JP2003136343A - Bending hole processing method - Google Patents
Bending hole processing methodInfo
- Publication number
- JP2003136343A JP2003136343A JP2001340353A JP2001340353A JP2003136343A JP 2003136343 A JP2003136343 A JP 2003136343A JP 2001340353 A JP2001340353 A JP 2001340353A JP 2001340353 A JP2001340353 A JP 2001340353A JP 2003136343 A JP2003136343 A JP 2003136343A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electric discharge
- workpiece
- discharge machining
- spiral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005452 bending Methods 0.000 title abstract description 18
- 238000003672 processing method Methods 0.000 title abstract description 7
- 238000000465 moulding Methods 0.000 claims abstract description 34
- 229910001297 Zn alloy Inorganic materials 0.000 claims abstract description 15
- 238000003754 machining Methods 0.000 claims description 114
- 238000000034 method Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 13
- 239000000428 dust Substances 0.000 abstract description 4
- 210000005069 ears Anatomy 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009760 electrical discharge machining Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
- B29C45/7312—Construction of heating or cooling fluid flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/04—Electrodes specially adapted therefor or their manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
- B23H7/265—Mounting of one or more thin electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
- B23H7/30—Moving electrode in the feed direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H9/00—Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H9/00—Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
- B23H9/006—Cavity sinking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H9/00—Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
- B23H9/14—Making holes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Fluid Mechanics (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、工作物の内部に曲
がり孔を形成する曲がり孔の加工方法に関し、更に詳し
くは、成形用金型、熱交換部品等の高い熱伝導特性が要
求される工作物に対し、放電加工により曲がり孔を形成
する曲がり孔の加工方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of processing a curved hole for forming a curved hole inside a workpiece, and more specifically, it is required to have high heat conduction characteristics of a molding die, a heat exchange part and the like. The present invention relates to a method of machining a curved hole in which a curved hole is formed in a workpiece by electric discharge machining.
【0002】[0002]
【従来の技術】成形用金型や熱交換部品は、加熱や冷却
のサイクルを短縮したり、加熱や冷却の速度を均一にす
るため、熱交換用の作動流体を流す流路が形成されてい
る。例えば、成形用金型では、一回の成形に要する時間
をより短縮させるために、成形を行うキャビティの周囲
に流路を形成し、樹脂充填前に加熱媒体を流路に供給し
て金型を加熱すると共に、型締め後に冷却媒体を流路に
供給して金型の冷却を行っている。2. Description of the Related Art Molding dies and heat exchange parts are provided with a flow path for a working fluid for heat exchange in order to shorten the heating and cooling cycles and to make the heating and cooling rates uniform. There is. For example, in a molding die, in order to further shorten the time required for one molding, a flow path is formed around a cavity to be molded, and a heating medium is supplied to the flow path before resin filling to make the mold. Is heated, and after the mold is clamped, a cooling medium is supplied to the flow path to cool the mold.
【0003】この熱交換用の流路は、成形用金型や熱交
換部品が金属により成形されていることから、ドリリン
グ加工によって形成するのが一般的となっている。しか
しながら、ドリリングではドリルが剛体であるところか
ら、曲がった流路を形成することができず、このため、
熱交換用の流路は直線状の孔とならざるを得ないもので
あった。The heat exchange passage is generally formed by drilling since the molding die and the heat exchange parts are formed of metal. However, in drilling, since the drill is rigid, it is not possible to form a curved flow path, and therefore,
The flow path for heat exchange had to be a linear hole.
【0004】一方、例えば射出成形用金型では、射出成
形若しくは冷却の際に、成形品の周囲に温度差がある
と、成形品に「ヒケ」などの美観や強度を損ねる不具合
が発生するので、成形品を成形するキャビティの周囲
を、できるだけ均一な温度で加熱、若しくは冷却する必
要があり、熱交換用の流路を、キャビティの周囲でキャ
ビティの輪郭に沿って形成することが望まれている。On the other hand, in the case of an injection molding die, for example, when injection molding or cooling is performed, if there is a temperature difference around the molded product, the molded product may suffer from a defect such as a sink mark which impairs the appearance and strength. It is necessary to heat or cool the periphery of the cavity for molding the molded article at a temperature as uniform as possible, and it is desired to form a heat exchange flow path around the cavity along the contour of the cavity. There is.
【0005】そこで、従来は、図8に示すように、成形
用金型100のキャビティ101周囲に、複数の直線状
の孔102を互いの一部が交差するように穿設し、作動
流体を流入及び抜き出す開口を残して、図中波線で示す
不要な部分102aを塞ぎ、キャビティ101の周囲に
流路を形成していた。Therefore, conventionally, as shown in FIG. 8, a plurality of linear holes 102 are formed around a cavity 101 of a molding die 100 so that some of the linear holes 102 intersect each other and a working fluid is supplied. An unnecessary portion 102a shown by a wavy line in the drawing is closed by leaving an opening for inflow and an outlet, and a flow path is formed around the cavity 101.
【0006】[0006]
【0007】しかしながら、このように複数の直線状の
孔102を連通させた流路では、キャビティの輪郭が曲
面である場合に、熱交換用の流路とキャビティとの距離
が部分的に異なり、また、直線状の孔102が交差する
部分では、流路の向きが急激に変化するので、作動流体
が滞留するものとなり、キャビティ全体を充分に均一な
温度で加熱し若しくは冷却することができないものであ
った。従って、上記、ヒケ等の成形不良を完全に防止す
ることができないものであった。However, in the flow path in which a plurality of linear holes 102 are communicated with each other in this way, when the contour of the cavity is a curved surface, the distance between the heat exchange flow path and the cavity is partially different, Further, in the portion where the linear holes 102 intersect, the direction of the flow path changes abruptly, so that the working fluid stays and the entire cavity cannot be heated or cooled at a sufficiently uniform temperature. Met. Therefore, the above-mentioned molding defects such as sink marks cannot be completely prevented.
【0008】また、熱交換部品においても同様の課題が
あり、流路を任意形状で形成できないことから、全体で
熱交換効率が低下するという問題があった。Further, the heat exchange component also has the same problem, and since the flow path cannot be formed in an arbitrary shape, there is a problem that the heat exchange efficiency is lowered as a whole.
【0009】以上のことから、ドリリングによらず、放
電加工を用いて曲がり孔を加工することを、本発明者は
検討した。この放電加工は、電極と、成形用金型や熱交
換部品等の工作物間に電圧を印加し放電を生じさる。そ
して、放電で発生する放電エネルギーによって、電極と
対向する工作物の部位を、溶融若しくは気化させつつ、
工作物内に電極を進入させ、その移動軌跡で所望の曲が
り孔を工作物内に形成しようとするものである。From the above, the present inventor has studied that the curved hole is machined by using electric discharge machining instead of drilling. In this electric discharge machining, a voltage is applied between the electrode and a work such as a molding die or a heat exchange part to generate an electric discharge. Then, by the discharge energy generated by the discharge, while melting or vaporizing the part of the workpiece facing the electrode,
The electrode is introduced into the work piece, and a desired curved hole is to be formed in the work piece along the locus of movement of the electrode.
【0010】しかしながら、高い熱伝導特性が求められ
る成形用金型や熱交換部品等には、一般に鋼材やアルミ
ニウム合金が用いられ、これらを素材とする工作物に上
述の放電加工を試みると、電極と工作物との間に充分な
加工間隙を確保することができないことから、加工部分
に発生する加工屑やガスを充分に外部に排出できないも
のであった。その為、これらの滞留を原因とする短絡や
異常放電が発生し、一定の深さ以上の孔は、放電加工で
得られないものであった。However, steel materials and aluminum alloys are generally used for molding dies, heat exchange parts, etc., which are required to have high heat conduction characteristics. Since it is not possible to secure a sufficient machining gap between the workpiece and the workpiece, it is impossible to sufficiently discharge the machining chips and gas generated in the machined portion to the outside. Therefore, a short circuit or an abnormal discharge due to these retentions occurred, and holes having a certain depth or more could not be obtained by electrical discharge machining.
【0011】これに対し、一定の深さ(例えば、5mm
程度)の孔が形成される都度、電極を引き抜いて、加工
部分に滞留する加工屑やガスを排出すれば、この問題は
解決できるが、加工して形成した孔の深さが深くなれば
なるほど、また複雑に屈曲するほど、電極を引き抜き、
再び加工部分まで進入させる工程は、時間と手間を要
し、到底実用上採用できる手段とはならなかった。On the other hand, a certain depth (for example, 5 mm)
This problem can be solved by pulling out the electrode every time a hole is formed and discharging the processing dust and gas accumulated in the processed part, but the deeper the hole formed by processing becomes , The more it bends, the more the electrode is pulled out,
The process of re-entering the processed portion requires time and labor, and has never been a practically applicable means.
【0012】これに加えて、鋼材やアルミニウム合金の
工作物に放電加工を行う場合には、電極の消耗が激し
く、早期に使用できなくなるばかりでなく、電極の消耗
によって工作物の加工面との距離が変動し、放電エネル
ギーが変動するため、目的の大きさや形状の曲がり孔を
精度よく加工することができないものとなっていた。In addition to this, when performing electric discharge machining on a workpiece made of a steel material or an aluminum alloy, not only is the electrode worn out so quickly that it cannot be used at an early stage, but also the work surface of the workpiece is damaged due to the consumption of the electrode. Since the distance fluctuates and the discharge energy fluctuates, it has been impossible to accurately process a bent hole having a desired size and shape.
【0013】本発明は、このような問題を考慮してなさ
れたものであり、成形用金型や熱交換部品等の工作物に
対し、加工時間を短縮して、放電加工により目的の曲が
り孔を加工することができ、しかも、電極の消耗が少な
い状態で放電加工を行うことができる曲がり孔の加工方
法を提供することを目的とする。The present invention has been made in consideration of the above problems, and shortens the machining time for a workpiece such as a molding die or a heat exchange part, and the target curved hole is formed by electric discharge machining. It is an object of the present invention to provide a method for processing a curved hole, which is capable of machining a curved hole and can perform electric discharge machining in a state in which the consumption of the electrode is small.
【0014】[0014]
【課題を解決するための手段】請求項1の曲がり孔の加
工方法は、少なくとも先端に放電加工部を有する電極を
用い、亜鉛合金からなる工作物に対し放電加工部で放電
加工を行いながら、放電加工部を、目的とする曲がり孔
の中心軸に沿って進入させ、放電加工部の移動軌跡で曲
がり孔を形成することを特徴とする。According to a first aspect of the present invention, there is provided a method of machining a curved hole, wherein an electrode having an electric discharge machined portion at least at a tip thereof is used, and a workpiece made of a zinc alloy is subjected to electric discharge machining in the electric discharge machined portion. It is characterized in that the electric discharge machining section is introduced along the center axis of the target curved hole, and the curved hole is formed along the movement trajectory of the electric discharge machining section.
【0015】工作物として用いられる亜鉛合金は、放電
加工の際の仕事関数が低く、鋼材やアルミニウム合金と
比べて広い加工間隙を形成することができる。このた
め、放電加工で発生した加工屑やガスの排出が容易とな
り、短絡や異常放電が発生しにくく、加工効率が向上す
るとともに、安定した加工を行うことができる。従っ
て、孔が深い場合や曲がり度合いが大きい場合であって
も、曲がり孔を良好に加工することができる。The zinc alloy used as a workpiece has a low work function during electric discharge machining and can form a wider machining gap than steel materials and aluminum alloys. For this reason, it is possible to easily discharge the machining chips and gas generated in the electric discharge machining, to prevent a short circuit or abnormal electric discharge from occurring, improve machining efficiency, and perform stable machining. Therefore, even if the hole is deep or the degree of bending is large, the bent hole can be favorably processed.
【0016】また、加工間隙が広く、異常放電が少ない
ので、電極の消耗が少なくなる。従って、電極と工作物
の加工面との距離を一定に保つことができるため、目的
とした形状や大きさの曲がり孔を精度よく形成すること
ができる。Further, since the machining gap is wide and the abnormal discharge is small, the consumption of the electrodes is reduced. Therefore, since the distance between the electrode and the machined surface of the workpiece can be kept constant, a curved hole having a desired shape and size can be accurately formed.
【0017】請求項2の曲がり孔の加工方法は、工作物
が成形用金型であり、放電加工部を、成形用金型のキャ
ビティの周囲でキャビティの輪郭に沿って進入させ、キ
ャビティの輪郭に沿った加熱孔若しくは冷却孔を形成す
ることを特徴とする。According to a second aspect of the present invention, there is provided a method of machining a curved hole, wherein the workpiece is a molding die, and the electric discharge machining part is introduced along the contour of the cavity around the cavity of the molding die to form the contour of the cavity. It is characterized in that a heating hole or a cooling hole is formed along with.
【0018】電極をキャビティの輪郭に沿って進入させ
ることにより、キャビティの周囲の略全長でキャビティ
と等距離の曲がり孔を加工することができる。そして、
この曲がり孔を加熱孔若しくは冷却孔として用いること
により、キャビティの全体を均一に加熱したり、冷却す
ることができる。このため、成形品の成形不良の発生を
防止することができる。By advancing the electrode along the contour of the cavity, it is possible to form a curved hole that is equidistant from the cavity over substantially the entire circumference of the cavity. And
By using this bent hole as a heating hole or a cooling hole, it is possible to uniformly heat or cool the entire cavity. Therefore, it is possible to prevent the occurrence of defective molding of the molded product.
【0019】請求項3の曲がり孔の加工方法は、導電性
線材を同一曲率で螺旋状に巻回して電極を形成し、工作
物内の放電加工部の移動軌跡が螺旋状の電極形状と一致
するように、工作物に対して、電極を螺旋軸回りに回転
させながら螺旋軸方向に進入させ、工作物に螺旋状の曲
がり孔を形成することを特徴とする。According to a third aspect of the present invention, there is provided a method of machining a curved hole, wherein a conductive wire is spirally wound with the same curvature to form an electrode, and a movement locus of an electric discharge machining part in a workpiece matches a spiral electrode shape. As described above, the electrode is inserted in the spiral axis direction while rotating the electrode around the spiral axis with respect to the workpiece to form a spiral bent hole in the workpiece.
【0020】電極の移動軌跡は、螺旋状の電極形状と一
致するので、移動軌跡で形成された曲がり孔に、放電加
工で進入させる電極が干渉することがない。従って、放
電加工の途中で、電極全体の形状を曲がり孔に合わせて
変形させることなく、容易に、工作物に螺旋状の曲がり
孔を形成できる。Since the locus of movement of the electrode matches the shape of the spiral electrode, the curved hole formed by the locus of movement does not interfere with the electrode to be inserted by electric discharge machining. Therefore, the spiral bent hole can be easily formed in the workpiece without deforming the shape of the entire electrode in accordance with the bent hole during the electric discharge machining.
【0021】請求項4の曲がり孔の加工方法は、電極
を、屈曲自在の絶縁筒体と、絶縁筒体の外径と同一若し
くは太幅の輪郭で、絶縁筒体の先端に姿勢制御自在に支
持される放電加工部とで構成し、工作物に放電加工を行
いながら、放電加工部を、目的とする曲がり孔の軸方向
に向かうように姿勢制御することを特徴とする。In the bending hole machining method according to a fourth aspect of the present invention, the electrode is provided with a bendable insulating cylindrical body and a contour which is the same as or thicker than the outer diameter of the insulating cylindrical body, and the posture of which can be controlled at the tip of the insulating cylindrical body. It is characterized in that it is constituted by a supported electric discharge machining unit, and while performing electric discharge machining on a workpiece, the posture of the electric discharge machining unit is controlled so as to face the axial direction of the target curved hole.
【0022】放電加工部を形成しようとする曲がり孔の
方向に姿勢制御することにより、対向する工作物の内面
が放電加工され、その移動軌跡で曲がり孔を形成するこ
とにより、任意の方向に曲がった曲がり孔を加工するこ
とができる。By controlling the attitude in the direction of the curved hole in which the electric discharge machining portion is to be formed, the inner surface of the facing workpiece is electric discharge machined, and the curved hole is formed in the movement locus so that the curved surface bends in any direction. Bent holes can be processed.
【0023】放電加工部を先端で支持する絶縁筒体は、
屈曲自在の絶縁体であるので、加工された曲がり孔に沿
って屈曲し、また、放電加工部の輪郭と同一か細幅の外
径なので、加工した曲がり孔の内壁面との間に、充分な
隙間があり、加工部分に発生する加工屑やガスを良好に
排出することができる。The insulating cylindrical body for supporting the electric discharge machining section at its tip is
Since it is a bendable insulator, it bends along the machined curved hole, and since it has an outer diameter that is the same as or narrower than the contour of the electric discharge machined part, it can be sufficiently spaced between the inner wall surface of the machined curved hole. Since there is a large gap, it is possible to satisfactorily discharge the processing chips and gas generated in the processed portion.
【0024】請求項5の曲がり孔の加工方法は、導電性
線材を同一曲率で螺旋状に巻回して形成した電極を、成
形用金型内の放電加工部の移動軌跡が螺旋状の電極形状
と一致するように、成形用金型に対して、電極を螺旋軸
回りに回転させながら螺旋軸方向に進入させ、成形用金
型に螺旋状のキャビティを形成することを特徴とする。According to a fifth aspect of the present invention, there is provided a method of machining a curved hole, wherein an electrode formed by spirally winding a conductive wire with the same curvature is used, and a moving locus of an electric discharge machining section in a molding die is a spiral electrode shape. So that the electrode is made to enter the molding die in the spiral axis direction while rotating around the spiral axis to form a spiral cavity in the molding die.
【0025】電極の移動軌跡は、螺旋状の電極形状と一
致するので、移動軌跡で形成された曲がり孔に、放電加
工で進入させる電極が干渉することがない。従って、放
電加工の途中で、電極全体の形状を曲がり孔に合わせて
変形させることなく、容易に、工作物に螺旋状のキャビ
ティを形成できる。Since the locus of movement of the electrode matches the shape of the spiral electrode, the curved hole formed by the locus of movement does not interfere with the electrode to be inserted by electric discharge machining. Therefore, during the electric discharge machining, the spiral cavity can be easily formed in the workpiece without deforming the shape of the entire electrode according to the bending hole.
【0026】このように加工された螺旋状のキャビティ
に対して、樹脂を充填して硬化すると、螺旋状の成形品
が得られる。By filling the resin into the spiral cavity processed in this way and curing the resin, a spiral molded product is obtained.
【0027】[0027]
【発明の実施の形態】図1乃至図4は、本発明の一実施
の形態に係る曲がり孔の加工方法を説明する図であり、
図1は、加工の際に用いる電極ホルダ4を、図2は、放
電加工に用いる電極3を形成する状態を、図3は、電極
ホルダ4に電極3を取り付けた状態を、図4は、放電加
工により曲がり孔2を加工する状態をそれぞれ示してい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 4 are views for explaining a method of processing a curved hole according to an embodiment of the present invention.
1 shows an electrode holder 4 used in machining, FIG. 2 shows a state in which an electrode 3 used in electric discharge machining is formed, FIG. 3 shows a state in which the electrode 3 is attached to the electrode holder 4, and FIG. The state where the curved hole 2 is machined by electric discharge machining is shown.
【0028】この実施の形態では、工作物1に対して螺
旋状の曲がり孔2を加工するものであり、そのために電
極3が螺旋状に成形される。電極3は、銅、銀、アルミ
ニウム、その他の一般の放電加工に用いられる同種の導
電性金属材料が使用されるが、この実施の形態では、銅
を用いている。電極3の母材としては棒状の線材若しく
はパイプ状のものが選択される。In this embodiment, the spiral bending hole 2 is formed in the workpiece 1, and therefore the electrode 3 is formed in a spiral shape. The electrode 3 is made of copper, silver, aluminum, or any other conductive metal material of the same type used in general electric discharge machining. In this embodiment, copper is used. As the base material of the electrode 3, a rod-shaped wire material or a pipe-shaped material is selected.
【0029】棒状の線材またはパイプ状の母材から螺旋
状の電極3を成形するため、図1に示すように、電極ホ
ルダ4に対して切削加工を行う。電極ホルダ4は、軸方
向に延びるホルダ軸4aを有しており、この電極ホルダ
4を旋盤のワーク軸部に取り付けた状態で電極ホルダ4
を回転させながら、切削刃5をホルダ軸4aに沿って移
動させる。これにより、ホルダ軸4aの外周に同一ピッ
チの螺旋溝6を形成する。In order to form the spiral electrode 3 from the rod-shaped wire or pipe-shaped base material, the electrode holder 4 is cut as shown in FIG. The electrode holder 4 has a holder shaft 4a extending in the axial direction, and the electrode holder 4 is attached to the work shaft portion of the lathe.
The cutting blade 5 is moved along the holder shaft 4a while rotating. As a result, the spiral grooves 6 having the same pitch are formed on the outer circumference of the holder shaft 4a.
【0030】次に、図2に示すように、ホルダ軸4aの
螺旋溝6に対して電極の母材を巻き付け、螺旋状の電極
3を成形する。螺旋溝6は、上述のように同一ピッチで
形成されているので、この螺旋溝6に巻き付けて形成し
た電極3は、いずれの部分も同一曲率の螺旋形状となっ
ている。Next, as shown in FIG. 2, the base material of the electrode is wound around the spiral groove 6 of the holder shaft 4a to form the spiral electrode 3. Since the spiral grooves 6 are formed at the same pitch as described above, the electrode 3 formed by winding around the spiral grooves 6 has a spiral shape with the same curvature in all parts.
【0031】この後、螺旋状に巻回した電極3を、螺旋
溝6に沿って電極ホルダ4に対して相対回転させ、図3
に示すように、ホルダ軸4aの先端から電極3の先端部
分を引き出す。電極3の引き出された先端部分は、後述
するように、工作物1内に進入し、形成された曲がり孔
2内に収容されるものとなるので、加工しようとする曲
がり孔2の長さより少なくとも長くなるようにホルダ軸
4aの先端から引き出しておく。After that, the spirally wound electrode 3 is relatively rotated with respect to the electrode holder 4 along the spiral groove 6, and the electrode 3 shown in FIG.
As shown in, the tip portion of the electrode 3 is pulled out from the tip of the holder shaft 4a. As will be described later, the pulled-out tip portion of the electrode 3 enters the workpiece 1 and is accommodated in the formed bending hole 2, so that at least the length of the bending hole 2 to be processed is at least It is pulled out from the tip of the holder shaft 4a so as to be long.
【0032】電極3の先端部分を引き出した図3に示す
状態で、電極3の螺旋溝6に巻き付けられた基端部を、
加締め、接着など任意の方法でホルダ軸4aに固着す
る。In the state shown in FIG. 3 in which the tip portion of the electrode 3 is pulled out, the base end portion wound around the spiral groove 6 of the electrode 3 is
The holder shaft 4a is fixed by an arbitrary method such as caulking or adhesion.
【0033】続いて、図4に示すように、電極ホルダ4
をNC放電加工機に取り付けて電極3の先端の放電加工
部3aを工作物1に臨ませ、電極3に+極側の電圧を印
加するとともに、工作物1に−極側の電圧を印加する。Then, as shown in FIG.
Is attached to the NC electric discharge machine, the electric discharge machining part 3a at the tip of the electrode 3 is exposed to the workpiece 1, and a voltage on the positive electrode side is applied to the electrode 3 and a voltage on the negative electrode side is applied to the workpiece 1. .
【0034】工作物1の材料としては、亜鉛合金が使用
される。亜鉛合金は、高い熱伝導特性を有しているの
で、短期間の加熱、冷却サイクルが要求される成形用金
型や、熱交換部品の材料として適しているが、更に、放
電加工の陰極材料として用いた場合には、鋼材の仕事関
数が約4.5eVであるのに対し、亜鉛合金は約3.4
eVと低く、放電加工に適した材料であることを本発明
者は見出している。A zinc alloy is used as the material of the workpiece 1. Zinc alloy is suitable as a material for molding dies and heat exchange parts that require short-term heating and cooling cycles because it has high heat conduction characteristics. When used as a steel, the work function of steel is about 4.5 eV, while that of zinc alloy is about 3.4 eV.
The present inventors have found that the material has a low eV and is suitable for electric discharge machining.
【0035】また、仕事関数は放電加工で形成される加
工間隙に関係しており、仕事関数が低い陰極材料ほど、
同じ条件下での放電加工においては、加工間隙が広くな
ることを確認しており、従って、亜鉛合金に対しては、
鋼材に比べて広い加工間隙を形成することが可能となっ
ている。The work function is related to the machining gap formed by electric discharge machining. The lower the work function of the cathode material, the more
It has been confirmed that the machining gap is widened in electrical discharge machining under the same conditions, and therefore for zinc alloys,
It is possible to form a wider working gap than steel.
【0036】これは、亜鉛合金の融点が400±30
℃、沸点が約900℃であり、鋼材に比べて融点や沸点
が低いために一回の放電エネルギーで溶融する金属表面
からの深さが深く、しかも蒸発現象も活発になるため、
溶融した金属が飛散しやすくなることが原因と考えられ
る。This is because the melting point of zinc alloy is 400 ± 30.
℃, the boiling point is about 900 ℃, because the melting point and boiling point is lower than that of steel material, the depth from the metal surface that melts with one discharge energy is deep, and the evaporation phenomenon also becomes active.
It is considered that the cause is that the molten metal is easily scattered.
【0037】本発明のように、工作物1の内部に深く曲
がり孔2を形成する場合には、放電により発生する加工
屑やガスを滞留させずに外部へ放出させないと、これら
の滞留に起因して短絡や異常放電が発生しやすく、放電
加工を進めることができないが、放電を行っている電極
3先端の放電加工部3a周囲と工作物1との間に広い隙
間が形成されるので、この隙間から既に形成された曲が
り孔2を通して、これらの加工屑やガスを排出すること
ができる。このため、加工屑やガスが局部的に滞留する
ことがなく、工作物1の内部深くに電極3の放電加工部
3aを進入させて放電加工を行うことができる。In the case of forming the deeply curved hole 2 inside the workpiece 1 as in the present invention, unless the machining waste or gas generated by the electric discharge is discharged to the outside without being accumulated, it is caused by the accumulation. As a result, a short circuit or abnormal discharge is likely to occur and the electric discharge machining cannot proceed. However, since a wide gap is formed between the periphery of the electric discharge machining portion 3a at the tip of the electrode 3 that is performing electric discharge and the workpiece 1, These processing chips and gas can be discharged from the gap through the bent hole 2 already formed. For this reason, machining dust and gas do not locally accumulate, and the electric discharge machining section 3a of the electrode 3 can be inserted deep inside the workpiece 1 to perform electric discharge machining.
【0038】また、広い加工間隙が形成されることによ
り、加工速度が大きくなり、加工効率が向上する。更
に、加工間隙が広いことから、電極3が放電エネルギー
による熱影響を受けにくくなり、電極3の消耗が少なく
なる。これにより、電極3と工作物1の加工面との距離
を一定に保つことができ、目的とした螺旋形状の曲がり
孔を精度よく形成することができる。Further, since the wide machining gap is formed, the machining speed is increased and the machining efficiency is improved. Furthermore, since the processing gap is wide, the electrode 3 is less likely to be affected by heat due to the discharge energy, and the consumption of the electrode 3 is reduced. As a result, the distance between the electrode 3 and the machined surface of the workpiece 1 can be kept constant, and the intended spirally-shaped curved hole can be formed with high precision.
【0039】亜鉛合金としては、Al:2〜20重量
%、Cu:1〜20重量%、Mg:0.02〜10重量
%、及び有効な添加成分を若干加え、残部をZnとした
合金を用いることができる。この合金としては、例え
ば、ZAS、ZAPREC(いずれも三井金属鉱業株式
会社の商品名)、その他の亜鉛合金を選択することがで
きる。As the zinc alloy, an alloy having Al: 2 to 20% by weight, Cu: 1 to 20% by weight, Mg: 0.02 to 10% by weight, and a small amount of an effective additive component with the balance being Zn. Can be used. As this alloy, for example, ZAS, ZAPREC (all are trade names of Mitsui Mining & Smelting Co., Ltd.), and other zinc alloys can be selected.
【0040】図4に示す放電加工では、電極3に+極の
電圧を、工作物1に−極の電圧を印加してこれらの間で
放電加工を行いながら、目的とする曲がり孔2の中心軸
方向に沿って電極3の先端を工作物1内に進入させる。In the electric discharge machining shown in FIG. 4, a positive pole voltage is applied to the electrode 3 and a negative pole voltage is applied to the workpiece 1 to perform electric discharge machining between them, and the center of the curved hole 2 of interest. The tip of the electrode 3 is inserted into the workpiece 1 along the axial direction.
【0041】本実施の形態では、電極3と同じ形状の螺
旋状の曲がり孔2を形成するので、電極3の先端の工作
物1に対する移動軌跡が、螺旋状の電極3の形状と一致
するように、NC放電加工機で、電極ホルダ4を回転さ
せつつ下降制御し、電極3の先端の放電加工部3aを螺
旋軸回りに回転させながら螺旋軸方向に進めるものであ
る。In the present embodiment, since the spiral bent hole 2 having the same shape as the electrode 3 is formed, the movement locus of the tip of the electrode 3 with respect to the workpiece 1 matches the shape of the spiral electrode 3. In addition, the NC electric discharge machine controls the lowering while rotating the electrode holder 4, and advances the electric discharge machining portion 3a at the tip of the electrode 3 in the spiral axis direction while rotating around the spiral axis.
【0042】これにより、放電加工部3aは、対向する
工作物1の表面を溶融させながら工作物1内に進入し、
その移動軌跡によって、工作物1に螺旋状の曲がり孔2
が形成される。As a result, the electric discharge machining section 3a enters into the workpiece 1 while melting the surface of the workpiece 1 facing it,
Depending on the movement trajectory, the workpiece 1 has a spiral curved hole 2
Is formed.
【0043】放電加工しながら、放電加工部3aを工作
物1内に進入させる過程では、形成される曲がり孔2の
形状が螺旋状の電極3の形状と一致するので、放電加工
で進入する電極3がその内壁面に当接することはない。
従って、電極3を、放電加工の途中で、形成した曲がり
孔2の形状に合わせて変形させることなく、円滑に、工
作物1内に電極3を進入させることができる。In the process of inserting the electric discharge machining portion 3a into the workpiece 1 during electric discharge machining, since the shape of the bent hole 2 formed matches the shape of the spiral electrode 3, the electrode that enters by electric discharge machining. 3 does not contact the inner wall surface.
Therefore, the electrode 3 can be smoothly introduced into the workpiece 1 without being deformed in accordance with the shape of the formed bent hole 2 during the electric discharge machining.
【0044】円柱状の熱交換部品を工作物1として、本
実施の形態に係る加工方法で、円柱軸に沿って螺旋状の
曲がり孔2を加工し、熱交換用の流路とすれば、円柱状
の熱交換部品の全体を均一に冷却させたり、加熱させる
ことができる。If the cylindrical heat exchange part is used as the workpiece 1 and the spirally bent hole 2 is processed along the axis of the cylinder by the processing method according to the present embodiment to form a heat exchange flow path, The entire columnar heat exchange component can be uniformly cooled or heated.
【0045】また、円柱状のキャビティを有する成形用
金型を工作物1として、本実施の形態に係る加工方法
で、キャビティの周囲に螺旋状の曲がり孔2を形成し、
熱交換用の流路とすれば、キャビティの周囲を均一に加
熱、若しくは冷却できるので、成形品にヒケ等の不良が
生じない。Further, the molding die having the cylindrical cavity is used as the workpiece 1, and the spiral bending hole 2 is formed around the cavity by the processing method according to the present embodiment.
If the flow path for heat exchange is used, the periphery of the cavity can be uniformly heated or cooled, so that defects such as sink marks do not occur in the molded product.
【0046】この実施の形態において、電極3には、線
材を曲げ加工して、放電部分に発生する加工屑やガス
を、電極3と工作物1の隙間から自然に外部に排出して
いるが、電極3をパイプ状として、電極3内に加工液な
どを流す流路を形成し、放電部分にフラッシングを行っ
てもよい。In this embodiment, the electrode 3 is formed by bending a wire rod, and the machining waste or gas generated in the discharge portion is naturally discharged from the gap between the electrode 3 and the workpiece 1 to the outside. Alternatively, the electrode 3 may be formed in a pipe shape to form a flow path for flowing a working liquid or the like in the electrode 3 to flush the discharge portion.
【0047】すなわち、外部から電極3内に加工液を流
して放電部分に供給し、加工屑やガスを加工液ととも
に、放電加工部3aの周囲の隙間から、曲がり孔2を通
して外部へ強制的に排出させたり、逆に形成した曲がり
孔2に加工液を流入させ、放電加工部3aから、加工屑
やガスを加工液とともに吸引し、電極3内の流路を通し
て外部へ排出してもよい。That is, the machining fluid is supplied from the outside into the electrode 3 and supplied to the electric discharge portion, and the machining waste and the gas are forcibly forced to the outside through the bending hole 2 from the gap around the electric discharge machining portion 3a together with the machining fluid. It is also possible that the machining fluid is discharged or, conversely, the machining fluid is caused to flow into the curved hole 2 formed, and the machining chips and gas are sucked together with the machining fluid from the electric discharge machining section 3a and then discharged to the outside through the flow path in the electrode 3.
【0048】このように、放電加工を行いながら、フラ
ッシングを併用すれば、より確実に、放電部分に発生す
る加工屑やガスを外部に排出できる。In this way, by using flushing together with electric discharge machining, it is possible to more reliably discharge machining dust and gas generated in the electric discharge portion to the outside.
【0049】なお、電極3としては、その全長に+極の
電圧を印加してもよく、工作物1に臨んでいる先端のみ
を導電性金属から形成し、後続部分を絶縁性材料によっ
て形成することにより、先端部分を放電加工部とし、こ
の放電加工部に+極の電圧を印加してもよい。A positive electrode voltage may be applied to the entire length of the electrode 3, only the tip facing the workpiece 1 is made of a conductive metal, and the subsequent portion is made of an insulating material. By doing so, the tip portion may be used as the electric discharge machined portion, and a voltage of the positive electrode may be applied to the electric discharge machined portion.
【0050】図5は、本発明の他の実施の形態に係る放
電加工に用いる電極9を示す。この実施の形態において
も、電極ホルダ4のホルダ軸4aに所定ピッチの螺旋溝
6を形成するものであり、螺旋溝6に、絶縁材料からな
る線材を巻き付けることにより、螺旋状の支持コイル7
を形成する。この支持コイル7先端には、溶接等によっ
て所望形状の放電加工部8を取り付けて一体化した電極
9とする。FIG. 5 shows an electrode 9 used for electric discharge machining according to another embodiment of the present invention. Also in this embodiment, a spiral groove 6 having a predetermined pitch is formed on the holder shaft 4a of the electrode holder 4, and a wire rod made of an insulating material is wound around the spiral groove 6 to form a spiral support coil 7
To form. An electric discharge machining portion 8 having a desired shape is attached to the tip of the support coil 7 by welding or the like to form an integrated electrode 9.
【0051】放電加工部8は、支持コイル7よりも大径
のブロック状或いは板状となっていて、形成しようとす
る曲がり孔の断面形状に合わせて、その輪郭を形成す
る。ここでは、星形の断面形状の曲がり孔を加工するた
めに、図5(b)に示すように、放電加工部8の輪郭を
星形としている。The electric discharge machining portion 8 has a block shape or a plate shape having a diameter larger than that of the support coil 7, and forms its contour in accordance with the cross-sectional shape of the bent hole to be formed. Here, in order to machine a curved hole having a star-shaped cross-sectional shape, the electric discharge machining portion 8 has a star-shaped contour as shown in FIG. 5B.
【0052】この電極9に+極の電圧を印加し、工作物
に−極の電圧を印加して、図4の実施の形態と同様に、
螺旋軸回りで回転させながら工作物に対して電極9を進
入させる。これにより、工作物には、星形断面を有した
螺旋状の曲がり孔が形成される。A voltage of positive pole is applied to the electrode 9 and a voltage of negative pole is applied to the workpiece, and as in the embodiment of FIG.
The electrode 9 is inserted into the workpiece while rotating around the spiral axis. As a result, a spiral bent hole having a star-shaped cross section is formed in the workpiece.
【0053】成形用金型を工作物として、本実施の形態
に係る加工方法で螺旋状の曲がり孔を形成すると、曲が
り孔の開口部をゲート口とした螺旋状のキャビティを形
成することができる。この螺旋状のキャビティ内に、ゲ
ート口から溶融樹脂を充填して硬化させると、星形断面
を有する螺旋状の成形品が成形できる。成形用金型内で
硬化させた螺旋状の成形品は、ゲート口に露出する成形
品の端部を所定の治具で掴み、螺旋状に引き抜くことに
より、金型内から取り出す。When a spiral bending hole is formed by the processing method according to the present embodiment using the molding die as a workpiece, a spiral cavity having the gate opening at the opening of the bending hole can be formed. . When a molten resin is filled into the spiral cavity through the gate port and cured, a spiral molded product having a star-shaped cross section can be molded. The spiral molded product cured in the molding die is taken out from the mold by gripping the end of the molded product exposed at the gate opening with a predetermined jig and pulling it out spirally.
【0054】本実施の形態によれば、従来、金属線材を
プレス成形で加工して得ていたコイルバネを、射出成形
により合成樹脂で、しかも所望の断面形状で形成するこ
とができる。また、放電加工部8の形状を種々選択する
ことにより、興趣性のある成形品の成形が可能となる。According to the present embodiment, the coil spring, which is conventionally obtained by processing a metal wire by press molding, can be formed by injection molding with a synthetic resin and with a desired cross-sectional shape. Also, by selecting various shapes of the electric discharge machined portion, it becomes possible to form an interesting molded product.
【0055】図6は、本発明の更に別の実施の形態に用
いる電極10を示し、電極10は、絶縁筒体となる屈曲
可能な絶縁アーム11と、絶縁アーム11の先端に、姿
勢制御自在に取り付けられた放電加工部12とを備えて
いる。FIG. 6 shows an electrode 10 used in still another embodiment of the present invention. The electrode 10 includes a bendable insulating arm 11 that serves as an insulating cylinder, and a posture controllable at the tip of the insulating arm 11. And an electric discharge machining unit 12 attached to the.
【0056】絶縁アーム11は、複数のピース部品1
3、14を交互に連結することによって形成されてい
る。ピース部品13、14は絶縁材料によって円環状に
成形されるものである。The insulating arm 11 includes a plurality of piece parts 1
It is formed by alternately connecting 3 and 14. The piece parts 13 and 14 are formed of an insulating material in an annular shape.
【0057】また、ピース部品13は放電加工部12側
(前方側)に突出する180度間隔の一対の耳部13
a、13aと、反放電加工部12側(後方側)に突出す
る180度間隔の一対の耳部13b、13bとを有して
おり、ピース部品14はピース部品13の耳部13a、
13aに連結される一対の耳部14a、14a及びピー
ス部品13の耳部13b、13bに連結される一対の耳
部14b、14bを有している。Further, the piece component 13 is a pair of ears 13 projecting toward the electric discharge machining portion 12 (front side) and having an interval of 180 degrees.
a, 13a and a pair of ears 13b, 13b at 180 degree intervals projecting to the side of the anti-electric discharge machine 12 (rear side), and the piece part 14 has ears 13a of the piece part 13,
It has a pair of ears 14a, 14a connected to 13a and a pair of ears 14b, 14b connected to the ears 13b, 13b of the piece component 13.
【0058】ピース部品13、14における耳部の連結
は、それぞれの耳部に孔を形成し、孔が連通するように
対応した耳部を重ね合わせ、連通している孔にビス15
を挿通させることにより行われる。これにより、隣接し
ているピース部品13、14は相互に屈曲可能となって
連結される。To connect the ears of the piece parts 13 and 14, holes are formed in each of the ears, the corresponding ears are superposed so that the holes communicate with each other, and screws 15 are inserted into the communicating holes.
It is performed by inserting. As a result, the adjacent piece parts 13 and 14 can be bent and connected to each other.
【0059】電極10の先端の放電加工部12は、導電
性金属材でほぼ円筒状に形成されたもので、最前部のピ
ース部品13Aの側面に形成された凹溝13cに外側か
ら遊嵌するフランジ12aにより、ピース部品13Aに
移動自在に取り付けられている。The electric discharge machined portion 12 at the tip of the electrode 10 is formed of a conductive metal material in a substantially cylindrical shape, and is loosely fitted from the outside into the concave groove 13c formed on the side surface of the frontmost piece component 13A. It is movably attached to the piece component 13A by the flange 12a.
【0060】また、最前部のピース部品13Aと放電加
工部12の先端壁12b間には、放電加工部12を先端
方向(前方)へ付勢するコイルスプリング18が配設さ
れるとともに、絶縁アーム11を90度間隔で挿通する
4本の操作ワイヤ16、17の先端が、放電加工部12
の先端壁12bに連結されている。この構成により、い
ずれかまたは複数の操作ワイヤ16、17を、コイルス
プリング18の弾性に抗して他端の外部から引っ張り操
作することにより、放電加工部12を任意の方向に姿勢
制御できる。Further, a coil spring 18 for urging the electric discharge machining portion 12 in the tip direction (forward) is arranged between the foremost piece part 13A and the tip wall 12b of the electric discharge machining portion 12, and an insulating arm is provided. The ends of the four operation wires 16 and 17 which are inserted through the wire 11 at intervals of 90 degrees are the electric discharge machining parts 12.
Is connected to the tip wall 12b of the. With this configuration, by pulling one or more operation wires 16, 17 from the outside of the other end against the elasticity of the coil spring 18, the posture of the electric discharge machining unit 12 can be controlled in any direction.
【0061】また、放電加工部12の先端壁12bの中
央部分は、厚さ方向に貫通しており、放電加工時に発生
する加工屑やガスを、或いは必要に応じて使用される加
工液を、円環状のピース部品13、14内に流通可能と
している。Further, the central portion of the tip wall 12b of the electric discharge machining portion 12 penetrates in the thickness direction, so that machining chips and gas generated at the time of electric discharge machining, or machining fluid used as necessary, It can be distributed in the annular piece parts 13 and 14.
【0062】この実施の形態においても、工作物1を亜
鉛合金により形成する。そして工作物1に−極の電圧を
印加すると共に、電極10の放電加工部12に+極の電
圧を印加し、放電加工部12と工作物1との間で放電を
行う。この放電によって、放電加工部12と対向する工
作物の加工面が溶融し、加工が行われる。Also in this embodiment, the workpiece 1 is made of a zinc alloy. Then, a negative pole voltage is applied to the workpiece 1 and a positive pole voltage is applied to the electric discharge machining portion 12 of the electrode 10 to cause electric discharge between the electric discharge machining portion 12 and the workpiece 1. Due to this electric discharge, the machining surface of the workpiece facing the electric discharge machining unit 12 is melted and machining is performed.
【0063】図7はこの実施の形態の加工状態を示す。
放電加工に際しては、放電加工部12の工作部1に対す
る姿勢を、例えば、4本の操作ワイヤ16、17の先端
方向への引き出し長さの差分をとって求め、いずれか、
若しくは複数の操作ワイヤ16、17を引っ張り操作し
て目的とする曲がり孔19の軸方向に向かうように姿勢
制御する。FIG. 7 shows a processed state of this embodiment.
At the time of the electric discharge machining, the attitude of the electric discharge machine 12 with respect to the work part 1 is obtained, for example, by taking the difference in the lengths of the four operation wires 16 and 17 drawn out in the distal direction,
Alternatively, the plurality of operation wires 16 and 17 are pulled and operated to control the attitude so as to move toward the desired axial direction of the bent hole 19.
【0064】一方、絶縁アーム11は、形成された曲が
り孔19の軸方向に沿って屈曲するので、放電加工の進
行に従って追従し、電極10全体を円滑に工作物1内に
進入させることができる。On the other hand, since the insulating arm 11 is bent along the axial direction of the formed bent hole 19, the insulating arm 11 can follow the progress of the electric discharge machining, and the electrode 10 as a whole can smoothly enter the workpiece 1. .
【0065】この加工においても、工作物1を亜鉛合金
から形成し、マイナス電圧を印加するため、広い加工間
隙とすることができる。このため、他の実施の形態と同
様に、加工屑やガスを曲がり孔19から外部に円滑に排
出することができ、加工屑やガスの局部的な滞留がなく
なり、滞留に起因する短絡や異常放電が発生しにくくな
る。Also in this processing, since the workpiece 1 is made of a zinc alloy and a negative voltage is applied, a wide processing gap can be obtained. Therefore, similarly to the other embodiments, the processing waste and the gas can be smoothly discharged to the outside from the bending hole 19, the processing waste and the gas are not locally retained, and a short circuit or an abnormality due to the retention is caused. Discharge is less likely to occur.
【0066】また、放電加工部12の任意の方向への方
向変換制御が可能であるため、成形用金型を工作物1と
した場合、成形用金型のキャビティの周囲でキャビティ
の輪郭に沿って電極10を移動させることができる。こ
の移動によって、略全長でキャビティと等間隔となった
曲がり孔19を形成することができる。従って、この曲
がり孔19を熱交換用の流路として用いることにより、
キャビティの全体を均一に加熱したり、冷却することが
でき、ヒケ等の成形品の成形不良の発生をより確実に防
止できる。Further, since it is possible to control the direction change of the electric discharge machining section 12 to an arbitrary direction, when the molding die is the work 1, the contour of the cavity is formed around the cavity of the molding die. The electrode 10 can be moved by moving the electrode 10. By this movement, it is possible to form the curved hole 19 having substantially the same length and at equal intervals with the cavity. Therefore, by using this curved hole 19 as a flow path for heat exchange,
The entire cavity can be uniformly heated or cooled, and the occurrence of molding defects such as sink marks can be more reliably prevented.
【0067】また、このように成形用金型として、鋼材
よりも剛性が小さな亜鉛合金を用いても、樹脂の射出成
形に対しては充分に耐え得るものである。Further, even if a zinc alloy having a rigidity lower than that of steel is used as the molding die as described above, it can sufficiently withstand the injection molding of the resin.
【0068】本実施の形態に係る絶縁アーム11は、複
数のピース部品13、14を連結して構成したが、可撓
性の絶縁チューブなどで一体に構成してもよい。Although the insulating arm 11 according to the present embodiment is constructed by connecting a plurality of piece parts 13 and 14, it may be integrally constructed by a flexible insulating tube or the like.
【0069】また、放電加工部の工作物1内での向き
は、上述の方法で求める他、個々のピース部品13、1
4間の回転角を検出してその総和から求めたり、放電加
工部自体に姿勢検出機能を設け、目的とする方向に姿勢
制御するものであってもよい。The orientation of the electric discharge machining part in the workpiece 1 is determined by the above-mentioned method, and the individual piece parts 13, 1
It is also possible to detect the rotation angle between the four and obtain it from the sum thereof, or to provide a posture detection function in the electric discharge machine itself to control the posture in a target direction.
【0070】[0070]
【発明の効果】請求項1の発明によれば、放電加工で発
生した加工屑やガスの排出が容易で、短絡や異常放電が
発生しくいため、曲がり孔を効率良く、しかも安定した
放電加工状態で行うことができる。According to the first aspect of the present invention, it is easy to discharge machining chips and gas generated by electric discharge machining, and it is difficult for short-circuiting and abnormal electric discharge to occur. Therefore, curved holes can be efficiently and stably discharged. Can be done in the state.
【0071】また、電極の消耗が少なくなるため、電極
と工作物の加工面との距離を一定に保つことができ、目
的とした形状や大きさの曲がり孔を精度よく加工するこ
とができる。Further, since the consumption of the electrode is reduced, the distance between the electrode and the machined surface of the workpiece can be kept constant, and the curved hole having the intended shape and size can be machined with high accuracy.
【0072】請求項2の発明によれば、請求項1の発明
の効果に加えて、曲がり孔からなる熱交換用の流路によ
って、キャビティの全体を均一に加熱したり、冷却する
ことができるため、成形品の成形不良の発生を防止する
ことができる。According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, the entire cavity can be uniformly heated or cooled by the heat exchanging flow path formed of the curved hole. Therefore, it is possible to prevent the occurrence of defective molding of the molded product.
【0073】請求項3の発明によれば、請求項1及び2
の発明の効果に加えて、螺旋状の電極を螺旋軸回りで回
転させながら相対移動させるため、電極の形状を変形さ
せずに螺旋状の曲がり孔を効率良く加工することができ
る。According to the invention of claim 3, claims 1 and 2
In addition to the effect of the present invention, since the spiral electrode is relatively moved while rotating around the spiral axis, the spiral bent hole can be efficiently processed without deforming the shape of the electrode.
【0074】請求項4の発明によれば、請求項1及び2
の効果に加えて、放電加工部の姿勢を任意方向へ制御す
るため、任意の方向に曲がった曲がり孔を加工すること
ができ、複雑な形状であっても良好に加工することがで
きる。According to the invention of claim 4, claims 1 and 2
In addition to the above effect, since the posture of the electric discharge machining portion is controlled in an arbitrary direction, a curved hole bent in an arbitrary direction can be processed, and even a complicated shape can be favorably processed.
【0075】請求項5の発明によれば、興趣性のある成
形品や、コイルバネ状の成形品を射出成形で形成でき
る。According to the fifth aspect of the present invention, an interesting molded product or a coil spring-shaped molded product can be formed by injection molding.
【図1】本発明の一実施の形態における加工方法に用い
る電極ホルダ4を作成する状態を示す側面図である。FIG. 1 is a side view showing a state in which an electrode holder 4 used in a processing method according to an embodiment of the present invention is prepared.
【図2】放電加工に用いる電極3を形成する状態を示す
側面図である。FIG. 2 is a side view showing a state in which an electrode 3 used for electric discharge machining is formed.
【図3】電極ホルダ4に電極3を取り付けた状態を示す
側面図である。FIG. 3 is a side view showing a state in which an electrode 3 is attached to an electrode holder 4.
【図4】放電加工により曲がり孔を加工する状態を示す
正面図である。FIG. 4 is a front view showing a state in which a curved hole is machined by electric discharge machining.
【図5】本発明の他の実施の形態に係る放電加工に用い
る電極9を示し、(a)は、電極9の側面図、(b)
は、放電加工部8の正面図である。5A and 5B show an electrode 9 used for electric discharge machining according to another embodiment of the present invention, FIG. 5A is a side view of the electrode 9, and FIG.
FIG. 4 is a front view of the electric discharge machining unit 8.
【図6】更に別の実施の形態に用いる電極10を示す要
部破断正面図である。FIG. 6 is a fragmentary front view showing an electrode 10 used in still another embodiment.
【図7】図6に示す電極10を用いて曲がり孔19を加
工する状態を示す断面図である。7 is a cross-sectional view showing a state in which a curved hole 19 is processed using the electrode 10 shown in FIG.
【図8】成形用金型100のキャビティ101周囲に熱
交換用の流路を形成する従来の加工方法を示す平面図で
ある。FIG. 8 is a plan view showing a conventional processing method for forming a heat exchange passage around a cavity 101 of a molding die 100.
1 工作物 2、19 曲がり孔 3、9、10 電極 3a、8、12 放電加工部 11 絶縁筒体(絶縁アーム) 1 workpiece 2, 19 curved holes 3, 9, 10 electrodes 3a, 8, 12 EDM part 11 Insulation cylinder (insulation arm)
フロントページの続き (72)発明者 増井 清徳 大阪府富田林市中野町1丁目221番1号 (72)発明者 南 久 大阪府貝塚市三ツ松1515 Fターム(参考) 3C059 AA01 AB01 HA09 HA11 HA16 4E050 JA01 JA02 JB06 JC04 JD03 4F202 CA11 CD18 CN14 Continued front page (72) Inventor Kiyonori Masui 1-2221 Nakanocho, Tomitabayashi City, Osaka Prefecture (72) Inventor Hisashi Minami 1515 Mitsumatsu, Kaizuka City, Osaka Prefecture F-term (reference) 3C059 AA01 AB01 HA09 HA11 HA16 4E050 JA01 JA02 JB06 JC04 JD03 4F202 CA11 CD18 CN14
Claims (5)
有する電極(3)を用い、亜鉛合金からなる工作物
(1)に対し放電加工部(3a)で放電加工を行いなが
ら、放電加工部(3a)を、目的とする曲がり孔(2)
の中心軸に沿って進入させ、放電加工部(3a)の移動
軌跡で曲がり孔(2)を形成することを特徴とする曲が
り孔の加工方法。1. An electric discharge machining part is used while performing electric discharge machining on a workpiece (1) made of a zinc alloy using an electrode (3) having an electric discharge machining part (3a) at least at its tip. (3a) is a curved hole (2)
A method of machining a curved hole, characterized in that the curved hole (2) is formed along the movement axis of the electric discharge machining part (3a) by advancing along the central axis of the curved hole.
加工部(3a)を、成形用金型のキャビティの周囲でキ
ャビティの輪郭に沿って進入させ、キャビティの輪郭に
沿った加熱孔若しくは冷却孔を形成することを特徴とす
る請求項1記載の曲がり孔の加工方法。2. The workpiece (1) is a molding die, and the electric discharge machined portion (3a) is made to enter along the contour of the cavity around the cavity of the molding die so as to follow the contour of the cavity. The method for processing a curved hole according to claim 1, wherein a heating hole or a cooling hole is formed.
て電極(3)を形成し、工作物(1)内の放電加工部
(8)の移動軌跡が螺旋状の電極(3)形状と一致する
ように、工作物(1)に対して、電極(3)を螺旋軸回
りに回転させながら螺旋軸方向に進入させ、工作物
(1)に螺旋状の曲がり孔(2)を形成することを特徴
とする請求項1または2記載の曲がり孔の加工方法。3. An electrode (3) in which a conductive wire is spirally wound with the same curvature to form an electrode (3), and a movement locus of an electric discharge machining part (8) in a workpiece (1) is spiral. In order to match the shape, the electrode (3) is made to enter the workpiece (1) in the spiral axis direction while rotating around the spiral axis, and the spiral bent hole (2) is formed in the workpiece (1). The method for processing a curved hole according to claim 1 or 2, wherein the curved hole is formed.
(11)と、絶縁筒体(11)の外径と同一若しくは太
幅の輪郭で、絶縁筒体(11)の先端に姿勢制御自在に
支持される放電加工部(12)とで構成し、 工作物(1)に放電加工を行いながら、放電加工部(1
2)を、目的とする曲がり孔(19)の軸方向に向かう
ように姿勢制御することを特徴とする請求項1または2
記載の曲がり孔の加工方法。4. The electrode (10) is positioned at the tip of the insulating tubular body (11) with a bendable insulating tubular body (11) and a contour that is the same as or thicker than the outer diameter of the insulating tubular body (11). It is composed of a controllably supported electric discharge machining part (12), and the electric discharge machining part (1
The posture of 2) is controlled so as to be directed in the axial direction of the target curved hole (19).
The method for processing the described bent hole.
て形成した電極(9)を、成形用金型内の放電加工部
(8)の移動軌跡が螺旋状の電極(9)形状と一致する
ように、成形用金型に対して、電極(9)を螺旋軸回り
に回転させながら螺旋軸方向に進入させ、成形用金型に
螺旋状のキャビティを形成することを特徴とする請求項
1記載の曲がり孔の加工方法。5. The electrode (9) formed by spirally winding a conductive wire with the same curvature, and the movement locus of the electric discharge machined portion (8) in the molding die has a spiral electrode (9) shape. So that the electrode (9) is inserted into the molding die in the spiral axis direction while rotating around the spiral axis to form a spiral cavity in the molding die. The method for processing a curved hole according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001340353A JP2003136343A (en) | 2001-11-06 | 2001-11-06 | Bending hole processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001340353A JP2003136343A (en) | 2001-11-06 | 2001-11-06 | Bending hole processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003136343A true JP2003136343A (en) | 2003-05-14 |
Family
ID=19154563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001340353A Pending JP2003136343A (en) | 2001-11-06 | 2001-11-06 | Bending hole processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003136343A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351488A (en) * | 2004-06-08 | 2005-12-22 | Kyasutemu:Kk | Heat exchanging member, heat exchanger, heat exchanging unit and heat exchanging system |
JP2007276224A (en) * | 2006-04-05 | 2007-10-25 | It Techno Kk | Cooling structure of arc-shaped core mold and method for forming arc-shaped cooling water hole in the core mold |
EP2226177A3 (en) * | 2006-02-01 | 2010-12-29 | MHT Mold & Hotrunner Technology AG | Improved neck block cooling |
DE102013105680A1 (en) | 2012-06-04 | 2013-12-05 | Schoeller-Bleckmann Oilfield Technology Gmbh | Spark erosion tool and electrode for a spark erosion tool |
KR101477183B1 (en) * | 2013-01-22 | 2015-01-06 | 부산대학교 산학협력단 | Method for Manufacturing Micro-nozzle |
CN107350581A (en) * | 2017-07-07 | 2017-11-17 | 安徽宁国中鼎模具制造有限公司 | A kind of automobile engine cover buffer stopper mould molding machined electrode structure |
CN109365930A (en) * | 2018-11-20 | 2019-02-22 | 广东轻工职业技术学院 | A kind of electric discharge machining apparatus and method in spatially spiral hole |
CN109551066A (en) * | 2018-11-20 | 2019-04-02 | 广东轻工职业技术学院 | A kind of spatially spiral hole electric spark processing unit (plant) |
CN111014765A (en) * | 2019-12-18 | 2020-04-17 | 广东轻工职业技术学院 | Flexible shaft driven space spiral hole machining device |
-
2001
- 2001-11-06 JP JP2001340353A patent/JP2003136343A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351488A (en) * | 2004-06-08 | 2005-12-22 | Kyasutemu:Kk | Heat exchanging member, heat exchanger, heat exchanging unit and heat exchanging system |
EP2226177A3 (en) * | 2006-02-01 | 2010-12-29 | MHT Mold & Hotrunner Technology AG | Improved neck block cooling |
JP2007276224A (en) * | 2006-04-05 | 2007-10-25 | It Techno Kk | Cooling structure of arc-shaped core mold and method for forming arc-shaped cooling water hole in the core mold |
US9889514B2 (en) | 2012-06-04 | 2018-02-13 | Schoeller-Bleckmann Oilfield Technology Gmbh | Spark erosion tool and electrode for a spark erosion tool |
EP2671659A2 (en) | 2012-06-04 | 2013-12-11 | SCHOELLER-BLECKMANN Oilfield Technology GmbH | Spark erosion tool, electrode for a spark erosion tool and method for creating a hole by spark erosion |
AT512987A1 (en) * | 2012-06-04 | 2013-12-15 | Schoeller Bleckmann Oilfield Technology Gmbh | Spark erosion tool and electrode for a spark erosion tool |
AT512987B1 (en) * | 2012-06-04 | 2015-03-15 | Schoeller Bleckmann Oilfield Technology Gmbh | Spark erosion tool and electrode for a spark erosion tool |
DE102013105680A1 (en) | 2012-06-04 | 2013-12-05 | Schoeller-Bleckmann Oilfield Technology Gmbh | Spark erosion tool and electrode for a spark erosion tool |
KR101477183B1 (en) * | 2013-01-22 | 2015-01-06 | 부산대학교 산학협력단 | Method for Manufacturing Micro-nozzle |
CN107350581A (en) * | 2017-07-07 | 2017-11-17 | 安徽宁国中鼎模具制造有限公司 | A kind of automobile engine cover buffer stopper mould molding machined electrode structure |
CN109365930A (en) * | 2018-11-20 | 2019-02-22 | 广东轻工职业技术学院 | A kind of electric discharge machining apparatus and method in spatially spiral hole |
CN109551066A (en) * | 2018-11-20 | 2019-04-02 | 广东轻工职业技术学院 | A kind of spatially spiral hole electric spark processing unit (plant) |
CN109365930B (en) * | 2018-11-20 | 2020-04-17 | 广东轻工职业技术学院 | Electric spark machining device and method for spatial spiral hole |
CN109551066B (en) * | 2018-11-20 | 2020-09-11 | 广东轻工职业技术学院 | Space spiral hole spark-erosion machining device |
CN111014765A (en) * | 2019-12-18 | 2020-04-17 | 广东轻工职业技术学院 | Flexible shaft driven space spiral hole machining device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6627054B2 (en) | Electrode for electrochemical machining | |
EP2671660B1 (en) | Electrode and electrochemical machining process for forming non-circular holes | |
JP2003136343A (en) | Bending hole processing method | |
US8710392B2 (en) | Electric discharge machining hole drilling | |
JPH09506830A (en) | Apparatus for forming shaped holes in objects such as gas turbine engine parts | |
US6267868B1 (en) | Method and tool for electrochemical machining | |
US8900424B2 (en) | Electrode and electrochemical machining process for forming non-circular holes | |
EP2246139B1 (en) | A method of securing a workpiece for machining a trailing edge thereof, the workpiece being a vane or blade for a turbine engine. | |
CN112453601B (en) | Electric spark machine tool for processing inner cavity of metal product | |
KR20160140425A (en) | Method for material recovery in electroerosion machining | |
JP5337364B2 (en) | Method for producing thin-walled cylindrical metal member with bottom | |
TWI492804B (en) | Method for forming pin point gate on workpiece | |
JP3241936B2 (en) | EDM method for insulating material | |
JP2010221391A (en) | Electrode guide of electric discharge machine, and electric discharge machine using electrode guide | |
JPH0236026A (en) | Working method for thin wall pipe | |
EP0634243B1 (en) | Electrode tube for electrical discharge machining and manufacturing method thereof | |
JP4460132B2 (en) | Electrochemical machining method for irregular holes | |
JPWO2015122103A1 (en) | Electrolytic machining apparatus, electrolytic machining method, and tool electrode | |
CN113770463B (en) | Micro stepped hole machining method based on electrode loss | |
US4847464A (en) | Tool for forming a spinneret capillary | |
JP2001514080A (en) | Flow nozzle | |
CN113878137B (en) | Machining process of mold thin-wall ultra-deep micro hole | |
US20070095796A1 (en) | Electrode dressing template | |
US3316626A (en) | Method of making an airfoil shaped electrode | |
JPS61502808A (en) | Electrode tool for drilling holes in workpieces by electrolytic corrosion and method for drilling holes by electrolytic corrosion using this electrode tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070620 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070731 |