JP2003242964A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2003242964A JP2003242964A JP2002042823A JP2002042823A JP2003242964A JP 2003242964 A JP2003242964 A JP 2003242964A JP 2002042823 A JP2002042823 A JP 2002042823A JP 2002042823 A JP2002042823 A JP 2002042823A JP 2003242964 A JP2003242964 A JP 2003242964A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium
- negative electrode
- battery
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解質二次電池
に関するものである。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】非水電解質二次電池の正極活物質として
硫黄を用いることが、かなり以前から検討されてきた。
例えば、正極に硫黄、負極にリチウムを用いた室温で作
動するリチウム/硫黄二次電池の研究は、20数年前
に、R.D.Rauhらによって報告された(21st
IECEC、P283(1977)、J.Elect
rochem.Soc.,126,523(197
9))。これらの報告では、正極活物質として可溶性の
リチウム多硫化物(Li2S12.2)を用い、充放電
特性に対する電流の大きさ、非水電解液に用いる溶媒の
種類、温度、活物質濃度などについて検討されたが、充
放電サイクル寿命が短く、硫黄の利用率も低いという問
題を解決できなかったため、実用レベルの電池を得るこ
とはできなかった。2. Description of the Related Art The use of sulfur as a positive electrode active material for non-aqueous electrolyte secondary batteries has been studied for quite some time.
For example, research on a lithium / sulfur secondary battery that uses sulfur for the positive electrode and lithium for the negative electrode and operates at room temperature was carried out 20 years ago by R.S. D. Reported by Rauh et al. (21st
IECEC, P283 (1977), J. Elect
rochem. Soc. , 126 , 523 (197)
9)). In these reports, soluble lithium polysulfide (Li 2 S 12.2 ) was used as the positive electrode active material, the magnitude of the current with respect to charge / discharge characteristics, the type of solvent used in the non-aqueous electrolyte, the temperature, the active material concentration. However, since the problems of short charge / discharge cycle life and low utilization rate of sulfur could not be solved, a battery of a practical level could not be obtained.
【0003】また、Yaminらは、リチウム/硫黄二
次電池について、詳細に検討した結果を報告している
(J.Electrochem.Soc.,135,1
045(1988)、J.Power Source
s,9,281(1983))。Yamin et al. Have also reported the results of a detailed study of lithium / sulfur secondary batteries (J. Electrochem. Soc., 135 , 1).
045 (1988), J. Power Source
s, 9 , 281 (1983)).
【0004】いっぽう、最近になってリチウムイオン二
次電池が商品化され、それと同時に、有機溶媒や電解質
の研究開発が活発に行われてきた。その結果、有機系電
解質(有機溶媒を用いた有機電解液、ポリマー電解質、
ゲル電解質等)を用いた室温で作動するリチウム/硫黄
二次電池の可能性が出てきた。On the other hand, recently, lithium ion secondary batteries have been commercialized, and at the same time, research and development of organic solvents and electrolytes have been actively conducted. As a result, organic electrolytes (organic electrolyte using organic solvent, polymer electrolyte,
The possibility of a lithium / sulfur secondary battery operating at room temperature using a gel electrolyte etc. has emerged.
【0005】さらに、Choらは、リチウム負極の表面
にガラス固体電解質からなる保護被膜をとりつけたり、
電解液を最適化することにより、正極活物質である硫黄
の利用率の向上や、正、負極間で硫化物の化学的な酸化
還元が繰り返されて、シャトル電流が発生することを遮
断することを試みた(USP5,523,179、US
P5,814,420、USP6,025,094)。Further, Cho et al. Attach a protective coating composed of a glass solid electrolyte on the surface of a lithium negative electrode,
By optimizing the electrolytic solution, it is possible to improve the utilization rate of sulfur, which is the positive electrode active material, and to prevent the shuttle current from being generated due to repeated chemical redox of sulfide between the positive and negative electrodes. (USP 5,523,179, US
P5,814,420, USP 6,025,094).
【0006】ガラス固体電解質を用いた場合、高率充放
電特性の低下や、シート状電極をセパレータを介して巻
回した巻回型発電要素を作製する場合には、シート状極
板に力が加わるため、ガラス固体電解質が罅割れして破
壊される危険性があるため、応用が制限される。一方、
ガラス固体電解質の代わりに、例えばポリエチレンオキ
シド(PEO)とリチウム塩とを混合したポリマー電解
質を用い、これをセパレータや電極の結着剤に用いる場
合、セパレータとしての強度が劣り、また活物質や集電
体に対する結着力が弱いという欠点があった。When a glass solid electrolyte is used, high rate charge / discharge characteristics are deteriorated, and when a wound-type power generation element is produced by winding a sheet electrode with a separator interposed therebetween, a force is exerted on the sheet electrode plate. Therefore, there is a risk that the glass solid electrolyte may crack and be destroyed, which limits the application. on the other hand,
When a polymer electrolyte obtained by mixing, for example, polyethylene oxide (PEO) and a lithium salt is used in place of the glass solid electrolyte and is used as a binder for a separator or an electrode, the strength as a separator is inferior, and an active material or a collector is used. There was a drawback that the binding force to the electric body was weak.
【0007】[0007]
【発明が解決しようとする課題】硫黄の理論容量は16
75mAh/gであり、また、低毒性および資源豊富な
どの理由からも、非水電解質二次電池の正極活物質とし
てきわめて有望な物質である。ただし、硫黄を正極活物
質に使用する場合、つぎのような幾つかの課題を抱えて
いる。
1)例えば硫黄としてS8を用いる場合、S8は絶縁体
であるため、電極にする場合には多量の導電剤が必要と
なる。したがって、電池のエネルギー密度は小さくな
る。
2)硫黄を活物質とする正極についてのみ注目すれば、
通常の電池反応により、正極では多硫化物(Li
xSn)が生成する。また、正極が過放電状態になる
と、正極で低硫化物(Li2S)が生成するようにな
る。これらの多硫化物(Li xSn)や低硫化物(Li
2S)が正極上に堆積して、絶縁性の非活性膜できる
と、正極の高率充放電特性および放電容量が低下する。The theoretical capacity of sulfur is 16
75 mAh / g, low toxicity and resource rich
For any reason, it can be used as a positive electrode active material for non-aqueous electrolyte secondary batteries.
It is a very promising substance. However, sulfur is a positive electrode active material.
When it is used for quality, it has several problems such as
There is.
1) For example, S as sulfur8When using S8Is an insulator
Therefore, a large amount of conductive agent is required when using it as an electrode.
Become. Therefore, the energy density of the battery should be small.
It
2) If we pay attention only to the positive electrode using sulfur as the active material,
Due to normal battery reaction, polysulfide (Li
xSn) Is generated. Also, the positive electrode becomes over-discharged
And low sulfide (LiTwoS) will be generated
It These polysulfides (Li xSn) And low sulfide (Li
TwoS) is deposited on the positive electrode to form an inactive insulating film
As a result, the high rate charge / discharge characteristics and discharge capacity of the positive electrode decrease.
【0008】そこで、正極の高率充放電特性および放電
容量の低下を防止するためには、放電深度などの制御に
よって正極上での低硫化物(Li2S)の生成を抑制す
ることが必要である。また、正極で低硫化物(Li
2S)が生成した場合には、電解液中への拡散および反
応速度が遅いため、正極の高率充放電特性が低下する原
因となるが、生成した低硫化物(Li2S)を正極で未
放電の硫黄と反応させ、また、電解液中の多硫ラジカル
(・Sn 2−、但しn>4)や多硫アニオン
(Sn 2−)と反応させて、可溶性の多硫化物(Lix
Sn)とすることで、低硫化物(Li2S)が正極上で
過剰に堆積することを抑制することにより、正極の高率
充放電特性を維持することができる。
3)電池系とした場合、電池反応により、正極では多硫
化物(LixSn)が生成するが、このLixSnは非
水電解液中に可溶性なため、LixSnは非水電解液中
に溶解し、その一部は非水電解液中で解離して多硫ラジ
カル(・Sn 2−、但しn>4)や多硫アニオン(Sn
2−)となる。これらの多硫化物(LixSn)、多硫
ラジカル(・Sn 2−、但しn>4)、多硫アニオン
(Sn 2−)が負極側に移動し、負極の表面で還元され
て、不活性の低硫化物(Li2S)が生成し、負極でリ
チウムを消費して、自己放電を引き起こす。また、正、
負極間で硫化物の化学的な酸化還元が繰り返えされて、
シャトル電流を発生する。その結果、充放電サイクル寿
命は200〜300サイクルと不十分であった。Therefore, the high rate charge / discharge characteristics and discharge of the positive electrode
In order to prevent the capacity from decreasing, it is necessary to control the depth of discharge.
Therefore, low sulfide (LiTwoS) is suppressed
It is necessary to In addition, low sulfide (Li
TwoWhen S) is generated, diffusion and reaction in the electrolytic solution
Because the response speed is slow, the high rate charge / discharge characteristics of the positive electrode deteriorate.
