
JP2003100342A (en) | Lithium secondary battery | |
WO2005078849A1 (en) | Electrochemical device | |
JP3287376B2 (en) | Lithium secondary battery and method of manufacturing the same | |
JP5526491B2 (en) | Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same | |
JP2000251932A (en) | Nonaqueous electrolyte battery | |
JP4739780B2 (en) | Non-aqueous electrolyte battery | |
JP2001319653A (en) | Non-aqueous secondary battery | |
JP3419119B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3396990B2 (en) | Organic electrolyte secondary battery | |
JP4742412B2 (en) | Positive electrode and battery | |
JP4901089B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4857608B2 (en) | Lithium secondary battery and manufacturing method thereof | |
CN104981926A (en) | Active cathode material and its use in rechargeable electrochemical cells | |
JP2003077541A (en) | Battery device and its electrode | |
JP4107857B2 (en) | Non-aqueous electrolyte battery | |
KR101370939B1 (en) | Zirconium-doped cerium oxide, method for producing the same and air electrode for metal-air secondary battery including the same as catalyst | |
CN108232295B (en) | Ionic liquid-based electrolyte for lithium-air battery and lithium-air battery system thereof | |
JP2001148257A (en) | Non-water electrolytic solution and lithium secondary battery | |
JP6599815B2 (en) | Lithium air secondary battery | |
WO2013069790A1 (en) | Non-aqueous electrolyte secondary cell | |
WO2013069793A1 (en) | Non-aqueous electrolyte secondary cell | |
WO2013069791A1 (en) | Non-aqueous electrolyte secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080306 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080401 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4107857 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120411 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130411 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140411 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |