JP2003269220A - Structure and control device of low exhaust emission cylinder injection engine - Google Patents
Structure and control device of low exhaust emission cylinder injection engineInfo
- Publication number
- JP2003269220A JP2003269220A JP2002075380A JP2002075380A JP2003269220A JP 2003269220 A JP2003269220 A JP 2003269220A JP 2002075380 A JP2002075380 A JP 2002075380A JP 2002075380 A JP2002075380 A JP 2002075380A JP 2003269220 A JP2003269220 A JP 2003269220A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- fuel
- exhaust gas
- intake
- injected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/42—Shape or arrangement of intake or exhaust channels in cylinder heads
- F02F1/4214—Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃焼形態としてス
トイキ燃焼を基本とした筒内噴射エンジンにおいて、所
定の運転領域で燃費向上のため多量の排気を還流させ、
前記多量の排気を還流した場合においても、燃焼悪化と
スモークの発生を抑制できる筒内噴射エンジンの構成と
制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder injection engine based on stoichiometric combustion as a combustion mode, in which a large amount of exhaust gas is recirculated to improve fuel efficiency in a predetermined operating range.
The present invention relates to a configuration and a control device of a cylinder injection engine that can suppress deterioration of combustion and generation of smoke even when a large amount of exhaust gas is recirculated.
【0002】[0002]
【従来の技術】近年、燃費改善と出力確保の両立を図る
ために、筒内に直接燃料を供給する筒内噴射エンジンの
開発が急速に進められており、燃焼形態を機関の運転状
態に応じて、成層リーン燃焼と均質ストイキ燃焼とを切
り換えるタイプのものが実用化されている。従来より、
このタイプの筒内噴射エンジンの制御装置および制御方
法として、例えば特開平7−119507号には、エン
ジンを低負荷域では成層燃焼状態で運転する一方、高負
荷域では均一燃焼状態で運転し、エンジンが低回転で前
記高負荷域にあるときに、シリンダの吸気行程で燃料噴
射バルブから燃料を2回に分割して燃料を噴射させるこ
とで、その早期噴射された半分の燃料を吸気行程の終了
までに燃焼室で拡散させる一方、後期噴射された残り半
分の燃料については、増大した容積の燃焼室に拡散さ
せ、全ての燃料を一括噴射する場合のように、次の圧縮
行程でピストン頂面近傍に濃厚な混合気が形成されるの
を防いで、スモークの発生を防止するものが提案されて
いる。2. Description of the Related Art In recent years, in-cylinder injection engines for directly supplying fuel into cylinders have been rapidly developed in order to achieve both improvement of fuel consumption and securing of output. Thus, a type of switching between stratified lean combustion and homogeneous stoichiometric combustion has been put into practical use. Traditionally,
As a control device and control method for this type of direct injection engine, for example, in Japanese Patent Application Laid-Open No. 7-119507, an engine is operated in a stratified combustion state in a low load region, while it is operated in a uniform combustion state in a high load region. When the engine is operating at low speed and in the high load range, the fuel is injected from the fuel injection valve by dividing the fuel into two in the intake stroke of the cylinder, so that half of the early injected fuel is used in the intake stroke. While the fuel is diffused in the combustion chamber by the end, the remaining half of the fuel injected in the latter period is diffused in the combustion chamber of the increased volume and all the fuel is injected all at once. It has been proposed to prevent the formation of a rich air-fuel mixture in the vicinity of the surface and prevent the generation of smoke.
【0003】さらに、特開平11−218050号に
は、エンジンが均一燃焼状態でかつリッチ状態の運転領
域において、吸気行程で燃料噴射バルブから燃料を早期
噴射時期と後期噴射時期との中央時期が吸気行程中央時
期よりも早くなるように2分割噴射するとともに、排気
還流装置により多量の排ガスを吸気通路に還流させ、N
Oxの生成を抑制して、排ガス中のNOx濃度に対する
HC濃度の濃度比(HC/NOx)を高めることで、触
媒のリフレッシュを促進するものが開示されている。Further, in Japanese Patent Laid-Open No. 11-218050, in the operating region where the engine is in a uniform combustion state and in a rich state, the central timing between the early injection timing and the late injection timing of the fuel is taken from the fuel injection valve in the intake stroke. The fuel is injected in two splits so that it is earlier than the center of the stroke, and a large amount of exhaust gas is recirculated to the intake passage by the exhaust gas recirculation device.
It is disclosed that the generation of Ox is suppressed and the concentration ratio of the HC concentration to the NOx concentration in the exhaust gas (HC / NOx) is increased to promote refreshment of the catalyst.
【0004】[0004]
【発明が解決しようとする課題】前記燃焼形態を機関の
運転状態に応じて、成層リーン燃焼と均質ストイキ燃焼
とを切り換えるタイプの筒内噴射エンジンにおいて、所
定の運転条件で成層リーン燃焼を行う場合は、NOxが
大量に発生するため、排気構成として三元触媒に加え
て、NOx吸着専用の触媒が必須となるため、システム
のコストアップは避けられない。今後導入される厳しい
排気規制への対応とシステムコスト削減の観点から、従
来成層リーン燃焼を実施していた所定の運転状態におい
て、ストイキ燃焼を実施する割合を大幅に拡大する必要
がある。しかしながら、成層リーン燃焼運転領域を低減
することは、筒内噴射の特長の一つである燃費の改善効
果が低減することに繋がる。燃費改善手段の一つとし
て、多量の排気を還流させる方法がある。現在、実用化
されている筒内噴射エンジンにおいては、成層リーン燃
焼時には圧縮行程に噴射された燃料をピストン壁面へ衝
突させて、点火プラグ方向へ搬送し、着火時期に可燃混
合気を点火プラグ周りに形成している。このようにピス
トン壁面で燃料をガイドする筒内噴射エンジンで吸気行
程の前半に必要な燃料を一括噴射した場合は、着火時期
には燃焼室内に均一な混合気が形成されるが、還流され
た少量の排気によって火炎伝播が阻害されてしまう。し
たがって、十分な燃費の改善効果が得られない。一方
で、着火直前の圧縮行程に必要な燃料を一括噴射した場
合は、着火時期には燃焼室内に成層化した混合気が形成
されるため、前記均一混合気形成の場合に比べて多くの
排気を還流させることが可能となるが、点火プラグ周り
への燃料の過集中、あるいはピストン壁面燃料付着によ
り大量のスモークが発生する。また燃料噴射時期を、前
記吸気行程前半と着火直前の圧縮行程との中間時期に設
定した場合は、十分に排気を還流できないと同時にスモ
ークも発生する。上記機関構成においては、多量の排気
を還流させたうえでの燃焼安定性確保とスモーク抑制の
両立は極めて困難である。In a cylinder injection engine of the type in which the combustion mode is switched between stratified lean combustion and homogeneous stoichiometric combustion according to the operating state of the engine, when stratified lean combustion is performed under predetermined operating conditions. Since a large amount of NOx is generated, in addition to a three-way catalyst as an exhaust structure, a catalyst dedicated to NOx adsorption is indispensable, and an increase in system cost is unavoidable. From the viewpoint of complying with strict exhaust gas regulations to be introduced in the future and reducing system costs, it is necessary to significantly increase the ratio of stoichiometric combustion in the prescribed operating state where conventional stratified lean combustion was performed. However, reducing the stratified lean combustion operation region leads to a reduction in the fuel consumption improving effect, which is one of the features of in-cylinder injection. As one of fuel consumption improving