This is due to the formation of low sulfide (LiTwoS) is not positive
It reacts with the sulfur in the discharge, and it also contains polysulfur radicals in the electrolyte.
(・ Sn 2-, Where n> 4) and polysulfuric anion
(Sn 2-) And soluble polysulfide (Lix
Sn), The low sulfide (LiTwoS) is on the positive electrode
High rate of positive electrode by suppressing excessive deposition
The charge / discharge characteristics can be maintained.
3) When a battery system is used, polysulfur is used in the positive electrode due to the battery reaction.
Compound (LixSn) Is generated, this LixSnIs non
Since it is soluble in the water electrolyte, LixSnIs in non-aqueous electrolyte
Dissolved in the non-aqueous electrolyte solution, and a part of
Cal (・ Sn 2-, Where n> 4) and polysulfuric anion (Sn
2-). These polysulfides (LixSn), Polysulfur
Radical (・ Sn 2-Where n> 4), polysulfuric anion
(Sn 2-) Moves to the negative electrode side and is reduced on the surface of the negative electrode.
Inert low sulfide (LiTwoS) is generated and is recharged at the negative electrode.
It consumes thium and causes self-discharge. Also positive,
Chemical redox of sulfide is repeated between the negative electrodes,
Generates shuttle current. As a result, charge and discharge cycle life
The life was insufficient at 200 to 300 cycles.
【0009】このような理由から、実際の電池系におい
ては、正極の高率充放電特性を高めるためには、正極上
の低硫化物(Li2S)をできるだけ少なくする、すな
わち、電解液中に拡散させることにより正極表面から取
り除くことになる。しかし、電解液中の多硫化物(Li
xSn)が負極に達し、負極で反応すると、電池の充放
電サイクル特性や自己放電特性が低下する。このよう
に、正極上の多硫化物(LixSn)や低硫化物(Li
2S)に関しては、電池の高率放電特性を向上させる方
向と、充放電サイクル特性や自己放電特性を向上させる
方向とが、相反することになる。For these reasons, in an actual battery system, in order to improve the high rate charge / discharge characteristics of the positive electrode, the amount of low sulfide (Li 2 S) on the positive electrode is reduced as much as possible, that is, in the electrolytic solution. It will be removed from the surface of the positive electrode by diffusing into. However, polysulfide (Li
When x S n ) reaches the negative electrode and reacts at the negative electrode, the charge / discharge cycle characteristics and the self-discharge characteristics of the battery deteriorate. Thus, polysulfide (Li x S n ) and low sulfide (Li x S n ) on the positive electrode are
Regarding 2 S), the direction of improving the high rate discharge characteristics of the battery and the direction of improving the charge / discharge cycle characteristics and the self-discharge characteristics conflict with each other.
【0010】そこで本発明の目的は、電池の高率放電特
性はある程度犠牲にしてでも、電池反応によって正極で
生成するLixSn等の多硫化物が負極表面で還元され
ることによる自己放電を抑制し、充放電サイクル特性に
優れたリチウム/硫黄系非水電解質二次電池を提供する
ことにある。[0010] It is an object of the present invention, even in the somewhat sacrificed rate discharge characteristics of the battery, self-discharge due to the polysulfides such as Li x S n generated in the positive electrode by the battery reaction are reduced on the negative electrode surface It is intended to provide a lithium / sulfur-based non-aqueous electrolyte secondary battery that suppresses the above and has excellent charge / discharge cycle characteristics.
【0011】[0011]
【課題を解決するための手段】請求項1の発明は、正極
と、リチウム、リチウム合金またはリチウムを吸蔵放出
可能な材料を含む負極と、非水電解液と、セパレータと
を備えた非水電解質二次電池において、前記正極が、ポ
リマー電解質で被覆された硫黄を含むことを特徴とす
る。The invention according to claim 1 is a non-aqueous electrolyte comprising a positive electrode, a negative electrode containing lithium, a lithium alloy or a material capable of inserting and extracting lithium, a non-aqueous electrolytic solution, and a separator. In a secondary battery, the positive electrode contains sulfur coated with a polymer electrolyte.
【0012】請求項1の発明によれば、正極で生成する
LixSn等の多硫化物が負極表面で還元されることに
よる自己放電を抑制し、エネルギー密度が高く、自己放
電が少なく、充放電サイクル特性に優れた非水電解質二
次電池を得ることができる。According to the invention of claim 1, self-discharge due to reduction of the polysulfide such as Li x S n generated on the positive electrode on the surface of the negative electrode is suppressed, the energy density is high, and the self-discharge is small. A non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be obtained.
【0013】請求項2の発明は、上記非水電解質二次電
池において、正極とセパレータ間または負極とセパレー
タ間の少なくとも一方にポリマー電解質層を備えたこと
を特徴とする。According to a second aspect of the present invention, in the above non-aqueous electrolyte secondary battery, a polymer electrolyte layer is provided on at least one of the positive electrode and the separator or the negative electrode and the separator.
【0014】請求項2の発明によれば、ポリマー電解質
層によって、LixSn等の多硫化物が負極表面に移動
することが妨げられ、より充放電サイクル特性に優れた
非水電解質二次電池を得ることができる。According to the second aspect of the present invention, the polymer electrolyte layer prevents polysulfides such as Li x S n from migrating to the surface of the negative electrode, and thus the non-aqueous electrolyte secondary having excellent charge-discharge cycle characteristics. You can get a battery.
【0015】請求項3の発明は、上記非水電解質二次電
池において、負極に含まれるリチウム、リチウム合金ま
たはリチウムを吸蔵放出可能な材料が、フッ素を含む被
膜で被覆されていることを特徴とする。According to a third aspect of the present invention, in the above non-aqueous electrolyte secondary battery, lithium, a lithium alloy or a material capable of inserting and extracting lithium contained in the negative electrode is coated with a film containing fluorine. To do.
【0016】請求項3の発明によれば、リチウム、リチ
ウム合金またはリチウムを吸蔵放出可能な材料の表面
が、フッ素を含む被膜で被覆されることにより、リチウ
ム、リチウム合金またはリチウムを吸蔵放出可能な材料
と多硫化物との反応が抑制され、自己放電の小さい、充
放電サイクル特性に優れた非水電解質二次電池を得るこ
とができる。According to the third aspect of the present invention, the surface of lithium, a lithium alloy or a material capable of occluding and releasing lithium is coated with a film containing fluorine, so that lithium, a lithium alloy or lithium can be occluded and released. It is possible to obtain a non-aqueous electrolyte secondary battery in which the reaction between the material and polysulfide is suppressed, the self-discharge is small, and the charge / discharge cycle characteristics are excellent.
【0017】[0017]
【発明の実施の形態】本発明は、正極と、リチウム、リ
チウム合金またはリチウムを吸蔵放出可能な材料を含む
負極と、非水電解液と、セパレータとを備えた非水電解
質二次電池において、前記正極がポリマー電解質で被覆
された硫黄を含むことを特徴とする。BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing lithium, a lithium alloy or a material capable of inserting and extracting lithium, a non-aqueous electrolyte solution, and a separator. The positive electrode contains sulfur coated with a polymer electrolyte.
【0018】本発明の非水電解質二次電池における電池
反応は、以下の(1)式のように記載することができ
る。なお、(1)式において、右方向が放電反応であ
る。
2Li+n/8・S8=Li2Sn・・・・・・・・・・(1)
式(1)において、n=1の時、最大理論容量は167
5mAh/gとなり、n=2の時、理論容量は838m
Ah/gとなる。本発明においては、Li2Sの低い活
性を考慮して、実際の電池ではLi2S2まで放電させ
た方が好ましい。The battery reaction in the non-aqueous electrolyte secondary battery of the present invention can be described by the following equation (1). In the formula (1), the discharge reaction is in the right direction. 2Li + n / 8 · S 8 = Li 2 S n (1) In formula (1), when n = 1, the maximum theoretical capacity is 167.
5 mAh / g, when n = 2, theoretical capacity is 838 m
It becomes Ah / g. In the present invention, in view of the low activity of Li 2 S, it is preferable that was discharged to a Li 2 S 2 in the actual battery.
【0019】本発明の電池反応においては、正極活物質
の硫黄のSOC(State ofCharge、すな
わち充電のレベル)またはDOD(Depth of
Discharge、すなわち放電深度)に応じて、種
々の多硫化物が生成する。また、充放電サイクルを繰り
返すと、以下の(2)式に示す反応が主となる。
Li2Sn+(n−2)Li++(n−2)e−=Li2S2・・・・・(2)
この式(2)において、n=8の場合、利用可能な最大
容量は595mAh/gとなる。In the battery reaction of the present invention, SOC (State of Charge, that is, charge level) or DOD (Depth of) of sulfur of the positive electrode active material.
Various polysulfides are produced depending on the discharge, that is, the depth of discharge. When the charge / discharge cycle is repeated, the reaction represented by the following formula (2) becomes main. Li 2 S n + (n-2) Li + + (n-2) e − = Li 2 S 2 (2) In this formula (2), when n = 8, the maximum available value. The capacity is 595 mAh / g.
【0020】本発明の非水電解質二次電池において、充
放電サイクル特性の低下および自己放電は、電池反応に
よって正極で可溶性多硫化物(LixSn)が生成し、
これが電解液中で一部解離して生成した多硫ラジカル
(・Sn 2−、但しn>4)や多硫アニオン
(Sn 2−)などとともに負極に移動し、負極でリチウ
ムと反応して還元され、不活性の低硫化物(Li2S)
が生成することに起因する。この問題を解決するために
は、多硫化物の負極表面への拡散を抑制することが有効
である。In the non-aqueous electrolyte secondary battery of the present invention, deterioration of charge / discharge cycle characteristics and self-discharge are caused by the formation of soluble polysulfide (Li x S n ) in the positive electrode due to the battery reaction.
This moves to the negative electrode together with the polysulfuric acid radical (.S n 2− , where n> 4) and polysulfuric acid anion (S n 2− ) generated by partial dissociation in the electrolytic solution, and reacts with lithium at the negative electrode. Reduced and inert low sulfide (Li 2 S)
Is generated. In order to solve this problem, it is effective to suppress the diffusion of polysulfide to the surface of the negative electrode.
【0021】多硫化物の負極表面への拡散を抑制するた
め、正極活物質や正極表面を、リチウムイオンは容易に
通過できるが、多硫化物や多硫ラジカルや多硫アニオン
が透過し難い材料で被覆することが考えられる。In order to suppress the diffusion of polysulfide to the surface of the negative electrode, lithium ions can easily pass through the positive electrode active material and the surface of the positive electrode, but the polysulfide, polysulfur radical and polysulfuric anion hardly pass through. It is possible to cover with.
【0022】そこで本発明は、リチウムイオンは容易に
通過できるが、多硫化物や多硫ラジカルや多硫アニオン
が透過し難い材料としてポリマー電解質を使用し、ポリ
マー電解質で被覆された硫黄を含む正極を用いるもので
ある。正極活物質である硫黄をポリマー電解質で被覆す
ると、電池反応によって生成する多硫化物(Li
xS n)は正極近傍にとどまり、電解液中に拡散して負
極表面へ到達することが抑制され、負極表面での化学反
応が抑制される。Therefore, according to the present invention, lithium ions are easily
Can pass, but polysulfides, polysulfur radicals and polysulfuric anions
The polymer electrolyte is used as a material that
With a positive electrode containing sulfur coated with a mer electrolyte.
is there. Coating sulfur as the positive electrode active material with polymer electrolyte
Then, polysulfide (Li
xS n) Stays in the vicinity of the positive electrode, diffuses into the electrolyte, and becomes negative.
It is possible to prevent the chemical reaction on the surface of the negative electrode by suppressing its reaching to the surface of the electrode.
The response is suppressed.
【0023】その結果、正極で生成する多硫化物(Li
xSn)が負極表面で還元されることによる自己放電を
抑制することができる。また、負極でリチウムが多硫化
物と反応せず、リチウムが消費されないために、充放電
サイクルを繰り返しても容量低下の少ない、エネルギー
密度が高く、充放電サイクル特性に優れた非水電解質二
次電池を得ることができる。As a result, the polysulfide (Li
x S n ) can be suppressed from being self-discharged by being reduced on the surface of the negative electrode. In addition, since lithium does not react with polysulfide in the negative electrode and lithium is not consumed, the non-aqueous electrolyte secondary battery has a small capacity decrease even after repeated charge / discharge cycles, a high energy density, and excellent charge / discharge cycle characteristics. You can get a battery.
【0024】ポリマー電解質としては、ポリマーとリチ
ウム塩とを混合したポリマー電解質を用いることができ
る。ポリマーとしては、化学式(CH2CHR1X)n
(ただし、R1はメチル基またはエチル基であり、Xは
S、O、N元素である)で表示され、分子量100,0
00以上、4,000,000以下のものを使用するこ
とが好ましい。ポリマーの具体例としては、ポリエチレ
ンオキシド(PEO)やポリプロピレンオキシド(PP
O)を含む、単独あるいは混合系や架橋したもの、ある
いは共重合体や誘導体を用いてもよい。ポリマーに混合
するリチウム塩としては、例えばLiBF4、LiAs
F6、LiN(CF3SO2)2、LiN(SO2C2
F5)2(LiBETI)等を単独または2種以上混合
して使用することができる。これらの支持電解質はイオ
ン導電率が高く、リチウムの溶解析出クーロン効率の向
上にも有利である。As the polymer electrolyte, a polymer electrolyte obtained by mixing a polymer and a lithium salt can be used. The polymer has the chemical formula (CH 2 CHR 1 X) n
(Wherein R 1 is a methyl group or an ethyl group, and X is an S, O, or N element) and has a molecular weight of 100,0.
It is preferable to use those of 00 or more and 4,000,000 or less. Specific examples of the polymer include polyethylene oxide (PEO) and polypropylene oxide (PP
O) may be used alone or as a mixed system or a cross-linked product, or a copolymer or derivative. Examples of the lithium salt mixed with the polymer include LiBF 4 and LiAs.
F 6, LiN (CF 3 SO 2) 2, LiN (SO 2 C 2
F 5 ) 2 (LiBETI) and the like can be used alone or in combination of two or more. These supporting electrolytes have a high ionic conductivity and are also advantageous for improving the coulombic efficiency of lithium dissolution and precipitation.
【0025】ポリマー電解質に孔があれば、その孔中の
有機電解液中を通って多硫化物が拡散する可能性が高く
なる。そのため、本発明で使用するポリマー電解質は、
有機電解液で膨潤してもよいが、孔がないものを使用す
ることが好ましい。If the polymer electrolyte has pores, the possibility of polysulfides diffusing through the organic electrolyte in the pores increases. Therefore, the polymer electrolyte used in the present invention is
It may be swollen with an organic electrolytic solution, but it is preferable to use one having no pores.
【0026】本発明の「ポリマー電解質で被覆された硫
黄」とは、硫黄粒子の表面が完全にポリマー電解質で被
覆されていても、硫黄粒子の表面の一部がポリマー電解
質で被覆されていてもよい。ただし、正極板中で硫黄粒
子が電気的に孤立した場合には、電気的接触がなくな
り、電気化学反応に関与しなくなるので、硫黄粒子は必
ずアセチレンブラックなどの導電剤と接触している必要
がある。The "sulfur coated with a polymer electrolyte" of the present invention means that the surface of the sulfur particles is completely covered with the polymer electrolyte or that part of the surface of the sulfur particles is covered with the polymer electrolyte. Good. However, when the sulfur particles are electrically isolated in the positive electrode plate, there is no electrical contact, and the sulfur particles do not participate in the electrochemical reaction.Therefore, the sulfur particles must always be in contact with a conductive agent such as acetylene black. is there.
【0027】ポリマー電解質で被覆され、しかも個々の
粒子が導電剤と接触した硫黄の製造方法の一例として
は、ポリマーとリチウム塩を有機溶媒に溶解した溶液
に、硫黄とアセチレンブラックとを加えて分散させ、攪
拌し、乾燥するという方法がある。As an example of a method for producing sulfur in which individual particles are contacted with a conductive agent and which is coated with a polymer electrolyte, sulfur and acetylene black are dispersed in a solution prepared by dissolving a polymer and a lithium salt in an organic solvent. There is a method of stirring, stirring and drying.
【0028】また本発明は、上記非水電解質二次電池に
おいて、正極とセパレータ間または負極とセパレータ間
の少なくとも一方にポリマー電解質層を備えたことを特
徴とするものである。このことにより、電池反応によっ
て生成する多硫化物(LixSn)が電解液中に拡散
し、負極表面へ到達することをほぼ完全に防止すること
ができ、充放電サイクル特性に優れた非水電解質二次電
池を得ることができる。The present invention is also characterized in that, in the above non-aqueous electrolyte secondary battery, a polymer electrolyte layer is provided on at least one of the positive electrode and the separator or the negative electrode and the separator. This makes it possible to almost completely prevent polysulfide (Li x S n ) generated by the battery reaction from diffusing into the electrolytic solution and reaching the surface of the negative electrode. A water electrolyte secondary battery can be obtained.
【0029】なお、正極とセパレータ間または負極とセ
パレータ間の少なくとも一方に備えるポリマー電解質層
の厚みは、1μm以上、20μm以下であることが好ま
しい。ポリマー電解質層の厚みが1μm未満の場合に
は、強度が不十分であることと、多硫化物(Li
xSn)に対するフィルター効果が不十分となり、一
方、厚みが20μmよりも大きくなると、セルの内部抵
抗の増加およびエネルギー密度の低下をもたらす。The thickness of the polymer electrolyte layer provided between at least one of the positive electrode and the separator or between the negative electrode and the separator is preferably 1 μm or more and 20 μm or less. When the thickness of the polymer electrolyte layer is less than 1 μm, the strength is insufficient and the polysulfide (Li
The filter effect on x S n ) is insufficient, while a thickness greater than 20 μm leads to an increase in the internal resistance of the cell and a decrease in the energy density.
【0030】さらに本発明は、上記非水電解質二次電池
において、リチウム、リチウム合金またはリチウムを吸
蔵放出可能な材料の表面が、フッ素を含む被膜で被覆さ
れていることを特徴とする。このことにより、リチウ
ム、リチウム合金またはリチウムを吸蔵放出可能な材料
と多硫化物との反応が抑制され、自己放電の小さい、充
放電サイクル特性に優れた非水電解質二次電池を得るこ
とができる。Further, the present invention is characterized in that, in the above non-aqueous electrolyte secondary battery, the surface of lithium, a lithium alloy or a material capable of inserting and extracting lithium is coated with a film containing fluorine. As a result, a reaction between lithium, a lithium alloy or a material capable of occluding and releasing lithium and polysulfide is suppressed, a self-discharge is small, and a non-aqueous electrolyte secondary battery having excellent charge-discharge cycle characteristics can be obtained. .
【0031】リチウム、リチウム合金またはリチウムを
吸蔵放出可能な材料等の負極活物質の表面を、フッ素を
含む被膜で被覆する方法の一例としては、これらの負極
活物質とフッ化水素(HF)とを反応させることによ
り、負極活物質の表面にフッ化リチウム(LiF)の被
膜が形成され、負極活物質と多硫化物の直接な反応が防
止され、自己放電を抑制することができる。他の例とし
ては、これらの負極活物質を、フッ化水素を含む有機電
解液中に浸漬することにより、フッ化リチウム(Li
F)を主成分とした緻密な被膜を生成させることができ
る。使用する有機電解液としては、エチレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート等の有機溶媒の混合物にLiP
F6を溶解させた溶液を使用することができる。As an example of a method for coating the surface of a negative electrode active material such as lithium, a lithium alloy or a material capable of inserting and extracting lithium with a film containing fluorine, these negative electrode active materials and hydrogen fluoride (HF) are used. By reacting with, a lithium fluoride (LiF) film is formed on the surface of the negative electrode active material, direct reaction between the negative electrode active material and polysulfide is prevented, and self-discharge can be suppressed. As another example, by immersing these negative electrode active materials in an organic electrolytic solution containing hydrogen fluoride, lithium fluoride (Li
It is possible to form a dense coating containing F) as a main component. The organic electrolyte used is LiP in a mixture of organic solvents such as ethylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate.
A solution in which F 6 is dissolved can be used.
【0032】なお、硫黄自体は電気的に絶縁性なため、
多量な導電剤が必要である。そして、硫黄は均一に導電
剤中に分散されているのが好ましい。導電ネットワーク
を保つために、導電剤をしっかりと集電体上に結着させ
た方が望ましい。正極の導電剤としては、粒径200n
m以上、20μm以下の炭素粒子またはTi、Al、A
gなどの金属微粒子、炭素繊維およびこれらの混合物を
使用することができる。また、活物質と導電剤とは、P
VdF、PTFE、PVdF−HFPなどフッ素樹脂に
よって、しっかりとアルミニウム箔、ニッケル箔、ステ
ンレス箔などの正極集電体上に結着されていることが好
ましい。Since sulfur itself is electrically insulating,
A large amount of conductive agent is required. Then, it is preferable that the sulfur is uniformly dispersed in the conductive agent. In order to maintain the conductive network, it is desirable that the conductive agent be firmly bound on the current collector. The conductive agent for the positive electrode has a particle size of 200 n
m or more and 20 μm or less carbon particles or Ti, Al, A
Fine metal particles such as g, carbon fibers and mixtures thereof can be used. Further, the active material and the conductive agent are P
It is preferable that the fluorocarbon resin such as VdF, PTFE, PVdF-HFP is firmly bonded to the positive electrode current collector such as aluminum foil, nickel foil, and stainless steel foil.
【0033】本発明の非水電解質二次電池において、非
水電解質の溶媒としてはエーテル系溶媒を使用するのが
望ましい。エーテル系有機溶媒はリチウムイオンと溶媒
和し、多硫アニオンと分離させる一方、導電率の高い電
解質を得ることができる。特に、これらの溶媒は、金属
リチウムと反応してその表面にオリゴマーSEIやポリ
マーSEI層(SEI=Solid Electrol
yte Interface)が形成され、金属リチウ
ムと過剰反応しないという利点がある。In the non-aqueous electrolyte secondary battery of the present invention, it is desirable to use an ether solvent as the solvent for the non-aqueous electrolyte. The ether-based organic solvent solvates lithium ions and separates them from the polysulfuric acid anion, and on the other hand, it is possible to obtain an electrolyte having high conductivity. In particular, these solvents react with metallic lithium to form an oligomer SEI or polymer SEI layer (SEI = Solid Electrol) on the surface thereof.
yte Interface) is formed, and there is an advantage that it does not excessively react with metallic lithium.
【0034】ここで、使用可能な溶媒としては、テトラ
ヒドロフラン(THF)、2−メチルテトラヒドロフラ
ン(2−MeTHF)、ジメトキシエタン(DME)、
ジオキソラン、テトラヒドロピランなどが挙げられる。
これらの溶媒はドナー性とアクセプター性を両方もって
いるため、リチウムイオンの溶媒和を促進する。Here, usable solvents include tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), dimethoxyethane (DME),
Examples include dioxolane and tetrahydropyran.
Since these solvents have both a donor property and an acceptor property, they promote the solvation of lithium ions.
【0035】また、本発明において、非水電解質の溶媒
としてエーテル系溶媒を用いた場合には、硫黄の過放電
を防止して、不活性なLi2Sの生成を電気化学的に防
止するためには、放電終止電圧を1.8V以上、2.0
V以下にすることが好ましい。このことにより、電池の
長寿命化が実現できる。Further, in the present invention, when an ether solvent is used as the solvent of the non-aqueous electrolyte, sulfur over-discharge is prevented and inactive Li 2 S is electrochemically prevented. The discharge end voltage is 1.8 V or higher, 2.0
It is preferably V or less. As a result, the battery life can be extended.
【0036】本発明において、セパレータとしては、ポ
リエチレンおよびポリプロピレン製微多孔膜、またはこ
れらを複合した微多孔膜等のポリオレフィン系微多孔膜
など、従来の非水電解質二次電池に使用されたものを用
いることができる。In the present invention, as the separator, those used in conventional non-aqueous electrolyte secondary batteries, such as a microporous membrane made of polyethylene and polypropylene, or a microporous polyolefin membrane such as a microporous membrane in which these are combined, are used. Can be used.
【0037】本発明の非水電解質二次電池に用いる正極
板の製造方法としては、以下で述べるような種々の方法
を用いることができる。ここでは、正極活物質の出発物
質として硫黄を用いた例について説明する。As a method for producing the positive electrode plate used in the non-aqueous electrolyte secondary battery of the present invention, various methods as described below can be used. Here, an example in which sulfur is used as the starting material of the positive electrode active material will be described.
【0038】第一の正極板の製造方法としては、硫黄と
導電剤とを所定比率(質量比5:1〜1:1)で均一に
混合し、結着剤で集電基板上に結着させ、所定の多孔度
(30〜50%)になるまでプレスした。ここで、導電
剤と結着剤の比率を2:1〜1:1の範囲にすることが
望ましい。その後、加熱真空乾燥し、ポリマー電解質を
含浸させ、さらに乾燥して、正極板が得られる。As the first method for producing the positive electrode plate, sulfur and the conductive agent are uniformly mixed at a predetermined ratio (mass ratio 5: 1 to 1: 1), and the binder is bound on the current collecting substrate. And pressed until a predetermined porosity (30 to 50%) was reached. Here, it is desirable that the ratio of the conductive agent to the binder is in the range of 2: 1 to 1: 1. Then, it is heated and vacuum dried to be impregnated with the polymer electrolyte and further dried to obtain a positive electrode plate.
【0039】第二の正極板の製造方法としては、導電剤
だけを結着剤で集電基板上に結着させ、硫黄と導電材と
ポリマーのスラリを上記基材の上にキャストし、乾燥し
てからプレスしたものを正極板とした。As the second method for producing the positive electrode plate, only the conductive agent is bound on the current collecting substrate with the binder, and the slurry of sulfur, the conductive material and the polymer is cast on the above base material and dried. The positive electrode plate was then pressed.
【0040】第三の正極板の製造方法としては、上記第
一、二の製造方法で得られた極板と可溶性Li2S
n(n>8)と合わせたものを正極板とする。As the third method for producing the positive electrode plate, the electrode plate obtained by the above-mentioned first and second production methods and soluble Li 2 S are used.
A combination of n (n> 8) is used as a positive electrode plate.
【0041】第一の製造方法で得られた正極板は、硫黄
の装填密度が調整可能な幅が大きく、高容量密度の正極
が得やすい。第二の製造方法で得られた正極板は、活物
質の集電性を高くすることができる。第三の製造方法で
得られた正極板は、更なるエネルギー密度の向上、およ
び充放電サイクル寿命の改善に有利である。The positive electrode plate obtained by the first manufacturing method has a large range in which the sulfur loading density can be adjusted, and it is easy to obtain a high capacity density positive electrode. The positive electrode plate obtained by the second manufacturing method can enhance the current collecting property of the active material. The positive electrode plate obtained by the third manufacturing method is advantageous for further improvement in energy density and charge / discharge cycle life.
【0042】また、本発明の非水電解質二次電池の負極
活物質としては、リチウム、リチウム合金またはリチウ
ムを吸蔵放出可能な材料等を使用する。リチウムを吸蔵
放出可能な材料としては、黒鉛、石油コークス、クレゾ
ール樹脂焼成炭素、フラン樹脂焼成炭素、ポリアクリロ
ニトリル繊維焼成炭素、メソフェーズピッチ焼成炭素等
の材料、酸化スズなどの酸化物、またはこれらの混合物
を用いてもよい。As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium, a lithium alloy, a material capable of inserting and extracting lithium, or the like is used. Materials capable of inserting and extracting lithium include graphite, petroleum coke, cresol resin-fired carbon, furan resin-fired carbon, polyacrylonitrile fiber-fired carbon, mesophase pitch-fired carbon and other materials, tin oxide and other oxides, or mixtures thereof. May be used.
【0043】なお、負極活物質に金属リチウムを用いた
場合、負極の容量は、正極容量の2倍以上に相当するリ
チウム箔を使用してよい。また、多硫アニオンからリチ
ウムを保護するために、金属リチウムの表面にポリマー
層や無機固体電解質層を形成させてもよい。When metallic lithium is used as the negative electrode active material, a lithium foil having a negative electrode capacity equal to or more than twice the positive electrode capacity may be used. Further, a polymer layer or an inorganic solid electrolyte layer may be formed on the surface of metallic lithium in order to protect lithium from polysulfuric acid anions.
【0044】[0044]
【実施例】以下に、本発明の好適な実施例について説明
する。The preferred embodiments of the present invention will be described below.
【0045】まず、ポリマー電解質キャスト液を作製し
た。アセトニトリル250mlに2.856gのLiN
(SO2C2F5)2(LiBETI)を添加し、攪拌
しながら溶解させた。さらに攪拌しながら、4gのポリ
エチレンオキシド(PEO、Mw=4,000,00
0)を少しずつ添加し、PEOが完全に溶解して、溶液
が半透明になるまで約6時間攪拌した。このようにして
得られた溶液をキャスト液とした。得られたキャスト液
の[EO]/[Li+]比は12:1とした。ただし、
[EO]は、PEOに含まれるエチレンオキシド単位の
数を示す。First, a polymer electrolyte casting solution was prepared. 2.856 g of LiN in 250 ml of acetonitrile
(SO 2 C 2 F 5 ) 2 (LiBETI) was added and dissolved with stirring. With further stirring, 4 g of polyethylene oxide (PEO, Mw = 4,000,000)
0) was added little by little, and the mixture was stirred for about 6 hours until PEO was completely dissolved and the solution became translucent. The solution thus obtained was used as a casting solution. The [EO] / [Li + ] ratio of the obtained cast liquid was 12: 1. However,
[EO] indicates the number of ethylene oxide units contained in PEO.
【0046】つぎに、3種類の正極板を作製した。正極
板Paは次の手順により作製した。正極活物質としての
硫黄(S)と導電剤としてのアセチレンブラック(A
B)とを1:1(重量比)の比率で混合し、ボールミー
ルによって均一に分散させ、硫黄(S)とアセチレンブ
ラック(AB)の混合物(S−AB混合物)を得た。つ
ぎに、N−メチル−2−ピロリドン(NMP)100m
lに結着剤としてのポリフッ化ビニリデン(PVdF)
10gを溶解させた溶液(PVdF−NMP溶液)を作
製した。このPVdF−NMP溶液にS−AB混合物
を、S:AB:PVdF=2:2:0.75(重量比)
となるように添加し、攪拌してペーストを得た。このペ
ーストをアルミニウム箔の片面に塗布し、乾燥し、プレ
スした。80℃で6時間乾燥した。正極板片面の硫黄保
持量は1.1mg/cm2とした。Next, three types of positive electrode plates were prepared. The positive electrode plate Pa was manufactured by the following procedure. Sulfur (S) as a positive electrode active material and acetylene black (A as a conductive agent)
B) and 1) were mixed at a ratio of 1: 1 (weight ratio) and uniformly dispersed by a ball meal to obtain a mixture of sulfur (S) and acetylene black (AB) (S-AB mixture). Next, N-methyl-2-pyrrolidone (NMP) 100m
Polyvinylidene fluoride (PVdF) as a binder
A solution (PVdF-NMP solution) in which 10 g was dissolved was prepared. The PVdF-NMP solution was mixed with the S-AB mixture, and S: AB: PVdF = 2: 2: 0.75 (weight ratio).
And added to obtain a paste. This paste was applied to one side of an aluminum foil, dried and pressed. It was dried at 80 ° C. for 6 hours. The amount of sulfur retained on one surface of the positive electrode plate was 1.1 mg / cm 2 .
【0047】正極板Pbは次の手順により作製した。正
極板Paを作製した場合に使用したS−AB混合物10
gを少しずつ、倍希釈したキャスト液78mlに攪拌し
ながら添加し、均一に分散させた。この溶液を2時間自
然乾燥し、さらに60℃で4時間真空乾燥し、得られた
塊を粉砕することにより、S−AB混合物粒子の表面が
PEO−LiN(SO2C2F5)2(LiBETI)
からなるポリマー電解質(以下では「PEOポリマー電
解質」と略す)の被膜で被覆された粉末を得た。つぎ
に、正極板Paを作製した場合に使用したのと同じPV
dF−NMP溶液に、表面がPEOポリマー電解質の被
膜で被覆されたS−AB混合物粉末を、S:AB:PV
dF=2:2:0.75(重量比)となるように添加
し、攪拌してペーストを得た。このペーストをアルミニ
ウム箔の片面に塗布し、乾燥し、プレスした。80℃で
6時間乾燥した。正極板片面の硫黄保持量は1.1mg
/cm 2とした。The positive electrode plate Pb was manufactured by the following procedure. Positive
S-AB mixture 10 used when producing the electrode plate Pa
Stir g little by little into 78 ml of double diluted casting solution
While adding it, it was dispersed uniformly. Allow this solution for 2 hours
It was dried and then vacuum dried at 60 ° C. for 4 hours to obtain
By crushing the lumps, the surface of the S-AB mixture particles is
PEO-LiN (SOTwoCTwoF5)Two(LiBETI)
A polymer electrolyte consisting of (hereinafter "PEO polymer electrolyte"
A powder coated with a coating of "degradation") was obtained. Next
The same PV used when the positive electrode plate Pa was manufactured
The surface of the dF-NMP solution was coated with PEO polymer electrolyte.
The S-AB mixture powder coated with the film was mixed with S: AB: PV.
Add so that dF = 2: 2: 0.75 (weight ratio)
And stirred to obtain a paste. This paste is aluminum
It was coated on one side of an aluminum foil, dried and pressed. At 80 ° C
It was dried for 6 hours. The amount of sulfur retained on one side of the positive electrode plate is 1.1 mg.
/ Cm TwoAnd
【0048】正極板Pcは次の手順により作製した。正
極板Pbをキャスト液中に浸漬し、減圧してキャスト液
を極板に含浸させ、これを自然乾燥させた。さらに同一
の手順を繰り返し、得られた極板を80℃で4時間真空
乾燥し、正極板表面に、厚さ10μmのPEOポリマー
電解質層を取り付けた正極板Pcを得た。The positive electrode plate Pc was manufactured by the following procedure. The positive electrode plate Pb was dipped in the casting liquid, the pressure was reduced to impregnate the casting liquid into the electrode plate, and this was naturally dried. The same procedure was repeated, and the obtained electrode plate was vacuum dried at 80 ° C. for 4 hours to obtain a positive electrode plate Pc having a 10 μm thick PEO polymer electrolyte layer attached to the positive electrode plate surface.
【0049】さらに、3種類の負極板を作製した。金属
リチウム板そのものを用いたものを負極板Naとした。
この負極板Naをキャスト液中に浸漬した後、自然乾燥
させた。さらに同一の手順を繰り返し、4時間真空乾燥
し、リチウムの表面に厚さ5μmのPEOポリマー電解
質層をとりつけた負極板Nbを得た。Further, three kinds of negative electrode plates were prepared. A negative electrode plate Na was prepared by using the metallic lithium plate itself.
The negative electrode plate Na was immersed in a casting solution and then naturally dried. Further, the same procedure was repeated and vacuum drying was carried out for 4 hours to obtain a negative electrode plate Nb having a 5 μm thick PEO polymer electrolyte layer attached to the surface of lithium.
【0050】負極板Ncは次の手順により作製した。負
極板Naを、微量のフッ化水素(HF)を含有している
濃度1.0mol/lのLiPF6/エチレンカーボネ
ート(EC)+ジエチルカーボネート(DEC)溶液中
に2日間浸漬し、リチウムの表面にフッ化リチウム(L
iF)被膜を生成させ、これをDMCで洗浄し、自然乾
燥した。得られた極板をキャスト液中に浸漬した後、自
然乾燥させた。さらに同一の手順を繰り返し、4時間真
空乾燥し、リチウムの表面にフッ化リチウム(LiF)
被膜を取り付け、さらにその上から厚さ5μmのPEO
ポリマー電解質層をとりつけて負極板Ncを得た。The negative electrode plate Nc was manufactured by the following procedure. The negative electrode plate Na was immersed for 2 days in a LiPF 6 / ethylene carbonate (EC) + diethyl carbonate (DEC) solution containing a trace amount of hydrogen fluoride (HF) and having a concentration of 1.0 mol / l, and the surface of lithium was immersed. Lithium fluoride (L
iF) A film was formed, which was washed with DMC and air dried. The obtained electrode plate was immersed in a casting solution and then naturally dried. Further, the same procedure is repeated, followed by vacuum drying for 4 hours to form lithium fluoride (LiF) on the lithium surface.
Attach a film, and then PEO with a thickness of 5 μm.
A polymer electrolyte layer was attached to obtain a negative electrode plate Nc.
【0051】試験セルは、上記の手順で作製した3種類
の正極板と3種類の負極板とを組み合わせた、5種類と
した。それぞれの試験電池は、大きさ25×20mmの
正極(片面活物質なし)2枚と、大きさ25×25mm
の負極1枚と、厚さ25μmで大きさ30×30mmの
ポリプロピレン/ポリエチレン/ポリプロピレン(PP
/PE/PP)3層セパレータ2枚とを、正極/セパレ
ータ/負極/セパレータ/正極の順に積層して、発電要
素とした。この発電要素を、ポリオレフィン層の間にア
ルミニウム層を挟んだ、アルミニウム樹脂ラミネートケ
ースに収納した。そして、0.5mlの電解液を減圧注
液し、封口することにより、試験電池を得た。Five types of test cells were prepared by combining the three types of positive electrode plates and the three types of negative electrode plates produced by the above procedure. Each test battery consists of two positive electrodes (without single-sided active material) 25 × 20 mm in size and 25 × 25 mm in size
One negative electrode and a polypropylene / polyethylene / polypropylene (PP) with a thickness of 25 μm and a size of 30 × 30 mm.
/ PE / PP) three-layer separator two sheets were laminated in order of positive electrode / separator / negative electrode / separator / positive electrode to obtain a power generating element. This power generating element was housed in an aluminum resin laminate case in which an aluminum layer was sandwiched between polyolefin layers. Then, a test battery was obtained by injecting 0.5 ml of electrolytic solution under reduced pressure and sealing.
【0052】なお、電解液は、500mlのテトラヒド
ロフラン(THF)中に、攪拌しながらLiN(SO2
C2F5)2(LiBETI)を94.25g添加する
ことにより得た、0.5mol/lのLiBETI/T
HFを使用した。試験電池の種類と各電池に用いた極板
の種類を表1に示した。The electrolytic solution was prepared by adding LiN (SO 2
0.5 mol / l LiBETI / T obtained by adding 94.25 g of C 2 F 5 ) 2 (LiBETI)
HF was used. Table 1 shows the type of test battery and the type of electrode plate used for each battery.
【0053】[0053]
【表1】 [Table 1]
【0054】電池Dの断面構造を図1に示す。図1にお
いて、1は正極板、2は負極板、3はセパレータ、4は
正極端子、5は負極端子、6は正極板とセパレータ間の
PEOポリマー電解質層、7は負極板とセパレータ間の
PEOポリマー電解質層である。なお、他の電池の断面
構造も基本的に図1と同じであるが、電池Aおよび電池
Bでは、6の正極板とセパレータ間のPEO層および7
の負極板とセパレータ間のPEO層がなく、電池Cでは
7の負極板とセパレータ間のPEO層がない。また、電
池Eでは、図1の負極板2と負極板とセパレータ間のP
EO層7との間に、フッ化リチウム(LiF)層が存在
する。The cross-sectional structure of Battery D is shown in FIG. In FIG. 1, 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is a separator, 4 is a positive electrode terminal, 5 is a negative electrode terminal, 6 is a PEO polymer electrolyte layer between the positive electrode plate and the separator, and 7 is PEO between the negative electrode plate and the separator. It is a polymer electrolyte layer. The sectional structures of the other batteries are basically the same as those in FIG. 1, but in the batteries A and B, the PEO layer between the positive electrode plate 6 and the separator 6 and
There is no PEO layer between the negative electrode plate and the separator, and in battery C, there is no PEO layer between the negative electrode plate and the separator. Further, in the battery E, the negative electrode plate 2 of FIG.
A lithium fluoride (LiF) layer is present between the EO layer 7.
【0055】これら5種類の電池の充放電サイクル試験
を室温で行なった。作製した電池は充電状態であったた
め、1サイクル目は放電からおこなった。放電は0.5
mA定電流で1.8Vまで行ない、充電は0.5mA定
電流で、放電電気量から見積もった時間を基準にして、
放電電気量の1.2倍まで充電した。Charge / discharge cycle tests of these five types of batteries were conducted at room temperature. Since the manufactured battery was in a charged state, discharging was performed in the first cycle. Discharge is 0.5
With constant current of mA up to 1.8 V, charging is 0.5 mA constant current, based on the time estimated from the amount of discharged electricity,
The battery was charged up to 1.2 times the amount of discharged electricity.
【0056】図2は、電池Dの1サイクル目と2サイク
ル目の放電曲線を比較したものである。図2において、
1は1サイクル目の放電曲線、2は2サイクル目の放電
曲線を示す。なお、3サイクル目以後の放電曲線は、放
電容量は異なるが、2サイクル目の放電曲線とほぼ同じ
であった。図2からわかるように、1サイクル目の放電
曲線に存在する、硫黄の還元反応による約2.4Vのプ
ラトーは、2サイクル目の放電曲線ではなくなってお
り、このことは、2サイクル目以後は硫黄の還元反応が
ほとんどなくなり、多硫化物からLi2S2への反応が
可逆的に進行してることを示している。FIG. 2 compares the discharge curves of the first cycle and the second cycle of the battery D. In FIG.
1 shows the discharge curve of the 1st cycle, 2 shows the discharge curve of the 2nd cycle. The discharge curves after the third cycle were almost the same as the discharge curves at the second cycle, although the discharge capacities were different. As can be seen from FIG. 2, the plateau of about 2.4 V existing in the discharge curve of the first cycle due to the reduction reaction of sulfur is not the discharge curve of the second cycle, which means that after the second cycle, This indicates that the reduction reaction of sulfur is almost eliminated, and the reaction of polysulfide to Li 2 S 2 reversibly proceeds.
【0057】充放電サイクル試験結果を表2にまとめ
た。なお、各サイクルの容量維持率は、1サイクル目の
放電容量に対する各サイクルの放電容量の比(%)とし
た。また、各電池の、サイクル数と容量維持率の関係を
図3に示した。The charge / discharge cycle test results are summarized in Table 2. The capacity retention rate of each cycle was defined as the ratio (%) of the discharge capacity of each cycle to the discharge capacity of the first cycle. The relationship between the number of cycles and the capacity retention rate of each battery is shown in FIG.
【0058】[0058]
【表2】 [Table 2]
【0059】表2および図3の結果から、つぎのような
ことが明らかとなった。1サイクル目の放電容量は、正
極板および負極板にPEOポリマー電解質が全く存在し
ない電池Aの場合が最も大きく、正極活物質である硫黄
の理論放電容量838mAh/gに近い放電容量を示し
た。一方、本発明の、正極活物質である硫黄の表面をP
EOポリマー電解質で被覆した電池B、正極活物質であ
る硫黄の表面をPEOポリマー電解質で被覆し、さらに
正極板とセパレータ間にPEOポリマー電解質層を備え
た電池C、電池Dおよび電池Eの1サイクル目の放電容
量は、いずれも電池Aよりもやや小さくなった。特に、
電池Eのように、負極のリチウム表面をフッ化リチウム
(LiF)層で被覆した電池Eでは、1サイクル目の放
電容量は最も小さくなった。From the results shown in Table 2 and FIG. 3, the following facts became clear. The discharge capacity at the first cycle was the largest in the case of the battery A in which no PEO polymer electrolyte was present on the positive electrode plate and the negative electrode plate, and the discharge capacity was close to the theoretical discharge capacity of 838 mAh / g of the positive electrode active material, sulfur. On the other hand, the surface of sulfur as the positive electrode active material of the present invention is
Battery B coated with EO polymer electrolyte, one cycle of battery C, battery D and battery E, in which the surface of sulfur as a positive electrode active material is coated with PEO polymer electrolyte, and further a PEO polymer electrolyte layer is provided between the positive electrode plate and the separator The discharge capacity of each eye was slightly smaller than that of the battery A. In particular,
In the battery E in which the lithium surface of the negative electrode was covered with the lithium fluoride (LiF) layer like the battery E, the discharge capacity in the first cycle was the smallest.
【0060】また、正極板および負極板にPEOポリマ
ー電解質が全く存在しない電池Aでは、充放電に伴って
放電容量は急激に低下し、6サイクル目でゼロとなっ
た。一方、本発明の、正極活物質である硫黄の表面をP
EOポリマー電解質で被覆した電池B、正極活物質であ
る硫黄の表面をPEOポリマー電解質で被覆し、さらに
正極板とセパレータ間にPEOポリマー電解質層を備え
た電池C、電池Dおよび電池Eでは、5サイクル目以後
の放電容量はほぼ安定していた。これは、正極活物質で
ある硫黄の表面をPEOポリマー電解質で被覆すること
により、多硫化物(LixSn)の電解液中への拡散
が、PEOポリマー電解質層によって抑制され、負極へ
達してリチウムとの化学反応が抑制されたためである。Further, in the battery A in which the PEO polymer electrolyte was not present at all on the positive electrode plate and the negative electrode plate, the discharge capacity drastically decreased with charge and discharge, and became zero at the 6th cycle. On the other hand, the surface of sulfur as the positive electrode active material of the present invention is
The battery B coated with the EO polymer electrolyte, the battery C having the surface of sulfur as the positive electrode active material coated with the PEO polymer electrolyte, and the battery C, the battery D and the battery E having the PEO polymer electrolyte layer between the positive electrode plate and the separator had 5 The discharge capacity after the cycle was almost stable. This is because by coating the surface of sulfur, which is a positive electrode active material, with a PEO polymer electrolyte, the diffusion of polysulfide (Li x S n ) into the electrolytic solution is suppressed by the PEO polymer electrolyte layer and reaches the negative electrode. This is because the chemical reaction with lithium was suppressed.
【0061】さらに、正極板とセパレータ間にPEOポ
リマー電解質層を備えた電池C、正極板とセパレータ間
および負極板とセパレータ間にPEOポリマー電解質層
を備えた電池D、正極板とセパレータ間および負極板と
セパレータ間にPEOポリマー電解質層を備え、さらに
負極のリチウム表面をフッ化リチウム(LiF)層で被
覆した電池Eでは、多硫化物(LixSn)の負極への
拡散がより抑制されるため、容量維持率は、電池Bより
も優れていた。Further, a battery C having a PEO polymer electrolyte layer between the positive electrode plate and the separator, a battery D having a PEO polymer electrolyte layer between the positive electrode plate and the separator, and a negative electrode plate and the separator, and between the positive electrode plate and the separator and the negative electrode. In the battery E including the PEO polymer electrolyte layer between the plate and the separator and further coating the lithium surface of the negative electrode with the lithium fluoride (LiF) layer, diffusion of polysulfide (Li x S n ) to the negative electrode was further suppressed. Therefore, the capacity retention ratio was superior to that of the battery B.
【0062】[0062]
【発明の効果】本発明の、正極と、リチウム、リチウム
合金またはリチウムを吸蔵放出可能な材料を含む負極
と、非水電解液と、セパレータとを備えた非水電解質二
次電池は、正極がポリマー電解質で被覆された硫黄を含
むことを特徴とすることにより、電池反応によって正極
で生成するLixSn等の多硫化物が負極表面で還元さ
れることによる自己放電を抑制し、エネルギー密度が高
く、自己放電が少なく、充放電サイクル特性に優れた非
水電解質二次電池を得ることができるINDUSTRIAL APPLICABILITY The non-aqueous electrolyte secondary battery provided with the positive electrode, the negative electrode containing lithium, a lithium alloy or a material capable of inserting and extracting lithium, the non-aqueous electrolyte solution, and the separator of the present invention has a positive electrode. by comprising the coated sulfur polymer electrolyte, to suppress self-discharge due to the polysulfides such as Li x S n generated in the positive electrode by the battery reaction is reduced at the surface of the negative electrode, energy density High non-aqueous electrolyte secondary battery with excellent charge / discharge cycle characteristics
【図1】本発明になる電池Dの断面構造を示す図。FIG. 1 is a diagram showing a cross-sectional structure of a battery D according to the present invention.
【図2】本発明になる電池Dの1サイクル目と2サイク
ル目の放電曲線を比較した図。FIG. 2 is a diagram comparing the discharge curves of the first cycle and the second cycle of the battery D according to the present invention.
【図3】電池A〜Eの、サイクル数と容量維持率の関係
を示す図。FIG. 3 is a diagram showing the relationship between the cycle number and the capacity retention rate of batteries A to E.
1 正極板 2 負極板 3 セパレータ 4 正極端子 5 負極端子 6 正極板とセパレータ間のPEO層ポリマー電解質層 7 負極板とセパレータ間のPEO層ポリマー電解質層 1 Positive plate 2 Negative electrode plate 3 separator 4 Positive terminal 5 Negative electrode terminal 6 PEO layer between positive electrode plate and separator Polymer electrolyte layer 7 PEO layer between negative electrode plate and separator Polymer electrolyte layer
Claims (3)
リチウムを吸蔵放出可能な材料を含む負極と、非水電解
液と、セパレータとを備えた非水電解質二次電池におい
て、前記正極が、ポリマー電解質で被覆された硫黄を含
むことを特徴とする非水電解質二次電池。1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing lithium, a lithium alloy or a material capable of inserting and extracting lithium, a non-aqueous electrolyte solution, and a separator, wherein the positive electrode is a polymer electrolyte. A non-aqueous electrolyte secondary battery characterized by containing sulfur coated with.
ータ間の少なくとも一方にポリマー電解質層を備えたこ
とを特徴とする請求項1記載の非水電解質二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, further comprising a polymer electrolyte layer provided on at least one of the positive electrode and the separator or the negative electrode and the separator.