means, there is a method of recirculating a large amount of exhaust gas. In a cylinder injection engine that is currently in practical use, during stratified lean combustion, the fuel injected in the compression stroke collides with the piston wall surface and is conveyed toward the ignition plug, and the combustible mixture is ignited around the ignition plug at the ignition timing. Is formed. In this way, when a required amount of fuel is collectively injected in the first half of the intake stroke in a cylinder injection engine in which fuel is guided by the piston wall surface, a uniform air-fuel mixture is formed in the combustion chamber at the ignition timing, but is recirculated. A small amount of exhaust hinders flame propagation. Therefore, a sufficient effect of improving fuel economy cannot be obtained. On the other hand, when the fuel required for the compression stroke immediately before ignition is collectively injected, a stratified air-fuel mixture is formed in the combustion chamber at the ignition timing, so that more exhaust gas is exhausted than in the case of the uniform air-fuel mixture formation. However, a large amount of smoke is generated due to excessive concentration of fuel around the spark plug or adhesion of fuel to the piston wall. Further, when the fuel injection timing is set to an intermediate timing between the first half of the intake stroke and the compression stroke immediately before ignition, the exhaust gas cannot be sufficiently recirculated and at the same time smoke is generated. In the above engine configuration, it is extremely difficult to ensure both combustion stability and smoke suppression while recirculating a large amount of exhaust gas.
【0005】[0005]
【課題を解決するための手段】前記目的を達成すべく、
本発明の筒内噴射エンジンの構成および制御方法は、本
質的には、空気量を制御するスロットルバルブが全開付
近となる高負荷領域と所定のエンジン回転数以上の運転
領域とアイドル運転を含む低負荷領域とを除いた運転領
域において、いずれの運転状態においても前記タンブル
生成手段により燃焼室内にタンブル流動を形成するとと
もに燃焼室に排気を還流し、新気と燃料の混合比がスト
イキ付近となるように新気量と燃料噴射量を制御し、か
つ燃料噴射バルブから1サイクル中に噴射される燃料の
全てもしくは一部の燃料を吸気行程に噴射することを特
徴としている。[Means for Solving the Problems] To achieve the above object,
The structure and control method of the in-cylinder injection engine of the present invention is essentially a high load region in which the throttle valve for controlling the air amount is in the vicinity of full opening, an operating region above a predetermined engine speed, and a low operating condition including idle operation. In any operating state except the load region, in any operating state, the tumble generating means forms a tumble flow in the combustion chamber and recirculates the exhaust gas into the combustion chamber, so that the mixing ratio of fresh air and fuel becomes near stoichiometry. In this manner, the fresh air amount and the fuel injection amount are controlled, and all or part of the fuel injected from the fuel injection valve during one cycle is injected in the intake stroke.
【0006】前記の態様において、好ましくは、前記タ
ンブル生成手段が、吸気ポートを上下に分割した2段吸
気ポートと、その上流側に吸気ポートの下段のみを開閉
可能なバルブとから構成される場合である。In the above aspect, preferably, the tumble generating means is composed of a two-stage intake port in which the intake port is divided into upper and lower parts, and a valve capable of opening and closing only the lower part of the intake port on the upstream side thereof. Is.
【0007】前記の態様において、好ましくは、アイド
ル運転を含む低負荷領域のみ成層リーン燃焼を実施する
場合である。In the above aspect, preferably, the stratified lean combustion is performed only in the low load region including the idle operation.
【0008】前記の態様において、好ましくは、車両が
完全に停止する場合のみ、エンジンを停止するアイドル
ストップ制御手段を有する場合である。In the above aspect, it is preferable that the engine has an idle stop control means for stopping the engine only when the vehicle is completely stopped.
【0009】前記の態様において、好ましくは、空気量
を制御するスロットルバルブが全開付近となる高負荷領
域と所定のエンジン回転数以上の運転領域とアイドル運
転を含む低負荷領域とを除いた運転領域においては、吸
気行程と圧縮行程の2回に分割して燃料を噴射する場合
である。In the above-mentioned aspect, it is preferable that an operating region excluding a high load region in which a throttle valve for controlling the air amount is in the vicinity of full opening, an operating region at a predetermined engine speed or more, and a low load region including idle operation. In the above, the fuel injection is divided into two parts, the intake stroke and the compression stroke.
【0010】前記の態様において、好ましくは、吸気行
程に噴射する前期噴射と圧縮行程に噴射する後期噴射の
噴射比率と、前期噴射タイミングを一定として、後期噴
射時期を運転状態に応じて変化させる場合である。In the above aspect, preferably, when the injection ratio of the early injection injected in the intake stroke and the late injection injected in the compression stroke and the early injection timing are constant, the late injection timing is changed according to the operating condition. Is.
【0011】前記の態様において、好ましくは、吸気行
程に噴射する前期噴射と圧縮行程に噴射する後期噴射の
噴射タイミングを共に一定として、前期噴射と後期噴射
の噴射比率を運転状態に応じて変化させる場合である。In the above aspect, preferably, the injection timings of the early injection injected in the intake stroke and the late injection injected in the compression stroke are both fixed, and the injection ratio of the early injection and the late injection is changed according to the operating state. This is the case.
【0012】ストイキ燃焼時においても、多量の排気還
流が可能となり、排気低減だけではなく同時に燃費の向
上も図れる。Even during stoichiometric combustion, a large amount of exhaust gas recirculation is possible, and not only exhaust gas reduction but also fuel efficiency improvement can be achieved at the same time.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施形態について
図面に基づき説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0014】図1は、本発明の筒内噴射エンジンシステ
ム構成図であり、機関は燃焼室1の側面に燃料噴射バル
ブ2と燃焼室1の上面中央部に点火プラグ3が配置さ
れ、吸気バルブ4の作動には関係なく、自由なタイミン
グで燃焼室1へ燃料を噴射できる。FIG. 1 is a block diagram of an in-cylinder injection engine system of the present invention. In the engine, a fuel injection valve 2 is provided on a side surface of a combustion chamber 1 and an ignition plug 3 is arranged at a central portion of an upper surface of the combustion chamber 1, and an intake valve is provided. Fuel can be injected into the combustion chamber 1 at any time regardless of the operation of No. 4.
【0015】吸気系の構成としては、燃焼室1内に縦の
空気流動、すなわちタンブルを形成するために、燃焼室
直前の吸気ポート5内にタンブル生成機構6を配置して
いる。ピストン7の冠面形状は、前記タンブルを圧縮行
程の後半まで保持することが可能な凹面形状を形成して
いる。また、所定の運転状態において排気の一部を再び
燃焼室へ還流するために、触媒8より上流側の排気ポー
ト9と、空気量を調整するスロットルバルブ10の下流
側に配置したコレクタ11とを結ぶ排気還流通路13を
備えており、前記排気還流通路13の途中にある電磁バ
ルブ12を調整することで、運転状態に応じて最適な排
気を還流することができる。一方、本システムでは、従
来の均一ストイキ燃焼と成層リーン燃焼を切り変えて制
御する筒内噴射機関の成層リーン燃焼領域を全域ストイ
キ燃焼とすることで、排気構成を簡素化するとともに排
気を効率良く浄化できる。前記触媒8は三元触媒であ
る。As for the structure of the intake system, a tumble generating mechanism 6 is arranged in the intake port 5 immediately before the combustion chamber in order to form a vertical air flow, that is, tumble, in the combustion chamber 1. The crown shape of the piston 7 is a concave shape capable of holding the tumble until the latter half of the compression stroke. Further, in order to recirculate a part of exhaust gas to the combustion chamber again in a predetermined operating state, an exhaust port 9 upstream of the catalyst 8 and a collector 11 arranged downstream of a throttle valve 10 for adjusting the amount of air are provided. An exhaust gas recirculation passage 13 to be connected is provided, and by adjusting the electromagnetic valve 12 in the middle of the exhaust gas recirculation passage 13, optimum exhaust gas can be recirculated according to the operating state. On the other hand, this system simplifies the exhaust structure and improves the efficiency of exhaust gas by switching the conventional homogeneous stoichiometric combustion and stratified lean combustion to control the stratified lean combustion region of the direct injection engine. Can be purified. The catalyst 8 is a three-way catalyst.
【0016】また、ECU14には、クランク角センサ
信号を始めとし、吸入空気量を計量するエアフロセンサ
27信号などの多くの信号が入力されており、運転条件
に応じて機関は制御される。Further, many signals such as a crank angle sensor signal and an air flow sensor 27 signal for measuring the intake air amount are input to the ECU 14, and the engine is controlled according to the operating conditions.
【0017】次に、本発明の筒内噴射エンジンにおいて
設定された各運転領域と排気還流領域について図2およ
び図3を用いて説明する。Next, each operating region and exhaust gas recirculation region set in the cylinder injection engine of the present invention will be described with reference to FIGS. 2 and 3.
【0018】スロットルバルブがほぼ全開に近い高負荷
領域と所定の回転数以上の高回転で比較的負荷の高い領
域では、燃焼室内にストイキよりリッチで均一な混合気
を形成し燃焼させる。一方、前記運転領域と所定の負荷
以下の領域を除いた運転領域は、基本的にはストイキ付
近で、かつ成層化混合気を形成して燃焼させるととも
に、図5に示したように全域において排気還流させるこ
とで排気を効率良く触媒で浄化するとともに燃費向上を
図る。さらに所定の負荷より低い運転領域、すなわちア
イドル運転を含む低負荷領域については、システムの狙
いによってストイキ付近で均一な混合気を形成して燃焼
させても、あるいは混合気を積極的に成層化してリーン
空燃比で燃焼させてもよい。さらには、前記アイドル運
転状態については、車両が完全に停止する場合は、アイ
ドルストップ制御により、エンジンを一旦停止してもか
まわない。In a high load region where the throttle valve is almost fully opened and a region where the load is high at a predetermined rotation speed or higher and a relatively high load, a mixture richer than stoichiometric and uniform is formed and burned. On the other hand, the operating region excluding the operating region and a region under a predetermined load is basically near stoichiometric and forms a stratified air-fuel mixture for combustion, and exhausts the entire region as shown in FIG. By recirculating the exhaust gas, the exhaust gas is efficiently purified with a catalyst and the fuel consumption is improved. Furthermore, in the operating range lower than the prescribed load, that is, in the low load range including idle operation, even if a uniform air-fuel mixture is formed and burned in the vicinity of stoichiometry depending on the aim of the system, or the air-fuel mixture is positively stratified. It may be burned at a lean air-fuel ratio. Further, in the idle operation state, when the vehicle is completely stopped, the engine may be temporarily stopped by the idle stop control.
【0019】次に、本発明が適用される好ましい筒内噴
射エンジンの斜視断面図を図4に示す。Next, FIG. 4 is a perspective sectional view of a preferred cylinder injection engine to which the present invention is applied.
【0020】図1で示したタンブル生成機構は、吸気ポ
ート5を上下に2分割する仕切り板15と仕切り板15
の上流に配置したタンブル強度制御バルブ16とから構
成される。タンブルを燃焼室内に形成する手段を図5に
示す。前記のとおり吸気ポート5を仕切り板により上下
2段に分割し、その上流にタンブル強度制御バルブ16
を配置した構成(a)以外にも(b),(c)などの構
成が考えられる。The tumble generating mechanism shown in FIG. 1 has a partition plate 15 and a partition plate 15 which divide the intake port 5 into upper and lower parts.
And a tumble intensity control valve 16 disposed upstream of The means for forming the tumble in the combustion chamber is shown in FIG. As described above, the intake port 5 is divided into the upper and lower two stages by the partition plate, and the tumble strength control valve 16 is provided upstream thereof.
In addition to the configuration (a) in which the elements are arranged, configurations (b), (c), etc. are possible.
【0021】例えば(b)のように、(a)においてタ
ンブル強度制御バルブ16のみの構成が考えられる。タ
ンブル強度は、吸気バルブ4の上半分(点火プラグ3
側)から吸入される空気の割合が多いと強くなり、逆に
少ないと弱くなる。エンジンによって吸気ポート5の角
度θPはさまざまであるが、前記θPによってもタンブ
ル強度(タンブル生成手段がない状態における基本強
度)は異なる。したがって、簡略化した吸気系構成で必
要とするタンブル強度が得られれば、コスト削減の観点
からも(b)のように簡略化した構成が有効と言える。For example, as shown in (b), the structure of only the tumble intensity control valve 16 in (a) can be considered. The tumble strength is the upper half of the intake valve 4 (spark plug 3
When the ratio of air taken in from (side) is large, it becomes strong, and conversely, when it is small, it becomes weak. The angle θP of the intake port 5 varies depending on the engine, but the tumble strength (basic strength in the state without the tumble generating means) also varies depending on the θP. Therefore, if the required tumble strength can be obtained with the simplified intake system configuration, the simplified configuration as shown in (b) can be said to be effective from the viewpoint of cost reduction.
【0022】吸気バルブの工夫によりタンブルを強化す
る手段(図中(c))としては、吸気バルブ4の下側
(燃料噴射バルブ2側)に空気が入りづらくなるように
吸入抑制部材17を形成する方法が考えられる。吸気バ
ルブのリフト量が少ない領域では、前記吸入抑制部材1
7により吸入空気の大半が吸気バルブ4の上半分を通過
して燃焼室に吸い込まれる。リフト量が大きくなるほ
ど、その効果は小さくなるが吸入抑制部材17がない場
合に比べて十分な効果が得られる。ただし、(a)や
(b)に比べてタンブル強度の制御自由度が低い。As a means for strengthening the tumble by devising the intake valve ((c) in the figure), an intake suppressing member 17 is formed so that it is difficult for air to enter the lower side of the intake valve 4 (fuel injection valve 2 side). There are possible ways to do this. In the region where the lift amount of the intake valve is small, the intake suppressing member 1
Most of the intake air passes through the upper half of the intake valve 4 by 7 and is sucked into the combustion chamber. The larger the lift amount, the smaller the effect, but a sufficient effect can be obtained as compared with the case where the suction suppression member 17 is not provided. However, the degree of freedom in controlling the tumble strength is lower than that in (a) and (b).
【0023】以上のようなタンブル生成手段より、吸気
行程中に吸入された空気は燃焼室1内でタンブルを形成
する。また、ピストン7の冠面には前記タンブルを保存
するための溝が形成されている。図6にピストン冠面形
状の例を示す。図中下に示したピストンの縦断面から分
かるように吸気側と排気側とが左右対称となるように溝
が形成されている。ピストンを上から見た溝形状として
は、ピストンの中心を通り吸気側と排気側を結ぶ直線を
基準として図中上下方向に対称となる形状が望ましい。
(a)のように長方形の場合や(b)のように排気側か
ら吸気側に向かって溝の幅が連続的に絞れられている台
形の場合、あるいは(c)のように楕円形状であっても
よい。By the tumble generating means as described above, the air sucked in during the intake stroke forms a tumble in the combustion chamber 1. A groove for storing the tumble is formed on the crown surface of the piston 7. FIG. 6 shows an example of the shape of the piston crown surface. As can be seen from the vertical cross section of the piston shown in the lower part of the figure, the grooves are formed so that the intake side and the exhaust side are symmetrical. As a groove shape when the piston is viewed from above, a shape that is symmetrical in the vertical direction in the figure with respect to a straight line passing through the center of the piston and connecting the intake side and the exhaust side is desirable.
In the case of a rectangle as in (a), in the case of a trapezoid where the width of the groove is continuously narrowed from the exhaust side to the intake side as in (b), or in the elliptical shape as in (c). May be.
【0024】次に、以上説明したタンブルの生成手段と
タンブルを圧縮行程後半まで保存可能なピストンを有す
る筒内噴射エンジンによる排気還流率とサージトルク、
あるいは排気還流率と燃費の関係について説明する。グ
ラフは必要燃料を吸気行程に一括噴射した場合の結果で
ある。Next, the exhaust gas recirculation rate and the surge torque by the in-cylinder injection engine having the above-described tumble generating means and the piston capable of storing the tumble until the latter half of the compression stroke,
Alternatively, the relationship between the exhaust gas recirculation rate and fuel consumption will be described. The graph shows the result when the required fuel is collectively injected in the intake stroke.
【0025】図7に排気還流率と燃焼安定性の指標であ
るサージトルクの関係を示す。本発明のタンブル強度制
御バルブ全開時は、従来のスワール(横方向の空気流
動)を採用した壁ガイド方式に比べて多量の排気を還流
させても燃焼が安定しており、図8に示したとおり燃費
も向上している。さらにタンブル強度制御バルブ全閉時
においては、従来に比べ2倍以上の排気還流率の状態に
おいても燃焼が安定しており、燃費も向上する。図9を
用いて、本発明のエンジン構成により多量の排気が還流
されても燃焼が安定している理由について説明する。FIG. 7 shows the relationship between the exhaust gas recirculation rate and the surge torque which is an index of combustion stability. When the tumble strength control valve of the present invention is fully opened, combustion is stable even when a large amount of exhaust gas is recirculated, as compared to the conventional wall guide method that employs a swirl (lateral air flow), as shown in FIG. As you can see, fuel efficiency is improving. Further, when the tumble strength control valve is fully closed, combustion is stable even in a state where the exhaust gas recirculation rate is twice or more that in the conventional case, and fuel efficiency is improved. The reason why combustion is stable even when a large amount of exhaust gas is recirculated by the engine configuration of the present invention will be described with reference to FIG.
【0026】吸気行程には強弱はあるものの、燃焼室1
内にはタンブルが形成される。ところが、2つの吸気バ
ルブ4から空気は吸入されるため、実際には燃焼室1内
で吸気バルブ4の延長線上に強いタンブル流動18a,
18bが発生している。またピストン7により、前記タ
ンブル流動18aと18bが圧縮行程の後半まで保持さ
れる。吸気行程に噴射される燃料噴射位置は、前記タン
ブル流動18aと18bの間であり、燃料噴射バルブ2か
ら噴射された燃料噴霧19は、前記タンブル流動18a
と18bがエアーカーテンの役割を果たし、圧縮行程後
半まで燃焼室1の横方向への拡散はしづらくなる。よっ
て、燃料を吸気行程に噴射しても、従来に比べてリッチ
な可燃混合気が点火プラグ3周り形成されるため、排気
還流に対して安定した燃焼が得られる。Although there are strengths and weaknesses in the intake stroke, the combustion chamber 1
A tumble is formed inside. However, since the air is sucked from the two intake valves 4, the strong tumble flow 18a, 18a,
18b has occurred. Also, the piston 7 holds the tumble flows 18a and 18b until the latter half of the compression stroke. The fuel injection position injected in the intake stroke is between the tumble flows 18a and 18b, and the fuel spray 19 injected from the fuel injection valve 2 is the tumble flow 18a.
And 18b play the role of an air curtain, and the lateral diffusion of the combustion chamber 1 becomes difficult until the latter half of the compression stroke. Therefore, even if the fuel is injected in the intake stroke, a combustible mixture richer than in the conventional case is formed around the spark plug 3, so that stable combustion can be obtained against exhaust gas recirculation.
【0027】次に、図10〜図12を用いて、本発明に
好ましい燃料噴霧形状例について説明する。Next, with reference to FIGS. 10 to 12, an example of a fuel spray shape suitable for the present invention will be described.
【0028】まず、図10に示した噴霧は図7と図8の
特性を得た噴霧形状である。図中上に示した噴霧の縦断
面と下に示した横断面から見て分かるように、燃料噴射
バルブの中心線を基準として縦横ともに対称な噴霧であ
る。これに対して、本発明に好ましい噴霧形状の例とし
ては、図11と図12に示したようなものがある。First, the spray shown in FIG. 10 has a spray shape having the characteristics shown in FIGS. As can be seen from the vertical cross section of the spray shown in the upper part of the drawing and the horizontal cross section of the lower part of the drawing, the spray is symmetrical vertically and horizontally with respect to the center line of the fuel injection valve. On the other hand, examples of preferable spray shapes for the present invention include those shown in FIGS. 11 and 12.
【0029】図10に示すように、燃料噴射バルブから
噴霧される燃料噴霧の形状は、左右対称ではないもので
ある。これは、燃料噴射バルブのノズル流路の方向を燃
料噴射バルブの中心線方向に対して特定の角度を持たせ
ることで形成可能である。このようなノズル構造で形成
される燃料噴霧は角度を持たせた方向へのペネトレーシ
ョンが長くなり、流量分布も増加する。このような噴霧
を適用する場合には、燃料噴射バルブの中心線に対し
て、燃料噴射中心線を点火プラグ側へ傾かせるように配
置する。こうすることにより点火プラグ方向へ燃料を搬
送しやすく、気化燃料が点火プラグ周りに集まりやすく
なる。As shown in FIG. 10, the shape of the fuel spray sprayed from the fuel injection valve is not symmetrical. This can be formed by making the direction of the nozzle flow path of the fuel injection valve have a specific angle with respect to the center line direction of the fuel injection valve. In the fuel spray formed by such a nozzle structure, the penetration in the angled direction becomes longer and the flow rate distribution also increases. When such spray is applied, the fuel injection center line is arranged so as to be inclined toward the spark plug side with respect to the center line of the fuel injection valve. By doing so, it is easy to convey the fuel toward the spark plug, and the vaporized fuel is likely to collect around the spark plug.
【0030】図11に示した噴霧形状は、扁平な形状の
ものであり、例えばノズル先端をスリット状にすること
で形成可能である。このような噴霧を適用する場合に
は、横断面に示したように燃料噴射バルブの中心線から
距離が長い側が点火プラグ側とピストン側となるように
配置する。こうすることにより、燃料室の横方向への燃
料の拡散が防止され、点火プラグ周りに濃い可燃混合気
が形成される。The spray shape shown in FIG. 11 is a flat shape and can be formed, for example, by forming the nozzle tip into a slit shape. When such spraying is applied, as shown in the cross section, the side where the distance from the center line of the fuel injection valve is long is the spark plug side and the piston side. By doing so, diffusion of fuel in the lateral direction of the fuel chamber is prevented, and a rich combustible mixture is formed around the spark plug.
【0031】以上のような噴霧を適用することで吸気行
程噴射時においても、成層化混合気を燃焼室内に形成で
きるため、ストイキ燃焼時においても多量の排気還流が
可能となり燃費の向上が図れる。By applying the above-mentioned spray, the stratified air-fuel mixture can be formed in the combustion chamber even during the intake stroke injection, so that a large amount of exhaust gas recirculation can be achieved even during stoichiometric combustion, and fuel efficiency can be improved.
【0032】ストイキ燃焼で多量の排気還流を可能とす
るには、燃料のピストン壁面付着を防止し、気化燃料が
点火プラグ周りに集中しすぎることなく、混合気を成層
化することが重要である。次に燃料噴射制御によって実
現する手段について説明する。In order to enable a large amount of exhaust gas recirculation by stoichiometric combustion, it is important to prevent the fuel from adhering to the piston wall surface and stratify the air-fuel mixture without excessively concentrating the vaporized fuel around the spark plug. . Next, the means realized by the fuel injection control will be described.
【0033】図13に多量の排気還流を可能とする燃料
噴射制御方法について示す。例えば、制御方式1は、吸
気行程と圧縮行程の2回に分割して燃料噴射し、吸気行
程に噴射する前期噴射と圧縮行程に噴射する後期噴射の
噴射比率と前期噴射タイミングを一定として、後期噴射
時期を運転状態に応じて変化させる方式である。この制
御方式は、図14に示したように後期噴射時期を変える
と点火プラグ周りの可燃混合気濃度が変化することを利
用した方式である。前記制御方式1とは異なる例を制御
方式2で説明する。制御方式1と同様に吸気行程と圧縮
行程の2回に分割して燃料噴射するが、制御方式2は、
吸気行程に噴射する前期噴射と圧縮行程に噴射する後期
噴射の噴射タイミングを共に一定として、前期噴射と後
期噴射の噴射比率を運転状態に応じて変化させる方式で
ある。基本的には所定のエンジン負荷が必要とされる場
合は、一定の燃料が必要とされることから、例えば前期
の燃料噴射量の増加が望ましい場合は、後期の燃料噴射
量を低減するように制御する。この制御方式は、図15
に示したように前期の燃料噴射量と後期の燃料噴射量の
比、すなわち噴射比率を変えると点火プラグ周りの可燃
混合気濃度が変化することを利用した方式である。さら
に制御系がやや複雑になるが、制御方式1と制御方式2
を組合せた方式でも同様の効果が得られる。FIG. 13 shows a fuel injection control method that enables a large amount of exhaust gas recirculation. For example, in the control method 1, the fuel injection is divided into two parts, that is, the intake stroke and the compression stroke, and the injection ratio and the early injection timing of the first half injection that is injected in the intake stroke and the second half injection that is injected in the compression stroke are constant. This is a method of changing the injection timing according to the operating state. This control method is based on the fact that the concentration of combustible mixture around the spark plug changes when the latter injection timing is changed as shown in FIG. An example different from the control method 1 will be described as the control method 2. Similar to the control method 1, the fuel injection is performed by dividing into the intake stroke and the compression stroke, but the control method 2
This is a system in which the injection timings of the early injection injected in the intake stroke and the late injection injected in the compression stroke are both constant, and the injection ratio of the early injection and the late injection is changed according to the operating state. Basically, when a predetermined engine load is required, a certain amount of fuel is required. For example, if it is desirable to increase the fuel injection amount in the first period, reduce the fuel injection amount in the second period. Control. This control method is shown in FIG.
This is a method that utilizes the fact that the concentration of the combustible mixture around the spark plug changes when the ratio of the fuel injection amount in the previous period to the fuel injection amount in the latter period, that is, the injection ratio, is changed as shown in FIG. Furthermore, the control system becomes a little complicated, but control method 1 and control method 2
The same effect can be obtained by a combination of the above.
【0034】前記燃料噴射制御を適用した場合の混合気
分布としては図16に示したように、いずれの燃料噴射
制御を採用した場合においても、吸気行程に噴射される
前期噴射燃料は、後期噴射開始時期には燃焼室内で拡散
しており、後期噴射燃料で点火プラグ周りに濃い可燃混
合気を形成することで、ストイキ燃焼時において最適な
成層化混合気が実現できる。As shown in FIG. 16, the mixture distribution when the fuel injection control is applied, as shown in FIG. 16, the early injection fuel injected in the intake stroke is the late injection regardless of which fuel injection control is adopted. At the start time, it diffuses in the combustion chamber, and by forming a rich combustible air-fuel mixture around the spark plug with the late injection fuel, an optimal stratified air-fuel mixture can be realized during stoichiometric combustion.
【発明の効果】本発明によれば、多量の排気還流時にお
ける燃焼の安定性確保とスモークの抑制の両立が可能と
なる。According to the present invention, it is possible to ensure both the stability of combustion and the suppression of smoke when a large amount of exhaust gas recirculates.
【図1】本発明の筒内噴射エンジンシステム構成図。FIG. 1 is a configuration diagram of a cylinder injection engine system of the present invention.
【図2】本発明の筒内噴射エンジンにおいて設定された
各運転領域。FIG. 2 is a diagram showing each operating region set in the direct injection engine of the present invention.
【図3】本発明の筒内噴射エンジンにおいて設定された
排気還流領域。FIG. 3 is an exhaust gas recirculation region set in the in-cylinder injection engine of the present invention.
【図4】本発明が適用される好ましい筒内噴射エンジン
の斜視断面図。FIG. 4 is a perspective sectional view of a preferred cylinder injection engine to which the present invention is applied.
【図5】タンブルを燃焼室内に形成する手段。FIG. 5: Means for forming tumble in a combustion chamber.
【図6】ピストン冠面形状の例。FIG. 6 shows an example of a piston crown surface shape.
【図7】本発明の筒内噴射エンジンにおける排気還流率
とサージトルクの関係。FIG. 7 shows the relationship between the exhaust gas recirculation rate and the surge torque in the direct injection engine of the present invention.
【図8】本発明の筒内噴射エンジンにおける排気還流率
と燃費の関係。FIG. 8 shows a relationship between exhaust gas recirculation rate and fuel consumption in the direct injection engine of the present invention.
【図9】本発明の筒内噴射エンジンにおける吸気行程噴
射時の混合気形成。FIG. 9 shows mixture formation during intake stroke injection in the cylinder injection engine of the present invention.
【図10】図7,図8で適用した噴霧形状。FIG. 10 is a spray shape applied in FIGS. 7 and 8.
【図11】本発明の筒内噴射エンジンにおける好ましい
噴霧形状。FIG. 11 is a preferable spray shape in the cylinder injection engine of the present invention.
【図12】本発明の筒内噴射エンジンにおける好ましい
噴霧形状。FIG. 12 is a preferable spray shape in the cylinder injection engine of the present invention.
【図13】多量の排気還流を可能とする燃料噴射制御方
法。FIG. 13 is a fuel injection control method that enables a large amount of exhaust gas recirculation.
【図14】噴射比率が一定時の後期噴射時期と点火プラ
グ周りの可燃混合気濃度の関係。FIG. 14 shows the relationship between the late injection timing and the combustible mixture concentration around the spark plug when the injection ratio is constant.
【図15】噴射時期が一定時の前期噴射と後期噴射比率
と点火プラグ周りの可燃混合気濃度の関係。FIG. 15 shows the relationship between the ratio of the early injection and the late injection when the injection timing is constant and the combustible mixture concentration around the spark plug.
【図16】前記燃料噴射制御を適用した場合の混合気分
布。FIG. 16 is an air-fuel mixture distribution when the fuel injection control is applied.
1…燃焼室、2…燃料噴射バルブ、3…点火プラグ、4
…吸気バルブ、5…吸気ポート、6…タンブル生成機
構、7…ピストン、8…触媒、9…排気ポート、10…
スロットルバルブ、11…コレクタ、12…電磁バル
ブ、13…排気還流通路、14…ECU、15…仕切り
板、16…タンブル強度制御バルブ、17…吸入抑制部
材、18a,18b…タンブル流動、19…燃料噴霧、
20…前期噴射燃料、21…後期噴射燃料。1 ... Combustion chamber, 2 ... Fuel injection valve, 3 ... Spark plug, 4
... intake valve, 5 ... intake port, 6 ... tumble generating mechanism, 7 ... piston, 8 ... catalyst, 9 ... exhaust port, 10 ...
Throttle valve, 11 ... Collector, 12 ... Electromagnetic valve, 13 ... Exhaust gas recirculation passage, 14 ... ECU, 15 ... Partition plate, 16 ... Tumble strength control valve, 17 ... Intake suppressing member, 18a, 18b ... Tumble flow, 19 ... Fuel Spray,
20 ... Early injection fuel, 21 ... Late injection fuel.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02B 31/00 301 F02B 31/00 301B 3G301 F02D 17/00 F02D 17/00 Q 21/08 301 21/08 301C 29/02 321 29/02 321A 41/02 325 41/02 325E 325G 41/34 41/34 H 43/00 301 43/00 301J 301N 301U 45/00 312 45/00 312J F02M 25/07 550 F02M 25/07 550G 550R 570 570A Fターム(参考) 3G023 AA02 AA05 AB03 AC05 AD06 AD29 AG01 AG03 3G062 AA07 AA08 BA02 CA03 CA07 CA08 EA12 GA05 GA06 GA16 GA17 3G084 AA04 BA15 BA20 BA21 BA23 CA03 CA04 CA07 DA02 DA10 EA11 FA07 FA10 FA33 FA38 3G092 AA06 AA09 AA10 AA17 BB06 BB12 BB13 DC06 DC09 DE03S EA07 EA08 FA15 FA24 FA30 GA04 GA06 GB10 HA01Z HA08Z HE01Z HE03Z 3G093 BA19 BA20 BA21 BA22 CA04 CA07 DA06 DA07 DA09 EA10 FA11 3G301 HA04 HA13 HA16 HA17 JA02 JA26 KA07 KA09 KA28 LA05 LB04 MA19 MA26 MA27 NA08 NE15 PA01Z PA13Z PE01Z PE03Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02B 31/00 301 F02B 31/00 301B 3G301 F02D 17/00 F02D 17/00 Q 21/08 301 21/08 301C 29/02 321 29/02 321A 41/02 325 41/02 325E 325G 41/34 41/34 H 43/00 301 43/00 301J 301N 301U 45/00 312 45/00 312J F02M 25/07 550 F02M 25 / 07 550G 550R 570 570A F term (reference) 3G023 AA02 AA05 AB03 AC05 AD06 AD29 AG01 AG03 3G062 AA07 AA08 BA02 CA03 CA07 CA08 EA12 GA05 GA06 GA16 GA17 3G084 FA03 FA10 FA10 FA33 FA10 FA03 FA10 CA03 FA04 CA07 CA07 CA10 FA07 CA02 CA10 FA07 AA09 AA10 AA17 BB06 BB12 BB13 DC06 DC09 DE03S EA07 EA08 FA15 FA24 FA30 GA04 GA06 GB10 HA01Z HA08Z HE01Z HE03Z 3G093 BA19 BA20 BA21 BA22 CA04 CA07 DA06 DA07 DA09 EA10 FA11 3G301 HA04 HA13 HA16 HA17 JA02 JA26 KA07 KA09 KA28 LA05 LB04 MA19 MA26 MA27 NA08 NE15 PA01Z PA13Z PE01Z PE03Z
Claims (7)
バルブと、吸気系にタンブル生成手段と、前記タンブル
生成手段により燃焼室内に形成されたタンブルを圧縮行
程後半まで保持する凹面形状ピストンと、排気管から吸
気管へ排気の一部を還流させるための排気還流通路と、
前記排気還流通路に還流させる排気の量を制御するため
の排気還流量制御バルブとを備えた火花点火式筒内噴射
エンジンにおいて、 空気量を制御するスロットルバルブが全開付近となる高
負荷領域と所定のエンジン回転数以上の運転領域とアイ
ドル運転を含む低負荷領域とを除いた運転領域におい
て、いずれの運転状態においても前記タンブル生成手段
により燃焼室内にタンブル流動を形成するとともに燃焼
室に排気を還流し、新気と燃料の混合比がストイキ付近
となるように新気量と燃料噴射量を制御し、かつ燃料噴
射バルブから1サイクル中に噴射される燃料の全てもし
くは一部の燃料を吸気行程に噴射することを特徴とする
筒内噴射エンジンシステム。1. A fuel injection valve for directly injecting fuel into a cylinder, a tumble generating means in an intake system, and a concave piston for holding a tumble formed in the combustion chamber by the tumble generating means until the latter half of a compression stroke. And an exhaust gas recirculation passage for recirculating a part of the exhaust gas from the exhaust pipe to the intake pipe,
In a spark ignition in-cylinder injection engine equipped with an exhaust gas recirculation amount control valve for controlling the amount of exhaust gas recirculated to the exhaust gas recirculation passage, a throttle valve for controlling the air amount and a predetermined high load region in which the throttle valve is in the vicinity of full opening are provided. In an operating range excluding an operating range equal to or higher than the engine speed and a low load range including idle operation, the tumble generating means forms a tumble flow in the combustion chamber and recirculates exhaust gas to the combustion chamber in any operating state. However, the fresh air amount and the fuel injection amount are controlled so that the mixing ratio of the fresh air and the fuel is close to stoichiometric, and all or part of the fuel injected from the fuel injection valve in one cycle is in the intake stroke. An in-cylinder injection engine system characterized by injecting into a cylinder.
ートで、その上流側に吸気ポートの下段のみを開閉可能
なバルブを有することを特徴とする請求項1の筒内噴射
エンジンシステム。2. The in-cylinder injection engine system according to claim 1, wherein the intake port is a vertically divided two-stage intake port, and the upstream side thereof has a valve capable of opening and closing only the lower stage of the intake port.
ーン燃焼を実施することを特徴とする請求項1の筒内噴
射エンジンシステム。3. The in-cylinder injection engine system according to claim 1, wherein stratified lean combustion is performed only in a low load region including idle operation.
を停止するアイドルストップ制御手段を有することを特
徴とする請求項1の筒内噴射エンジンシステム。4. The cylinder injection engine system according to claim 1, further comprising an idle stop control means for stopping the engine only when the vehicle is completely stopped.
付近となる高負荷領域と所定のエンジン回転数以上の運
転領域とアイドル運転を含む低負荷領域とを除いた運転
領域においては、吸気行程と圧縮行程の2回に分割して
燃料を噴射することを特徴とする請求項1の筒内噴射エ
ンジンシステム。5. An intake stroke is set in an operating range excluding a high load range in which a throttle valve for controlling the air amount is in the vicinity of full opening, an operating range at or above a predetermined engine speed, and a low load range including idle operation. 2. The in-cylinder injection engine system according to claim 1, wherein the fuel is injected in two divided compression strokes.
噴射する後期噴射の噴射比率と、前期噴射タイミングを
一定として、後期噴射時期を運転状態に応じて変化させ
ることを特徴とする請求項5の筒内噴射エンジンシステ
ム。6. The injection ratio of the early injection injected into the intake stroke and the late injection injected into the compression stroke, and the early injection timing are kept constant, and the late injection timing is changed according to the operating condition. 5 In-cylinder injection engine system.
噴射する後期噴射の噴射タイミングを共に一定として、
前期噴射と後期噴射の噴射比率を運転状態に応じて変化
させることを特徴とする請求項5の筒内噴射エンジンシ
ステム。7. The injection timing of the early injection injected during the intake stroke and the injection timing of the late injection injected during the compression stroke are both constant,
The in-cylinder injection engine system according to claim 5, wherein the injection ratio of the first-stage injection and the second-stage injection is changed according to the operating state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002075380A JP2003269220A (en) | 2002-03-19 | 2002-03-19 | Structure and control device of low exhaust emission cylinder injection engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002075380A JP2003269220A (en) | 2002-03-19 | 2002-03-19 | Structure and control device of low exhaust emission cylinder injection engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003269220A true JP2003269220A (en) | 2003-09-25 |
Family
ID=29204468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002075380A Pending JP2003269220A (en) | 2002-03-19 | 2002-03-19 | Structure and control device of low exhaust emission cylinder injection engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003269220A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9587577B2 (en) | 2011-10-26 | 2017-03-07 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device for internal combustion engine |
US9631574B2 (en) | 2011-10-26 | 2017-04-25 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device for internal combustion engine |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04187841A (en) * | 1990-11-20 | 1992-07-06 | Toyota Motor Corp | Cylinder direct-injection of fuel type spark ignition engine |
JPH07119507A (en) * | 1993-10-18 | 1995-05-09 | Toyota Motor Corp | Inter-cylinder injection type spark ignition engine |
JPH0882233A (en) * | 1994-09-13 | 1996-03-26 | Mazda Motor Corp | Intake device for engine |
JPH11159421A (en) * | 1997-11-26 | 1999-06-15 | Hitachi Ltd | Fuel injection valve |
JPH11200865A (en) * | 1998-01-05 | 1999-07-27 | Kawasaki Heavy Ind Ltd | Fuel supply method of gasoline engine |
JPH11324765A (en) * | 1998-03-17 | 1999-11-26 | Nissan Motor Co Ltd | Control system for direct-injection spark-ignition internal combustion engine |
JP2000110568A (en) * | 1998-10-01 | 2000-04-18 | Hitachi Ltd | Fuel injection method for cylinder injection type internal combustion engine, fuel injection valve, internal combustion engine, and combustion method |
JP2000282935A (en) * | 1999-03-30 | 2000-10-10 | Mazda Motor Corp | Control device of direct injection engine of spark ignition type |
JP2001248484A (en) * | 2000-02-29 | 2001-09-14 | Hitachi Ltd | Direct cylinder injection engine, control device and controlling method |
JP2001271685A (en) * | 2000-03-27 | 2001-10-05 | Mazda Motor Corp | Catalyst temperature control method for fuel cylinder injection engine and control device for engine |
JP2001271680A (en) * | 2000-03-27 | 2001-10-05 | Mazda Motor Corp | Control device for direct injection engine |
JP2001271650A (en) * | 2000-03-29 | 2001-10-05 | Mazda Motor Corp | Spark ignition type direct injection engine |
JP2001342836A (en) * | 2000-03-29 | 2001-12-14 | Mazda Motor Corp | Spark ignition type direct injection engine |
JP2002061531A (en) * | 2000-08-22 | 2002-02-28 | Mazda Motor Corp | Fuel control device for spark ignition type engine |
-
2002
- 2002-03-19 JP JP2002075380A patent/JP2003269220A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04187841A (en) * | 1990-11-20 | 1992-07-06 | Toyota Motor Corp | Cylinder direct-injection of fuel type spark ignition engine |
JPH07119507A (en) * | 1993-10-18 | 1995-05-09 | Toyota Motor Corp | Inter-cylinder injection type spark ignition engine |
JPH0882233A (en) * | 1994-09-13 | 1996-03-26 | Mazda Motor Corp | Intake device for engine |
JPH11159421A (en) * | 1997-11-26 | 1999-06-15 | Hitachi Ltd | Fuel injection valve |
JPH11200865A (en) * | 1998-01-05 | 1999-07-27 | Kawasaki Heavy Ind Ltd | Fuel supply method of gasoline engine |
JPH11324765A (en) * | 1998-03-17 | 1999-11-26 | Nissan Motor Co Ltd | Control system for direct-injection spark-ignition internal combustion engine |
JP2000110568A (en) * | 1998-10-01 | 2000-04-18 | Hitachi Ltd | Fuel injection method for cylinder injection type internal combustion engine, fuel injection valve, internal combustion engine, and combustion method |
JP2000282935A (en) * | 1999-03-30 | 2000-10-10 | Mazda Motor Corp | Control device of direct injection engine of spark ignition type |
JP2001248484A (en) * | 2000-02-29 | 2001-09-14 | Hitachi Ltd | Direct cylinder injection engine, control device and controlling method |
JP2001271685A (en) * | 2000-03-27 | 2001-10-05 | Mazda Motor Corp | Catalyst temperature control method for fuel cylinder injection engine and control device for engine |
JP2001271680A (en) * | 2000-03-27 | 2001-10-05 | Mazda Motor Corp | Control device for direct injection engine |
JP2001271650A (en) * | 2000-03-29 | 2001-10-05 | Mazda Motor Corp | Spark ignition type direct injection engine |
JP2001342836A (en) * | 2000-03-29 | 2001-12-14 | Mazda Motor Corp | Spark ignition type direct injection engine |
JP2002061531A (en) * | 2000-08-22 | 2002-02-28 | Mazda Motor Corp | Fuel control device for spark ignition type engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9587577B2 (en) | 2011-10-26 | 2017-03-07 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device for internal combustion engine |
US9631574B2 (en) | 2011-10-26 | 2017-04-25 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6782867B2 (en) | Direct injection gasoline engine | |
JP3963088B2 (en) | Control device for spark ignition direct injection engine | |
US20020134081A1 (en) | Direct-injection engine with turbocharger and method of controlling the same | |
JPH11159382A (en) | Cylinder injection type engine | |
JP2002206446A5 (en) | ||
JP2006291839A (en) | Cylinder direct fuel injection type engine and its control method, and piston and fuel injection valve to be used for the same | |
JP2007092693A (en) | Spark ignition type direct injection engine | |
JPH0821342A (en) | Fuel injection type engine | |
JP3840823B2 (en) | In-cylinder injection engine | |
JP2007009865A (en) | Cylinder direct injection type spark ignition internal combustion engine | |
JP3956503B2 (en) | In-cylinder injection spark ignition engine | |
JP3612874B2 (en) | In-cylinder injection engine | |
JP2002038953A (en) | Cylinder injection type engine | |
JP2003269220A (en) | Structure and control device of low exhaust emission cylinder injection engine | |
JP2001271650A (en) | Spark ignition type direct injection engine | |
JP3934934B2 (en) | Engine for stratified charge combustion at stoichiometric air-fuel ratio and stratified charge combustion method for the engine | |
JP3586963B2 (en) | Engine intake system | |
JP2513612Y2 (en) | Stratified combustion internal combustion engine | |
JPH06257432A (en) | Fuel supply system for internal combustion engine | |
JP3896630B2 (en) | Exhaust gas purification device for in-cylinder injection engine | |
JP3591141B2 (en) | In-cylinder direct injection spark ignition internal combustion engine | |
JP2005054676A (en) | Spark ignition type engine | |
JP2882265B2 (en) | Intake device for internal combustion engine | |
JPH11351012A (en) | Direct cylinder injection type spark ignition engine | |
JPH09242550A (en) | Spark ignition engine of direct cylinder fuel injection type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051228 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060509 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060710 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070206 |