またはリチウムを吸蔵放出可能な材料が、フッ素を含む
被膜で被覆されていることを特徴とする請求項1または
2記載の非水電解質二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein lithium, a lithium alloy or a material capable of inserting and extracting lithium contained in the negative electrode is covered with a film containing fluorine. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042823A JP4088755B2 (en) | 2002-02-20 | 2002-02-20 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042823A JP4088755B2 (en) | 2002-02-20 | 2002-02-20 | Nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003242964A true JP2003242964A (en) | 2003-08-29 |
JP4088755B2 JP4088755B2 (en) | 2008-05-21 |
Family
ID=27782808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002042823A Expired - Fee Related JP4088755B2 (en) | 2002-02-20 | 2002-02-20 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4088755B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101209687B1 (en) | 2010-12-03 | 2012-12-10 | 기아자동차주식회사 | Lithium ion-sulfur battery |
KR101348810B1 (en) | 2012-07-09 | 2014-01-10 | 국립대학법인 울산과학기술대학교 산학협력단 | Separator for lithium-sulfur battery, method for manufacturing the same and lithium-sulfur battery including the same |
JP2015531978A (en) * | 2012-09-14 | 2015-11-05 | フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ | Alkali metal-chalcogen battery with low self-discharge and high cycle life and high performance |
WO2016077663A1 (en) * | 2014-11-14 | 2016-05-19 | Medtronic, Inc. | Composite separator-electrolyte for solid state batteries |
JP2016119165A (en) * | 2014-12-18 | 2016-06-30 | 株式会社アルバック | Positive electrode for alkaline metal-sulfur battery and manufacturing method of secondary battery including the same |
KR20160143711A (en) * | 2014-04-01 | 2016-12-14 | 아이오닉 머터리얼스, 인코퍼레이션 | High capacity polymer cathode and high energy density rechargeable cell comprising the cathode |
US9911984B2 (en) | 2014-06-17 | 2018-03-06 | Medtronic, Inc. | Semi-solid electrolytes for batteries |
JP2019091714A (en) * | 2013-12-03 | 2019-06-13 | イオニツク・マテリアルズ・インコーポレーテツド | Solid ion conductive polymer material and application |
US10553901B2 (en) | 2015-06-04 | 2020-02-04 | Ionic Materials, Inc. | Lithium metal battery with solid polymer electrolyte |
US10587005B2 (en) | 2016-03-30 | 2020-03-10 | Wildcat Discovery Technologies, Inc. | Solid electrolyte compositions |
US11114655B2 (en) | 2015-04-01 | 2021-09-07 | Ionic Materials, Inc. | Alkaline battery cathode with solid polymer electrolyte |
US11152657B2 (en) | 2012-04-11 | 2021-10-19 | Ionic Materials, Inc. | Alkaline metal-air battery cathode |
US11251455B2 (en) | 2012-04-11 | 2022-02-15 | Ionic Materials, Inc. | Solid ionically conducting polymer material |
US11319411B2 (en) | 2012-04-11 | 2022-05-03 | Ionic Materials, Inc. | Solid ionically conducting polymer material |
US11342559B2 (en) | 2015-06-08 | 2022-05-24 | Ionic Materials, Inc. | Battery with polyvalent metal anode |
US11605819B2 (en) | 2015-06-08 | 2023-03-14 | Ionic Materials, Inc. | Battery having aluminum anode and solid polymer electrolyte |
US11611104B2 (en) | 2012-04-11 | 2023-03-21 | Ionic Materials, Inc. | Solid electrolyte high energy battery |
US11749833B2 (en) | 2012-04-11 | 2023-09-05 | Ionic Materials, Inc. | Solid state bipolar battery |
US11949105B2 (en) | 2012-04-11 | 2024-04-02 | Ionic Materials, Inc. | Electrochemical cell having solid ionically conducting polymer material |
US12074274B2 (en) | 2012-04-11 | 2024-08-27 | Ionic Materials, Inc. | Solid state bipolar battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072088B (en) * | 2020-08-26 | 2022-03-29 | 西安建筑科技大学 | Nano nitrogen-doped stibnite composite material, preparation method and application thereof |
-
2002
- 2002-02-20 JP JP2002042823A patent/JP4088755B2/en not_active Expired - Fee Related
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101209687B1 (en) | 2010-12-03 | 2012-12-10 | 기아자동차주식회사 | Lithium ion-sulfur battery |
US9123968B2 (en) | 2010-12-03 | 2015-09-01 | Hyundai Motor Company | Lithium ion-sulfur battery and electrode for the same |
US12074274B2 (en) | 2012-04-11 | 2024-08-27 | Ionic Materials, Inc. | Solid state bipolar battery |
US11949105B2 (en) | 2012-04-11 | 2024-04-02 | Ionic Materials, Inc. | Electrochemical cell having solid ionically conducting polymer material |
US11749833B2 (en) | 2012-04-11 | 2023-09-05 | Ionic Materials, Inc. | Solid state bipolar battery |
US11611104B2 (en) | 2012-04-11 | 2023-03-21 | Ionic Materials, Inc. | Solid electrolyte high energy battery |
US11319411B2 (en) | 2012-04-11 | 2022-05-03 | Ionic Materials, Inc. | Solid ionically conducting polymer material |
US11251455B2 (en) | 2012-04-11 | 2022-02-15 | Ionic Materials, Inc. | Solid ionically conducting polymer material |
US11152657B2 (en) | 2012-04-11 | 2021-10-19 | Ionic Materials, Inc. | Alkaline metal-air battery cathode |
US11145857B2 (en) | 2012-04-11 | 2021-10-12 | Ionic Materials, Inc. | High capacity polymer cathode and high energy density rechargeable cell comprising the cathode |
KR101348810B1 (en) | 2012-07-09 | 2014-01-10 | 국립대학법인 울산과학기술대학교 산학협력단 | Separator for lithium-sulfur battery, method for manufacturing the same and lithium-sulfur battery including the same |
JP2015531978A (en) * | 2012-09-14 | 2015-11-05 | フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ | Alkali metal-chalcogen battery with low self-discharge and high cycle life and high performance |
US10811688B2 (en) | 2013-12-03 | 2020-10-20 | Ionic Materials, Inc. | Solid, ionically conducting polymer material, and methods and applications for same |
JP7139264B2 (en) | 2013-12-03 | 2022-09-20 | イオニツク・マテリアルズ・インコーポレーテツド | Solid ion-conducting polymer materials and applications |
JP2019091714A (en) * | 2013-12-03 | 2019-06-13 | イオニツク・マテリアルズ・インコーポレーテツド | Solid ion conductive polymer material and application |
KR102385977B1 (en) * | 2014-04-01 | 2022-04-13 | 아이오닉 머터리얼스, 인코퍼레이션 | High capacity polymer cathode and high energy density rechargeable cell comprising the cathode |
KR20160143711A (en) * | 2014-04-01 | 2016-12-14 | 아이오닉 머터리얼스, 인코퍼레이션 | High capacity polymer cathode and high energy density rechargeable cell comprising the cathode |
JP2020184545A (en) * | 2014-04-01 | 2020-11-12 | イオニツク・マテリアルズ・インコーポレーテツド | High-capacity polymer cathode and high energy density rechargeable battery containing the same |
JP2017517835A (en) * | 2014-04-01 | 2017-06-29 | イオニツク・マテリアルズ・インコーポレーテツド | High capacity polymer cathode and high energy density rechargeable battery comprising the cathode |
JP7109879B2 (en) | 2014-04-01 | 2022-08-01 | イオニツク・マテリアルズ・インコーポレーテツド | High capacity polymer cathode and high energy density rechargeable battery containing said cathode |
US9911984B2 (en) | 2014-06-17 | 2018-03-06 | Medtronic, Inc. | Semi-solid electrolytes for batteries |
US10727499B2 (en) | 2014-06-17 | 2020-07-28 | Medtronic, Inc. | Semi-solid electrolytes for batteries |
US10333173B2 (en) | 2014-11-14 | 2019-06-25 | Medtronic, Inc. | Composite separator and electrolyte for solid state batteries |
US11437649B2 (en) | 2014-11-14 | 2022-09-06 | Medtronic, Inc. | Composite separator and electrolyte for solid state batteries |
WO2016077663A1 (en) * | 2014-11-14 | 2016-05-19 | Medtronic, Inc. | Composite separator-electrolyte for solid state batteries |
JP2016119165A (en) * | 2014-12-18 | 2016-06-30 | 株式会社アルバック | Positive electrode for alkaline metal-sulfur battery and manufacturing method of secondary battery including the same |
US11114655B2 (en) | 2015-04-01 | 2021-09-07 | Ionic Materials, Inc. | Alkaline battery cathode with solid polymer electrolyte |
US10553901B2 (en) | 2015-06-04 | 2020-02-04 | Ionic Materials, Inc. | Lithium metal battery with solid polymer electrolyte |
US11342559B2 (en) | 2015-06-08 | 2022-05-24 | Ionic Materials, Inc. | Battery with polyvalent metal anode |
US11605819B2 (en) | 2015-06-08 | 2023-03-14 | Ionic Materials, Inc. | Battery having aluminum anode and solid polymer electrolyte |
US10587005B2 (en) | 2016-03-30 | 2020-03-10 | Wildcat Discovery Technologies, Inc. | Solid electrolyte compositions |
Also Published As
Publication number | Publication date |
---|---|
JP4088755B2 (en) | 2008-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111384399B (en) | Protective coating for lithium metal electrodes | |
JP4088755B2 (en) | Nonaqueous electrolyte secondary battery | |
KR20190113605A (en) | Hybrid solid electrolyte membrane for all solid state secondary battery and all solid state secondary battery comprising the same | |
KR20120000708A (en) | Negative electrode for electrochemical device, the preparation method thereof and electrochemical device comprising the same | |
KR20190007296A (en) | Lithium secondary battery and preparing method thereof | |
JP2014523083A (en) | Lithium / sulfur battery | |
JP5151329B2 (en) | Positive electrode body and lithium secondary battery using the same | |
CN112216876B (en) | Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile | |
US20230268568A1 (en) | Methods for operating energy storage devices with sulfur-based cathodes, and related systems and methods | |
JP2014532955A (en) | Secondary battery | |
CN112216875B (en) | Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile | |
KR20110056911A (en) | Positive electrode for lithium rechargeable battery, method for manufacturing the same and lithium rechargeable battery including the same | |
JPH06196169A (en) | Nonaqueous electrolyte secondary battery | |
JP4162510B2 (en) | Nonaqueous electrolyte secondary battery | |
CN116581384A (en) | Lithium ion battery and application thereof | |
US11515539B2 (en) | Volume-expansion accommodable anode-free solid-state battery | |
CN114665150A (en) | Lithium metal solid-state battery capable of running at room temperature and preparation method thereof | |
JP2003168427A (en) | Nonaqueous electrolyte battery | |
JP4161437B2 (en) | Lithium battery | |
CN112216812B (en) | Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile | |
KR20180023688A (en) | Secondary Battery Comprising Electrode Having Thin Electrode Active Material Layer | |
KR100432669B1 (en) | Negative active material for rechargeable lithium batteries and preparing for same | |
JP3928167B2 (en) | Method for manufacturing electrode plate for lithium secondary battery | |
JPH11135107A (en) | Lithium secondary battery | |
JP4624589B2 (en) | Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050208 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4088755 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140307 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |